2017年春季学期新人教版九年级数学下册期末检测试卷含答案

合集下载

新人教版九年级数学下册期末测试卷及答案【全面】

新人教版九年级数学下册期末测试卷及答案【全面】

新人教版九年级数学下册期末测试卷及答案【全面】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是()A.3B.13C.13-D.3-2.已知x+1x=6,则x2+21x=()A.38 B.36 C.34 D.32 3.已知m=4+3,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<64.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20 B.2 C.2或﹣20 D.1 25.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3 6.一个等腰三角形的两条边长分别是方程27100x x-+=的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或97.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC8.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________.2.分解因式:x3﹣16x=_____________.3.若代数式1﹣8x与9x﹣3的值互为相反数,则x=__________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′,求△O A ′B ′的面积.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、C5、C6、A7、C8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)12、x (x +4)(x –4).3、24、8.5、40°6、①③④.三、解答题(本大题共6小题,共72分)1、2x =2、(1)y=﹣x 2﹣2x+3;(2)抛物线与y 轴的交点为:(0,3);与x 轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)相切,略;(2).4、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)120件;(2)150元.。

新人教版九年级数学下册期末考试【及参考答案】

新人教版九年级数学下册期末考试【及参考答案】

新人教版九年级数学下册期末考试【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13C .18D .92.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .29.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70° 10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.因式分解:a 3-ab 2=____________.3.函数2y x =-x 的取值范围是__________.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB .(1)求BC 的长;(2)求证:PB 是⊙O 的切线.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、B6、C7、A8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、a (a+b )(a ﹣b )3、2x ≥4、125、5.6、49三、解答题(本大题共6小题,共72分)1、1x =2.3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,2--. 4、(1)2(2)略5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)4元或6元;(2)九折.。

初中数学(新人教版)九年级下册同步测试:期末测评(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:期末测评(同步测试)【含答案及解析】

期末测评(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分.下列各小题给出的四个选项中,只有一项符合题目要求)1.由两个正方体组成的几何体如图所示,则该几何体的俯视图为()2.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的.若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F3.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan 50°B.10sin 40°C.10sin 50°D.10cos50°的图象相交于A,C两点,过点A作x轴的垂线交x轴于点4.如图,正比例函数y=kx与反比例函数y=4xB,连接BC,则△ABC的面积等于()A.8B.6C.4D.25.(2020·四川凉山州中考)如图所示,△ABC的顶点在正方形网格的格点上,则tan A的值为()A.12B.√22C.2D.2√26.如图,在Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,P 是BC 边上一点,作PE ⊥AB 于点E ,PD ⊥AC 于点D.设BP=x ,则PD+PE 等于( )A.x 5+3B.4-x 5C.72D.12x 5−12x 2257.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD 为12 m,塔影长DE 为18 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m 和1 m,则塔高AB 为( )A.24 mB.22 mC.20 mD .18 m8.如图,在Rt △ABC 中,∠ACB=90°,BC=4,AC=3,CD ⊥AB 于点D.设∠ACD=α,则cos α的值为( )A.45B.34C.43D.359.如图,在x 轴的上方,∠AOB 为直角,且绕原点O 按顺时针方向旋转.若∠AOB 的两边分别与函数y=-1x ,y=2x的图象交于B ,A 两点,则∠OAB 大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.由7个小立方块所搭成的几何体的俯视图如图所示,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()11.如图,A,B是反比例函数y=2x的图象上的两点.AC,BD都垂直于x轴,垂足分别为C,D,AB的延长线交x轴于点E.若C,D的坐标分别为(1,0),(4,0),则△BDE的面积与△ACE的面积的比值是()A.12B.14C.18D.11612.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O.设△OCD的面积为m,△OEB的面积为√5,则下列结论正确的是()A.m=5B.m=4√5C.m=3√5D.m=10二、填空题(每小题3分,共18分)13.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数关系式ρ=kV(k为常数,k≠0),其图象如图所示,则k的值为.14.如图,在Rt △ABC 中,∠ACB=90°,∠A<∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处.若CD 恰好与MB 垂直,则tan A 的值为 .15.在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为 m .16.已知由几块小正方块搭成的几何体的主视图与左视图如图所示,则这个几何体最多可能有 个小正方块.17.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B',折痕为EF.已知AB=AC=3,BC=4,若以点B',F ,C 为顶点的三角形与△ABC 相似,则BF 的长度是 .18.已知函数y=x 的图象与函数y=4x的图象在第一象限内交于点B ,点C 是函数y=4x在第一象限的图象上的一个动点(不与点B 重合),则当△OBC 的面积为3时,点C 的横坐标是 .三、解答题(共66分)19.(4分)计算:sin 30°+cos 245°-12tan 260°+1cos30°.20.(6分)双曲线y=kx (k 为常数,且k ≠0)与直线y=-2x+b 交于A (-12m ,m -2),B (1,n )两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D.若点E为CD的中点,求△BOE的面积.21.(8分)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC =DFCG.(1)求证:△ADF∽△ACG;(2)若ADAC =12,求AFFG的值.22.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1 m的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40 m,又测得该建筑物顶端A的仰角为60°,求该建筑物的高度AB.(结果保留根号)23.(8分)如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cos A=3.5(1)求DE,CD的长;(2)求tan∠DBC的值.24.(10分)(2020·江苏南京中考)如图,在港口A处的正东方向有两个相距6 km的观测点B,C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B,C处分别测得∠ABD=45°,∠C=37°.求轮船航行的距离AD.(参考数据:sin 26°≈0.44,cos 26°≈0.90,tan 26°≈0.49,sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)25.(10分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M,M',N',N.小明在探究线段MM'与N'N的数量关系时,从点M',N'向对应边作垂线段M'E,N'F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时(如图①),直线l分别交AD,A'D',B'C',BC于M,M',N',N,小明发现MM'与N'N相等,请你帮他说明理由.(2)当直线l与方形环的邻边相交时(如图②),l分别交AD,A'D',D'C',DC于M,M',N',N,l与DC的夹角为α,你认为MM'与N'N还相等吗?若相等,说明理由;若不相等,求出MM'的值.(用含α的三角函数表示)N'N26.(12分)如图,双曲线y=k(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).x(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.期末测评一、选择题1.D2.B3.B4.C5.A6.A 由题意知DP ∥AB ,EP ∥AC.∴△BEP ∽△BAC. ∴PECA =BPBC ,即PE=CA ·BP BC =4x5.∵△CDP ∽△CAB ,∴DPAB =CPBC , ∴DP=3(5-x )5.∴PD+PE=x5+3. 7.A8.A 由条件知,∠B=∠ACD=α,斜边AB=5,cos α=cos B=BC AB=45.9.D 过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E (图略),则S △AOF =1,S △OBE =0.5.易证△AOF ∽△OBE ,则BOAO =√0.51=√22,即tan ∠OAB=√22是个定值,所以∠OAB 大小保持不变. 10.A11.D 解出A ,B 两点的坐标分别为A (1,2),B (4,0.5),∴AC=2,BD=0.5.∵△BDE ∽△ACE ,∴它们面积的比值为116.12.B 二、填空题13.9 由题图知ρ=1.5,V=6,则k=ρ·V=9.14.√33 由CM 是Rt △ABC 斜边的中线,可得CM=AM ,则∠A=∠ACM.由折叠可知∠ACM=∠DCM.又∠A+∠B=∠BCD+∠B=90°,则∠A=∠BCD.所以∠A=∠ACM=∠DCM=∠BCD=30°,因此tan A=tan 30°=√33. 15.15 16.9 17.127或218.1或4 连接OC ,BC ,过点C 作CD ⊥x 轴于点D ,过点B 作BE ⊥x 轴于点E.由于函数y=x 的图象与函数y=4x 的图象在第一象限内交于点B ,故易知B (2,2).设点C 的坐标为(m ,4m ),又点B ,C 都在y=4x 的图象上,所以S △ODC =S △BOE .如图①所示,当点C 在点B 左方的图象上时,S △OBC =S △ODC +S 梯形BCDE -S △BOE =S 梯形BCDE =12(2+4m)(2-m )=3,解得m 1=1,m 2=-4(不合题意,舍去),即点C 的横坐标是1.如图②所示,当点C 在点B 右方的图象上时,同理,有S △OBC = S 梯形BCDE =12(2+4m )(m-2)=3,解得m 1=4,m 2=-1(不合题意,舍去),即点C 的横坐标是4.综上可知,点C 的横坐标为1或4.三、解答题19.解 原式=12+(√22)2−12×(√3)2+√32=12+12−32+2√33=-12+2√33. 20.解 如图.21.(1)证明 ∵∠AED=∠B ,∠DAE=∠CAB ,∴△ADE ∽△ACB ,∴∠ADE=∠C.又AD AC=DFCG,∴△ADF ∽△ACG. (2)解 ∵△ADF ∽△ACG ,∴AD AC =AF AG =12,∴AFFG =1.22.解 由题意知∠PAO=60°,∠B=30°.在Rt △POA 中,tan ∠PAO=PO OA ,tan 60°=30OA ,OA=30÷√3=10√3(m).在Rt △POB 中,tan B=POOB ,tan 30°=30OB ,OB=30÷√33=30√3(m),所以AB=OB-OA=30√3-10√3=20√3(m),即商店与海源阁宾馆之间的距离为20√3 m .23.解 (1)在Rt △ADE 中,由AE=6,cos A=35,得AD=10.由勾股定理得DE=8.利用三角形全等或角平分线的性质,得DC=DE=8.(2)方法1:由(1)AD=10,DC=8,得AC=18. 利用△ADE ∽△ABC ,得DE BC=AE AC ,即8BC=618,BC=24,得tan ∠DBC=13.方法2:由(1)得AC=18,又cos A=ACAB=35,得AB=30.由勾股定理,得BC=24,得tan ∠DBC=13.24.解 如图,过点D 作DH ⊥AC 于点H ,在Rt △DCH 中,∠C=37°,∴CH=DHtan37°.在Rt △DBH 中,∠DBH=45°,∴BH=DHtan45°. ∵BC=CH-BH , ∴DHtan37°−DHtan45°=6,解得DH=18.在Rt △DAH 中,∠ADH=26°,∴AD=DHcos26°≈20.答:轮船航行的距离AD 约为20 km .25.解 (1)在方形环中,∵M'E ⊥AD ,N'F ⊥BC ,AD ∥BC ,∴M'E=N'F ,∠M'EM=∠N'FN=90°,∠EMM'=∠N'NF. ∴△MM'E ≌△NN'F ,∴MM'=N'N.(2)∵∠NFN'=∠MEM'=90°,∠FNN'=∠EM'M=α,∴△NFN'∽△M'EM.∴MM 'N 'N=M 'ENF. ∵M'E=N'F ,∴MM 'N 'N =N 'FNF=tan α. ①当α=45°时,tan α=1,则MM'=NN'. ②当α≠45°时,MM'≠NN',且MM 'N 'N =tan α.26.解 (1)将点A (2,3)代入解析式y=k x ,解得k=6.(2)将D (3,m )代入反比例解析式y=6x ,得m=63=2,所以点D 的坐标为(3,2).设直线AD 的解析式为y=k 1x+b (k 1≠0),将A (2,3)与D (3,2)代入,得{2k 1+b =3,3k 1+b =2,解得k 1=-1,b=5. 所以直线AD 的解析式为y=-x+5.(3)过点C 作CN ⊥y 轴,垂足为N ,延长BA ,交y 轴于点M.因为AB ∥x 轴,所以BM ⊥y 轴.所以MB ∥CN ,△OCN ∽△OBM.因为C 为OB 的中点,即OC OB =12,S △OCNS △OBM =(12)2.因为A ,C 都在双曲线y=6x 上,所以S △OCN =S △AOM =3.由33+S △AOB =14,得S △AOB =9,故△AOB 的面积为9.。

精品解析:人教版2017-2018学年九年级下《期末检测卷》数学试题(解析版)

精品解析:人教版2017-2018学年九年级下《期末检测卷》数学试题(解析版)

