山东省淄博市高青县第三中学八年级数学上册 14.1.1 同底数幂的乘法教案 (新版)新人教版【教案】

合集下载

14.1.1 同底数幂的乘法教案

14.1.1 同底数幂的乘法教案

14.1.1同底数幂的乘法一、教学目标1.在推理判断中得出同底数幂乘法的运算法则,并掌握法则的应用,通过用文字概括运算法则.2.经历探索同底数幂乘法的运算性质的过程,感受幂的意义.二、教学重难点重点:同底数幂乘法的运算性质的推导和应用.难点:运用归纳法由特殊推导公式所具有的一般性,在探究规律过程中增进对知识的理解.教学过程一、情境引入同学们都知道电子计算机的运算速度是非常快的,那到底有多快呢?下面我们一起来看一个例子(多媒体演示):【问题1】一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103s可进行多少次运算?你能用学过的知识解决吗?学生通过动笔计算后得出:它工作103s可以进行运算的次数是1015×103,怎样计算1015×103呢?根据乘方的意义可以知道:1015×103=(10×10×…×10)15个10×(10×10×10)3个10=(10×10×…×10)18个10=1018.二、互动新授请同学们继续来思考几个问题:式子103×102的意义是什么?这个积中的两个因式有何特点?学生回答:103×102表示103与102的积,即3个10与2个10的积,积中的两个因式的底数相同.请同学们先根据自己的理解,再交流、讨论、解答下面三个问题:【探究】根据乘方的意义填空,观察计算结果,你能发现什么规律?(1)25×22=______=2( );(2)a3·a2=______=a( );(3)5m×5n=______=5( ).教师分析:计算a3·a2的过程就是(a·a·a)3个a·(a·a)2个a=a·a·a·a·a5个a=a5.也就是a3·a2=a3+2=a5.【引导】那么a m·a n,当m,n都是正整数时,如何计算呢?学生交流、讨论,并试着推导出结论:一般地,对于任意底数a与任意正整数m,n,a m·a n=(a·a·…·a)m个a·(a·a·…·a)n个a=a·a·…·a(m+n)个a=a m+n.因此,我们有a m·a n=a m+n(m,n都是正整数).请同学们试着用文字概括这个性质:同底数幂相乘,底数不变,指数相加.【例1】计算:(1)x2·x5;(2)a·a6;(3)(-2)×(-2)4×(-2)3; (4)x m·x3m+1.【解】 (1)x2·x5=x2+5=x7;(2)a·a6=a1+6=a7;(3)(-2)×(-2)4×(-2)3=(-2)1+4+3=(-2)8=256;(4)x m·x3m+1=x m+3m+1=x4m+1.三、课堂小结四、板书设计五、教学反思在小组合作交流中,培养学生的探究、合作精神,增强他们的学习信心.在教学过程中,发现学生对公式的理解还会存在一定的困难,教师要在练习中,反复强调:在应用同底数幂乘法的运算性质时,底数必须相同,指数相加,如果底数不同,能够化为相同底数的可以用该法则,否则不能用.另外,学生对三个或三个以上同底数幂相乘时,是否能用同底数幂乘法的法则还会存在一定的疑惑,教师在教学中可加以说明并拓展:(1)当三个或三个以上同底数幂相乘时,可推广为:a m·a n·a p=a m+n+p(m,n,p都是正整数),a m·a n·…·a p=a m+n +…+p(m,n,…,p都是正整数).(2)a m·a n=a m+n可逆用,即a m+n=a m·a n(m,n都是正整数).导学方案一、学法点津学生在应用同底数幂的乘法法则时,要掌握两点:(1)相乘时底数没有发生变化,即底数必须相同;(2)指数相加的和作为最终结果幂的指数,即同底数幂的乘法的结果仍为幂的形式.二、学点归纳总结(一)知识要点总结同底数幂的乘法法则:a m·a n=a m+n(m,n都是正整数).即同底数幂相乘,底数不变,指数相加.(二)规律方法总结1.在应用同底数幂的乘法的运算性质时,底数必须相同,指数相加,如果底数不同,能够化为相同底数的可以用该法则,否则不能用.2.同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即a m·a n·a p=a m+n+p(m,n,p为正整数).3.同底数幂的乘法法则的使用条件是:同底数幂相乘,即只要是底数相同的幂相乘就行,不论底数是单项式还是多项式.4.注意同底数幂的乘法法则的逆用,即a m+n=a m·a n(m,n为正整数).即一个幂可以写成两个同底数的幂的积.课时作业设计一、选择题1.计算b5·b的值为( ).A.2b6B.b6C.2b5D.b52.(x-y)2·(y-x)3·(x-y)4的结果是( ).A.(x-y)9 B.-(x-y)9C.(y+x)9 D.-(x+y)9二、填空题3.x m-1·x m+1=__________; (a+b)2·(b+a)3=__________.4.若x a=5,x b=6,则x a+b=__________;若3×27×9=3x,则x=__________.三、解答题5.计算:(1)-a5·(-a)2; (2)(a-b)·(b-a)2·(b-a)3;(3)x·x3+x2·x2; (4)(a+b-c)2·(c-a-b)3.【参考答案】1.B2.B3.x2m(a+b)54.30 65.解:(1)原式=-a5·a2=-a5+2=-a7;(2)原式=-(a-b)·(a-b)2·(a-b)3=-(a-b)1+2+3=-(a-b)6;(3)原式=x1+3+x2+2=x4+x4=2x4;(4)原式=-(a+b-c)2·(a+b-c)3=-(a+b-c)5.。

