2012年最新全国中考平行四边形试题

合集下载

全国中考数学试题分类解析汇编套专题专题平行四边形

全国中考数学试题分类解析汇编套专题专题平行四边形

2012年全国中考数学试题分类解析汇编159套63专题专题43:平行四边形一、选择题1. 2012广东佛山3分依次连接任意四边形各边的中点,得到一个特殊图形可认为是一般四边形的性质,则这个图形一定是A.平行四边形B.矩形C.菱形D.梯形答案 A;考点三角形中位线定理,平行四边形的判定;分析根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC;∴EF=GH,EF∥GH;∴四边形EFGH是平行四边形;由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或AC⊥BD不一定成立,从而得不到矩形或菱形的判断;故选A;2. 2012浙江杭州3分已知平行四边形ABCD中,∠B=4∠A,则∠C=A.18°B.36°C.72°D.144°答案B;考点平行四边形的性质,平行线的性质;分析由平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD;∴∠A+∠B=180°;∵∠B=4∠A,∴∠A=36°;∴∠C=∠A=36°;故选B;3. 2012湖北武汉3分在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为A.11+1132B.11-1132C .11+1132或11-1132D .11-1132或1+32答案C; 考点平行四边形的性质和面积,勾股定理;分析依题意,有如图的两种情况;设BE=x,DF=y;如图1,由AB =5,BE=x,得222AE AB BE 25x =-=-;由平行四边形ABCD 的面积为15,BC =6,得2625x =15-,解得53x=2±负数舍去; 由BC =6,DF=y,得222AF AD DF 36y =-=-;由平行四边形ABCD 的面积为15,AB =5,得2536y =15-,解得y=33±负数舍去;∴CE+CF=6-532+5-33=11-1132; 如图2,同理可得BE= 532,DF=33; ∴CE+CF=6+532+5+33=11+1132; 故选C;4. 2012湖南益阳4分如图,点A 是直线l 外一点,在l 上取两点B 、C,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D,分别连接AB 、AD 、CD,则四边形ABCD 一定是A .平行四边形B .矩形C .菱形D .梯形答案A;考点作图复杂作图,平行四边形的判定;分析∵别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D,∴AD=BC,AB=CD;∴四边形ABCD 是平行四边形两组对边分别相等的四边形是平行四边形;故选A;5. 2012四川广元3分 若以A,0,B2,0,C0,1三点为顶点要画平行四边形,则第四个顶点不可能在A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案C;考点平行四边形的判定,坐标与图形性质;分析根据题意画出图形,如图所示:分三种情况考虑:①以CB 为对角线作平行四边形ABD 1C,此时第四个顶点D 1落在第一象限;②以AC 为对角线作平行四边形ABCD 2,此时第四个顶点D 2落在第二象限;③以AB 为对角线作平行四边形ACBD 3,此时第四个顶点D 3落在第四象限;则第四个顶点不可能落在第三象限;故选C;6. 2012四川德阳3分 如图,点D 是△ABC 的边AB 的延长线上一点,点F 是边BC 上的一个动点不与点B 重合.以BD 、BF 为邻边作平行四边形BDEF,又AP BE 点P 、E 在直线AB 的同侧,如果BD B 14A =,那么△PBC 的面积与△ABC 面积之比为A.41B.53C.51D.43 答案D;考点平行四边形的判定和性质;分析过点P 作PH∥BC 交AB 于H,连接CH,PF,PE;∵APBE,∴四边形APEB 是平行四边形;∴PE AB;, ∵四边形BDEF 是平行四边形,∴EFBD; ∴EF∥AB;∴P,E,F 共线;设BD=a,∵1BD AB 4=,∴PE=AB=4a;∴PF=PE﹣EF=3a; ∵PH∥BC,∴S △HBC =S △PBC ;∵PF∥AB,∴四边形BFPH 是平行四边形;∴BH=PF=3a;∵S △HBC :S △ABC =BH :AB=3a :4a=3:4,∴S △PBC :S △ABC =3:4;故选D;7. 2012四川巴中3分不能判定一个四边形是平行四边形的条件是A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等答案B;考点平行四边形的判定分析根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形; A、D、C均符合是平行四边形的条件,B则不能判定是平行四边形;故选B;8. 2012四川自贡3分如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为A.2和3 B.3和2 C.4和1 D.1和4 答案B;考点平行四边形的性质,平行的性质,等腰三角形的判定和性质;分析∵AE平分∠BAD,∴∠BAE=∠DAE;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠DAE=∠AEB;∴∠BAE=∠BEA;∴AB=BE=3;∴EC=AD﹣BE=2;故选B;答案D;考点平行四边形的性质,平行的性质,等腰三角形的判定;分析∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC;∴∠AEB=∠E BC;又BE平分∠ABC,∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AB=AE;同理可得:DC=DF;∴AE=DF;∴AE-EF=DE-EF,即AF=DE;当1EF AD4=时,设EF=x,则AD=BC=4x;∴AF=DE=14AD-EF=;∴AE=AB=AF+EF=;∴AB:BC=:4=5:8;∵以上各步可逆,∴当AB:BC=:4=5:8时,1EF AD4=;故选D;10. 2012山东聊城3分如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是A.DF=BE B.AF=CE C.CF=AE D.CF∥AE答案C;考点平行四边形的性质,全等三角形的判定;分析根据平行四边形的性质和全等三角形的判定方法逐项分析即可:A、当DF=BE时,由平行四边形的性质可得:AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;B、当AF=CE时,由平行四边形的性质可得:BE=DF,AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;C、当CF=AE时,由平行四边形的性质可得:AB=CD,∠B=∠D,利用SSA不能可判定△CDF≌△ABE;D、当CF∥AE时,由平行四边形的性质可得:AB=CD,∠B=∠D,∠AEB=∠CFD,利用AAS可判定△CDF≌△ABE;故选C;11. 2012山东泰安3分如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为A.53°B.37°C.47°D.123°答案B;考点平行四边形的性质,对项角的性质,平行的性质;分析设CE与AD相交于点F;∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°;∴∠DFC=37∵四边形ABCD是平行四边形, ∴AD∥BC;∴∠BCE=∠DFC=37°;故选B;12. 