(全国)2017届中考数学总复习专题五一次函数与反比例函数的综合应用作业课件
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。
中考《第五讲:一次函数与反比例函数》专题复习含答案
中考数学专题辅导第五讲应用题(一次函数与反比例函数专题)选讲此部分内容包括:函数的应用(主要是一次函数与反比例函数),则属于中档题。
真题再现:1.(2008年苏州•本题8分)如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A、B两船始终关于O点对称.以O为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A、B两船恰好在直线上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A( ,)、B( ,)和C( ,);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
2.(2010年苏州•本题8分) 如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.3.(2014年•苏州•本题7分)如图,已知函数y=-x+b的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P (a,0)(其中a>2),过点P作x轴垂线,分别交函数y=-x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.x4yx=y x=kyx=kyx=12124.(2014年•苏州• 8分)如图,已知函数y=(x>0)的图象经过点A ,B ,点A 的坐标为(1,2).过点A 作AC ∥y 轴,AC =1(点C 位于点A 的下方),过点C 作CD ∥x 轴,与函数的图象交于点D ,过点B 作BE ⊥CD ,垂足E 在线段CD 上,连接OC ,OD . (1)求△OCD 的面积; (2)当BE =AC 时,求CE 的长.5.(2015年苏州•本题满分8分)如图,已知函数(x >0)的图像经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax +b 的图像经过点A 、D ,与x 轴的负半轴交于点E .(1)若AC =OD ,求a 、b 的值; (2)若BC ∥AE ,求BC 的长.6.(2016年苏州•本题满分8分)如图一次函数的图像与轴交于点A ,与反比例函数的图像交干点B (2,n).过点B 作轴于点P ,P 是该反比例函数图像上的一点,且∠PBC=∠ABC .求反比例函数和一次函数的表达式.7.(2017年苏州•本题满分8分)如图,在中,,轴,垂足为.反比例函数()的图像经过点,交于点.已知,. kx12ky x=326y kx =+x (0)my x x=>BC x ⊥(34,1)n -C ∆AB C C A =B x AB ⊥A k y x =0x >C AB D 4AB =5C 2B =(1)若,求的值;(2)连接,若,求的长.8. (2017年南京市•本题满分3分)如图,已知点A 是一次函数y =x (x ≥0)图像上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数(k )0)的图像过点B 、C ,若△OAB 的面积为6,求△ABC 的面积.9.(2017年南京市•本题满分8分)如图,已知一次函数y =kx +b 的图像与x 轴交于点A ,与反比例函数y =(x <0)的图像交于点B (-2,n ),过点B 作BC ⊥x 轴于点C ,点D (3-3n ,1)是该反比例函数图像上一点. (1)求m 的值;(2)若∠DBC =∠ABC ,求一次函数y =kx +b 的表达式.10.(2017年无锡市•本题满分12分)操作:“如图1,P 是平面直角坐标系中一点(x 轴上的点除外),过点P 作PC ⊥x 轴于点C ,点C 绕点P 逆时针旋转60°得到点Q .”我们将此由点P 得到点Q 的操作称为点的T 变换.(1)点P (a ,b )经过T 变换后得到的点Q的坐标为 ;若点M 经过T 变换后得到点N (6,﹣),则点M 的坐标为 . (2)A 是函数y =x 图象上异于原点O 的任意一点,经过T 变换后得到点B .①求经过点O ,点B 的直线的函数表达式;②如图2,直线AB 交y 轴于点D ,求△OAB 的面积与△OAD 的面积之比.11.(2017年泰州市•本题满分12分)阅读理解:如图①,图形l 外一点P 与图形l 上各点连接的所有线段中,若线段PA 1最短,则线段PA 1的长度称为点P 到图形l 的距离.4OA =k C O D C B =B C O 12ky x=mx例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)模拟训练:1.(2017年常熟市•本题满分8分)如图,点、分别在轴和轴上, (点和点在直线的两侧),点的坐标为(4,).过点的反比例函数的图像交边于点. (1)求反比例函数的表达式; (2)求点的坐标.2.