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计一. 教材分析《同底数幂的乘法》是人教版八年级数学上册第14章幂的运算中的一节内容。

本节主要让学生掌握同底数幂的乘法法则,理解幂的运算性质,并能够熟练地进行计算。

为后续学习幂的乘方、积的乘方等知识打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数的乘法、幂的定义等知识。

他们对于幂的概念和运算有一定的了解,但还需要进一步引导他们理解同底数幂的乘法法则,并能够运用到实际计算中。

三. 教学目标1.理解同底数幂的乘法法则,掌握幂的运算性质。

2.能够熟练地进行同底数幂的乘法计算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.同底数幂的乘法法则的理解和运用。

2.幂的运算性质的掌握。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过案例教学,让学生直观地理解同底数幂的乘法;通过小组合作学习,培养学生的团队合作精神和解决问题的能力。

六. 教学准备1.PPT课件2.教学案例和习题3.笔记本和计算器七. 教学过程导入(5分钟)通过一个实际问题引入:某商店举行打折活动,原价为2^5元,打8折后的价格是多少?引发学生思考,引出同底数幂的乘法运算。

呈现(10分钟)通过PPT展示同底数幂的乘法法则,用具体的案例进行解释,让学生直观地理解同底数幂的乘法运算。

操练(10分钟)学生独立完成一些同底数幂的乘法运算,教师巡回指导,及时解答学生的疑问。

巩固(10分钟)学生分组合作,解决一些实际问题,运用同底数幂的乘法运算。

教师参与各小组的讨论,给予指导和鼓励。

拓展(10分钟)引导学生思考同底数幂的乘法运算的推广,即幂的乘方和积的乘方。

通过案例和习题进行讲解和练习。

小结(5分钟)教师引导学生总结本节课所学的同底数幂的乘法法则和运算性质,学生分享自己的学习心得和体会。

家庭作业(5分钟)布置一些同底数幂的乘法运算的练习题,要求学生在课后进行巩固和复习。

14.1.1 同底数幂的乘法教学设计

14.1.1 同底数幂的乘法教学设计

第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.1.1 同底数幂的乘法教学设计
本节课是在掌握了有理数运算、整式的加减运算等知识的基础上进一步学习同底数幂的乘法运算,为学习整式的乘法运算打下基础.本课时从特殊到一般,从具体到抽象,有层次的探究同底数幂的乘法运算法则,教学中注意适当复习幂、指数、底数等概念,要引导学生弄清正整数指数幂的意义.
n n
n n
n 个可以写成【课堂引入】
问题 一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s 可进行多少次运算?
在2010年全球超级计算机排行榜中,中国首台千万亿次超级计算机系统“天河一号”雄居第一,其实测运算速度可以达到每秒2 570万亿次. 它工作103 s 可进行运算的次数为1015×103.怎样计算1015×103呢? 1810
101010⨯⨯
⨯个
1018.
试一试,闯一闯:
(1)23×24=
(2×2×2)×(2×2×2×2)(2)73×74=____________。

14.1.1《同底数幂的乘法》教学设计

14.1.1《同底数幂的乘法》教学设计

14.1.1《同底数幂的乘法》教学设计第一篇:14.1.1《同底数幂的乘法》教学设计14.1.1《同底数幂的乘法》教学设计一、教材的地位和作用同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质(法则),又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,其他两个性质和整式乘法的学习便容易了.因此,同底数幂的乘法法则既是有理数幂的乘法的推广又是整式乘法的重要基础,在本章的学习中具有举足轻重的地位和作用。