2012广西南宁3分如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是A.2cm<OA<5cm B.2cm<OA<8cm C.1cm<OA<4cm D.3cm<OA<8cm答案C;考点平行四边形的性质,三角形三边关系;分析∵平行四边形ABCD 中,AB=3cm,BC=5cm, ∴OA=OC=12AC 平行四边形对角线互相平分, BC -AB <AC <BC +AB 三角形三边关系,即2cm <AC <8cm;∴1cm<OA <4cm;故选C;13. 2012内蒙古包头3分如图,过口ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的口AEMG 的面积S 1 与口HCFG 的面积S 2的大小关系是A .S 1 > S 2 < S 2 C .S 1 = S 2 = S 2答案C;考点平行四边形的判定和性质;分析易知,四边形BHME 和MFDG 都是平行四边形;∵平行四边形的对角线把平行四边形分成了两个面积相等的三角形,∴ABD BCD EBM BHM GMD DMF S S S S S S ∆∆∆∆∆∆===,,;∴ABD EBM GMD BCD BHM DMF S S S S S S ∆∆∆∆∆∆--=--,即S 1 = S 2;故选C;14. 2012黑龙江绥化3分如图,在平行四边形ABCD 中,E 是CD 上的一点,DE :EC=2:3,连接AE 、BE 、BD,且AE 、BD 交于点F,则S △DEF :S △EBF :S △ABF =A .2:5:25B .4:9:25C .2: 3:5D .4:10:25答案D;考点平行四边形的性质,相似三角形的判定和性质;分析由DE :EC=2:3得DE :DC=2:5,根据平行四边形对边相等的性质,得DE :AB=2:5 由平行四边形对边平行的性质易得△DFE∽△BFA∴DF:FB= DE :AB=2:5,S △DEF :S △ABF =4:25;又∵S △DEF 和S △EBF 是等高三角形,且DF :FB =2:5,∴S △DEF :S △EBF =2:5=4:10;∴S △DEF :S △EBF :S △ABF =4:10:25;故选D;二、填空题1. 2012广东汕头4分如图,在 ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E,连接CE,则阴影部分的面积是 ▲ 结果保留π.答案133π-;考点平行四边形的性质,扇形面积的计算分析过D点作DF⊥AB于点F;∵AD=2,AB=4,∠A=30°,∴DF=AD sin30°=1,EB=AB﹣AE=2;∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=230211 4121336023ππ⨯⨯⨯--⨯⨯=-;2. 2012浙江衢州4分如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则平行四边形ABCD的面积为▲ 用a的代数式表示.答案12a;考点平行四边形的性质,相似三角形的判定和性质;分析∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,∴△DEF∽△CEB,△DEF∽△ABF;∴S△DEF:S△CE B=DE:CE2,S△DEF:S△ABF=DE:AB2,∵CD=2DE,∴DE:CE=1:3,DE:AB=1:2,∵S△DEF=a,∴S△CBE=9a,S△ABF=4a,∴S四边形BCDF=S△CEB﹣S△DEF=8a;∴S ABCD=S四边形BCDF+S△ABF=8a+4a=12a;3. 2012江苏南京2分如图,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE= ▲ cm答案;考点平行四边形的性质,平行的性质,等腰三角形的性质,相似三角形的判定和性质;分析∵四边形ABCD是平行四边形,AD=10cm,CD=5cm,∴BC=AD=10cm,AD∥BC,∴∠2=∠3;∵BE=BC,CE=CD,∴BE=BC=10cm,CE=CD=5cm,∠1=∠2,∠3=∠D;∴∠1=∠2=∠3=∠D;∴△BCE∽△CDE;∴BC CECD DE=,即1055DE=,解得DE=;4. 2012江苏镇江2分如图,E是平行四边形ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,CE1AB3=,则CF的长为▲ ;答案2;考点平行四边形的性质,相似三角形的判定和性质的;分析∵四边形ABCD 是平行四边形,∴AB∥DC,BC=AD=4;∴△CEF∽△ABF;∴CE CF AB BF =; 又∵CE 1AB 3=,BF=BC+CF=4+ CF,∴CF 14CF 3=+,解得CF=2; 5. 2012湖北鄂州3分如图,ABCD 中,AE⊥BC 于E,AF⊥CD 于F,若AE=4,AF=6,sin∠BAE=31,则CF= ▲ .考点平行四边形的性质,锐角三角函数定义,勾股定理,相似三角形的判定和性质;分析由AE⊥BC 和sin∠BAE=13,得BE 1AB 3=;∴可设BE=k,则AB=3k;∵AE=4,∴根据勾股定理得222AB AE BE =+,即()2223k 4k =+,解得;;∵四边形ABCD ,∠D=∠B;又∵AE⊥BC,AF⊥CD,∴∠AFD=∠AEB=900;∴△AFD∽△AEB;∴DF AF BE AE=;64=,解得DF DF= =6. 2012湖南永州3分如图,平行四边形ABCD 的对角线相交于点O,且AB≠AD,过O 作OE⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 ▲ .答案20;考点平行四边形的性质,线段垂直平分线的性质;144482分析∵四边形ABCD 是平行四边形,∴OB=OD,AB=CD,AD=BC 平行四边形对边相等,对角线互相平分;∵OE⊥BD,∴BE=DE 线段垂直平分线上的点到线段两端的距离相等;∵△CDE 的周长为10,即CD+DE+EC=10,∴平行四边形ABCD 的周长为:AB+BC+CD+AD=2BC+CD=2BE+EC+CD=2DE+EC+CD=2×10=20;7. 2012湖南怀化3分如图,在ABCD 中,AD=8,点E 、F 分别是BD 、CD 的中点,则EF=▲ .答案4;考点平行四边形的性质,三角形中位线定理;分析∵四边形ABCD 是平行四边形,∴BC=AD=8;∵点E 、F 分别是BD 、CD 的中点,∴EF=12BC=12×8=4; 8. 2012湖南湘潭3分如图,在ABCD 中,点E 在DC 上,若EC :AB=2:3,EF=4,则BF=▲ . 答案6;考点平行四边形的性质,相似三角形的判定和性质;分析∵四边形ABCD 是平行四边形,∴AB∥CD;∴∠CAB=∠ACD,∠ABE=∠BEC; ∴△ABF∽△CEF;∴AB BF CE EF=, 又∵EC:AB=2:3, EF=4,∴3BF 24=,解得BF=6; 9. 2012四川成都4分如图,将ABCD 的一边BC 延长至E,若∠A=110°,则∠1= ▲ .答案70°;考点平行四边形的性质,平角的性质; 分析∵平行四边形ABCD 的∠A=110°,∴∠BCD=∠A=110°;∴∠1=180°﹣∠BCD=180°﹣110°=70°;10. 2012辽宁本溪3分如图,在□ABCD 中,∠ABC 的平分线BE 交AD 边于点E,交对角线AC 于点F,若AB 3BC 5=,则AF AC = ▲ ; 答案38; 考点平行四边形的性质,平行的性质,相似三角形的判定和性质;分析∵四边形ABCD 是平行四边形,∴AD∥BC,∠EBC=∠AEB;∵BE 是∠ABC 的角平分线,∴∠EBC=∠AEB=∠ABE,AB=AE; ∵AB 3BC 5=,∴AE 3BC 5=; ∵AD∥BC,∴△AFE∽△CFB;∴AE AF 3BC FC 5==;∴AF 3AF FC 8=+;∴AF 3AC 8=; 11. 