2018届人教版九年级数学下册(江西专版)检测卷期末检测卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1. 如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )A. 4B. .5C. 6D. 8【答案】C【解析】【分析】【详解】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.2. 已知反比例函数y=kx(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A. a=bB. a=﹣bC. a<bD. a>b 【答案】D【解析】【分析】对于反比例函数kyx=(k≠0)而言,当k>0时,作为该函数图象的双曲线的两支应该在第一和第三象限内. 由点A与点B的横坐标可知,点A与点B应该在第一象限内,然后根据反比例函数增减性分析问题.【详解】解:∵点A的坐标为(1,a),点B的坐标为(3,b),∴与点A对应的自变量x值为1,与点B对应的自变量x值为3,∵当k>0时,在第一象限内y随x的增大而减小,又∵1<3,即点A 对应的x 值小于点B 对应的x 值,∴点A 对应的y 值大于点B 对应的y 值,即a >b故选D【点睛】本题考查反比例函数的图像性质,利用数形结合思想解题是关键.3. 如图所示的几何体的俯视图是()A. AB. BC. CD. D 【答案】C【解析】A 选项:该几何体顶面的正投影与位于其下方的面的正投影并不全等. 在本选项所给出的俯视图中,长方形内部没有画出表示顶面正投影边缘的实线,故A 选项错误.B 选项:该几何体中部截面的正投影被顶面的正投影遮挡. 本选项所给出的俯视图未用虚线将这部分被遮挡的投影画出,故B 选项错误.C 选项:在本选项所给出的俯视图中,外围的长方形表示了该几何体下部截面的正投影,长方形内部的两条平行实线表示了顶面正投影的边缘,中间的两条虚线表示了被顶面遮挡的该几何体中部截面的正投影. 故C 选项正确.D 选项:该几何体中部截面的正投影被顶面的正投影遮挡. 本选项所给出的俯视图中的这部分投影不是用虚线画出的,不符合相关规定,故D 选项错误.故本题应选C.点睛:本题考查了几何体三视图的相关知识. 在画三视图或者解决与三视图相关的题目时,要想象和分析几何体在投影方向上所呈现的形状,特别要注意多个几何尺度不同的投影面在相应视图中的表示方法以及各个投影面之间的遮挡关系. 另外,被遮挡的投影应该用虚线在相应的视图中画出.4. 在△ABC 中,若tanA =1,sinB =,你认为最确切的判断是( ) A. △ABC 等腰三角形B. △ABC 是等腰直角三角形C. △ABC 是直角三角形D. △ABC 是一般锐角三角形【答案】B【解析】【分析】试题分析:由tanA=1,sinB=2结合特殊角的锐角三角函数值可得∠A 、∠B 的度数,即可判断△ABC 的形状.【详解】∵tanA=1,sinB=2∴∠A=45°,∠B=45°∴△ABC 是等腰直角三角形故选B. 考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.5. (2017湖南省岳阳市,第8题,3分)已知点A 在函数11y x=-(x >0)的图象上,点B 在直线y 2=kx +1+k (k 为常数,且k ≥0)上.若A ,B 两点关于原点对称,则称点A ,B 为函数y 1,y 2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )A. 有1对或2对B. 只有1对C. 只有2对D. 有2对或3对 【答案】A【解析】设点A 与点B 为函数y 1,y 2图象上的一对“友好点”,则点A 与点B 关于原点对称.设点A 的坐标为(x 0, y 0),则点B 的坐标应为(-x 0, -y 0).由于点A 在函数11y x=-(x >0)的图象上,所以将点A 的坐标代入函数y 1的解析式,得 001y x =-, 故点B 的坐标可以表示为001,x x ⎛⎫- ⎪⎝⎭. 由于点B 在直线y 2=kx +1+k (k 为常数,且k ≥0)上,所以将点B 的坐标代入y 2=kx +1+k ,得0011kx k x =-++,① 因为点A 在函数11y x=-(x >0)的图象上,所以x 0>0, 方程①两侧同时乘以x 0并整理,得()200110kx k x -++=,②因为k ≥0,所以应该按以下两种情况分别对方程②进行求解.(1) 当k =0时,方程②应为:010x -+=,解之,得 01x =.故当k =0时,“友好点”为:点A (1, -1)与点B (-1, 1).(2) 当k >0时,方程②为关于x 0的一元二次方程,利用因式分解法解该一元二次方程,得()()00110kx x --=,∴010kx -=或010x -=, ∴01x k=或01x = 故当k >0时,“友好点”为:点A (1k , -k )与点B (-1k , k ),或点A (1, -1)与点B (-1, 1). 综上所述,当k =0时,两个图象有1对“友好点”,“友好点”是:点A (1, -1)与点B (-1, 1);当k >0且k ≠1时,两个图象有2对“友好点”,它们分别是:点A (1k , -k )与点B (-1k, k ),点A (1, -1)与点B (-1, 1);当k =1时,两个图象实际上只有1对“友好点”,“友好点”是:点A (1, -1)与点B (-1, 1).因此,这两个图象上的“友好点”应有1对或者2对.故本题应选A.点睛:本题是一道利用代数方法求解几何相关问题的综合题目,也是数形结合思想的应用问题. 本题的关键思想可以总结为:利用关于原点对称的点的坐标特征和函数图象与解析式之间的关系将题目中的几何问题转化为关于某一待定坐标值的方程,通过求解方程获得符合要求的点.6. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则( )A. x–y2=3B. 2x–y2=9C. 3x–y2=15D. 4x–y2=21【答案】B【解析】【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BQ=CQ=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理即可得.【详解】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴EM AQMC CQ=y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=12CQ=3,∴EM=3y,∴DM=12-3-x=9-x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9-x)2,即2x-y2=9,故选B.二、填空题(本大题共6小题,每小题3分,共18分)7. 若反比例函数y=k x 的图象经过点(1,﹣6),则k 的值为 . 【答案】﹣6.【解析】【分析】由待定系数法代入(1,﹣6),即可求得k 的值.【详解】已知反比例函数y=k x的图象经过点(1,﹣6),所以k=1×(﹣6)=﹣6. 故答案为:-6考点:反比例函数图象上点的坐标特征.8. 如图所示的几何体是由一些小正方体组合而成的,若每个小正方体的棱长都是1,则该几何体俯视图的面积是________【答案】5【解析】根据题意画出该几何体的俯视图.因为几何体的三视图采用的是正投影的方法,所以俯视图中的各小正方形的边长应与该几何体中小正方体的棱长相等.因为每个小正方体的棱长都是1,所以俯视图中的各小正方形的边长也均为1.因为俯视图共由5个全等的小正方形组成,所以俯视图的面积为:()2515⨯=.故本题应填写:5.9. 如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么FGAG=________.【答案】1 4【解析】【分析】根据重心的性质得到AG=2DG,BG=2GE,根据平行线分线段成比例定理计算即可.【详解】解:∵△ABC的两条中线AD和BE相交于点G,∴点G是△ABC的重心,∴AG=2DG,BG=2GE,∵EF∥BC,∴FG GD=EG BG=12.故答案为12.【点睛】本题考查的是三角形的重心的概念和性质、平行线分线段成比例定理的应用,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.10. 如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为______米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:2≈1.41,3≈1.73)【答案】137.【解析】【分析】【详解】设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+CD=x+100(米),在Rt△ABD中,∵∠ADB=30°,∴tan∠ADB=3ABBD=,即3100xx=+,解得:x=50+503≈137,即建筑物AB的高度约为137米.故答案为137.考点:解直角三角形的应用﹣仰角俯角问题.11. 如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P.若OP=10,则k的值为________.【答案】3 【解析】【分析】已知直线y=x+2与反比例函数y=kx的图象在第一象限交于点P,设点P的坐标为(m,m+2),根据10,列出关于m的等式,即可求出m,得出点P坐标,且点P在反比例函数图象上,所以点P满足反比例函数解析式,即可求出k值.【详解】∵直线y=x+2与反比例函数y=kx的图象在第一象限交于点P∴设点P的坐标为(m,m+2) ∵1022(2)10m m++=解得m1=1,m2=-3∵点P 在第一象限∴m=1∴点P 的坐标为(1,3)∵点P 在反比例函数y=k x 图象上 ∴31k 解得k=3故答案为:3【点睛】本题考查了一次函数与反比例函数交点问题,交点坐标同时满足一次函数和反比例函数解析式,根据直角坐标系中点坐标的性质,可利用勾股定理求解.12. (2016辽宁省沈阳市)如图,在Rt △ABC 中,∠A =90°,AB =AC ,BC =20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM =3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是______.【答案】256或5013. 【解析】 由图可知,在△OMN 中,∠OMN 的度数是一个定值,且∠OMN 不为直角. 故当∠ONM =90°或∠MON =90°时,△OMN 是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当∠ONM =90°时,则DN ⊥BC .过点E 作EF ⊥BC ,垂足为F .(如图)∵在Rt △ABC 中,∠A =90°,AB =AC , ∴∠C =45°, ∵BC =20,∴在Rt△ABC中,2cos cos45201022AC BC C BC=⋅=⋅︒=⨯=,∵DE是△ABC的中位线,∴111025222CE AC==⨯=,∴在Rt△CFE中,2sin sin455252EF CE C BC=⋅=⋅︒=⨯=,5FC EF==.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12. ∵EF=5,MF=12,∴在Rt△MFE中,5 tan12EFEMFMF∠==,∵DE是△ABC的中位线,BC=20,∴11201022DE BC==⨯=,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴5 tan tan12DEO EMF∠=∠=,∴在Rt△ODE中,525tan10126 DO DE DEO=⋅∠=⨯=.(2) 当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,222212513ME MF EF=++=,∴在Rt△MFE中,5 sin13EFEMFME∠==,∵∠DEO=∠EMF,∴5 sin sin13DEO EMF∠=∠=,∵DE=10,∴在Rt△DOE中,550sin101313 DO DE DEO=⋅∠=⨯=.综上所述,DO的长是256或5013.故本题应填写:256或5013.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.三、(本大题共5小题,每小题6分,共30分)13. 如图,以原点O为位似中心,把△OAB放大后得到△OCD,求△OAB与△OCD的相似比.【答案】23.【解析】试题分析:根据相似三角形相似比的定义可知,要求△OAB与△OCD的相似比就是要求△OAB与△OCD某一组对应边的比. 观察图形可知,根据点B与点D的坐标容易确定OB与OD这组对应边的长度,这组对应边的比即为这组相似三角形的相似比.试题解析:∵点B的坐标是(4, 0),点D的坐标是(6, 0),∴OB=4,OD=6,∴4263 OBOD==,∵△OAB与△OCD关于点O位似,∴△OAB∽△OCD,∵相似三角形的对应边的比是相似三角形的相似比,又∵OB与OD为一组对应边,∴△OAB与△OCD的相似比为2 3 .点睛:本题考查了位似图形与相似图形的相关知识. 应当准确理解位似图形与相似图形的联系和区别,分清位似图形中边的对应关系以及熟练掌握相似三角形相似比的定义. 要注意,位似图形一定是相似图形,但是位似图形是对应顶点连线所在直线相交于一点,对应边互相平行的特殊相似图形.14. 如图,反比例函数y=kx的图象在第二象限内,点A是图象上的任意一点,AM⊥x轴于点M,O是原点.若S△AOM=3,求该反比例函数的解析式,并写出自变量的取值范围.【答案】y=-6x(x<0)【解析】试题分析:要求反比例函数的解析式就是要求比例系数k的值. 观察图形可以发现,△AOM恰好是与比例系数k的几何意义密切相关的一个典型图形,易知S△AOM=12k. 据此,结合已知条件不难求得k的绝对值,再根据反比例函数图象所在的象限,容易判定k的符号,进而获得k的值. 根据题目中给出的图象可知,该函数的图象只在第二象限内,故自变量x的取值范围也就确定了.试题解析:根据题目中△AOM的特征以及反比例函数中比例系数k的几何意义可知,S△AOM=12 k.∵S△AOM=3,∴13 2k=,∴6k=.由图可知,该反比例函数的图象在第二象限内,根据反比例函数的图象与性质可知k<0,故k=-6,即该反比例函数解析式为6y x =-. 由于图中函数的图象只有第二象限内的一支,所以自变量x 的取值范围为x <0. 因此,该函数的解析式及自变量取值范围应为:6y x =-(x <0). 点睛:本题考查了反比例函数中比例系数k 的几何意义. 过双曲线上任意一点作x 轴,y 轴的垂线,其与坐标轴围成的矩形的面积为k ;若将该点与原点连接,则连线将上述矩形分割而成的两个三角形的面积均为12k . 熟练掌握和运用这一几何意义可以简化解题过程,同时这一几何意义也是反比例函数中面积相关问题的基础.15. 按要求完成下列各小题:(1)计算:tan 230°+3tan60°-sin 245°;(2)请你画出如图所示的几何体的三视图.【答案】(1)176;(2)详见解析. 【解析】试题分析: (1) 将相应特殊角的三角函数值代入该算式并进行相应的运算即可.(2) 从正面,左面和上面观察该几何体,下部长方体的正投影均为长方形(各边长度随视图不同而不同);上部由小立方体组成的结构的正投影在三个方向上得到的视图中均由三个全等的正方形组成,只不过正方形相互之间的排列关系以及它们与下部长方体的正投影的相对位置有所不同.试题解析:(1) 22tan 30360sin 45︒+︒-︒=22 3233⎛⎫⎛⎫+⨯-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=113 32 +-=17 6.(2) 该几何体的三视图如下图所示.点睛:本题考查了特殊角三角函数值的应用以及几何体三视图的画法. 特殊角三角函数值不仅是解决锐角三角函数相关问题的重要工具,更是很多实际应用问题的解题线索,需要重点记忆. 绘制几何体的三视图重点在于结合对几何体特征的分析从三个方向想象几何体的具体形状,需要加强简单立体图形几何特征的分析能力和空间想象能力.16. 如图,已知AC=4,求AB和BC的长.【答案】AB=2+3 BC=2【解析】试题分析:根据三角形内角和不难求得∠B=45°. 由于∠A和∠B的角度值均为特殊角度值,所以可以利用AB边上的高(设该高为CD)将△ABC分成两个含有特殊角的直角三角形进行求解. 利用已知条件可以求解Rt△ADC,从而求得线段AD与CD的长. 由于线段CD为这两个直角三角形的公共边,并且已经求得∠B的值,所以Rt△CDB也是可解的. 解这个直角三角形,可以求得线段BC与BD的长,进而容易求得线段AB的长.试题解析:如图,过点C 作CD ⊥AB ,垂足为D .∵∠A =30°,AC =4, ∴在Rt △ADC 中, 1sin sin 30422CD AC A AC =⋅=⋅︒=⨯=, 3cos cos304232AD AC A AC =⋅=⋅︒=⨯=, ∵∠ACB =105°,∠A =30°, ∴在△ABC 中,∠B =180°-∠A -∠ACB =180°-30°-105°=45°, ∵CD =2,∴在Rt △CDB 中,22sin sin 45CD CD BC B ===︒, 2tan tan 45CD CD BD B ===︒, ∴AB =AD +BD =232+.综上所述,AB =223+,BC =22.点睛:本题考查了解直角三角形的相关知识. 有两个内角为特殊角度的三角形是解直角三角形及其应用中的典型图形. 解决这类问题时,一般是过非特殊角度的内角的顶点作三角形的高,将这个三角形分割成为两个具有公共边的直角三角形,解这两个直角三角形即可求得原三角形的全部边长和内角的度数.17. 操场上有三根测杆AB ,MN 和XY ,MN =XY ,其中测杆AB 在太阳光下某一时刻的影子为BC(如图中粗线).(1)画出测杆MN在同一时刻的影子NP(用粗线表示),并简述画法;(2)若在同一时刻测杆XY的影子的顶端恰好落在点B处,画出测杆XY所在的位置(用实线表示),并简述画法.【答案】详见解析.【解析】【分析】(1) 连接AC,则线段AC所在直线表示太阳的光线. 因为平行投影的投射线是平行的,所以只要从测杆MN 顶部的点M处作太阳光线AC的平行线,该线与地面的交点以及测杆底部的点N之间的连线即为MN的影子.(2) 根据平行投影的原理,过点B作太阳光线AC的平行线可以得到经过测杆XY顶点X的太阳光线.因为MN=XY,所以过点M作地面的平行线,该线与经过测杆XY顶点X的太阳光线的交点即为测杆XY的顶点X,求得点X后容易得到测杆XY的位置.【详解】(1) 画法:连接AC,过点M作MP∥AC交直线NC于点P,则NP为MN的影子. 具体图形如下.(2) 画法:连接AC,过点B作射线BE∥AC,过点M作射线MF∥NC,MF交BE于点X,过点X作XY⊥NC 交NC于点Y,则XY即为所求. 具体图形如下.【点睛】:本题考查了平行投影的相关知识. 平行投影的投射线是平行的,这是平行投影最重要的特征,也是解决平行投影相关问题的关键. 通过已知的影子和相应的物体画出平行投影的投射线,再利用投射线的平行关系获得其他物体的影子,是平行投影问题的重要解题思路.四、(本大题共3小题,每小题8分,共24分)18. 如图所示为一几何体的三视图.(1)写出这个几何体的名称:____________;(2)在虚线框中画出它的一种表面展开图;(3)若主视图中长方形较长一边的长为5cm ,俯视图中三角形的边长为2cm ,则这个几何体的侧面积是________cm 2.【答案】详见解析.【解析】试题分析:(1) 观察题目中给出的三视图可以发现,该几何体上下底面是全等的等边三角形,侧面为全等的矩形. 根据这些几何特征可以判定该几何体为正三棱柱.(2) 正三棱柱的上下底面为两个全等的等边三角形,侧面为三个全等的矩形. 在表面展开图中,中间部分应该是表示侧面的三个并行排列的矩形,这些矩形较短的边长应该为底面的边长,较长的边长应该为正三棱柱的高;在位于中间的矩形的上方和下方各有一个表示上下底面的等边三角形.(3) 结合题目中给出的条件观察第(2)小题中得到的表面展开图可知,由已知条件可以求得展开图中部的三个矩形的面积. 根据正三棱柱的几何特征可知,其侧面积可以由这三个矩形的面积之和求得.试题解析:(1) 根据题目中给出的三视图的特征可知,该几何体为正三棱柱. 故本小题应填写:正三棱柱.(2) 根据正三棱柱的几何特征,画出如下的表面展开图.(3) 本小题应填写:30. 求解过程如下.利用第(2)小题得到的正三棱柱表面展开图(如图),计算几何体的侧面积.由题意可知,AF =BG =DM =EN =5cm ,BC =BD =CD =2cm.根据正三棱柱的几何特征可知:四边形ABGF ,四边形BDMG ,四边形DENM 为全等的矩形.∵矩形BDMG 的面积为:2510BD BG ⋅=⨯=(cm 2),∴矩形ABGF 与矩形DENM 的面积均为10cm 2.根据正三棱柱的几何特征可知,正三棱柱的侧面积等于四边形AENF的面积,即上述三个矩形面积之和,⨯=(cm2).故该正三棱柱的侧面积应为:31030点睛:本题综合考查了简单立体图形的几何特征以及几何体三视图的相关知识. 利用三视图判断几何体的形状以及计算几何体侧面积需要熟练掌握简单立体图形的几何特征;利用几何体画出其表面展开图不仅需要熟悉几何体的特征还需要根据这些特征进行一定程度的空间想象.19. 王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,(提∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)【答案】.能.【解析】试题分析:由题意可知,手机能不能放入卡槽AB内可以通过线段AB的长与手机的长17cm的比较来判断. 因此,本题就转化为如何求解线段AB的长. 分析已知条件可知,通过作△ABC的边BC上的高AD,可以利用已知条件中∠ACB的度数与边AC的长求解Rt△ADC,进而通过勾股定理得到线段AB的长.试题解析:王浩同学能将手机放入卡槽AB内. 理由如下.如图,过点A作AD⊥BC,垂足为D.∵∠ACB=50°,AC=20cm,∴在Rt△ADC中,sin sin50200.816AD AC ACB AC =⋅∠=⋅︒≈⨯=(cm),cos cos50200.612CD AC ACB AC =⋅∠=⋅︒≈⨯=(cm),∵BC =18cm ,∴BD =BC -CD ≈18-12=6(cm),∴在Rt △ADB 中,2222166292273AB AD DB =+≈+==(cm). ∵273292=,17289=, 又∵292289>,∴AB >17,即卡槽AB 的长度大于手机的长,∴王浩同学能将手机放入卡槽AB 内.点睛:本题考查了解直角三角形的相关知识. 利用解直角三角形求解线段长度问题的关键是寻找或构造合适的直角三角形. 符合条件的直角三角形不仅自身是可解的,而且还要能够通过公共边之类的关系与要求的线段相联系. 一般情况下,相关三角形的某一条边上的高往往是解题的突破口.20. 如图,已知四边形ABCD 内接于⊙O ,A 是BDC 的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F ,E ,且BF AD =.(1)求证:△ADC ∽△EBA ;(2)如果AB =8,CD =5,求tan ∠CAD 的值.【答案】(1)详见解析;(2)58. 【解析】【分析】(1)欲证△ADC ∽△EBA ,只要证明两个角对应相等就可以.可以转化为证明且BF AD =就可以;(2)A是BDC的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.【详解】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵BF AD=,∴∠DCA=∠BAE,∴△ADC∽△EBA;(2)解:∵A是BDC的中点,∴AB AC=,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,DC ACAB AE=,即588AE=,∴AE=645,∴tan∠CAD=tan∠AEC=ACAE=8645=58.考点:相似三角形的判定与性质;圆周角定理.五、(本大题共2小题,每小题9分,共18分)21. 如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【答案】(1)sinB=21313;(2)DE=5.【解析】【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=ADAB计算即可;(2)由EF∥AD,BE=2AE,可得23EF BF BEAD BD BA===,求出EF、DF即可利用勾股定理解决问题;【详解】(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB=222296BD AD++=313,∴sinB=6=313ADAB=21313.(2)∵EF∥AD,BE=2AE,∴23EF BF BEAD BD BA===,∴2693EF BF==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE=2222=43EF DF++=5.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.22. 如图,已知四边形OABC是菱形,OC在x轴上,B(18,6),反比例函数y=kx(k≠0)的图象经过点A,与OB交于点E.(1)求出k的值;(2)求OE∶EB的值.【答案】(1)48;(2)2. 【解析】解:(1)过点B作BF⊥x轴于点F, 由题意可得BF=6,OF=18∵四边形OABC是菱形,∴OC=BC在Rt△OBC中,62+(18-BC)2=BC2解得BC=10所以点A(8,6)将点A(8,6)代入kyx,解得k=48,(2)设E(48,aa),过点E作EG⊥x轴于点G,根据题意可知OG=a,EG=48 a由作图可知EG∥BF∴△OGE∽△BOF∴,解得a=12,∴∴六、(本大题共12分)23. 如图①,点P为∠MON的平分线上一点,以P点为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA·OB=OP2,我们就把∠APB叫作∠MON的智慧角.(1)如图②,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°,求证:∠APB是∠MON的智慧角;(2)如图①,已知∠MON=α(0°<α<90°),OP=2,若∠APB是∠MON的智慧角,连接AB,用含α的式子分别表示∠APB的度数和△AOB的面积.【答案】(1)详见解析;(2)∠APB=180°-12α,S△AOB=2sinα..【解析】试题分析:(1) 在△OAP中利用三角形内角和可以求得∠OAP+∠APO为135°,再根据已知条件容易得到∠OAP=∠OPB. 由“两组内角对应相等”不难证明△AOP∽△POB. 利用相似三角形的性质可以证明OA·OB=OP2. 由于上述证明过程中所用到的几何关系不随旋转而改变,所以可以证明本小题的结论.(2) 利用已知条件不难通过“两组对应边的比相等且夹角相等”证明△AOP∽△POB. 通过∠OAP=∠OPB可以将∠APB转化为△OAP的两个内角之和,从而利用三角形内角和获得∠APB与α的关系. 至于△AOB的面积,可以作出OB边上的高,利用锐角三角函数将这条高的长度用含有OA和α的式子表示出来. 通过三角形面积公式和OA·OB=OP2的关系可以得到△AOB的面积与α的关系.试题解析:(1) 证明:∵∠MON=90°,点P为∠MON平分线上的一点,∴11904522AOP BOP MON∠=∠=∠=⨯︒=︒,∵在△OAP中,∠AOP+∠OAP+∠APO=180°,∴∠OAP+∠APO=180°-∠AOP=180°-45°=135°. ∵∠APB=135°,∴∠APO+∠OPB=135°,∴∠OAP=∠OPB,∵∠OAP=∠OPB,∠AOP=∠POB=45°,∴△AOP∽△POB,∴OA OP OP OB=,∴OP2=OA·OB,∴∠APB是∠MON的智慧角.(2) 下面求解∠APB的度数.∵∠APB 是∠MON 的智慧角,∴OA ·OB =OP 2, ∴OA OP OP OB =, ∵点P 为∠MON 平分线上的一点,∠MON =α (0°<α<90°), ∴12AOP POB α∠=∠=. ∵OA OP OP OB=,∠AOP =∠POB , ∴△AOP ∽△POB ,∴∠OAP =∠OPB , ∵在△OAP 中,∠AOP +∠OAP +∠APO =180°, ∴∠OAP +∠APO =180°-∠AOP =11802α︒-, ∵∠APB =∠OPB +∠APO =∠OAP +∠APO ,∴11802APB α∠=︒-.下面求解△AOB 的面积.如图,过点A 作AH ⊥OB ,垂足为H . (以下用符号S △AOB 代指△AOB 的面积)∵∠MON =α (0°<α<90°),即∠AOH =α, ∴在Rt △OHA 中,sin sin AH OA AOH OA α=⋅∠=⋅,∴11sin 22AOB S OB AH OB OA α=⋅=⋅⋅, ∵∠APB 是∠MON 的智慧角,∴OA ·OB =OP 2, ∴211sin sin 22AOB S OB OA OP αα=⋅⋅=⋅, ∵OP =2, ∴21sin 2sin 2AOBS OP αα=⋅=,即△AOB 的面积为2sin α. 点睛:本题综合考查了相似三角形的判定和性质以及锐角三角函数的相关知识. 正确理解题意,充分利用所谓“智慧角”所包含的条件是解决该题的重要前提;避免对条件中“旋转”之类字眼的过分解读也是在解决本题的过程中需要特别注意的. 另外,利用“两组对应边的比相等且夹角相等”判定三角形相似的方法容易被忽略,从而造成不必要的困难.。