二、教学目标1.知识与技能目标:(1)巩固同底数幂的乘法法则,学生能灵活地运用法则进行计算;(2)了解同底数幂乘法运算性质,并能解决一些实际问题;(3)能根据同底数幂的乘法性质进行运算(指数指数字)。

2.过程与分析目标:(1)经历探索同底数幂的乘法运算的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力;(2)在了解同底数幂的乘法运算的意义的基础上,“发现” 同底数幂的乘法性质,培养学生观察、概括和抽象的能力;(3)能用字母式子和文字语言表达这一性质,知道它适用于三个和三个以上的同底数幂相乘。

3.情感与态度目标:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。

三、教学重难点重点:同底数幂的乘法的运算性质。

难点:同底数幂的乘法的运算性质的理解与推导。

四、教法与学法教法:引导发现法;合作探究法;练习巩固法。

学法:观察分析;探究归纳;练习巩固。

五、教学过程1.感受学习同底数幂的乘法的必要性引言:在七年级上册,我们已经学习了整式的加减,本章我们将学习整式的乘法及整式的乘法密切相关的因式分解。

为此,我们首先学习同底数幂的乘法。

问题1 一种电子计算机每秒可进行1千万亿(10)次的运算,它工作10s可进行多少次运算?153(1)如何列出算式?(2)10的意义是什么?(3)怎样根据乘方的意义进行计算?师生活动:教师提出问题,学生列出算式并解答。

要求学生写出解答过程中每一步的依据,明确算理。

14.1.1同底数幂的乘法(教案)

14.1.1同底数幂的乘法(教案)
五、教学反思
在今天的教学过程中,我发现同学们对于同底数幂乘法这一概念的理解程度有所不同。有的同学能够迅速掌握法则,并能将其应用到实际问题中;而有的同学则在指数相加这一环节上存在一些困难。这让我意识到,在今后的教学中,需要更加关注学生的个体差异,针对性地进行指导。
在讲授新课的过程中,我尽量用生动的例子和实际操作来解释同底数幂乘法的概念,希望让同学们能够感受到数学的实用性和趣味性。从同学们的反馈来看,这种方法效果还是不错的,大多数同学都能够紧跟课堂节奏,积极互动。
2.引导与启发:在讨论过程中,我将作为一个引的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了同底数幂乘法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对同底数幂乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过计算器的辅助,学生可以直观地看到同底数幂乘法的运算过程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“同底数幂乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
举例1:难点在于理解指数相加的原理,可以通过实际例子2^3 × 2^4 = (2 × 2 × 2) × (2 × 2 × 2 × 2),展示出2的因子共有7个,即2^7。
举例2:当遇到类似8^2 × 4^3的问题时,难点在于先将8和4表示为2的幂,即8=2^3,4=2^2,然后运用同底数幂乘法法则,得出8^2 × 4^3 = (2^3)^2 × (2^2)^3 = 2^6 × 2^6 = 2^12。

八年级数学上册 14.1.1 同底数幂的乘法教案 (新版)新人教版-(新版)新人教版初中八年级上册数

八年级数学上册 14.1.1 同底数幂的乘法教案 (新版)新人教版-(新版)新人教版初中八年级上册数

3、1015×103=1018 这个式子有什么特

幂的底数和指
2.问题:
征?

数。
一种电子计算机每秒可进行 1015 次

通过观察大家可以发现 1012、103 这两 教师提出问题
运算它工作 103 秒可进行多少次运
入 算?
个因数是同底数幂的形式,所以我们 让学生大胆探
把像 1012×103 的运算叫做同底数幂 索,引起学生 ①能否用我们学过的知识来解决这
的共同特征吗?不写计算过程直接 法法则。

5m 5n 5mn

猜出它的运算结果. 用符号表示发现的规律。

2.提出问题:它们的积都是什么形
am • an amn (m,n 都是正整数)

式?积的各个部分与乘数有什么关
系?
把这个规律推导出来。
3. 你 能 用 符 号 表 示 你 发 现 的 规 律 与老师一起总结:同底数幂相乘,底
word
课题
14.1 同底数幂的乘法
同底数幂的乘法
1. 理解同底数幂的乘法,会用这一性质进行同底数
幂的乘法运算.
教学目 2. 体会数式通性和从具体到抽象的思想方法在研究

数学问题中的作用.
3.通过“同底数幂的乘法法则”的推导和应用,•使学生初步理解特殊─
─一般──特殊的认知规律
重点 同底数幂的乘法的运算性质.