2012贵州黔西南3分如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE⊥BC,CE2012山东烟台3分ABCD中,已知点A﹣1,0,B2,0,D0,1.则点C的坐标为▲ .答案3,1;考点平行四边形的性质,坐标与图形性质;分析画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案:∵平行四边形ABCD中,已知点A﹣1,0,B2,0,D0,1,∴AB=CD=2﹣﹣1=3,DC∥AB;∴C的横坐标是3,纵坐标和D的纵坐标相等,是1;∴C的坐标是3,1;13. 2012吉林长春3分如图,ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合.若△ACD的面积为3,则图中的阴影部分两个三角形的面积和为▲ .答案3;考点平行四边形和矩形的性质;分析∵四边形ABCD是平行四边形,∴△ACD的面积=△ACB的面积;又∵△ACD的面积为3,∴△ACB的面积为3;∵△ACB的面积矩形AEFC的面积的一半, ∴阴影部分两个三角形的面积和=△ACB的面积=3; 14. 2012黑龙江龙东地区3分如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件使四边形AECF是平行四边形只填一个即可;答案AF=CE答案不唯一;考点平行四边形的判定和性质;分析根据平行四边形性质得出AD∥BC,AF=CE,得出AF∥CE;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE 或FD=EB;根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC;添加∠AEC=∠FCA 或∠DAE=∠DFC 等得到AE∥FC,也可使四边形AECF 是平行四边形;三、解答题1. 2012北京市5分已知:如图,点E,A,C 在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.答案证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC 和△E CD 中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECDSAS;∴CB=ED;考点平行线的性质,全等三角形的判定和性质;分析首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED;2. 2012陕西省6分如图,在ABCD 中,∠ABC 的平分线BF 分别与AC 、AD 交于点E 、F .1求证:AB=AF ;2当AB=3,BC=5时,求AE AC 的值. 答案解:1证明:如图,在ABCD 中,AD∥BC, ∴∠2=∠3;∵BF 是∠ABC 的平分线,∴∠1=∠2;∴∠1=∠3;∴AB=AF;2∵AEF CEB 23∠=∠∠=∠,,∴△AEF∽△CEB;∴AE AF 3EC BC 5==, ∴AE 3AC 8=; 考点平行四边形的性质,平行线的性质,等腰三角形的判定,相似三角形的判定和性质;分析1由在ABCD 中,AD∥BC,利用平行线的性质,可求得∠2=∠3,又由BF 是∠ABC 的平分线,易证得∠1=∠3,利用等角对等边的知识,即可证得AB=AF;2易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得AE AC的值; 3. 2012广东省6分已知:如图,在四边形ABCD 中,AB∥CD,对角线AC 、BD 相交于点O,BO=DO . 求证:四边形ABCD 是平行四边形.答案证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO 与△CDO 中,∵∠ABO=∠CDO,BO=DO,∠AOB=∠COD,∴△ABO≌△CDOASA;∴AB=CD;∴四边形ABCD是平行四边形;考点平行的性质,全等三角形的判定和性质,平行四边形的判定;分析根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠COD,即可根据ASA得出△ABO≌△CDO,故可得出AB=CD,从而根据一组对边平行且相等的四边是平行四边形的判定得出结论;4. 2012广东湛江8分如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:1△ABE≌△CDF;2四边形BFDE是平行四边形.答案证明:1∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CD FSAS;2∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF;∴四边形BFDE是平行四边形;考点平行四边形的性质和判定,全等三角形的判定;分析1由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;2由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF;根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形;5. 2012浙江湖州8分已知:如图,在ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.1说明△DCE≌△FBE的理由;2若EC=3,求AD的长.答案1证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC;∴∠CDE=∠F;又∵BF=AB,∴DC=FB;在△DCE和△FBE中,∵ ∠CDE=∠F,∠CED=∠BEF, DC=FB,∴△DCE≌△FBEAAS;2解:∵△DCE≌△FBE,∴EB=EC;∵EC=3,∴BC=2EB=6;∵四边形ABCD是平行四边形,∴AD=BC;∴AD=6;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析1由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,即可得AB=DC,AB∥DC,继而可求得∠CDE=∠F,又由BF=AB,即可利用AAS,判定△DCE≌△FBE;2由1,可得BE=EC,即可求得BC的长,又由平行四边形的对边相等,即可求得AD的长;6. 2012浙江衢州6分如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系并对你的猜想加以证明.答案解:猜想:AE=CF;证明如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD;∴∠ABE=∠CDF;在△ABE和△CDF中,AB=CD,∠ABE=∠CDF,BE=DF,∴△ABE≌△CDFSAS,∴AE=CF;考点平行四边形的性质,平行线的性质,全等三角形的判定和性质; 分析由四边形ABCD是平行四边形,即可得AB∥CD,AB=CD,然后利用平行线的性质,求得∠ABE=∠CDF,又由BE=DF,即可由SAS证得△ABE≌△CDF,从而可得AE=CF;7. 2012江苏淮安8分已知:如图在平行四边形ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F;求证:△BEF≌△CDF答案证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB; ∴∠CDF=∠B,∠C=∠FBE;又∵BE=AB,∴BE=CD;∵在△BEF和△CDF中,∠CDF=∠B,BE=CD,∠C=∠FBE,∴△BEF≌△CDFASA;考点平行四边形的性质,平行的性质,全等三角形的判定;分析根据平行四边形的对边平行且相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠C=∠FBE,然后利用ASA证明即可;8. 