(2018年蔡老师预测•本题满分8分如图,正比例函数y=2x 的图象与反比例函数y=的图象交于点A 、B ,AB=2,(1)求k 的值;(2)若反比例函数y=的图象上存在一点C ,则当△ABC 为直角三角形,请直接写出点C 的坐标.3.( 2017年张家港•本题满分8分) 货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发3h 后休息,直至与货车相遇后,以原速度继续行驶.设货车出发h 后,货车、轿车分别到达离甲地km 和km 的地方,图中的线段、折线分别表示、与之间的函数关系.(1)求点的坐标,并解释点的实际意义;(2)求线段所在直线的函数表达式; (3)当货车出发 h 时,两车相距50km.4.(2017年苏州市区•本题满分8分)如图,在平面直角坐标系中,函数(,是常数)的图像经过,,其中.过点作轴垂线,垂足为,过点作轴垂线,垂足为,AC 与BD 交于点E ,连结,,.A B y x BC AB ⊥C O AB C n C (0)m y x x =>AC 1(,3)3D n +B x 1y 2y OA BCDE 1y 2y x D D DE ky x=0x >k (26)A ,(,)B m n 2m >A x C B y D AD DC CB(1)若的面积为3,求的值和直线的解析式;(2)求证:; (3)若∥ ,求点B 的坐标 .5.(2017年昆山市•吴江区••本题满分7分)如图,在平面直角坐标系中,矩形的对角线相交于点,且,(1)求证:四边形是菱形;(2)如果,求出经过点的反比例函数解析式.6.(2017年高新区•本题满分8分) 如图,反比例函数y =的图象与一次函数y =kx +b 的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为(n ,1).(1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB =10,求点E 的坐标.7.(2017年吴中区•本题满分8分)如图,一次函数的图象与反比例(为常数,且)的图象交于,两点。
中考复习(函数)课件
转化思想
将复杂问题转化为简单问题, 将未知问题转化为已知问题,
能够简化解题过程。
分类讨论
对于一些复杂的问题,需要进 行分类讨论,分别求解,最后
再进行汇总。
THANKS FOR WATCHING
感谢您的观看
求解模型
利用数学知识和方法,求解建 立的数学模型,得出函数关系 和变量的值。
理解题意
首先需要仔细阅读题目,理解 题目的要求和条件,明确解题 的目标。
建立模型
根据题目的要求和条件,建立 相应的数学模型,将实际问题 转化为数学问题。
检验答案
最后需要对得出的答案进行检 验,确保答案的正确性和合理 性。
函数综合题的常见题型
函数可以用各种方式表示,包括 解析式、表格和图象等。
函数的表示方法
01
02
03
解析式表示法
这是最常见的一种表示方 法,它使用数学公式来表 示函数的关系。例如,$y = f(x)$表示y是x的函数。
表格表示法
这种方法通过一个表格来 列出x和y的值对应关系。 这种方法适用于离散的函 数。
图象表示法
通过绘制函数的图象来表 示函数的关系。这种方法 可以直观地展示函数的形 态和变化趋势。
离等关系。
最优化问题
通过一次函数可以求解最优化问 题,例如最大值、最小值等。
线性回归分析
一次函数是线性回归分析的基础 ,可以用来进行数据分析和预测
。
03 反比例函数
反比例函数的定义
总结词
明确反比例函数的数学定义和表达式。
详细描述
反比例函数是一种特殊的函数形式,其定义为 f(x)=k/x (k≠0)。其中,x 是自变 量,k 是常数且 k ≠ 0。当 k > 0 时,函数图像位于第一象限和第三象限;当 k < 0 时,函数图像位于第二象限和第四象限。
中考数学总复习《反比例函数与一次函数综合》专题训练-附答案
中考数学总复习《反比例函数与一次函数综合》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知反比例函数()10cy c x=≠和一次函数()20y kx b k =+≠的图象相交于点()2,3A -和()3,B a .(1)求反比例函数和一次函数的表达式;(2)将一次函数2y 向下平移5个单位长度后得到直线3y ,当213y y y >>时,求x 的取值范围. 2.如图,反比例函数()0ky k x=>的图象经过正方形OABC 的顶点B ,一次函数1y x =+经过BC 的中点D .(1)求反比例函数的表达式;(2)将ABD △绕点A 顺时针旋转90︒,点D 的对应点为E ,判断E 点是否落在双曲线上. 3.如图,反比例函数()0ky k x=< 的图象与矩形ABCO 的边相交于D 、E 两点()51E -,,且23AD BD =∶∶,一次函数经过D 、E 两点.(1)求反比例函数与一次函数的解析式; (2)求BDE △的面积.4.对于实数,a b ,我们可以用{}min ,a b 表示,a b 两数中较小的数,例如{}min 3,11-=- {}min 2,22=,类x x⎩⎭(1)求反比例函数的解析式;(2)请直接写出不等式2kx x ->的解集;(3)点P 为反比例函数ky x=图像的任意一点,若3POC AOC S S =△△,求点P 的坐标. 7.