(2)同底数幂的乘法的运算性质是

怎么探究并推导出 来的?在运用时

要注意什么?
问题引入
引例 板

探索新知

板书同底数幂乘法法则

知识应用

人教版八年级数学上册14.1.1《同底数幂的乘法》说课稿

人教版八年级数学上册14.1.1《同底数幂的乘法》说课稿

人教版八年级数学上册14.1.1《同底数幂的乘法》说课稿一. 教材分析《同底数幂的乘法》是人教版八年级数学上册第14章幂的运算的第一节内容。

本节课的主要内容是让学生掌握同底数幂的乘法法则,并能灵活运用该法则进行幂的运算。

教材通过引入实例,引导学生发现并归纳同底数幂的乘法法则,进而培养学生的观察、思考、归纳能力。

本节课的内容是学生进一步学习幂的运算的基础,对于学生来说具有重要的意义。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、幂的定义等知识,对于幂的概念和运算有一定的了解。

但学生对于幂的运算规则还没有形成系统的认识,对于同底数幂的乘法可能还存在困惑。

因此,在教学过程中,教师需要根据学生的实际情况,引导学生通过观察、思考、归纳等方法,发现并理解同底数幂的乘法法则。

三. 说教学目标1.知识与技能目标:让学生掌握同底数幂的乘法法则,能正确进行同底数幂的乘法运算。

2.过程与方法目标:通过观察、思考、归纳等方法,培养学生发现、分析和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生体验到成功的喜悦。

四. 说教学重难点1.教学重点:同底数幂的乘法法则。

2.教学难点:同底数幂的乘法法则的灵活运用。

五. 说教学方法与手段1.教学方法:采用引导发现法、归纳总结法、例题教学法等。

2.教学手段:利用多媒体课件辅助教学,直观展示幂的运算过程,帮助学生理解和掌握同底数幂的乘法法则。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考同底数幂的乘法问题,激发学生的学习兴趣。

2.探究新知:引导学生观察、思考、归纳同底数幂的乘法法则,学生在教师的引导下,发现并总结出同底数幂的乘法法则。

3.例题讲解:教师通过讲解典型例题,让学生理解并掌握同底数幂的乘法法则。

4.巩固练习:学生进行课堂练习,教师及时给予指导和反馈,帮助学生巩固所学知识。

5.课堂小结:教师引导学生总结本节课的主要内容,加深学生对同底数幂的乘法法则的理解。

初中数学教学课例《14.1.1同底数幂的乘法》教学设计及总结反思

初中数学教学课例《14.1.1同底数幂的乘法》教学设计及总结反思

3×3×3×3×3=
2.25 表示为()
A.2×2×2×2×2B.2×5
C.2+2+2+2+2D.5×5 指一指指数 底数 an 幂 an=a·a·a·a...a n个 三、自主探究,小组合作 1.探究新知: 猜一猜 25×22= a3·a2= 5m×5n= 2.教师提问:观察等式左边和结果的底数和指数 有什么关系? 3.归纳:同底数幂相乘: 底数;指数 四、师生合作,探究发现 1.猜想:am·an=am+n(m、n 都是正整数) am·an=(a·a·a).(a·a·a) m个n个 =a·a·a…..a·a m+n
(2)a·()=a6
(3)x·x3()=x7
(4)xm·()=x3m
6.x2m+2 可写成()
A.x2m+1B.x2m+x2
C.x2·xm+1D.x2m·x2
同底数幂性质的逆用
am+n=am·an.(m,n 都是正整数)
六、课堂小结
1.本节课学到了哪些数学知识
2.探索同底数幂的乘法法则时,其基本思路是什么
到一般,从具体到抽象、循序渐进的认知过程,有层次
的进行抽象概括,和逆向思维的培养,在练习的过程中
巩固性质,加深印象,并在不断地文字与数学表达式的
转换过程中提高数学学习能力。
教学目标
1.理解同底数幂的乘法法则。 2.运用同底数幂的乘法法则解决一些实进行运算,进
入初中后逐步的感受用字母表示数进行运算,感受运算
学学科的鲜明特点,决定了数学教学的显著特点应该是
以观察,计算,操作,折叠,自主探究等为主,学生们
完成的过程是无法用其他过程替代的,也很容易唤起他