2012江苏泰州10分如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.答案证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠CFB=90°;∵AE∥CF,∴∠AED=∠CFB;在Rt△AED和Rt△CFB中,∵∠EAD=∠CFB=90°,∠AED=∠CFB, AE=CF,∴Rt△AED≌Rt△CFBASA;∴AD=BC;又∵AD∥BC,∴四边形ABCD是平行四边形;考点平行的性质,全等三角形的判定和性质,平行四边形的判定;分析由垂直得到∠EAD=∠BCF=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可;9. 2012江苏无锡8分如图,在ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.答案证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC;∴∠B=∠DCF;∵在△ABE和△DCF中,AB=DC,∠B=∠DCF,BE=CF,∴△ABE≌△DCFSAS;∴∠BAE=∠CDF;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形的性质可得AB=DC,AB∥DC,再根据平行线的性质可得∠B=∠DCF,即可由SAS证明△ABE≌△DCF,再根据全等三角形对应边相等的性质得到结论;10. 2012江苏徐州6分如图,C为AB的中点;四边形ACDE为平行四边形,BE与CD相交于点F;求证:EF=BF;答案证明:∵四边形ACDE为平行四边形,∴ED=AC,ED∥AC;∴∠D=∠FCB,∠DEF=∠B;又∵C为AB的中点,∴AC=BC;∴ED=BC;在△DEF和△C BF中,∵∠D=∠FCB,ED=BC,∠DEF=∠B,∴△DEF≌△CBFSAS;∴EF=BF;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形对边平行且相等的性质,易用SAS证明△DEF≌△CBF,从而根据全等三角形对应边相等的性质即可证得EF=BF;11. 2012福建厦门10分已知ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PE⊥AC、PF⊥BD,垂足分别为E、F,PE=PF.1如图,若PE=错误!,EO=1,求∠EPF的度数;2若点P是AD的中点,点F是DO的中点,BF =BC+3错误!-4,求BC的长.答案解:1连接PO ,∵ PE=PF,PO=PO,PE⊥AC、PF⊥BD,∴ Rt△PEO≌Rt△PFOHL;∴∠EPO=∠FPO;在Rt△PEO中, tan∠EPO=错误!=错误!,∴ ∠EPO=30°;∴ ∠EPF=60°;2∵点P是AD的中点,∴ AP=DP;又∵ PE=PF,∴ Rt△PEA≌Rt△PFDHL;∴∠OAD=∠ODA;∴ OA=OD;∴ AC=2OA=2OD=BD;∴ABCD是矩形;∵ 点P是AD的中点,点F是DO的中点,∴ AO∥PF;∵ PF⊥BD,∴ AC⊥BD;∴ABCD是菱形;∴ABCD是正方形;∴ BD=错误!BC;∵ BF=错误!BD,∴BC+3错误!-4=错误!BC,解得,BC=4;考点平行四边形的性质,角平分线的性质,三角形中位线定理,全等三角形的判定和性质,正方形的判定和性质,锐角三角函数定义;分析1连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;2根据条件证出 ABCD是正方形;根据正方形的对角线与边长的关系列式计算即可得解; 12. 2012福建莆田8分如图,四边形ABCD是平行四边形,连接AC.14分请根据以下语句画图,并标上相应的字母用黑色字迹的钢笔或签字笔画.①过点A画AE⊥BC于点E;②过点C画CF∥AE,交AD于点F;24分在完成1后的图形中不再添加其它线段和字母,请你找出一对全等三角形,并予以证明.答案解:1画图如下:2△ABC≌△CDA ;证明如下:∵ 四边形ABCD是平行四边形,∴ AB=CD,BC=DA;又∵ AC=CA,∴△ABC≌△CDASSS;考点作图复杂作图,平行四边形的性质,全等三角形的判定;分析1根据语句要求画图即可;2首先根据平行四边形的性质和AE∥CF,可得①△ABC≌△CDA,②△AEC≌△CFA,③△ABE≌△CDF;下面给出其它两个的证明:②△AEC≌△CFA;证明如下:∵四边形ABCD是平行四边形,∴ AD∥BC;∴ ∠DAC=∠ACE;∵AE∥CF,∴ ∠EAC=∠ACF;∵AC=CA,∴ △AEC≌△CFAASA;③△ABE≌△CDF;证明如下:∵四边形ABCD是平行四边形,∴ AD∥BC,∠B=∠D,AB =CD ;又∵AE∥CF,∴四边形AECF是平行四边形;∴∠AEC=∠AFC;∴∠AEB=∠CFD;∴△ABE≌△CDFAAS;13. 2012福建南平8分如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明, 备选条件:AE=CF,BE=DF,∠AEB=∠CFD,我选择添加的条件是:注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明答案解:添加的条件可以是BE=DF答案不唯一;证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵BE=DF,∴AF=CE,即AF=CE,AF∥CE;∴四边形AECF是平行四边形;考点平行四边形的判定和性质,全等三角形的判定和性质,平行的判定和性质;分析根据平行四边形性质得出AD∥BC,AD=BC,求出AF∥CE,AF=CE,根据平行四边形的判定推出即可;当AE=CF时,四边形AECF可能是平行四边形,也可能是等腰梯形;当∠AEB=∠CFD时,四边形AECF也是平行四边形,证明如下:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D;∵∠AEB=∠CFD,∴△AEB≌△CFDAAS;∴AE=CF;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠AEB=∠EAF;∴∠CFD=∠EAF;∴AE∥FC;∴四边形AECF是平行四边形;14. 2012福建泉州9分如图,BD是平行四边形ABCD的一条对角线,AE⊥BD于点E,CF⊥BD于点F,求证∠DAE=∠BCF.答案证明:证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC平行四边形对边平行且相等∴∠ADB=∠CBD两直线平行,内错角相等;∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°垂直的定义;在△ADE和△CBF中,∵∠ADB=∠CBD,∠AED=∠CFB,AD=CB,∴△ADE≌S△CBFAAS;∴∠DAE=∠BCF全等三角形的对应角相等;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析由四边形ABCD为平行四边形,根据平行四边形的对边平行且相等得到AD=BC,AD与BC平行,利用两直线平行内错角相等得到一对角相等,再由AE⊥BD,CF⊥BD得到一对直角相等,利用AAS可得出三角形ADE与三角形CBF全等,利用全等三角形的对应角相等可得出∠DAE=∠BCF,得证;15. 2012湖北黄石7分如图,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.