人教版初三下册《数学》期末考试卷及答案【可打印】

人教版初三下册《数学》期末考试卷及答案【可打印】

人教版初三下册《数学》期末考试卷及答案一、选择题(每题1分,共5分)1. 如果一个等边三角形的周长是15厘米,那么它的每条边长是()。

A. 3厘米B. 5厘米C. 10厘米D. 15厘米2. 下列哪一个数是有理数?()A. √3B. √9C. √1D. π3. 下列函数中,哪一个函数是增函数?()A. y = x^2B. y = x^3C. y = 2x + 1D. y = 1/x4. 已知一组数据的平均数是10,方差是4,那么这组数据中的数值()。

A. 都大于10B. 都小于10C. 大于10和小于10的都有D. 无法确定5. 下列哪一个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 矩形D. 正方形二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 0的任何次幂都等于0。

()3. 两个负数相乘,结果是正数。

()4. 一元二次方程的解可以是两个相同的数。

()5. 任何一个数都有相反数。

()三、填空题(每题1分,共5分)1. 如果一个数的平方是36,那么这个数是______。

2. 任何数的零次幂都等于______。

3. 两个数的乘积为负数,那么这两个数______。

4. 一元二次方程ax^2 + bx + c = 0的判别式是______。

5. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的面积是______平方厘米。

四、简答题(每题2分,共10分)1. 请简要说明等差数列和等比数列的定义。

2. 请简要说明一元二次方程的求解方法。

3. 请简要说明概率的意义和计算方法。

4. 请简要说明相似三角形的性质。

5. 请简要说明圆的周长和面积的计算公式。

五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2、5、8,求这个数列的第10项。

2. 解方程:2x^2 5x 3 = 0。

3. 已知一个长方体的长、宽、高分别是10厘米、6厘米、4厘米,求这个长方体的体积。

人教版九年级数学(下册)期末试卷及答案(完美版)

人教版九年级数学(下册)期末试卷及答案(完美版)

人教版九年级数学(下册)期末试卷及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.若a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .8.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2)9.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .2510.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.分解因式:x 3﹣4xy 2=_______.3.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为__________(结果保留根号和π).6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122x x x --=-+ (2)解不等式组:()3241213x x x x ⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m 的值为 ;(2)求统计的这组数据的平均数、众数和中位数;(3) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?6.某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、A6、B7、D8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、x(x+2y)(x﹣2y)3、﹣34、﹣2<x<25、﹣3π6、4 9三、解答题(本大题共6小题,共72分)1、(1)x=0;(2)1<x≤42、13、(1)略;(24、(1)答案略;(2)45°.5、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)12;(2)概率P=16。

【人教版】九年级数学下期末试卷(及答案)

【人教版】九年级数学下期末试卷(及答案)