八年级数学上册 14.1.1 同底数幂的乘法教案 (新版)新人教版

八年级数学上册 14.1.1 同底数幂的乘法教案 (新版)新人教版

14.1.1同底数幂的乘法一、 教材分析《14.1.1同底数幂的乘法》是在学习了有理数的乘方和整式的加减法运算之后编排的,是对幂的意义的理解、运用和深化,同时也是后面学习整式乘除法的基础。

同底数幂的乘法与现实世界中的数量关系联系也十分的紧密,比如课本章节前面的实际问题和北京奥运会场馆建设问题。

通过学习可以把所学知识与实际问题联系起来,更好地为生活服务。

所以我认为本节课对学生今后的学习和生活都有较为重要的作用。

二、学情分析学生的知识技能基础:学生通过对七年级上册数学课本的学习,已经掌握了用字母表示数的技能,会判断同类项、合并同类项,同时在学习了有理数乘方运算后,知道了求n 个相同数a 的积的运算叫做乘方,乘方的结果叫做幂,即n a n a a a a =⨯⨯⨯个,在na 中,a 叫底数,n 叫指数,这些基础知识为本节课的学习奠定了基础。

学生活动经验基础:在相关知识的学习过程中,学生完全可以借助于已知的幂的意义,通过个人思考、小组合作等方式,进行知识迁移,总结出新的知识。

三、教学目标分析1.知识与技能目标理解同底数幂乘法法则的推导过程;能够运用同底数幂乘法的法则进行有关计算,并能利用它解决简单的实际问题。

2.过程与方法目标通过学生合作探究,培养学生的观察、发现、归纳、概括能力。

使学生初步理解“特殊到一般再到特殊”的认知规律。

3.情感与价值目标通过本课的学习使学生了解数学的地位与作用,在合作交流中体会科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神。

4.教学重难点重点:同底数幂乘法的性质及应用。

难点:同底数幂的乘法公式的推导及灵活运用四、教学方法分析1.教法分析本节课内容简单,可采用“先探究后总结、当堂训练、巩固”的教学模式,在教学方法上采用以问题的形式,引导学生进行思考、探究,再通过讨论,交流、发现性质,通过教师的引导与适当讲授使学生正确理解同底数幂乘法的法则,通过练习巩固,力求突出重点,突破难点、使学生运用知识、解决问题的能力得到进一步提高。

人教版数学八年级上册14.1.1同底数幂的乘法教案

人教版数学八年级上册14.1.1同底数幂的乘法教案

《同底数幂的乘法》教案【教学流程】创设情境、引出课题——复习旧知、反馈预习结果——合作学习、探索新知——课堂检测、强化拓展训练——课堂检测、巩固新——课堂小结——布置作业——课堂评价。

教学流程一、创设情境,引出课题1、古代印度有一个人发明了一种棋,棋盘分为64格,献给国王,国王玩得很高兴,便问那人要什么赏赐,那人说:只要求在棋盘的第一个格里放下一颗麦粒,在第二个格里放下两颗麦粒,在第三个格里放下四颗麦粒,总之在每一个格子里放的麦粒都比前一格多一倍,只要把64个格子都放满就行,国王一听,这点麦算得了什么,就一口答应了,这人去仓库领麦时,所有仓库的麦也不够给他的,请你算算,究竟要给他多少麦粒?第一格:1第二格:2第三格:2×2第四格:4×4第五格:16×16第六格:162×162第七格:162×162×162×162…2、国王要给那个人多少麦粒这个过程比较繁杂,计算量太大,把知识牵引到求正方形和长方形的面积。

(1)一个正方形的边长为103cm ,则这个正方形的面积为 (列式)2)一个长方形的长为105cm,宽为104cm ,则这个长方形的面积为 (列式)3、让学生列式:(1)103×103 (2)105×1044、105、104我们称之为什么?(引出旧知识的复习) 设计意图:利用小故事引入,可以集中学生注意力,使之较快进入课堂学习状态,激发学生的求知欲。

二、反馈预习成果(让学生展示导学案中的题目的解答过程) 1、让学生用投影仪展示导学案中的预习检测题2、得出:像这样底数相同的两个幂相乘的运算,我们把它叫做同底数幂的乘法。

(揭示课题)设计意图:我想通过对“以学为主,学案导学”这一模式的推广应用,来转变教师角色与教学行为,使教师从过去的知识传授者,转变成学生学习的组织者、引导者、合作者。