答案证明:∵四边形ABCD为平行四边形, ∴AD∥BC,且AD=BC;∴∠ADE=∠BCF;又∵BE=DF, ∴BF=DE;∴△ADE≌△CBFSAS;∴∠DAE=∠BCF ;考点平行四边形的性质,平行线的性质,全等三角形的判定和性质;分析根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,由SAS证△ADE≌△CBF,推出∠DAE=∠BCF即可;16. 2012湖南郴州8分已知:点P是ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC 于点F.求证:AE=CF.答案证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠PAE=∠PCF;∵点P是ABCD的对角线AC的中点,∴PA=PC;在△PAE和△PCE中,∵∠PAE=∠PCF,PA=PC,∠APE=∠CPF,∴△PAE≌△PCEASA;∴AE=CF;考点平行四边形的性质,全等三角形的判定和性质;分析由四边形ABCD是平行四边形,易得∠PAE=∠PCF,由点P是 ABCD 的对角线AC的中点,可得PA=PC,又由对顶角相等,可得∠APE=∠CPF,即可利用ASA证得△PAE≌△PCF,即可证得AE=CF;17. 2012四川广安6分如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.答案证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD; ∴∠D=∠EAF;∵AF=AB,BE=AD,∴AF=CD,AD﹣AF=BE﹣AB,即DF=AE;在△AEF和△DFC中,∵AE=DF,∠EAF=∠D,AF=DC,∴△AEF≌△DFCSAS,考点平行四边形的性质,平行线的性质,全等三角形的判定;分析由四边形ABCD是平行四边形,利用平行四边形的性质,即可得AB=CD,AB∥CD,又由平行线的性质,即可得∠D=∠EAF,然后由BE=AD,AF=AB,求得AF=CD,DF=AE,从而由SAS证得;18. 2012辽宁鞍山8分如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.求证:FP=EP.答案证明:∵四边形ABCD是平行四边形,∴AD∥BC;∴∠DGC=∠GCB,∵DG=DC,∴∠DGC=∠DCG;∴∠DCG=∠GCB;∵∠DCG+∠DCP=180°,∠GCB+∠FCP=180°,∴∠DCP=∠FCP;∵在△PCF和△PCE中,CE=CF,∠FCP=∠ECP,CP=CP,∴△PCF≌△PCESAS;∴PF=PE;考点平行四边形的性质,平行的性质,等腰三角形的性质,全等三角形的判定和性质;分析根据平行四边形的性质推出∠DGC=∠GCB,根据等腰三角形性质求出∠DGC=∠DCG,推出∠DCG=∠GCB,根据等角的补角相等求出∠DCP=∠FCP,根据SAS证出△PCF≌△PCE即可;19. 2012辽宁大连9分如图,□ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O.求证:OA=OC.答案证明:∵四边形ABCD是平行四边形,∴AD=BC;∵ED=BF,∴AE=CF;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠OAE=∠OCF,∠OEA=∠OFC;在△AOE 和△COF中,∵∠OAE=∠OCF,AE=CF,∠OEA=∠OFC,∴△AOE ≌△COFASA;∴OA=OC;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形的性质可得AD BC;由等量减等量差相等得AE=CF;由两直线平行内错角相等得∠OAE=∠OCF,∠OEA=∠OFC;由ASA证得△AOE ≌△COF,从而根据全等三角形对应边相等的性质得OA=OC;20. 2012辽宁沈阳10分已知,如图,在荀ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.1求证:△AEM≌△CFN;21世纪教育网2求证:四边形BMDN是平行四边形.答案证明:1 ∵四边形ABCD是平行四边形,∴AB∥DC ,AD∥BC;∴∠E=∠F,∠DAB=∠BCD; ∴∠EAM=∠FCN;又∵AE=CF ∴△AEM≌△CFNASA;2 ∵由1△AEM≌△CFN, ∴AM=CN;又∵四边形ABCD是平行四边形,∴AB CD ;∴BM DN;∴四边形BMDN是平行四边形;考点平行四边形的判定和性质,平行的性质,全等三角形的判定和性质;分析1根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明;2根据平行四边形的性质及1的结论可得BM DN,则由有一组对边平行且相等的四边形是平行四边形即可证明;21. 2012贵州六盘水12分如图,已知E是 ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.1求证:△ABE≌△FCE.2连接AC.BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.答案证明:1∵四边形ABCD为平行四边形,∴AB∥DC;∴∠ABE=∠ECF;又∵E为BC的中点,∴BE=CE;在△ABE和△FCE中,∵∠ABE=∠FCE,BE=CE,∠AEB=∠FEC,∴△ABE≌△FCEASA;2∵△ABE≌△FCE,∴AB=CF;又AB∥CF,∴四边形ABFC为平行四边形;∴BE=EC,AE=EF;又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB;∴∠ABC=∠EAB,∴AE=BE;∴AE+EF=BE+EC,即AF=BC;∴四边形ABFC为矩形;考点平行四边形的性质,平行的性质,全等三角形的判定和性质,等腰三角形和判定,矩形的判定;分析1由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;2由△ABE≌△FCE,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEB等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形;22. 2012山东济南7分1如图1,在ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.2如图2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.答案1证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,AD=CB ,∠A=∠C ,AE=CF,∴△ADE≌△CBFSAS;∴DE=BF;2解:∵AB=AC,∠A=40°,∴∠ABC=∠C=12180°-40°=70°,又∵BD是∠ABC的平分线,∴∠DBC=12∠ABC=35°;∴∠BDC=180°-∠DBC-∠C=75°;考点平行四边形的性质,全等三角形的判定和性质;等腰三角形的性质,角平分线的定义,角形的内角和定理;分析1根据四边形ABCD是平行四边形,利用平行四边形的性质得到一对边和一对角的对应相等,在加上已知的一对边的相等,由“SAS”,证得△ADE≌△CBF,最后根据全等三角形的对应边相等即可得证;2根据AB=AC,利用等角对等边和已知的∠A的度数求出∠ABC和∠C的度数,再根据已知的BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,最后根据三角形的内角和定理即可求出∠BDC的度数;23. 2012山东潍坊10分如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.。