一、选择题1.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.2.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm23.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B .C .D .4.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x +5.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体( ).A .6个B .5个C .4个D .3个6.如图,在矩形ABCD 中,G 是AB 边上一点,连结GC ,取线段CG 上点E ,使ED DC =且90AED ∠=︒,AF CG ⊥于F ,2AF =,1FG =,则EC 的长( )A .4B .5C .163D .837.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C .522D .532 8.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( )A .23B .43C .22D .429.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .10.如图,在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒,则sinB 的值为( )A .45B .34C .35D .4311.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .1612.已知电压U 、电流I 、电阻R 三者之间的关系式为:U IR =(或者UI R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是( )A .B .C .D .二、填空题13.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有________个.14.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是____________.15.身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影_________.(填长或短)16.如图,在边长为10的菱形ABCD 中,AC 为对角线,∠ABC =60°,M 、N 分别是边BC ,CD 上的点,BM =CN ,连接MN 交AC 于P 点,当MN 最短时,PC 长度为_____.17.计算:22303060sin cos tan ︒︒︒+-=__________.18.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,F 为DA 上一点,连接BF ,E 为BF 中点,CD=6,sin ∠ADB=1010,若△AEF 的周长为18,则S △BOE =_____.19.如图,把正ABC ∆沿AB 边平移到''A B C '的位置,它们的重叠部分(即图中阴影部分)的面积是ABC ∆的面积的一半,若23AB ='CC 的长度是_________.20.如图,四边形OABC和ADEF均为正方形,反比例函数8yx的图象分别经过AB的中点M及DE的中点N,则正方形ADEF的边长为___三、解答题21.如图,画出该物体的三视图22.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.23.如图,AB是圆O的一条弦,OD⊥AB,垂足为C,交圆O于点D,点E在圆O上.(1)若∠AOD=50°,求∠DEB的度数;(2)若OC=3,∠A=30°,求AB的长.24.在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,2A -,()2,1B -,()4,3C -.(1)画出ABC 关于x 轴对称的111A B C △;(2)以点O 为位似中心,在网格中画出111A B C △的位似图形222A B C △,使222A B C △与111A B C △的相似比为2:1;(3)设点(),P a b 为ABC 内一点,则依上述两次变换后点P 在222A B C △内的对应点2P 的坐标是______.25.已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数y=mx的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx +b <mx的解集(直接写出答案).26.第十一届全国少数民族传统体育运动会于2019年9月8日至16日在郑州举行,据了解,该赛事每四年举办一届,是我国规格最高、规模最大的综合性民族体育盛会,其中,花炮、押加、民族式摔跤三个项目的比赛在郑州大学主校区进行.如图,钟楼是郑州大学主校区标志性建筑物之一,是郑大的“第一高度”,寓意来自五湖四海的郑大人的团结和凝聚.小刚站在钟楼前C处测得钟楼顶A的仰角为53°,小强站在对面的教学楼三楼上的D 处测得钟楼顶A的仰角为45°,此时,两人的水平距离EC为4m,已知教学楼三楼所在的高度为10m,根据测得的数据,计算钟楼AB的高度.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据几何体三视图的定义即可得. 【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形, 从上面看得到的平面图形是一个圆环, 观察四个选项可知,只有选项A 符合, 故选:A . 【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.2.B解析:B 【解析】 【分析】先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=1m ,再由圆环的面积公式即可得出结论. 【详解】 解:如图所示:∵AC ⊥OB ,BD ⊥OB , ∴△AOC ∽△BOD ,∴OA ACOB BD =,即112BD =, 解得:BD =2m ,同理可得:AC ′=0.5m ,则BD ′=1m , ∴S 圆环形阴影=22π﹣12π=3π(m 2). 故选B . 【点睛】考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.3.C解析:C 【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线.4.A解析:A 【分析】由主视图和左视图的宽为x ,结合两者的面积得出俯视图的长和宽,从而得出答案. 【详解】∵S 主=x 2+2x =x (x +2),S 左=x 2+x =x (x +1),∴俯视图的长为x +2,宽为x +1,则俯视图的面积S 俯=(x +2)(x +1)=x 2+3x +2. 故选A . 【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.5.C解析:C 【分析】这些正方体分前、后两排,左、右两行.后排左边是一列2个正方体,右边一个正方体;前排1个正方体,与后排右列对齐. 【详解】 如图搭成此展台共需这样的正方体(如下图)共需4个这样的正方体.故选C. 【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.6.C解析:C 【分析】如图,过D 作DP CE ⊥于,P 证明:,EP CP EDP CDP =∠=∠,,DEC DCE ∠=∠再证明,AEF BCG EDP ∠=∠=∠ 结合矩形的性质证明:,AFG EFA ∽利用相似三角形的性质可得4EF =,再求解,AG AE ,设,BG x = 可得2,DE x AD x =+= 利用勾股定理求解,x 再由,BCG EDP ∠=∠可得:1,2EP DP =设,EP m = 则2,DP m = 由勾股定理求解m , 从而可得答案.【详解】解:如图,过D 作DP CE ⊥于,P,DE DC =,EP CP EDP CDP ∴=∠=∠, ,DEC DCE ∠=∠90,AED DCB ∠=︒=∠90,AEF DEC DCE BCG DEC EDP ∴∠+∠=︒=∠+∠=∠+∠,AEF BCG EDP ∴∠=∠=∠,,90AGF CGB AF CG B ∠=∠⊥∠=︒,,FAG BCG ∴∠=∠,FAG AEF ∴∠=∠90AFG EFA ∠=∠=︒,,AFG EFA ∴∽,AF FG EF FA∴= 21AF FG ==,,21,2EF ∴= 4EF ∴=,AE ∴== AG == 设BG x =,则,AB CD x DE ==+=AEF BCG ∠=∠,1tan tan ,2AF AEF BCG EF ∴∠=∠== 1,2BG BC ∴= 2,BC x AD ∴== ()((2222,x x ∴=+235250,x x ∴--=55x ∴=5x = 55855DE ∴== ,EDP BCG ∠=∠1,2EP DP ∴= 设,EP m = 则2,DP m =()22285+2,m m ∴=⎝⎭ 83m ∴=(负根舍去) 162.3EC EP ∴==故选:.C【点睛】 本题考查的是矩形的性质,勾股定理的应用,等腰三角形的性质,三角形相似的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.7.B解析:B【分析】连接OC ,设BC 与OA 交于点E ,根据圆周角定理即可求出∠AOC ,然后根据垂径定理可得BC=2CE ,利用锐角三角函数求出CE ,即可求出结论.【详解】解:连接OC ,设BC 与OA 交于点E∵30ADC∠=︒∴∠AOC=2∠ADC=60°∵OA BC⊥∴BC=2CE,在Rt△OCE中,CE=OC·sin∠53 2∴BC=53故选B.【点睛】此题考查的是圆周角定理、垂径定理和锐角三角函数,掌握圆周角定理、垂径定理和锐角三角函数是解题关键.8.B解析:B【分析】根据线段垂直平分线的性质得到AE=BE,由等腰三角形的性质得到∠B=∠BAE,根据三角形的外角的性质得到∠AEC=∠B+∠BAE=2∠B,求得∠C=30°,根据三角函数的定义即可得到结论.【详解】∵DE垂直平分AB于点D,∴AE=BE,∴∠B=∠BAE,∴∠AEC=∠B+∠BAE=2∠B,∵AB=AC,∴∠AEC=2∠C,∵AE⊥AC,∴∠EAC=90°,∴∠C=30°,∴CE=43cos303AC ==︒, 故选:B .【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质以及特殊角的三角函数值.注意掌握数形结合思想的应用.9.A 解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==,∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===, ∴22CE x =, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫==-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())24sin 4542CE PE x x ==-︒=-, ∴四边形CEPF 的面积为)22214482x x x y ⎤-=-+⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.10.C解析:C【分析】由勾股定理求出AB 的长度,即可求出sinB 的值.【详解】解:在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒, ∴22345AB +=, ∴35AC sinB AB ==, 故选:C .【点睛】 本题考查了求角的正弦值,以及勾股定理,解题的关键是正确求出AB 的值. 11.D解析:D【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD 是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AE EFDE AE=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故选:D.【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.12.A解析:A【分析】在实际生活中,电压U、电流I、电阻R三者之中任何一个不能为负,依此可得结果.【详解】A图象反映的是UIR=,但自变量R的取值为负值,故选项A错误;B、C、D选项正确,不符合题意.故选:A.【点睛】此题主要考查了现实生活中函数图象的确立,注意自变量取值不能为负是解答此题的关键.二、填空题13.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【详解】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成.故答案为5.本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案. 14.36cm2【分析】从上面看到6个正方形从正面和右面可看到6个正方形从两个侧后面可看到6个正方形从底面可到到6个正方形面积相加即为所求【详解】从上面看到的面积为6从正面和右面看到的面积为从两个侧后面看 解析:36cm 2【分析】从上面看到6个正方形,从正面和右面可看到62⨯个正方形,从两个侧后面可看到62⨯个正方形,从底面可到到6个正方形,面积相加即为所求.【详解】从上面看到的面积为62116cm ⨯⨯=,从正面和右面看到的面积为2621112cm ⨯⨯⨯=,从两个侧后面看到的面积为2621112cm ⨯⨯⨯=,从底面看到的面积为62116cm ⨯⨯=, 那么这个几何体的表面积为6+12+12+6=362cm .【点睛】本题考查了几何体的表面积,解决问题的关键是分别从各个视角求出面积,然后相加即可. 15.长【解析】中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的影子短离点光源远的物体它的影子长据此判断即可解:中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的 解析:长【解析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以小明的投影比小华的投影长.综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短16.【分析】连接AMAN 证明△AMB ≌△ANC 推出△AMN 为等边三角形当AM ⊥BC 时AM 最短即MN 最短在Rt △ABM 中求出AM 的长在Rt △AMP 中求出AP 的长即可解决问题【详解】解:连接AMAN ∵ABC 解析:52【分析】连接AM ,AN ,证明△AMB ≌△ANC ,推出△AMN 为等边三角形,当AM ⊥BC 时,AM 最短,即MN 最短,在Rt △ABM 中求出AM 的长,在Rt △AMP 中求出AP 的长,即可解决问题.解:连接AM ,AN ,∵ABCD 是菱形,∠ABC=60°,∴△ABC 为等边三角形,∴∠BAC=60°,AB=AC=10,同理可证∠ACN=60°,在△AMB 和△ANC 中,AB AC B ACN BM NC =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△ANC ,∴AM=AN ,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN 为等边三角形,∴MN=AM ,∠MAN=60°,当AM ⊥BC 时,AM 最短,即MN 最短,∵sinB=AM AB , ∴AM=sin60°×10=53.∵∠ABC=60°,∴∠BAM=30°,∴∠MAC=30°,∴∠NAC=30°,∴AP ⊥MN .∵sin ∠AMN=AP AM, ∴AP=sin60°×53=152, ∴CP=10-152=52. 故答案为:52.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,以及锐角三角函数的知识,熟练掌握各知识点是解答本题的关键.17.【分析】先根据特殊角的三角函数值化简然后再计算即可【详解】解:===故答案为【点睛】本题考查了特殊角的三角函数值和实数的运算牢记特殊角的三角函数值是解答本题的关键解析:1【分析】先根据特殊角的三角函数值化简,然后再计算即可.【详解】解:22303060sin cos tan ︒︒︒+-=2212⎛⎫+-⎪⎝⎭⎝⎭=1344+-=1故答案为1【点睛】本题考查了特殊角的三角函数值和实数的运算,牢记特殊角的三角函数值是解答本题的关键.18.【分析】根据题意求出AD=18设AF=则BF=在Rt △ABF 中利用勾股定理可求得求出DF=10可求出S △BDF 由三角形中位线定理可求出答案【详解】∵四边形ABCD 是矩形∴AB=CD=6∠BAD=90 解析:152【分析】根据题意求出AD=18,设AF=a ,则BF=18a -,在Rt △ABF 中,利用勾股定理可求得8a =,求出DF=10,可求出S △BDF ,由三角形中位线定理可求出答案.【详解】∵四边形ABCD 是矩形,∴AB=CD=6,∠BAD=90°,OB=OD ,∵sin ∠ADB=10,∴6AB BD BD ==, ∴BD =∴18DA ===,∵E 为BF 中点,∴AE=BE=EF ,∵△AEF 的周长为18,∴AE+EF+AF=BE+EF+AF=BF+AF=18,设AF=a ,则BF=18a -,在Rt △ABF 中,AB 2+AF 2=BF 2,∴62+a 2=(18a -)2,解得:8a =,∴DF=18-8=10.∵E 为BF 中点,O 为BD 的中点, ∴OE ∥DF ,OE=12DF , ∴△BOE ∽△BDF , ∴BOE BDF 14S S =, ∵BDF 12S =DF•AB=12×6×10=30, ∴S △BOE =BDF 111530442S =⨯=. 故答案为:152. 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数,相似三角形的判定与性质,中位线定理,三角形的面积等知识,熟练掌握几何基本图形的性质是解题的关键.19.【分析】根据题意可知△ABC 与阴影部分为相似三角形且面积比为2:1所以AB :A′B=:1推出A′B=从而得到AA′的长【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置∴AC ∥A′C′∴△AB解析:【分析】根据题意可知△ABC 与阴影部分为相似三角形,且面积比为2:1,所以AB ::1,推出,从而得到AA′的长.【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置,∴AC ∥A′C′,∴△ABC ∽△A′BD ,∴21()2A BDABC S A B S AB ''∆∆==, ∴AB :A′:1,∵AB=∴,∴AA′=.由平移可得' 'CC AA =∴'6CC =故答案为:.【点睛】本题主要考查相似三角形的判定和性质、平移的性质,关键在于求证△ABC 与阴影部分为相似三角形.20.【分析】设正方形的边长为正方形的边长为再由是的中点是的中点可知再代入反比例函数求出的值即可【详解】解:设正方形的边长为正方形的边长为是的中点是的中点反比例函数的图象分别经过的中点及的中点解得故答案为解析:2-+【分析】设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,再由M 是AB 的中点,N 是DE 的中点可知(,)2a M a ,(,)2b N a b ,再代入反比例函数8y x=求出b 的值即可. 【详解】 解:设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,M 是AB 的中点,N 是DE 的中点, (,)2a M a ,(,)2b N a b . 反比例函数8y x=的图象分别经过AB 的中点M 及DE 的中点N , ∴82aa ,82b a b ,解得4a =,225b .故答案为:2-+【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题21.见详解【分析】根据三视图的画法要求结合所给的几何体画出对应的视图即可.【详解】解:三视图如下:【点睛】本题主要考查了三视图的画法,要注意主视图与左视图的高平齐,左视图与俯视图的宽相等,三视图位置规定:主视图在左上方,它的下方是俯视图,左视图坐落在右边. 22.3.45米【分析】 根据平行投影性质可得:1.50.92MN =;1.52 4.6AB =. 【详解】 解:延长DH 交BC 于点M ,延长AD 交BC 于N .可求 3.4BM =,0.9DM =.由1.50.92MN=,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=.由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【点睛】考核知识点:平行投影.弄清平行投影的特点是关键.23.(1)25°;(2)【分析】(1)由垂径定理可证AD =BD ,再利用圆周角与圆心角的关系求解.(2)由垂径定理可证AC=BC ,△AOC 为直角三角形,由30°的角可求得直角边AC 的长度,从而求得AB 的长度.【详解】(1)∵OD ⊥AB ,∴AD =BD ,∵∠AOD =50°,∴∠DEB=12∠AOD =25°; (2)∵OD ⊥AB , ∴AC=BC ,△AOC 为直角三角形,∵OC=3,∠A=30°,∴tan 30OC AC ︒=,即OC AC = ∴AC=,∴AB=2AC=【点睛】本题考查了圆周角定理,垂径定理,锐角三角函数.注意:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.24.(1)见解析;(2)见解析;(3)()2,2a b -.【分析】(1)先根据关于x 轴对称的点的坐标特征描出A 1、B 1、C 1,然后再顺次连接即可; (2)先根据关于原点为位似中心的对应点的坐标之间的关系,把点A 1、B 1、C 1的横纵坐标都扩大2倍得到A 2、B 2、C 2的坐标,然后描点,最后顺次连接即可;(3)利用(1)、(2)中的坐标变换规律求解即可.【详解】解:(1)如图,△A 1B 1C 1即为所求图形;(2)如图,△A 2B 2C 2即为所求图形;(3)根据(1)(2)的变换规律可得:2P (2a ,-2b ).【点睛】本题主要考查了轴对称变换和位似变换,掌握作轴对称图形和位似图形的的步骤成为解答本题的关键.25.(1)反比例函数关系式:4y=x;一次函数关系式:y=2x+2;(2)2;(3)x<-2或0<x<1.【分析】(1)由B点在反比例函数y=mx图象上,可求出m,再由A,B点在一次函数图象上,由待定系数法求出函数解析式;(2)由(1)可得A,C两点的坐标,从而求出△AOC的面积;(3)由图象观察函数y=mx的图象在一次函数y=kx+b图象的上方,即可求出对应的x的范围.【详解】(1)∵B(1,4)在反比例函数y=mx的图象上,∴m=4,又∵A(n,−2)在反比例函数y=mx的图象上,∴n=−2,又∵A(−2,−2),B(1,4)是一次函数y=kx+b图象上的点,∴可得224k bk b-+=-⎧⎨+=⎩,解得k=2,b=2,∴反比例函数关系式为4yx=;一次函数关系式:y=2x+2;(2)如图,过点A作AE⊥CE,由(1)可得A(−2,−2),C(0,2),∴AE=2,CO=2, ∴1122222AOC S CO AE =⨯=⨯⨯=. (3)由图象知:当0<x<1和x<−2时函数 y=m x 的图象在一次函数y=kx+b 图象的上方, ∴不等式kx+b<m x的解集为:0<x<1或x<−2. 【点睛】 本题考查一次函数与反比例函数的综合运用,灵活运用一次函数和反比例函数的图象、性质及解析式是解题关键.26.钟楼AB 的高度约为56m【分析】作DF ⊥AB 于F ,根据矩形的性质得到FB =DE =10,DF =BE ,根据等腰直角三角形的性质、正切的定义计算,得到答案.【详解】解:作DF ⊥AB 于F ,设AB =xm ,∵FB ⊥EB ,DE ⊥EB ,DF ⊥AB ,∴四边形FBED 为矩形,∴FB =DE =10,DF =BE ,∴AF =10﹣x ,在Rt △AFD 中,∠ADF =45°,∴DF =AF =x ﹣10,在Rt △ABC 中,∠ACB =53°,tan ∠ACB =AB BC , ∴BC =3tan 4AB x ACB ≈∠,由题意得,BE﹣BC=CE,即x﹣10﹣34x=4,解得,x=56,答:钟楼AB的高度约为56m.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.。