105cm103cm104cm三、合作学习、探索新知1、探索 103×103;105×104 等于多少?(鼓励学生大胆猜想? 同时教师板演计算过程)103×103=(10× 10×10)×(10 × 10×10)=106 105×104=(10× 10×10× 10×10)×(10 × 10×10×10)=109 可得:a m· a n=(a · a…a)×(a · a…a)( m )个a ( n )个a=a · a…a ( m+n )个a =a( m )+ ( n )即:a m · a n =a m+n(m,n 为正整数)2、归纳总结出:同底数幂的乘法法则:底数不变,指数相加。

14.1.1同底数幂的乘法教案人教版八年级数学上册

14.1.1同底数幂的乘法教案人教版八年级数学上册
3、通过探究、观察发现、猜想、证明、归纳得到同底数幂的乘法法则,让学生经历知识的发生与发展过程,从中感受转化、化归等数学思想方法。
4、通过新知运用,让学生能正确运用法则进行同底数幂乘法计算,并从中感受归纳、整体等思想方法。
5、总结归纳,明确方法。
配套练习
1、下列各项中,两个幂是同底数幂的是()
A、 B、 C、 D、-
=10 ×10×10×10×10×10×10×10=108
激发:有没有更简便的计算方法呢?
3、探究:
计算 =
=
观察发现: 刚才的计算都是同底数幂相乘; 计算结果的底数与式子中的底数相同; 结果中的指数是式子中的各因式的指数相加。
猜想: ×
证明: ×
归纳:同底数幂乘法法则:同底数幂相乘,底数不变,指数相加。 × (m,n是正整数)
4、运用新知
例1: 计算下列各式,结果用幂的形式表示:
归纳:同底数幂乘法法则对于三个及三个以上同底数幂相乘同样适用。
• =
5、小结:
(1)、由乘方的意义探究、归纳、转化得到同底数幂的乘法法则。
(2)、在学习过程中运用到了转化、化归、整体等思想方法。
1、复习旧知,引入新知。
2、通过实际问题激发学生去探讨更简单的解决方法。
2、计算: 正确的是()
A B、 C、 D、
3、下列运算正确的是()
A、 B、 C、 D、
4、下列各式中,计算结果为- 的是()
A、 B、
C、 D、
5、计算:
(1) (2) •
(3) (4)
(5) (6)
14.1.1同底数幂的乘法教案
人教版八年级数学上册
教师姓名
学校名称
学科
数学

八年级数学上册 14.1.1 同底数幂的乘法教案 (新版)新人教版 教案

八年级数学上册 14.1.1 同底数幂的乘法教案 (新版)新人教版 教案

一、教材分析《同底数幂的乘法》是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的幂的一个基本性质,它是幂的三个性质中最基本的一个性质,学好这个性质,对其它两个性质以及整式的乘法和除法的学习能起到积极作用。

因此,《同底数幂的乘法》是学习整式的乘法和除法的基础,在本章中具有举足轻重的地位和作用。

另外,同底数幂的乘法与现实世界中的数量关系联系也很密切,通过学习可以把所学知识与实际联系起来,更好的为实现科技兴国服务。

二、学情分析七年级学习的有理数的乘方,为学生学习这章节的知识打下了基础,学生已经能够掌握幂的运算,也会能用计算器进行幂的运算,在这基础上再学习同底数幂的乘法,学生比较容易接受,也比较感兴趣。

但有些学生可能会由于基础不够扎实,从而对学习数学缺乏信心,畏难,习惯性懒惰,上课时缺乏耐性,不够专心,因此在这节课程安排上,我侧重于从简单题目入手,通过恰当的练习,充分调动学生的学习兴趣和学习信心,以期得到更好的学习效果。

三、教学目标【知识与能力】让学生探究和理解同底数幂的乘法法则,能熟练地运用同底数幂的乘法法则进行运算,并能解决一些简单的实际问题。

【过程与方法】让学生经历同底数幂的运算法则的推导及幂的意义的理解过程,发展和提高学生的推理能力和有条理的表达能力;通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊----一般------特殊的认知规律。

【情感态度与价值观】让学生在运用数学知识解决实际问题的过程中,体味科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神。