四边形2012年贵州中考数学题(附答案和解释)

四边形2012年贵州中考数学题(附答案和解释)

四边形2012年贵州中考数学题(附答案和解释)贵州各市2012年中考数学试题分类解析汇编专题10:四边形一、选择题1.(2012贵州毕节3分)如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作。

若△AEF的边长为2,则阴影部分的面积约是【】(参考数据:,π取3.14)A.0.64B.1.64C.1.68D.0.36【答案】A。

【考点】正方形和等边三角形的性质,勾股定理,扇形和三角形面积。

【分析】由图知,。

因此,由已知,根据正方形、等边三角形的性质和勾股定理,可得等边△AEF的边长为2,高为;Rt△AEF的两直角边长为;扇形AEF的半径为2圆心角为600。

∴。

故选A。

2.(2012贵州黔东南4分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为【】A.(2,0)B.()C.()D.()【答案】C。

【考点】实数与数轴,矩形的性质,勾股定理。

【分析】在Rt△ABC中利用勾股定理求出AC,继而得出AM的长,结合数轴的知识可得出点M的坐标:由题意得,。

∴AM=,BM=AM﹣AB=﹣3。

又∵点B的坐标为(2,0),∴点M的坐标为(﹣1,0)。

故选C。

3.(2012贵州黔东南4分)点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于【】A.75°B.60°C.45°D.30°【答案】C。