2016-2017学年人教版九年级数学下期末综合检测试卷含答案

2016-2017学年人教版九年级数学下期末综合检测试卷含答案

2016-2017学年人教版九年级数学下期末综合检测试卷含答案期末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.(2015·乐山中考)如图所示,l1∥l2∥l3,两条直线与这三条平行线分别交于点A,B,C和D,E,F,已知=,则的值为()A. B. C. D.2.(2015·青岛中考)如图所示,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<-2或x>2B.x<-2或0<x<2C.-2<x<0或0<x<2D.-2<x<0或x>23.在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A. B. C. D.4.(2015·南充中考)如图所示的是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()5.(2015·丽水中考)如图所示,点A为∠α边上任意一点,过A作AC⊥BC于点C,过C作CD⊥AB于点D,下列用线段比表示cos α的值,错误的是()A. B.C. D.6.(2015·南充中考)如图所示,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔为2海里的点A处.如果海轮沿正南方向航行到灯塔的正东位置,那么海轮航行的距离AB长是()A.2海里B.2sin 55°海里C.2cos 55°海里D.2tan 55°海里7.如图所示,把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA'是()A.-1B.C.1D.8.(2015·湖州中考)如图所示,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB 的长是()A.4B.2C.8D.49.(2015·乐山中考)如图所示,已知△ABC的三个顶点均在格点上,则sin A的值为()A. B. C. D.10.如图所示,直线l和反比例函数y=(k>0)的图象的一支交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x 轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3二、填空题(每小题4分,共24分)11.已知角α为锐角,且sin(α-10°)=,则α=.12.(2015·广州中考)如图所示,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=9,BC=12,则cos C=.13.如图所示,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则A的对应点C的坐标为.14.(2015·连云港中考)如图所示的是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为.15.(2015·宁波中考)如图所示,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,旗杆顶端A的仰角为30°,若旗杆与教学楼的距离为9 m,则旗杆AB的高度是m.(结果保留根号)16.(2015·宁波中考)如图所示,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是.三、解答题(共66分)17.(6分)计算.(1)(2015·乐山中考)-+-4cos 45°+(-1)2015;(2)(2015·浙江中考)-1-4cos 30°+-.18.(6分)分别画出图中立体图形的三视图.19.(8分)(2015·广州中考)已知反比例函数y=-的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图所示,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.20.(8分)(2015·安徽中考)如图所示,平台AB高为12 m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(≈1.7).21.(9分)如图所示的为一几何体的三视图.(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10 cm,正三角形的边长为4 cm,求这个几何体的侧面积.22.(9分)(2015·自贡中考)如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据:≈1.414,≈1.732)23.(10分)(2015·泸州中考)如图所示,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3. (1)求该一次函数的解析式;(2)若反比例函数y=的图象与该一次函数的图象交于二、四象限内的A,B两点,且AC=2BC,求m的值.24.(10分)如图所示,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与Rt△DEF重叠(阴影)部分的面积.【答案与解析】1.D(解析:∵=,∴=,由平行线分线段成比例可得==.)2.D(解析:由点A与点B关于原点成中心对称,可得点B的横坐标为-2,由图可得y1>y2时,-2<x<0或x>2.故选D.)3.D(解析:由勾股定理可得AC=4,所以cos A==.故选D.)4.A(解析:根据三视图的画法可知正六棱柱的主视图为3个矩形,且旁边的两个矩形的宽是中间的矩形的宽的一半.故选A.)5.C(解析:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,在Rt△BCD中,cos α=,在Rt△ABC中,cos α=,在Rt△ACD中,cos α=.故选C.)6.C(解析:由题意可得PA=2,∠A=55°,∵cos A=,∴AB=AP·cos 55°=2cos55°.故选C.)7.A(解析:设BC与A'C'交于点E,由平移的性质知AC∥A'C',∴△BEA'∽△BCA,∴∶=A'B2∶AB2=1∶2,∵AB=,∴A'B=1,∴AA'=AB-A'B=-1.故选A.)8.C(解析:如图所示,连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,且AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8.故选C.)9.B(解析:如图所示,连接BE,根据图形可知AE==2,AB==,BE=∴AE2+BE2=AB2,∴BE⊥AE,∴sinA===.故选B.)10.D(解析:由题意可得A,B都在双曲线y=的一支上,则有S1=S2;而A,B之间,直线在双曲线上方,故S1=S2<S3.故选D.)11.70°(解析:由特殊角的三角函数值可得α-10°=60°,所以α=70°.故填70°.)12.(解析:∵DE是BC的垂直平分线,∴CE=BE=9,BD=DC=6,在Rt△CDE中,cos C===.故填.)13.(3,3)(解析:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴A的对应点C的坐标为(3,3).)14.8π(解析:这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=×4π×4=8π.故填8π.)15.(解析:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴AD=9×=3,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9,∴AB=AD+BD=3+9(m).故填.)16.6(解析:如图所示,由题意知a-b=2OE,且a-b=3OF,又OE+OF=5,∴OE=3,OF=2,∴a-b=6.故填6.)17.解:(1)原式=+2-4×-1=-1=-.(2)原式=2+-4×+=1.18.解:如图所示.19.解:(1)该函数图象的另一支所在象限是第三象限.∵图象位于第一、三象限,∴m-7>0,∴m>7,∴m的取值范围是m>7.(2)设A 的坐标为(x,y),∵点B与点A关于x轴对称,∴B点坐标为(x,-y),∴AB的距离为2y,∵S=6,∴·2y·x=6,∴xy=6,∵y=-,∴xy=m-7,∴m-7=6,∴m=13.20.解:过点B作BE⊥CD于点E,根据题意,得∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12.在Rt△CBE中,tan∠CBE=,∴BE==12.在Rt△BDE中,由∠DBE=45°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.4.答:楼房CD的高度约为32.4 m.21.解:(1)正三棱柱.(2)如图所示.(3)3×10×4=120(cm2).∴这个几何体的侧面积为120 cm2.22.解:如图所示,过C作CE⊥AB于E,设CE=x米,在Rt△AEC中,∠CAE=45°,AE=CE=x,在Rt△EBC中,∠CBE=30°,BE=CE=x,∴x=x+50,解得x=25+25≈68.30.答:河宽约为68.30米.23.解:(1)∵一次函数y=kx+b(k<0)的图象经过点C(3,0),∴3k+b=0①,点C到y轴的距离是3,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴×3×b=3,解得b=2.把b=2代入①,解得k=-,则一次函数的解析式是y=-x+2.(2)作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.∴△ACD∽△BCE,∴==2,∴AD=2BE.设B点纵坐标为-n,则A 点纵坐标为2n.∵直线AB的解析式为y=-x+2,∴A(3-3n,2n),B-.∵反比例函数y=的图象经过A,B两点,∴(3-3n)·2n=·(-n),解得n1=2,n2=0(不合题意,舍去),∴m=(3-3n)·2n=-3×4=-12.24.解:(1)如图所示,连接OG,∵EF与半圆O相切于点G,∴OG=2.由勾股定理得BC=5,∵△DEF是由△ABC平移所得,∴BC=EF=5,∠OGE=∠FDE=90°.∵∠E=∠E,∴△OGE∽△FDE,∴=,∴OE=,∴BE=.(2)由(1)知DB=DE-BE=4-=,∵DH∥AC,∴△DHB∽△ACB.∴阴影==.∵S△ACB=6,∴S阴影=.。

2017春人教版九年级数学下期末检测试题含答案

2017春人教版九年级数学下期末检测试题含答案

检测内容:期末检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.(2015·温州)将一个长方体内部挖去一个圆柱(如图所示),它的主视图是( A )2.在Rt △ABC 中,∠C =90°,cos A =32,AC =3,则BC 等于( B ) A. 3 B .1 C .2 D .33.定义新运算:ab =⎩⎨⎧ab (b >0)-ab (b <0)例如:45=45,4(-5)=45.则函数y =2x (x ≠0)的图象大致是( D )4.如果点A (-2,y 1),B (-1,y 2),C (2,y 3)都在反比例函数y =kx (k >0)的图象上,那么y 1,y 2,y 3的大小关系是( B )A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 15.如图,在△ABC 中,点D 在线段BC 上,请添加一条件使△ABC ∽△DBA ,则下列条件中一定正确的是( A )A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AC ·BD6.如图,港口A 在观测站O 的正东方向,OA =4 km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( C )A .4 kmB .2 3 kmC .2 2 kmD .(3+1) km,第5题图) ,第6题图) ,第7题图) ,第8题图)7.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于点E ,则sin E 的值为( B ) A.32 B.12 C.33D. 3 8.如图,已知矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD =( B ) A.5-12 B.5+12C. 3 D .29.如图,在平面直角坐标系中,梯形OACB 的顶点O 是坐标原点,OA 边在y 轴正半轴上,OB 边在x 轴正半轴上,且OA ∥BC ,双曲线y =kx (x >0)经过AC 边的中点,若S 梯形OACB =4,则双曲线y =kx的k 值为( D )A .5B .4C .3D .2 10.(2015·滨州)如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA 的两边分别与函数y =-1x ,y =2x 的图象交于B ,A 两点,则∠OAB 的大小的变化趋势为( D )A .逐渐变小B .逐渐变大C .时大时小D .保持不变 二、填空题(每小题3分,共24分)11.已知△ABC 与△DEF 相似且面积比为4∶25,则△ABC 与△DEF 的相似比为__25__.12.在平面直角坐标系xOy 中,点P 到x 轴的距离为3个单位长度,到原点O 的距离为5个单位长度,则经过点P 的反比例函数的解析式为__y =12x 或y =-12x__.13.如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为__90π__.,第10题图) ,第13题图),第15题图) ,第16题图)14.点A (x 1,y 1),B (x 2,y 2)分别在双曲线y =-1x的两支上,若y 1+y 2>0,则x 1+x 2的范围是__>__0.15.如图,△A′B′C′与△ABC关于y轴对称,已知A(1,4),B(3,1),C(3,3),若以原点O为位似中心,相似比为12作△A′B′C′的缩小的位似图形△A″B″C″,则A″的坐标是__(-12,2)或(12,-2)__.16.如图,在平行四边形ABCD中,AD=10厘米,CD=6厘米,E为AD上一点,且BE =BC,CE=CD,则DE=__3.6__厘米.17.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为__6或23或43__.18.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE =∠B=α,DE交AC于点E,且cosα=45.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或252;④0<CE≤6.4.其中正确的结论是__①②③④__.(把你认为正确结论的序号都填上)三、解答题(共66分)19.(8分)计算:(1)(-2016)0+|1-3|-2sin60°;(2)(-8)0+3·tan30°-3-1.解(1)原式=1+3-1-2×32=0 (2)原式=1+3·33-13=5320.(8分)已知双曲线y=kx与抛物线y=ax2+bx+c交于A(2,3),B(m,2),C(-3,n)三点.(1)求双曲线与抛物线的解析式;(2)在平面直角坐标系中描出点A,点B,点C,并求出△ABC的面积.解:(1)把A(2,3)代入y=kx得:k=6,∴反比例函数解析式为y=6x,把点B(m,2),C(-3,n)分别代入y=6x得:m=3,n=-2,把A(2,3),B(3,2),C(-3,-2)分别代入y=ax2+bx+c得⎩⎨⎧4a+2b+c=3,9a+3b+c=29a-3b+c=-2,,解得⎩⎨⎧a=-13,b=23,c=3.∴抛物线的解析式为y=-13x2+23x+3(2)S △ABC =12(1+6)×5-12×1×1-12×6×4=5.21.(8分)如图,已知:在直角梯形ABCD 中,AD ∥BC ,∠C =90°,AB =AD =25,BC =32,连接BD ,AE ⊥BD ,垂足为E .(1)求证:△ABE ∽△DBC ; (2)求线段AE 的长.解:(1)∵AB =AD =25,∴∠ABD =∠ADB ,∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ABD =∠DBC ,∵AE ⊥BD ,∴∠AEB =∠C =90°,∴△ABE ∽△DBC (2)∵AB =AD ,又∵AE ⊥BD ,∴BE =DE ,∴BD =2BE ,由△ABE ∽△DBC 可得AB BD =BEBC ,∵AB =AD =25,BC =32,∴252BE =BE32,∴BE =20,AE =AB 2-BE 2=15.22.(10分)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,CF ⊥AF ,且CF =CE .(1)求证:CF 是⊙O 的切线; (2)若sin ∠BAC =25,求S △CBD S △ABC的值.解:(1)证明:连接OC ,∵CE ⊥AB ,CF ⊥AF ,CE =CF ,∴AC 平分∠BAF ,即∠BAF =2∠BAC ,∵∠BOC =2∠BAC ,∴∠BOC =∠BAF ,∴OC ∥AF ,∴CF ⊥OC ,∴CF 是⊙O 的切线 (2)解:∵AB 是⊙O 的直线,CD ⊥AB ,∴CE =ED ,BC ︵=BD ︵,∴S △CBD =2S △CEB ,∠BAC =∠BCE ,又∠ACB =∠CEB =90°,∴△ABC ∽△CBE ,∴S △CBE S △ABC =(CBAB )2=(sin∠BAC )2=(25)2=425,∴S △CBD S △ABC =825.23.(10分)(2015·珠海)如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴,y 轴上,函数y =kx的图象过点P(4,3)和矩形的顶点B(m ,n)(0<m <4).(1)求k 的值;(2)连接PA ,PB ,若△ABP 的面积为6,求直线BP 的解析式.解:(1)∵函数y =k x 的图象过点P (4,3),∴k =4×3=12 (2)∵函数y =12x 的图象过点B (m ,n ),∴mn =12.∵△ABP 的面积为6,P (4,3),0<m <4,∴12n·(4-m )=6,∴4n -12=12,解得n =6,∴m =2,∴点B (2,6),设直线BP 的解析式为y =ax +b ,∵B (2,6),P (4,3),∴⎩⎨⎧2a +b =6,4a +b =3,解得⎩⎪⎨⎪⎧a =-32,b =9,∴直线BP 的解析式为y =-32x +924.(10分)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB 长602米,坡角(即∠BAC )为45°,BC ⊥AC ,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).(1)若修建的斜坡BE 的坡比为3∶1,求休闲平台DE 的长是多少米?(2)一座建筑物GH 距离A 点33米远(即AG =33米),小亮在D 点测得建筑物顶部H 的仰角(即∠HDM )为30°.点B ,C ,A ,G ,H 在同一平面内,点C ,A ,G 在同一条直线上,且HG ⊥CG ,问建筑物GH 高为多少米?解:(1)∵FM ∥CG ,∴∠BDF =∠BAC =45°,∵斜坡AB 长602米,D 是AB 的中点,∴BD =302米,∴DF =BD·cos ∠BDF =302×22=30(米),BF =DF =30米,∵斜坡BE 的坡比为3∶1,∴BF EF =31,解得:EF =103(米),∴DE =DF -EF =30-103(米) (2)设GH =x 米,则MH =GH -GM =x -30(米),DM =AG +AP =33+30=63(米),在Rt △DMH 中,tan30°=MH DM ,即x -3063=33,解得:x =30+213,所以建筑物GH 的高为(30+213)米25.(12分)如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒.(1)求线段CD的长;(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ∶S△ABC=9∶100?若存在,求出t的值;若不存在,说明理由.(3)当t为何值时,△CPQ为等腰三角形?解:(1)如图,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵CD⊥AB,S△ABC=12AB·CD,∴CD=BC·ACAB=6×810=4.8,∴线段CD的长为4.8(2)过点P作PH⊥AC,垂足为H,如图2,由题意可知DP=t,CQ=t,则CP=4.8-t.由△CHP∽△BCA得PHAC=PCAB,∴PH8=4.8-t10,∴PH=9625-45t.∴S△CPQ=CQ·PH=12t(9625-45t)=-25t2+4825t.设存在某一时刻t,使得S△CPQ∶S△ABC=9∶100.∵S△ABC=12×6×8=24,且S △CPQ∶S△ABC=9∶100,∴(-25t2+4825t)∶24=9∶100.整理得:5t2-24t+27=0.即(5t-9)(t -3)=0.解得:t=95或t=3,∵0≤t≤4.8,∴当t=95秒或t=3秒时,S△CPQ∶S△ABC=9∶100 (3)①若CQ=CP,如图1,则t=4.8-t.解得:t=2.4②若PQ=PC,如图2所示,∵PQ=PC,PH⊥QC,∴QH=CH=12QC=t2.∵△CHP∽△BCA.∴CHBC=CPAB,∴t26=4.8-t10解得:t=14455.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理所得:t=2411,综上所述:当t为2.4秒或14455秒或2411秒,△CPQ为等腰三角形。