【教学重点】正确理解同底数幂的乘法法则。

【教学难点】正确理解和运用同底数幂的乘法法则。

五、教学反思(一)同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质(法则)。

因此,同底数幂的乘法法则既是有理数幂的乘法的推广又是整式乘法的重要基础,在本章的学习中具有举足轻重的地位和作用。

人教版八年级数学上册:14.1.1 同底数幂的乘法 教案设计

人教版八年级数学上册:14.1.1 同底数幂的乘法  教案设计

同底数幂的乘法【教学目标】1.经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义;了解同底数幂乘法的运算性质,并能解决一些实际问题。

2.在进一步体会幂的意义时,发展推理能力和有条理的表达能力;学习同底幂乘法的运算性质,提高解决问题的能力。

3.在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣,培养学生学习数学的信心。

【教学重难点】1.正确理解同底数幂的乘法法则。

2.同底数幂的乘法运算法则的灵活运用。

【教学过程】一、情境引入。

一种电子计算机每秒可进行次运算,它工作秒可进行多少次运算呢?按照题意列式为,可怎样计算呢?二、探究新知。

1.乘方的意义。

①什么叫乘方?②αn 表示的意义是什么?α、n 、αn 分别叫做什么?③请你说出下列各幂的底数和指数:(-0.5)3;x m ;(-4)2;(m-n )4+2n ;3;-42。

2.观察算式1431010⨯的特点,两个幂的_____是相同的,类似这样的运算都叫做_____幂的乘法。

3.尝试计算:4966⨯=_____;52a a ⋅=_____。

4.你发现了什么规律?用语言叙述出来:_____。

5.把你发现的规律推广到一般,用式子表示出来:m n a a ⋅=_____(m ,n 都是正整数)14103103141010⨯6.①同底数幂乘法的法则:同底数幂相乘,底数不变,指数相加。

即:m n m n a a a +⋅=(m ,n 都是正整数)。

②三个或三个以上同底数幂相乘也具有上述性质:m n p m n p a a a a ++⋅⋅=(,,是正整数)。

③把同底数幂乘法的法则逆过来用,可将一个幂拆成两个,同底数的幂的积:m n m n a a a +=⋅。

7.例题讲解:①x 2·x 5②a·a 6③2×24×23④x m ·x 3m+1⑤(-m )3·m 5⑥(x-2y )2·(2y-x )3⑦b m =3,b n =5求b m+n 。