如图,一次函数y mx n =+()0m ≠的图象与反比例函数ky x=()0k ≠的图象交于第二、四象限内的点(),3A a 和点()6,B b .过点A 作x 轴的垂线,垂足为点C ,AOC 的面积为3(1)分别求出一次函数y mx n =+()0m ≠与反比例函数ky x=()0k ≠的表达式; (2)结合图象直接写出kmx n x>+的解集; (3)在x 轴正半轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.8.如图,直线y =2x +6与反比例函数=ky x(k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .x,求AOB 的面积;根据图象,请直接写出满足不等式1y kx b =+C ,点A 的坐标为(2)若点E 是点C 关于x 轴的对称点,求ABE 的面积. 11.已知平面直角坐标系中,直线AB 与反比例函数(0)ky x x=>的图象交于点()1,3A 和点()3,B n ,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数的表达式及n 的值;(2)将OCD 沿直线AB 翻折,点O 落在第一象限内的点E 处,EC 与反比例函数的图象交于点F . △请求出点F 的坐标;△将线段BF 绕点B 旋转,在旋转过程中,求线段OF 的最大值. 12.如图,正比例函数(0)y kx k =≠与反比例函数my (m 0)x=≠的图象交于A 、B 两点,A 的横坐标为4-,B 的纵坐标为6-.(1)求反比例函数的表达式. (2)观察图象,直接写出不等式mkx x<的解集. (3)将直线AB 向上平移n 个单位,交双曲线于C 、D 两点,交坐标轴于点E 、F ,连接OD 、BD ,若OBD 的面积为20,求直线CD 的表达式.13.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示.②的面积是OCD.如图,已知一次函数y轴交于点,若ACD的面积为16.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,在反比例函数()0k y x x=>的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,与x 轴交于点M ,连接AC 、AE .(1)求k 、b 的值; (2)求ACE △的面积;(3)在x 轴上取点P ,求出使PC PE -取得最大值时点P 的坐标. 17.已知反比例函数1k y x=图象经过点(3,2)A ,直线:(0)l y kx b k =+<,经过点(2,0)C -,经过点A 且垂直于x 轴的直线与直线l 相交于B .(1)求1k 的值;(2)若ABC 的面积等于15,求直线l 的解析式;(3)点G 在反比例函数的图象上,点Q 在x 轴上,问是否存在点G 和点Q ,使以G .Q 及(2)中的C .B 四点为顶点的四边形是平行四边形,若存在,请求出点Q 的坐标,若不存在,请说明理由. 18.(综合与探究)如图,在平面直角坐标系中,已知反比例函数()0ky x x=<的图象过点()4,2C -,点D 的纵坐标为4,直线CD 与x 轴,y 轴分别交于点,A B .Rt AOB直角边上的一个动点,当16PCD AOBS S=时,求点关于y轴的对称点为x轴的对称点为,N 使得以点,,M N为顶点的四边形是平行四边形?若存在,标;若不存在,请说明理由..如图,已知直线y=x参考答案:3.(1)5y x =- 1722y x =+(2)944.(1)B (2)直线1x = 5.(1)1y x =- 2y x= (2)(1,0)C 12x <≤6.(1)3y x= (2)10x -<<或3>x (3)()1,3或()1,3--7.(1)反比例函数的表达式为6y x =-,一次函数表达式为122y x =-+.(2)2x <-或06x << (3)()10,0P 8.(1)8y x= (2)39.(1)反比例函数的表达式为:22y x=-(2)32AOBS=(3)20x -<<或1x >10.(1)一次函数解析式1y x 4=-,反比例函数解析式212y x= (2)32ABE S =△11.(1)3y x= 1n =(2)△F 点坐标为3(4,)4;△线段OF 的最大值为17104+12.(1)24y x=-(2)40x -<<或>4x。
中考专题讲座——一次函数与反比例函数综合(64张ppt) (1)
2,一次函数与反比例函数综合知识突破
四,经典模拟题真题精讲
射影定理
辅助圆
练习2
2,一次函数与反比例函数综合知识突破
五,学生易错点
3,讨论题
|
k
|
(一)
y
y
P(m,n)
P(m,n)
oA
x
oA
x
(2)过P分别作x轴, y轴的垂线,垂足分别为A, B, 则S矩形OAPB OA AP | m | | n || k | (如图所示).
面积性质(二)
y
y
B
P(m,n)
oA
x
B
P(m,n)
oA
x
(3)设P(m, n)关于原点的对称点是P(m,n),过P作x轴的垂线
1 2
24
4,
D
x
B
SONA
1 2
ON
AC
1 2
22
2.
SAOB SONB SONA 4 2 6.