【考点】正方形的性质,旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质。

【分析】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°。

∴∠ADP+∠APD=90°。

中考数学平行四边形的综合题试题含答案解析

中考数学平行四边形的综合题试题含答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题)1.在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.操作示例当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB 并分别拼接到△FEH和△CHD的位置构成四边形FGCH.思考发现小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.实践探究(1)正方形FGCH的面积是;(用含a, b的式子表示)(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析.【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案;应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割.详解:实践探究:正方形的面积是:BG2+BC2=a2+b2;剪拼方法如图2-图4;联想拓展:能,剪拼方法如图5(图中BG=DH=b)..点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的.2.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.4.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2210,BC=10.68∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.5.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形 .A .平行四边形B .矩形C .菱形D .等腰梯形(2)命题:“和谐四边形一定是轴对称图形”是 命题(填“真”或“假”). (3)如图,等腰Rt △ABD 中,∠BAD =90°.若点C 为平面上一点,AC 为凸四边形ABCD 的和谐线,且AB =BC ,请求出∠ABC 的度数.【答案】(1) C ;(2)∠ABC 的度数为60°或90°或150°.【解析】试题分析:(1)根据菱形的性质和和谐四边形定义,直接得出结论.(2)根据和谐四边形定义,分AD=CD ,AD=AC ,AC=DC 讨论即可.(1)根据和谐四边形定义,平行四边形,矩形,等腰梯形的对角线不能把四边形分成两个等腰三角形,菱形的一条对角线能把四边形分成两个等腰三角形够.故选C.(2)∵等腰Rt △ABD 中,∠BAD=90°,∴AB=AD.∵AC 为凸四边形ABCD 的和谐线,且AB=BC ,∴分三种情况讨论:若AD=CD ,如图1,则凸四边形ABCD 是正方形,∠ABC=90°;若AD=AC ,如图 2,则AB=AC=BC ,△ABC 是等边三角形,∠ABC=60°;若AC=DC ,如图 3,则可求∠ABC=150°.考点:1.新定义;2.菱形的性质;3.正方形的判定和性质;4.等边三角形的判定和性质;5.分类思想的应用.6.在ABC 中,AD BC ⊥于点D ,点E 为AC 边的中点,过点A 作//AF BC ,交DE 的延长线于点F ,连接CF .()1如图1,求证:四边形ADCF 是矩形;()2如图2,当AB AC =时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF ).【答案】(1) 证明见解析;(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【解析】【分析】(1)由△AEF ≌△CED ,推出EF=DE ,又AE=EC ,推出四边形ADCF 是平行四边形,只要证明∠ADC=90°,即可推出四边形ADCF 是矩形.(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【详解】()1证明:∵//AF BC ,∴AFE EDC ∠=∠,∵E 是AC 中点,∴AE EC =,在AEF 和CED 中,AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AEF CED ≅,∴EF DE =,∵AE EC =,∴四边形ADCF 是平行四边形,∵AD BC ⊥, ∴90ADC ∠=,∴四边形ADCF 是矩形.()2∵线段DG 、线段GE 、线段DE 都是ABC 的中位线,又//AF BC ,∴//AB DE ,//DG AC ,//EG BC , ∴四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.【点睛】考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,正确寻找全等三角形解决问题是解题的关键.7.如图1,在正方形ABCD 中,AD=6,点P 是对角线BD 上任意一点,连接PA ,PC 过点P作PE⊥PC交直线AB于E.(1)求证:PC=PE;(2)延长AP交直线CD于点F.①如图2,若点F是CD的中点,求△APE的面积;②若ΔAPE的面积是21625,则DF的长为(3)如图3,点E在边AB上,连接EC交BD于点M,作点E关于BD的对称点Q,连接PQ,MQ,过点P作PN∥CD交EC于点N,连接QN,若PQ=5,MN=723,则△MNQ的面积是【答案】(1)略;(2)①8,②4或9;(3)5 6【解析】【分析】(1)利用正方形每个角都是90°,对角线平分对角的性质,三角形外角等于和它不相邻的两个内角的和,等角对等边等性质容易得证;(2)作出△ADP和△DFP的高,由面积法容易求出这个高的值.从而得到△PAE的底和高,并求出面积.第2小问思路一样,通过面积法列出方程求解即可;(3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积的一半可得其面积.【详解】(1) 证明:∵点P在对角线BD上,∴△ADP≌△CDP,∴AP=CP, ∠DAP =∠DCP,∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°,∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC,∵∠PAE=90°-∠DAP=90°-∠DCP,∠DCP=∠BPC-∠PDC=∠BPC-45°,∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC,∴∠PEA=∠PAE,∴PC=PE;(2)①如图2,过点P分别作PH⊥AD,PG⊥CD,垂足分别为H、G.延长GP交AB于点M.∵四边形ABCD 是正方形,P 在对角线上, ∴四边形HPGD 是正方形, ∴PH=PG,PM ⊥AB, 设PH=PG=a,∵F 是CD 中点,AD =6,则FD=3,ADFS =9,∵ADF S =ADP DFP SS+=1122AD PH DF PG ⨯+⨯, ∴1163922a a ⨯+⨯=,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4, 又∵PA=PE, ∴AM=EM,AE=4,∵APE S =1144822EA MP ⨯=⨯⨯=,②设HP =b,由①可得AE=2b,MP=6-b,∴APE S=()121626225b b ⨯⨯-=, 解得b=2.4 3.6或,∵ADF S=ADP DFP SS+=1122AD PH DF PG ⨯+⨯, ∴11166222b DF b DF ⨯⨯+⨯=⨯, ∴当b=2.4时,DF=4;当b =3.6时,DF =9, 即DF 的长为4或9; (3)如图,∵E 、Q 关于BP 对称,PN ∥CD, ∴∠1=∠2,∠2+∠3=∠BDC=45°, ∴∠1+∠4=45°, ∴∠3=∠4,易证△PEM ≌△PQM, △PNQ ≌△PNC, ∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC, ∴∠6+∠7=90°, ∴△MNQ 是直角三角形, 设EM=a,NC=b 列方程组2227252372 3a b a b ⎧+=-⎪⎪⎨⎛⎫⎪+= ⎪ ⎪⎪⎝⎭⎩, 可得12ab=56, ∴MNQ56S=, 【点睛】本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.要注意运用数形结合思想.8.如图,在矩形ABCD 中,点E 在边CD 上,将该矩形沿AE 折叠,使点D 落在边BC 上的点F 处,过点F 作FG ∥CD ,交AE 于点G ,连接DG .(1)求证:四边形DEFG 为菱形;(2)若CD=8,CF=4,求的值.【答案】(1)证明见试题解析;(2).【解析】试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.9.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.10.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。