人教版八年级数学上册(教案):14.1.1《同底数幂的乘法

人教版八年级数学上册(教案):14.1.1《同底数幂的乘法

14.1.1 同底数幂的乘法(一)教学目标知识与技能目标:●理解同底数幂乘法的性质.●掌握同底数幂乘法的运算性质.●能够熟练运用性质进行计算.过程与方法目标:●通过推导运算性质训练学生的抽象思维能力.●通过用文字概括运算性质,提高学生数学语言的表达能力.情感态度与价值观:通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度.教学重点:●同底数幂的乘法运算法则的推导过程.●会用同底数幂的乘法运算法则进行有关计算.教学难点:在导出同底数幂的乘法运算法则的过程中,培养学生的归纳能力和化归思想(二)教学程序教学过程师生活动设计意图一、问题情境导入新课在a n这个表达式中,a是什么?n是什么?当a n作为运算结果时,又读作什么?参考答案:a是底数,n是指数,a n又读作a的n次幂问题情境导入新课有助于激发学生的学习兴趣二、新知讲解探究1:光的速度约是3×108m/s,太阳光照射到地面表面所需时间约是5×102s,那么(3×108)×(5×102)表示什么?探究2:现代天文学家认为银河系是一个由1000多亿颗大大小小的恒星和大量气体及尘埃组成的巨大盘状系统,中间厚、四周薄,就象一块“铁饼”,“铁饼”的直径达10光年,1光年是光在空气中1年传播的距离,那么请你算算:1光年约是多少千米?,银河系的直到约多少千米?探究3:一种电子计算机每秒可进行1014次运算,那么它工作103秒可进行多少次运算?做一做:1.计算下列各式:10×104;104×105;103×105参考答案:根据乘方的意义,可以得到:10×104 =105;104×105=109; 103×105=108;如:103×105=(10×10×10) ×(10×10×10×10×10)=10×10×10×10×10×10×10×10=1082.怎样计算10m•10n(m、n是正整数)参考答案:10m×10n=(10×10×...10×10) ×( 10×10× (10)=( 10×10×…×10)=10m+n所以:10m•10n=10m+n(m、n是正整数)3.当m,n是正整数时2m•2n等于什么?参考答案:通过三个探究问题让学生体会生活的周围存在着大量的较大的数据,数的世界充满着神奇,期待学生去探索研究通过3个做一做让学生在相互交流中学习新知识,培养学生的合作学习能力,独立思考能力和语言表达能力.(m+n)个102m×2n=(2×2×...2×2×2×2) ×( 2×2× (2)=( 2×2×…×2)=2m+n对于:a m×a n(m,n)都是正整数,该如何计算?a m×a n=(a×a×…a×a×a×a) ×(a×a×…×a)=( a×a×…×a)=a m+n归纳:同底数幂相乘,底数不变,指数相加推广: a m•a n•a p等于什么?(m,n,p是正整数)a m•a n•a p=a m+n+p 通过多方讨论最后得出: 同底数幂相乘,底数不变,指数相加. 使学生对次知识点有更深的理解.探究:例题讲解:例题1:下面运用所学的知识来判断以下的计算是否正确,如果有错误,请指出产生错误的原因.(1)a2+a2=a4(2)a2•a3=a6(3)a2•a3=a5(4)x m+x m=2x m(5) x m•x m=2x m (6)3m+2m=5m参考答案:(1)错误;a2+a2=2a2(2)错误;a2•a3=a2+3=a5(3)对(4)对(5)错误;x m•x m=x2m(6)错误例题2:计算(1)(-8)12×(-8)5 (2)x•x7本例题旨在让学生真正理解同底数幂的乘法法则.m个2 m个a(3)- a3•a6(4)a3m•a2m-1 (m是正整数)参考答案:(1)(-8)12×(-8)5=(-8)12+55=(-8)17(2)x•x7= x1+7= x8(3)- a3•a6=-a3+6=-a9(4)a3m•a2m-1= a3m+2m-1= a5m-1例题3:计算(1)10×104×103×105 (2)a2•a3•a5参考答案:(1)10×104×103×105=101+4+3+5=1013(2)a2•a3•a5= a2+3+5= a10例4:一颗卫星绕地球运行的速度是7.9×103m/s,,求这颗卫星运行1h的路程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)创设情境,感觉新知
1.问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
2.学生分析:
3.得到结果:1 012×103= ×(10×10×10)= =1015.
4 .通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.
同底数幂的乘法的运算性质是底数不变,指数相加.
注意两点:一是必须是同底数幂的乘法才能运用这个性质;
二是运用这个性质计算时一定是底数不变,指数相加,
即am·an=am+n(m、n是正整数).
作业
板书设计
§14.1.1同底数幂的乘法
一.同底数幂的乘法法则:
同底数幂相乘,底数不变,指数相加.即am·an=am+n(m、n都是正整数)
例1:计算:
(1)x2·x5(2)a·a6(3)xm·x3m+1
例2:(1)2×24×23(2)am·an·ap
练习:课本练习
14.1.1同底数幂的乘法
设计意图
(五)深入分析
1.我们刚才讲到,只有底数相同时,才可以用此法则进行运算,但有两歌特例,这节课我们先涉及其中的一个:底数互为相反数。
例:计算:(-a)2×a6
二.例题讲解:(由学生板演)
教学反思
预习要点
教学目标
理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律
教学重点
课时分配
1课时
班级
教学过程设计意图(一 Nhomakorabea回顾幂的相关知识
an的意义:
an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂 ;a叫做底数,n是指数.
(三)自主研究,得到结论
1.学生动手:计算下列各式:
(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)
2.引导学生:注意观察计算前后底数和指数的关系,并能用自己的语言描述.
3.得到结论:(1)特点:这三个式子都是底数相同的幂相乘.
相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.
(2)一般性结论 :
am·an表示同底数幂的乘法.根据幂的意义可 得:
am·an= · = =am+n
am·an=am+n(m、 n都是 正整数),即为:同底数幂相乘,底数不变,指数相加
(3)分析:底数不变,指数要降一级运算,变为相加.
底数不相同时,不能 用此法则(两种情况除外)
(四)巩固成果,加强练习
练习:(-a)2×a4(- )3× 6
2.当底数为一个多项式的时候,我们可以把这个多项式看成一个整体
例:计算(a+b)2×(a+b)4×[-(a+b)]7
练习:(m-n)3×(m-n)4×(n-m)7a2×a×a5 +a3×a2×a2
(六)小结:
同底数幂的乘法的运算性质,
进一步体会了幂的意义.
了解了同底数幂乘法的运算性质.
相关文档
最新文档