方法点析
转化思想——化一般到特殊 在平面直角坐标系中求三角形的面积时,一般将 所求的一般三角形转化为特殊规则的三角形.通常以 平行于坐标轴的边为底,相对的顶点的横坐标或纵坐 标的绝对值为高.而此题就是将一般的三角形 S△AOB 分成两个特殊三角形 S△AOC 与 S△BOC 的和.
k1≠k2 k1=k2
b1≠b2
(3)一次函数的图象与坐标轴围成的三角形的面积
直线 y=kx+b 与 x 轴的交点坐标为___-_bk_,__0_ , 与 y 轴的交点坐标为__(_0_,__b_)_,直线与两坐标轴 围成的三角形的面积为 S△=12-bk·|b|=2bk2
中考数学复习《一次函数与反比例函数的综合运用》教学课件
同一坐标系中的图象可能是图 14-4 中的
(C )
图14-4
[变式训练] (2010·青岛)函数 y=ax-a 与 y=ax(a≠0)在同一直角
坐标系中的图象可能是图 14-5 中的
( D)
图14-5
题组三 交点问题与不等式
【例 3】 (2012·阜新)如图 14-6 所示,反比例函数 y1=kx1的图象
(D)
A.2
B.4
图14-2 C.6
D.8
题组一 函数图象的对称性
【例 1】 如图 14-3 所示,正比例函数 y
=k1x 与反比例函数 y=kx2的图象相交于
点 A、B 两点,若点 A 的坐标为(2,1),
则点 B 的坐标是
(D )
A.(1,2)
B.(-2,1)
图14-3
C.(-1,-2)
D.(-2,-1)
∵6x=-3,x=-2, ∴点C坐标(-2,-3).
设直线CD的解析式为y=kx+b.
∴6-k+2k+ b=b= 1,-3,∴k=12,b=2. ∴直线 CD 的解析式为 y=12x-2. (3)AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,点C(-2,-3), 点(6,1).∴A(-2,0),B(0,1). 设直线AB解析式为y=mx+n, ∴- n=2m1,+n=0,∴mn==112,, ∴yAB=12x+1,
D.第四象限
解析:由反比例函数y随x增大而增大,可知k<0,而一次函
数在k<0,b<0时,经过二三四象限,从而可得答案.
5.(2013·孝感)如图 14-2 所示,函数 y=-x 与函数 y=-4x的图
象相交于 A,B 两点,过 A,B 两点分别作 y 轴的垂线,垂足
2025中考复习数学考点专题探究课件:专题5 一次函数、反比例函数与几何综合
(k≠0)的图象交于 A , B (1, m )两点,点 C 在 x 轴负半轴上,∠ ACO =45°.
(1) m =
,k=
1
,点 C 的坐标为
2
3
4
5
;
回到目录
专题5
一次函数、反比例函数与几何综合
【解】(1)当 x =1时, y =-3 x =-3= m ,即点 B (1,-3).
将点 B 的坐标代入反比例函数的解析式得 k =-3×1=-3,
去),∴此时等边三角形 ABC 的边长为2.
1
2
3
4
5
回到目录
专题5
一次函数、反比例函数与几何综合
(3)如图(4),以 A (1,0), B (2,0), C (2,1)为顶点的正方形 ABCD 上始终存
在点 P ,使得点 P 是直线 EF : y =- x + b 的“伴随点”,请直接写出 b 的取
tan∠ TGO = = ,∴∠ TGO =30°,∴ GP =
=
=4,
∠
°
∴ P (3,0).
1
2
3
4
5
回到目录
专题5
一次函数、反比例函数与几何综合
(2)如图(3), x 轴上方有一等边三角形 ABC , BC ⊥ y 轴,顶点 A 在 y 轴上且在
BC 上方, OC = ,点 P 是△ ABC 上一点,且点 P 是直线 EF : x 轴的“伴随
∴ MN =- m +6- m + = - m .
∵四边形 MNQC 是平行四边形,
人教版数学中考专题复习——一次函数和反比例函数的综合复习课(共28张PPT)
① y = 3x-1 ② y = 2x2
③ y=
1 x
④
y
=
2x 3
⑤ y = 3x
⑥ y=
1 x
⑦y
=
1 3x
⑧
y
=
3 2x
填一填
1.函数 y 是2 反函比数例,其图象为 ,双其曲中线
x
k= ,自2 变量x的取值范围为 . x≠ 0
2.函数 y 的6 图象位于第 一象、限三,
x
在每一象限内,y的值随x的增大而 减,小 当x>0时,y >0,这部分图象位于第 象一限.
2、一艘轮船和一艘快艇沿
相同路线从甲港到乙港,右 图中两条线段分别表示轮船 与快艇离开出发点的距离与 行驶时间的关系。根据图像 回答下列问题:
(1)轮船比快艇早_0_._5_小时出发, 快艇比轮船早到__1__小时;
(2)快艇追上轮船用_1_/_3_小时,快艇行驶了_4_0__千米; (3)轮船从甲港到乙港行驶的时间是_2_.5_小时。
y
y
y
y
ox k>0
ox k<0
0x k>0
0x k<0
性质
当k>0时,y随x的增大而增大; 在每一个象限内: 当k>0时,y随x的增大而减小;
当k<0时,y随x的增大而减小. 当k<0时,y随x的增大而增大.
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
4.已知点A(-2,y1),B(-1,y2)
都在反比例函数
y
y
k x
4x(的k<图0)象上,则y1
与y2的大小关系(从大到小)为