2017春人教版九年级数学下期末检测试题含答案

2017春人教版九年级数学下期末检测试题含答案

2017春人教版九年级数学下期末检测试题含答案得分________ 卷后分________ 评判________一、选择题(每小题3分,共30分)1.(2015·温州)将一个长方体内部挖去一个圆柱(如图所示),它的主视图是( A )2.在Rt △ABC 中,∠C =90°,cosA =32,AC =3,则BC 等于(B )A. 3 B .1 C .2 D .3 3.定义新运算:a b =⎩⎪⎨⎪⎧a b (b >0)-a b (b <0)例如:45=45,4(-5)=45.则函数y =2x(x ≠0)的图象大致是( D )4.如果点A(-2,y1),B(-1,y2),C(2,y3)都在反比例函数y =k x (k>0)的图象上,那么y1,y2,y3的大小关系是( B )A .y1<y3<y2B .y2<y1<y3C .y1<y2<y3D .y3<y2<y15.如图,在△ABC 中,点D 在线段BC 上,请添加一条件使△ABC ∽△DBA ,则下列条件中一定正确的是( A )A .AB2=BC ·BDB .AB2=AC ·BDC .AB ·AD =BD ·BC D .AB ·AD =AC ·BD6.如图,港口A 在观测站O 的正东方向,OA =4 km ,某船从港口A 动身,沿北偏东15°方向航行一段距离后到达B 处,现在从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( C )A .4 kmB .2 3 kmC .2 2 kmD .(3+1) km,第5题图),第6题图),第7题图),第8题图)7.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于点E ,则sinE 的值为( B )A.32B.12C.33D.38.如图,已知矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形AB CD 相似,则AD =( B ) A.5-12 B.5+12 C. 3 D .29.如图,在平面直角坐标系中,梯形OACB 的顶点O 是坐标原点,O A 边在y 轴正半轴上,OB 边在x 轴正半轴上,且OA ∥BC ,双曲线y =k x (x >0)通过AC 边的中点,若S 梯形OACB =4,则双曲线y =k x 的k 值为( D )A .5B .4C .3D .210.(2015·滨州)如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA 的两边分不与函数y =-1x ,y =2x 的图象交于B ,A 两点,则∠OAB 的大小的变化趋势为( D )A .逐步变小B .逐步变大C .时大时小D .保持不变二、填空题(每小题3分,共24分)11.已知△ABC 与△DEF 相似且面积比为4∶25,则△ABC 与△DEF 的相似比为__25__.12.在平面直角坐标系xOy 中,点P 到x 轴的距离为3个单位长度,到原点O 的距离为5个单位长度,则通过点P 的反比例函数的解析式为__y =12x 或y =-12x __.13.如图是一个几何体的三视图,按照图示的数据可运算出该几何体的表面积为__90π__.,第10题图),第13题图),第15题图),第16题图)14.点A(x1,y1),B(x2,y2)分不在双曲线y =-1x 的两支上,若y1+y2>0,则x1+x2的范畴是__>__0.15.如图,△A ′B ′C ′与△ABC 关于y 轴对称,已知A(1,4),B(3,1),C(3,3),若以原点O 为位似中心,相似比为12作△A ′B ′C ′的缩小的位似图形△A ″B ″C ″,则A ″的坐标是__(-12,2)或(12,-2)__.16.如图,在平行四边形ABCD 中,AD =10厘米,CD =6厘米,E 为AD 上一点,且BE =BC ,CE =CD ,则DE =__3.6__厘米.17.在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC =6.若点P 在直线AC 上(不与点A ,C 重合),且∠ABP =30°,则CP 的长为__6或23或43__.18.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E ,且cos α=45.下列结论:①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8或252;④0<CE ≤6.4.其中正确的结论是__①②③④__.(把你认为正确结论的序号都填上)三、解答题(共66分)19.(8分)运算:(1)(-2016)0+|1-3|-2sin60°; (2)(-8)0+3·tan30°-3-1.解(1)原式=1+3-1-2×32=0 (2)原式=1+3·33-13=5320.(8分)已知双曲线y =k x 与抛物线y =ax2+bx +c 交于A(2,3),B(m ,2),C(-3,n)三点.(1)求双曲线与抛物线的解析式;(2)在平面直角坐标系中描出点A ,点B ,点C ,并求出△ABC 的面积.解:(1)把A(2,3)代入y =k x 得:k =6,∴反比例函数解析式为y =6x ,把点B(m ,2),C(-3,n)分不代入y =6x 得:m =3,n =-2,把A(2,3),B(3,2),C(-3,-2)分不代入y =ax2+bx +c 得⎩⎪⎨⎪⎧4a +2b +c =3,9a +3b +c =29a -3b +c =-2,,解得⎩⎪⎨⎪⎧a =-13,b =23,c =3.∴抛物线的解析式为y =-13x2+23x +3 (2)S △ABC =12(1+6)×5-12×1×1-12×6×4=5. 21.(8分)如图,已知:在直角梯形ABCD 中,AD ∥BC ,∠C =90°,AB =AD =25,BC =32,连接BD ,AE ⊥BD ,垂足为E.(1)求证:△ABE ∽△DBC ;(2)求线段AE 的长.解:(1)∵AB =AD =25,∴∠ABD =∠ADB ,∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ABD =∠DBC ,∵AE ⊥BD ,∴∠AEB =∠C =90°,∴△ABE ∽△DBC (2)∵AB =AD ,又∵AE ⊥BD ,∴BE =DE ,∴BD =2BE ,由△ABE ∽△DBC 可得AB BD =BE BC ,∵AB =AD =25,BC =32,∴252BE =BE 32,∴BE =20,AE =AB2-BE2=15.22.(10分)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,CF ⊥A F ,且CF =CE.(1)求证:CF 是⊙O 的切线; (2)若sin ∠BAC =25,求S △CBD S △ABC的值. 解:(1)证明:连接OC ,∵CE ⊥AB ,CF ⊥AF ,CE =CF ,∴AC 平分∠BAF ,即∠BAF =2∠BAC ,∵∠BOC =2∠BAC ,∴∠BOC =∠BAF ,∴OC ∥AF ,∴CF ⊥OC ,∴CF 是⊙O 的切线 (2)解:∵AB 是⊙O 的直线,CD ⊥AB ,∴CE =ED ,BC ︵=BD ︵,∴S △CBD =2S △CEB ,∠BAC =∠BC E ,又∠ACB =∠CEB =90°,∴△ABC ∽△CBE ,∴S △CBE S △ABC =(CB AB )2=(s in ∠BAC)2=(25)2=425,∴S △CBD S △ABC =825.23.(10分)(2015·珠海)如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分不在x 轴,y 轴上,函数y =k x 的图象过点P(4,3)和矩形的顶点B(m ,n)(0<m <4).(1)求k 的值;(2)连接PA ,PB ,若△ABP 的面积为6,求直线BP 的解析式.解:(1)∵函数y =k x 的图象过点P(4,3),∴k =4×3=12 (2)∵函数y=12x 的图象过点B(m ,n),∴mn =12.∵△ABP 的面积为6,P(4,3),0<m<4,∴12n ·(4-m)=6,∴4n -12=12,解得n =6,∴m =2,∴点B(2,6),设直线BP 的解析式为y =ax +b ,∵B(2,6),P(4,3),∴⎩⎪⎨⎪⎧2a +b =6,4a +b =3,解得⎩⎨⎧a =-32,b =9,∴直线BP 的解析式为y =-32x +9 24.(10分)为邓小平诞辰110周年献礼,广安市政府对都市建设进行了整改,如图,已知斜坡AB 长602米,坡角(即∠BAC)为45°,BC ⊥AC ,现打算在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE 的坡比为3∶1,求休闲平台DE 的长是多少米?(2)一座建筑物GH 距离A 点33米远(即AG =33米),小亮在D 点测得建筑物顶部H 的仰角(即∠HDM)为30°.点B ,C ,A ,G ,H 在同一平面内,点C ,A ,G 在同一条直线上,且HG ⊥CG ,咨询建筑物GH 高为多少米?解:(1)∵FM ∥CG ,∴∠BDF =∠BAC =45°,∵斜坡AB 长602米,D 是AB 的中点,∴BD =302米,∴DF =BD ·cos ∠BDF =302×22=30(米),BF =DF =30米,∵斜坡BE 的坡比为3∶1,∴BF EF =31,解得:EF =103(米),∴DE =DF -EF =30-103(米) (2)设GH =x 米,则MH =GH -GM =x -30(米),DM =AG +AP =33+30=63(米),在Rt △DMH 中,tan30°=MH DM ,即x -3063=33,解得:x =30+213,因此建筑物GH 的高为(30+213)米25.(12分)如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,C D ⊥AB 于点D.点P 从点D 动身,沿线段DC 向点C 运动,点Q 从点C 动身,沿线段CA 向点A 运动,两点同时动身,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时刻为t 秒.(1)求线段CD 的长;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并确定在运动过程中是否存在某一时刻t ,使得S △CPQ ∶S △ABC =9∶100?若存在,求出t 的值;若不存在,讲明理由.(3)当t 为何值时,△CPQ 为等腰三角形?解:(1)如图,∵∠ACB =90°,AC =8,BC =6,∴AB =10,∵CD ⊥AB ,S △ABC =12AB ·CD ,∴CD =BC ·AC AB =6×810=4.8,∴线段CD 的长为4.8(2)过点P 作PH ⊥AC ,垂足为H ,如图2,由题意可知DP =t ,CQ =t ,则CP =4.8-t.由△CHP ∽△BCA 得PH AC =PC AB ,∴PH 8=4.8-t 10,∴PH =9625-45t.∴S △CPQ =CQ ·PH =12t(9625-45t)=-25t2+4825t.设存在某一时刻t ,使得S △CPQ ∶S △ABC =9∶100.∵S △ABC =12×6×8=24,且S △CPQ ∶S △ABC =9∶100,∴(-25t2+4825t)∶24=9∶100.整理得:5t2-24t +27=0.即(5t -9)(t -3)=0.解得:t =95或t =3,∵0≤t ≤4.8,∴当t =95秒或t =3秒时,S△CPQ ∶S △ABC =9∶100 (3)①若CQ =CP ,如图1,则t =4.8-t.解得:t =2.4 ②若PQ =PC ,如图2所示,∵PQ =PC ,PH ⊥QC ,∴QH =CH =12QC =t 2.∵△CHP ∽△BCA.∴CH BC =CP AB ,∴t 26=4.8-t 10解得:t =14455. ③若Q C =QP ,过点Q 作QE ⊥CP ,垂足为E ,如图3所示.同理所得:t =2411,综上所述:当t 为2.4秒或14455秒或2411秒,△CPQ 为等腰三角形。

2017春季班数学部初三(下)期末试卷

2017春季班数学部初三(下)期末试卷

班级: 姓名: 得分:一. 选择题:(每题3分,共30分) 1.计算2-3的倒数是( )A .5B .-5C .1D .-12.如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是( )3、计算2121211aa a a +⎛⎫÷+⎪-+-⎝⎭的结果是( ) A.11a - B .11a + C .211a - D .211a +4、若直线a 是圆的割线,则下面说法正确的是 ( ) A 直线与圆有两个交点 B 直线与圆相切C 这条直线一定是圆的直径D 这条直线将圆分成相等的两部分 5、在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是( )A .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,5 6、已知一次函数y=2x+1,下列结论不正确...的是() A .图象必经过点(-1,-1) B .y 随x 的增大而减小C .图象经过第一、二、三象限D .若x >1,则y >-27. 下列命题是真.命题的是( ) A. 若x 1、x 2是3x 2+4x –5=0的两根,则x 1+x 2=35-.B. 单项式2347x y -的系数是-4C. 若21(3)0,x y -+-=则1,3x y ==D. 若分式方程产生增根则m=3. 8、某商品的进价为每件20元.当售价为每件30元时,每天可卖出100件,现需降价处理,且经市场调查:每降价1元,每天可多卖出10件.现在要使每天利润为750元,每件商品应降价( )元.A. 2B. 2.5C. 3D. 59、在平面直角坐标系中,对于平面内任一点,若规定以下三种变换:①,如,; ②,如,; ③.如,.按照以上变换有:,那么等于()A .B .C .D .10、抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图所示,则下列结论:①4ac-b 2<0;②2a-b =0;③a +b +c<0;④点M(x 1,y 1),N(x 2,y 2)在抛物线上,若x 1<x 2,则y 1≤y 2.其中正确结论的个数是( )A .1个B .2个C .3个D .4个 二.填空题:(每题3分,共18分)11分解因式:a a a 4423+-=.12.函数14y x =-中自变量x 的取值范围是.13. 不等式组1,123(7)x x x ≥⎧⎨->-⎩的整数解的和为.14. 据了解,地下综合管廊是建于城市地下用于敷设市政公用管线的公用设施,该系统不仅解决城市交通拥堵问题,还极大方便了电力、通信、燃气、供排水等市政设施的维护和检修。

人教版九年级数学下册期末测试卷(含答案)

人教版九年级数学下册期末测试卷(含答案)

人教版九年级数学下册期末测试卷(含答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =44.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )A .55×105B .5.5×104C .0.55×105D .5.5×1055.函数y=ax 2+2ax+m (a <0)的图象过点(2,0),则使函数值y <0成立的x 的取值范围是( )A .x <﹣4或x >2B .﹣4<x <2C .x <0或x >2D .0<x <26.函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠10.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.8的立方根为___________.2.分解因式:34x x -=________.3.已知直角三角形的两边长分别为3、4.则第三边长为________.4.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为__________.5.如图,反比例函数y=k x 的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数 y =k x(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.先化简,再求值:222221412()x x x x x x x x -+-+÷-+,且x 为满足﹣3<x <2的整数.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.5.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数24 72 18 x(人)(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?6.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、B5、A6、A7、B8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、x(x+2)(x﹣2).3、54、5、-36、三、解答题(本大题共6小题,共72分)1、3x=-2、-53、(1)略;(2)S平行四边形ABCD=244、(1)BF=10;(2)r=2.5、(1)6 (2)1440人6、()()21y5x800x2750050x100=-+-≤≤;(2)当x80=时,y4500=最大值;(3)销售单价应该控制在82元至90元之间.。

新人教版九年级数学下册期末考试卷【含答案】

新人教版九年级数学下册期末考试卷【含答案】

新人教版九年级数学下册期末考试卷【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x = 6.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.把长方形纸片ABCD 沿对角线AC 折叠,得到如图所示的图形,AD 平分∠B ′AC ,则∠B ′CD=__________. 5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、B5、D6、B7、C8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2x (x ﹣1)(x ﹣2).3、24、30°5、40°6、49三、解答题(本大题共6小题,共72分)1、4x2、3x3、(1)略(2)64、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为25、(1)30;(2)①补图见解析;②120;③70人.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

2017年春人教版九年级数学下册期末检测题(2)含答案

2017年春人教版九年级数学下册期末检测题(2)含答案

y=
k x
(k≠0)的图象交于第二、四象限内的
A,
B 两点,与 y 轴交于 C 点,过点 A 作 AH ⊥y 轴,垂足为 H,OH=3,tan
∠AOH =43,点 B 的坐标为 (m,- 2).
(1)求△ AHO 的周长;
(2)求该反比例函数和一次函数的解析式.
解: (1)由 OH=3,tan∠AOH =34,得 AH =4,即 A( -4,3).由勾股
2017 年春人教版九年级数学下册期末检测题 (2) 含答案
(时刻: 120 分钟 满分: 120 分)
一、选择题 (每小题 3 分,共 30 分)
1. (2016·玉林 )sin30°= ( B )
2
A. 2 D.
3 3
B.12
C.
3 2
2.如图所示的几何体是由一个圆柱体和一个长方体组成的,则那个几
BDE,而∠ ADO =∠ A,∴∠ BDE=∠ A,又∠ BED =∠ DEA ,∴△ EBD∽

EDA
,∴
DAEE=DBEE=
BD AD
,即
x6++ 2x =
x+x 2=BADD
,∴
x=
2,∴
BD AD
=2+2
= 2
1 2
25.(12 分)如图,在 Rt△ABC 中,∠ ACB =90°, AC=8,B C=6, CD⊥AB 于点 D.点 P 从点 D 动身,沿线段 DC 向点 C 运动,点 Q 从点 C 动 身,沿线段 CA 向点 A 运动,两点同时动身,速度都为每秒 1 个单位长度, 当点 P 运动到 C 时,两点都停止.设运动时刻为 t 秒.
何体的俯视图是 ( C )
3.△ ABC 在网格中的位置如图,则 cosB 的值为 ( A ) 5 25 1

人教版九年级下册数学《期末》试卷及参考答案

人教版九年级下册数学《期末》试卷及参考答案

人教版九年级下册数学《期末》试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12-2.若二次根式51x -有意义,则x 的取值范围是( )A .x >15B .x ≥15C .x ≤15D .x ≤5 3.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =4 4.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=5.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,46.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为( )A .±1B .1-C .1D .27.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .33C .6D .6310.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.因式分解2242x x -+=_______.3.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.4.把长方形纸片ABCD 沿对角线AC 折叠,得到如图所示的图形,AD 平分∠B ′AC ,则∠B ′CD=__________.5.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解方程:228122-=--x x x x2.先化简,再求值:2211(1)m m m m+--÷,其中3.3.已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=m x图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、D5、B6、B7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、22(1)x -.3、22()1y x =-+ 4、30°5、)120016、3 三、解答题(本大题共6小题,共72分)1、x =-4.2 3、(1)反比例函数解析式为y=﹣8x ,一次函数的解析式为y=﹣x ﹣2;(2)6;(3)x <﹣4或0<x <2.4、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为25、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。

2017年下期九年级期未数学试卷

2017年下期九年级期未数学试卷

2017年下期九年级数学试卷姓名______________班级____________学校_____________温馨提示:本试卷满分150分,考试时间120分钟一:选择题:(每小题4分,共40分)1、若5x2=6x-8化为一元二次方程的一般形式后,二次项系数、一次项系数和常数项分别是()A、5,6,-8B、5,-6,-8C、5,-6,8D、6,5,-82.若函数的图象在其象限内的值随值的增大而增大,则的取值范围是()A.B.C.D.3、经过调查研究,某工厂生产一种产品的总利润L(元)与产量X(件)的关系式为L=-x2+2000x-10000(0<x<1900),要使总利润达到99万元,则这种产品应生产()A.1000件B.1200件C. 2000件D.10000件4. 某农场粮食产量是:2003年为1 200万千克,2005年为1 452万千克,•如果平均每年增长率为x,则x满足的方程是().A.1200(1+x)2 =1 452 B.2000(1+2x)=1 452C.1200(1+x%)2 =1 452 D.12 00(1+x%)=1 4525. 如图,已知,那么添加下列一个条件后,仍无法..判定△ABC∽△ADE的是()A.B.C.D.6、若tan(a+10°)=1,则锐角a的度数是( )A、20°B、30°C、35°D、50°7. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin∠ACD的值为()A .B .C .D .8.某学校生物兴趣小组11人到校外采集植物标本,其中2人每人采集到6件,4人每人采集到3件,5人每人采集到4件,则这个兴趣小组平均每人采集到的标本是( )A. 3件B. 4件C. 5件D. 6件9:已知抛物线y=x 2﹣4x+3,则下列判断错误的是( ) A. 对称轴x=2B. 最小值y=-1C. 在对称轴左侧y 随x 的增加而减小D. 顶点坐标(-2,-1)10. 如左图,函数和函数的图象相交于点, ,若,则x 的取值范围是( ) A .B C D .二、填空题(每小题4分,共32分)11. 反比例函数的图象经过点(-3,2),则k=____________. 12: 已知x = 1是关于x 的一元二次方程2x 2 + kx -1 = 0的一个根,则实数k 的值是 。

2017年01月09日九年级下册数学期末测试卷附答案

2017年01月09日九年级下册数学期末测试卷附答案

2017年九年级下册数学期末测试卷附答案一.选择题(每小题3分,共24分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是()A.摸出的2个球都是白球B.摸出的2个球有一个是白球C.摸出的2个球都是黑球D.摸出的2个球有一个黑球3.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=3154.对于二次函数(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是﹣1C.顶点坐标是(1,2) D.与x轴有两个交点5.如图,在△中,∥,6,3,4,则的长为()A.1 B.2 C.3 D.46.当k>0时,反比例函数和一次函数2的图象大致是()A.B.C.D.7.如图,△中,⊥,且3,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.8.如图,抛物线2(a≠0)的对称轴为直线1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4<b2;②方程20的两个根是x1=﹣1,x2=3;③3>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个二.填空题(每小题3分,共21分)9.关于x的一元二次方程(k﹣1)x2﹣21=0有两个不相等的实数根,则实数k的取值范围是.10.如图,以△的边为直径的⊙O分别交、于点D、E,连结、,若∠65°,则∠.11.如图,点A在双曲线上,点B在双曲线上,且∥x轴,C、D在x轴上,若四边形为矩形,则它的面积为.12.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.13.已知a<﹣1,点(a﹣1,y1),(a,y2),(1,y3)都在函数2的图象上,则y1,y2,y3的大小关系是.14.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶片状”阴影图案的面积为.15.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为.三.解答题(共8小题)16.(8分)选用适当的方法解下列方程:(1)2x2﹣6x﹣1=0 (2)3x(2)=5(2)17.(9分)一个不透明的布袋里装有红、黄、绿三种颜色的球(除颜色不同,其它均无任何区别),其中红球2个,黄球1个,绿球1个.(1)求从袋中任意摸出一个球是红球的概率;(2)第一次从袋中任意摸出一个球,记下颜色后放回袋中,第二次再摸出一个球记下颜色,请用画树状图或列表的方法求两次都摸到红球的概率(两个红球分别记作红1、红2).18.(9分)如图,△各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△向左平移3个单位后的△A1B1C1;(2)在图中画出△绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,边扫过的面积是.19.(9分)如图,在同一直角坐标系中,一次函数﹣2的图象和反比例函数的图象的一个交点为A(,m).(1)求m的值与反比例函数的解析式.(2)若点P在x轴上,且△为等腰三角形,请直接写出点P的坐标.20.(9分)如图,是⊙O的直径,且2,点P为的延长线上一点,过点P作⊙O的切线,,切点分别为点A,B.(1)连接,若∠30°,试证明△是等腰三角形;(2)填空:①当时,四边形是菱形;②当时,四边形是正方形.21.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?22.(10分)正方形中,E是边上一点,(1)将△绕点A按顺时针方向旋转,使、重合,得到△,如图1所示.观察可知:与相等的线段是,∠∠(2)如图2,正方形中,P、Q分别是、边上的点,且∠45°,试通过旋转的方式说明:(3)在(2)题中,连接分别交、于M、N,你还能用旋转的思想说明222.23.(11分)如图,抛物线经过A(﹣1,0),B(5,0),C (0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.2017年01月09日因材教育的初中数学组卷参考答案与试题解析一.选择题(共8小题)1.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.2.(2015•福建)在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是()A.摸出的2个球都是白球B.摸出的2个球有一个是白球C.摸出的2个球都是黑球D.摸出的2个球有一个黑球【解答】解:A、只有一个白球,故A是不可能事件,故A正确;B、摸出的2个球有一个是白球是随机事件,故B错误;C、摸出的2个球都是黑球是随机事件,故C错误;D、摸出的2个球有一个黑球是随机事件,故D错误;故选:A.3.(2016•呼伦贝尔)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.4.(2014•新疆)对于二次函数(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是﹣1C.顶点坐标是(1,2) D.与x轴有两个交点【解答】解:二次函数(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线1,抛物线与x轴没有公共点.故选:C.5.(2015•成都)如图,在△中,∥,6,3,4,则的长为()A.1 B.2 C.3 D.4【解答】解:∵∥,∴,即,解得:2,故选:B.6.(2016•绥化)当k>0时,反比例函数和一次函数2的图象大致是()A.B.C.D.【解答】解:∵k>0,∴反比例函数经过一三象限,一次函数2经过一二三象限.故选C.7.(2016•东莞市二模)如图,△中,⊥,且3,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.【解答】解:∵△中,⊥,且3,∴∠∠45°,∵⊥,∴∥,∴∠∠A,∴∠∠45°,∴,∴S△××2(0≤t≤3),即2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选D.8.(2016•齐齐哈尔)如图,抛物线2(a≠0)的对称轴为直线1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4<b2;②方程20的两个根是x1=﹣1,x2=3;③3>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4>0,所以①正确;∵抛物线的对称轴为直线1,而点(﹣1,0)关于直线1的对称点的坐标为(3,0),∴方程20的两个根是x1=﹣1,x2=3,所以②正确;∵﹣=1,即﹣2a,而﹣1时,0,即a﹣0,∴20,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.二.填空题(共7小题)9.(2015•本溪)关于x的一元二次方程(k﹣1)x2﹣21=0有两个不相等的实数根,则实数k的取值范围是k<2且k≠1 .【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣21=0有两个不相等的实数根,∴k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,解得:k<2且k≠1.故答案为:k<2且k≠1.10.(2014•扬州)如图,以△的边为直径的⊙O分别交、于点D、E,连结、,若∠65°,则∠50°.【解答】解:如图,连接.∵为⊙O的直径,∴∠∠90°,∵∠65°,∴∠25°,∴∠2∠50°,(圆周角定理)故答案为:50°.11.(2015•甘南州)如图,点A在双曲线上,点B在双曲线上,且∥x轴,C、D在x轴上,若四边形为矩形,则它的面积为 2 .【解答】解:过A点作⊥y轴,垂足为E,∵点A在双曲线上,∴四边形的面积为1,∵点B在双曲线上,且∥x轴,∴四边形的面积为3,∴矩形的面积为3﹣1=2.故答案为:2.12.(2015•潍坊模拟)在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有12 个.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:12,故白球的个数为12个.故答案为:12.13.(2008秋•彰武县校级期末)已知a<﹣1,点(a﹣1,y1),(a,y2),(1,y3)都在函数2的图象上,则y1,y2,y3的大小关系是y1>y2>y3.【解答】解:∵当a<﹣1时,a﹣1<a<1<0,而抛物线2的对称轴为直线0,开口向上,∴三点都在对称轴的左边,y随x的增大而减小,∴y1>y2>y3.故本题答案为:y1>y2>y3.14.(2014秋•新乡期末)如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶片状”阴影图案的面积为π﹣2 .【解答】解:连接,阴影部分面积扇形﹣S△﹣×2×2=π﹣2.故答案为:π﹣2.15.(2009•嘉兴)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为(36,0).【解答】解:由原图到图③,相当于向右平移了12个单位长度,象这样平移三次直角顶点是(36,0),再旋转一次到三角形⑩,直角顶点仍然是(36,0),则三角形⑩的直角顶点的坐标为(36,0).故答案为:(36,0).三.解答题(共8小题)16.(2015春•阜宁县期末)选用适当的方法解下列方程:(1)x2﹣67(2)2x2﹣6x﹣1=0(3)3x(2)=5(2)【解答】解:(1)方程变形得:x2﹣6x﹣7=0,分解因式得:(x﹣7)(1)=0,解得:x1=7,x2=﹣1;(2)这里2,﹣6,﹣1,∵△=36+8=44,∴;(3)方程变形得:(3x﹣5)(2)=0,解得:x1=,x2=﹣2.17.(2014秋•江阴市期末)一个不透明的布袋里装有红、黄、绿三种颜色的球(除颜色不同,其它均无任何区别),其中红球2个,黄球1个,绿球1个.(1)求从袋中任意摸出一个球是红球的概率;(2)第一次从袋中任意摸出一个球,记下颜色后放回袋中,第二次再摸出一个球记下颜色,请用画树状图或列表的方法求两次都摸到红球的概率(两个红球分别记作红1、红2).【解答】解:(1)从袋中任意摸出一个球是红球的概率.(2)画树状图得:∴在上述16种等可能结果中,两次都摸到红球的情况有4种,∴P(两次都摸到红球).18.(2015•桂林)如图,△各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△向左平移3个单位后的△A1B1C1;(2)在图中画出△绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,边扫过的面积是.【解答】解:(1)如图所示,△A1B1C1为所求的三角形;(2)如图所示,△A2B2C2为所求的三角形;(3)在(2)的条件下,边扫过的面积﹣=5π﹣=.故答案为:.19.(2015•鄂尔多斯)如图,在同一直角坐标系中,一次函数﹣2的图象和反比例函数的图象的一个交点为A(,m).(1)求m的值与反比例函数的解析式.(2)若点P在x轴上,且△为等腰三角形,请直接写出点P的坐标.【解答】解:(1)∵一次函数的图象经过点A(,m),∴,∴点A的坐标为(,1),又∵反比例函数的图象经过点A,∴,∴反比例函数的解析式为;(2)符合条件的点P有4个,分别是:P1(﹣2,0),P2(2,0),P 3(,0),P4(,0).20.(2014•河南)如图,是⊙O的直径,且2,点P为的延长线上一点,过点P作⊙O的切线,,切点分别为点A,B.(1)连接,若∠30°,试证明△是等腰三角形;(2)填空:①当 1 时,四边形是菱形;②当﹣1 时,四边形是正方形.【解答】解:(1)连接,∵是⊙O的切线,∴⊥,在△中,∠90°﹣∠90°﹣30°=60°,∴∠30°,∵∠30°∴∠∠,∴,∴△是等腰三角形.(2)①1,理由如下:∵四边形是菱形,∴,∴∠60°,∴2,.∴1,②,理由如下:∵四边形是正方形,∴∠45°,∵1,,∴﹣1∴.21.(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【解答】解:(1)由题意得,700﹣20(x﹣45)=﹣201600;(2)(x﹣40)(﹣201600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,﹣20<0,∴当60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在﹣201600中,﹣20<0,∴y随x的增大而减小,∴当58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.22.(2014•江西模拟)正方形中,E是边上一点,(1)将△绕点A按顺时针方向旋转,使、重合,得到△,如图1所示.观察可知:与相等的线段是,∠∠(2)如图2,正方形中,P、Q分别是、边上的点,且∠45°,试通过旋转的方式说明:(3)在(2)题中,连接分别交、于M、N,你还能用旋转的思想说明222.【解答】解:(1)∵△绕点A按顺时针方向旋转,使、重合,得到△,∵,∠∠.故答案为:,;(2)将△绕点A按顺时针方向旋转90°,则与重合,得到△,如图2,则∠∠90°,即点E、B、P共线,∠∠90°,,,∵∠45°,∴∠45°,∴∠∠,在△和△中∵,∴△≌△(),∴,而,∴;(3)∵四边形为正方形,∴∠∠45°,如图,将△绕点A按顺时针方向旋转90°,则与重合,得到△,则∠∠45°,,,与(2)一样可证明△≌△,得到,∵∠∠45°+45°=90°,∴△为直角三角形,∴222,∴222.23.(2016•安顺)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为2(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:2﹣2x﹣;(2)∵抛物线的解析式为:2﹣2x﹣,∴其对称轴为直线﹣=﹣=2,连接,如图1所示,∵B(5,0),C(0,﹣),∴设直线的解析式为(k≠0),∴,解得,∴直线的解析式为﹣,当2时,1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△2D与△M2中,∴△2D≌△M2(),∴N2,即N2点的纵坐标为.∴x2﹣2x﹣=,解得2+或2﹣,∴N 2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).2017年01月09日九年级下册数学期末测试卷附答案31 /31。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九下期末检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分) 1.下列各点中,在函数y =-8x 图象上的是( )A .(-2,4)B .(2,4)C .(-2,-4)D .(8,1) 2.下列立体图形中,主视图是三角形的是( )3.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积比为( )A .4∶3B .3∶4C .16∶9D .9∶164.反比例函数y =-3x 的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( )A .x 1>x 2B .x 1=x 2C .x 1<x 2D .不确定5.△ABC 在网格中的位置如图所示,则cos B 的值为( )A.55 B.255 C.12D .2第5题图第6题图第7题图6.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,则屏幕上图形的高度为( )A .6cmB .12cmC .18cmD .24cm7.如图,E 是▱ABCD 的边BC 的延长线上一点,连接AE 交CD 于F ,则图中共有相似三角形( )A .4对B .3对C .2对D .1对8.已知两点A (5,6)、B (7,2),先将线段AB 向左平移一个单位,再以原点O 为位似中心,在第一象限内将其缩小为原来的12得到线段CD ,则点A 的对应点C 的坐标为( )A .(2,3)B .(3,1)C .(2,1)D .(3,3) 9.在△ABC 中,若⎪⎪⎪⎪sin A -32+(1-tan B )2=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105°10.如图,是由棱长为1的正方体搭成的积木的三视图,则图中棱长为1的正方体的个数是( )A .4个B .5个C .6个D .7个第10题图第11题图11.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2km.从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4kmB .(2+2)kmC .22kmD .(4-2)km 12.如图,在四边形ABCD 中,∠B =90°,AC =4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB =x ,AD =y ,则y 关于x 的函数关系用图象大致可以表示为( )二、填空题(本大题共6小题,每小题4分,共24分)13.若反比例函数y =kx 的图象经过点(1,-6),则k 的值为 .14.在△ABC 中,∠B =65°,cos A =12,则∠C 的度数是 .15.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =3,DB =2,BC =6,则DE 的长为 .第15题图第16题图第17题图16.如图,正比例函数y 1=k 1x 与反比例函数y 2=k 2x 的图象交于A 、B 两点,根据图象可直接写出当y 1>y 2时,x 的取值范围是 .17.如图,在平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,若S △DEC =3,则S △BCF = .18.如图,在△ABC 中,点A 1,B 1,C 1分别是BC ,AC ,AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点,依此类推……若△ABC 的周长为1,则△A n B n C n 的周长为 .三、解答题(本题共9小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:tan 230°+3tan60°-sin 245°. 20.(8分)如图,以原点O 为位似中心,把△OAB 放大后得到△OCD ,求△OAB 与△OCD 的相似比.21.(8分)如图,已知AC =4,求AB 和BC 的长.22.(10分)某汽车的功率P (W)为一定值,它的速度v (m/s)与它所受的牵引力F (N)有关系式v =PF,且当F =3000N 时,v =20m/s.(1)这辆汽车的功率是多少W ?请写出这一函数的表达式; (2)当它所受的牵引力为2500N 时,汽车的速度为多少?(3)如果限定汽车的速度不超过30m/s ,则牵引力F 在什么范围内?23.(10分)如图,是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.24.(10分)如图①是一个新款水杯,水杯不盛水时按如图②所示的位置放置,这样可以快速晾干杯底,干净透气;将图②的主体部分抽象成图③,此时杯口与水平直线的夹角为35°,四边形ABCD 可以看作矩形,测得AB =10cm ,BC =8cm ,过点A 作AF ⊥CE ,交CE 于点F .(1)求∠BAF 的度数;(2)求点A 到水平直线CE 的距离AF 的长(精确到0.1cm ,参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002).25.(12分)在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx (k ≠0)的图象交于第二、四象限内的A 、B 两点,与y 轴交于C 点,过点A 作AH ⊥y 轴,垂足为H ,OH =3,tan ∠AOH =43,点B 的坐标为(m ,-2).(1)求△AHO 的周长;(2)求该反比例函数和一次函数的解析式.26.(12分)如图,已知四边形ABCD 内接于⊙O ,点A 是BDC ︵的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F 、E ,且BF ︵=AD ︵.(1)求证:△ADC ∽△EBA ;(2)如果AC =8,CD =5,求tan ∠CAD 的值.27.(14分)如图,直线y =ax +1与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =kx (x>0)相交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为(-2,0).(1)求双曲线的解析式;(2)若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴于H ,当以点Q 、C 、H 为顶点的三角形与△AOB 相似时,求点Q 的坐标.答案1.A 2.A 3.D 4.A 5.A 6.C 7.B 8.A 9.C 10.C 11.B12.D 解析:∵DH 垂直平分AC ,AC =4,∴DA =DC ,AH =HC =2,∴∠DAC =∠DCH .∵CD ∥AB ,∴∠DCA =∠BAC ,∴∠DAH =∠BAC .又∵∠DHA =∠B =90°,∴△DAH ∽△CAB ,∴AD AC =AH AB ,即y 4=2x ,∴y =8x.∵AB <AC ,∴x <4,∴故选D.13.-6 14.55° 15.18516.-1<x <0或x >1 17.418.12n 解析:∵点A 1,B 1,C 1分别是△ABC 的边BC ,AC ,AB 的中点,∴A 1B 1,A 1C 1,B 1C 1是△ABC 的中位线,∴△A 1B 1C 1∽△ABC ,且相似比为12.∵A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,A 1C 1,A 1B 1的中点,∴△A 2B 2C 2∽△A 1B 1C 1,且相似比为12,∴△A 2B 2C 2∽△ABC ,且相似比为14.依此类推△A n B n C n ∽△ABC ,且相似比为12n .∵△ABC 的周长为1,∴△A n B n C n的周长为12n .19.解:原式=⎝⎛⎭⎫332+3×3-⎝⎛⎭⎫222=13+3-12=176.(6分) 20.解:∵点B 的坐标是(4,0),点D 的坐标是(6,0),∴OB =4,OD =6,∴OB OD =46=23.(5分)∵△OAB 与△OCD 关于点O 位似,∴△OAB 与△OCD 的相似比为23.(8分)21.解:如图,过点C 作CD ⊥AB 于点D .(1分)在Rt △ACD 中,∵∠A =30°,AC =4,∴∠ACD =90°-∠A =60°,CD =12AC =2,AD =AC ·cos A =2 3.(4分)在Rt △CDB 中,∵∠DCB =∠ACB -∠ACD =45°,∴BD =CD =2,∴BC =22,(7分)∴AB =AD +BD =2+2 3.(8分)22.解:(1)由题意得P =F v =3000×20=60000(W).∴这辆汽车的功率是60000W ,函数表达式为v =60000F;(3分)(2)v =600002500=24(m/s),即汽车的速度为24m/s ;(6分)(3)由题意得60000F≤30,解得F ≥2000,即牵引力F 不小于2000N.(10分)23.解:根据三视图,下面的长方体的长、宽、高分别为8mm ,6mm ,2mm ,上面的长方体的长、宽、高分别为4mm ,2mm ,4mm.(4分)则这个立体图形的表面积为2(8×6+6×2+8×2)+2(4×2+2×4+4×4)-2×4×2=200(mm 2).(9分)答:这个立体图形的表面积为200mm 2.(10分)24.解:(1)∵四边形ABCD 是矩形,∴∠D =∠BCD =∠DAB =90°.(1分)∵AF ⊥CE ,∴∠AFC =90°,∴∠DAF =∠DCE =180°-90°-35°=55°,∴∠BAF =90°-55°=35°;(4分)(2)过点B 作BM ⊥AF 于点M ,作BN ⊥EF 于点N ,(6分)则MF =BN =BC ·sin35°≈8×0.5736≈4.59(cm),AM =AB ·cos35°≈10×0.8192≈8.20(cm),∴AF =AM +MF ≈8.20+4.59≈12.8(cm).(9分)答:点A 到水平直线CE 的距离AF 的长约为12.8cm.(10分)25.解:(1)由OH =3,tan ∠AOH =43,得AH =4,∴A 点的坐标为(-4,3).(2分)由勾股定理,得AO =OH 2+AH 2=5.∴△AHO 的周长为AO +AH +OH =3+4+5=12;(5分)(2)将A 点的坐标代入y =kx (k ≠0),得k =-4×3=-12,∴反比例函数的解析式为y =-12x .(8分)当y =-2时,-2=-12x,解得x =6,∴B 点的坐标为(6,-2).(9分)将A 、B 两点的坐标代入y =ax +b ,得⎩⎪⎨⎪⎧-4a +b =3,6a +b =-2,解得⎩⎪⎨⎪⎧a =-12,b =1,(11分)∴一次函数的解析式为y=-12x +1.(12分)26.(1)证明:∵四边形ABCD 内接于⊙O ,∴∠CDA +∠ABC =180°.又∵∠ABE +∠ABC =180°,∴∠CDA =∠ABE .(4分)∵BF ︵=AD ︵,∴∠DCA =∠BAE .(5分)∴△ADC ∽△EBA ;(6分)(2)解:∵点A 是BDC ︵的中点,∴AB ︵=AC ︵,∴AB =AC =8.(8分)∵△ADC ∽△EBA ,∴∠CAD =∠AEC ,DC AB =AC AE ,∴tan ∠CAD =tan ∠AEC =AC AE =DC AB =58.(12分)27.解:(1)把A (-2,0)代入y =ax +1中,得a =12,∴y =12x +1.∵PC =2,即P 点的纵坐标为2,∴2=12x +1,解得x =2,∴P 点的坐标为(2,2).(3分)把P (2,2)代入y =kx ,得k =4,∴双曲线的解析式为y =4x;(6分)(2)设Q 点的坐标为(a ,b ).∵Q (a ,b )在y =4x 上,∴b =4a .由y =12x +1,可得B 点的坐标为(0,1),则BO =1.由A 点的坐标为(-2,0),得AO =2.∵Q 在P 的右侧,∴a >2.则CH =a -2,QH =b .(9分)当△QCH ∽△BAO 时,CH AO =QH BO ,即a -22=b 1,∴a -2=2b ,a -2=2×4a ,解得a =4或a =-2(舍去).当a =4时,b =1,∴Q 点的坐标为(4,1);(11分)当△QCH ∽△ABO 时,CH BO =QH AO ,即a -21=b 2,∴2a -4=4a ,解得a =1+3或a =1-3(舍去).当a =1+3时,b =23-2,∴Q 点的坐标为(1+3,23-2).(13分)综上所述,Q 点的坐标为(4,1)或(1+3,23-2).(14分)。

相关文档
最新文档