全国中考数学平行四边形的综合中考真题汇总附答案

全国中考数学平行四边形的综合中考真题汇总附答案

∠ B,∠ D 都不是直角,则当∠ B 与∠ D 满足等量关系
时,仍有 EF=BE+DF;
(3)联想拓展
如图 3,在△ ABC 中,∠ BAC=90°,AB=AC,点 D、E 均在边 BC 上,且∠ DAE=45°,猜想 BD、DE、EC
满足的等量关系,并写出推理过程。
【答案】(1)详见解析;(2)详见解析;(3)详见解析. 【解析】 试题分析:(1)把△ ABE 绕点 A 逆时针旋转 90°至△ ADG,可使 AB 与 AD 重合,证出 △ AFG≌ △ AFE,根据全等三角形的性质得出 EF=FG,即可得出答案; (2)把△ ABE 绕点 A 逆时针旋转 90°至△ ADG,可使 AB 与 AD 重合,证出△ AFE≌ △ AFG, 根据全等三角形的性质得出 EF=FG,即可得出答案;
BCFD=3× 3
3=9
3
,S△
ACF=
1 2
×3× 3
3 = 9 3 ,S = 平行四边形 ADBC 27 3 .
2
2
【点睛】
本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直
角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考
题型.
2.如图所示,矩形 ABCD 中,点 E 在 CB 的延长线上,使 CE=AC,连接 AE,点 F 是 AE 的 中点,连接 BF、DF,求证:BF⊥DF.
∠ BAD=60°,∴ ∠ BAD=∠ ABC=60°,∵ E 为 AB 的中点,∴ AE=BE,又∵ ∠ AEF=∠ BEC,
∴ △ AEF≌ △ BEC,在△ ABC 中,∠ ACB=90°,E 为 AB 的中点,∴ CE= 1 AB,BE= 1 AB,

2012年各地中考数学汇编 四边形精选31~40(解析版)

2012年各地中考数学汇编 四边形精选31~40(解析版)

2012年各地中考数学汇编三角形四边形精选31~40_解析版【31. 2012某某】 26.(本小题满分10分)如图,菱形ABCD 中,∠B =60º, 点E 在边BC 上,点F 在边CD 上.(1)如图1,若E 是BC 的中点,∠AEF =60º,求证:BE =DF ;(2)如图2,若∠EAF =60º, 求证:△AEF 是等边三角形.【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定. 【专题】证明题.【分析】(1)首先连接AC ,由菱形ABCD 中,∠B=60°,根据菱形的性质,易得△ABC 是等边三角形,又由三线合一,可证得AE ⊥BC ,继而求得∠FEC=∠CFE ,即可得EC=CF ,继而证得BE=DF ;(2)首先连接AC ,可得△ABC 是等边三角形,即可得AB=AC ,以求得∠ACF=∠B=60°,然后利用平行线与三角形外角的性质,可求得∠AEB=∠AFC ,证得△AEB ≌△AFC ,即可得AE=AF ,证得:△AEF 是等边三角形.【解答】证明:(1)连接AC ,∵菱形ABCD 中,∠B=60°, ∴AB=BC=CD ,∠C=180°-∠B=120°, ∴△ABC 是等边三角形, ∵E 是BC 的中点, ∴AE ⊥BC , ∵∠AEF=60°,∴∠FEC=90°-∠AEF=30°, ∴∠CFE=180°-∠FEC-∠CBEC FAD图1B ECFAD图2=180°-30°-120°=30°,∴∠FEC=∠CFE,∴EC=CF,∴BE=DF;(2)连接AC,∵四边形ABCD是菱形,∠B=60°∴AB=BC,∠D=∠B=60°,∠ACB=∠ACF,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠B=∠ACF=60°,∵AD∥BC,∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,∠AFC=∠D+∠FAD=60°+∠FAD,∴∠AEB=∠AFC,在△ABE和△AFC中,∠B=∠ACF ∠AEB=∠AFC AB=AC∴△ABE≌△ACF(AAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.【点评】此题考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意准确作出辅助线,注意数形结合思想的应用.【32. 2012某某】27.(本小题满分12分)如图,在△ABC 中,AB =AC =10cm ,BC =12cm ,点D 是BC 边的中点.点P 从点B 出发,以a cm/s(a >0)的速度沿BA 匀速向点A 运动;点Q 同时以1cm/s 的速度从点D 出发,沿DB 匀速向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t s .(1)若a =2,△BPQ ∽△BDA ,求t 的值; (2)设点M 在AC 上,四边形PQCM 为平行四边形. ①若a =52,求PQ 的长;②是否存在实数a ,使得点P 在∠ACB 的平分线上?若存在,请求出a 的值;若不存在,请说明理由.【考点】相似三角形的判定与性质;等腰三角形的性质;勾股定理;平行四边形的性质. 【专题】几何综合题.【分析】(1)由△ABC 中,AB=AC=10厘米,BC=12厘米,D 是BC 的中点,根据等腰三角形三线合一的性质,即可求得BD 与CD 的长,又由a=2,△BPQ ∽△BDA ,利用相似三角形的对应边成比例,即可求得t 的值;(2)①首先过点P 作PE ⊥BC 于E ,由四边形PQCM 为平行四边形,易证得PB=PQ ,又由平行线分线段成比例定理,即可得方程5 2 t 10 =1 2 (6-t) 6 ,解此方程即可求得答案;②首先假设存在点P 在∠ACB 的平分线上,由四边形PQCM 为平行四边形,可得四边形PQCM 是菱形,即可得PB=CQ ,PM :BC=AP :PB ,及可得方程组,解此方程组求得t 值为负,故可得不存在.【解答】解:(1)△ABC 中,AB=AC=10cm ,BC=12cm ,D 是BC 的中点,∴BD=CD=1 2 BC=6cm , ∵a=2,∴BP=2tcm ,DQ=tcm , ∴BQ=BD-QD=6-t (cm ), ∵△BPQ ∽△BDA ,∴BP BD =BQ AB ,即2t 6 =6-t 10 ,解得:t=18 13 ;(2)①过点P作PE⊥BC于E,∵四边形PQCM为平行四边形,∴PM∥CQ,PQ∥CM,PQ=CM,∴PB:AB=CM:AC,∵AB=AC,∴PB=CM,∴PB=PQ,∴BE=1 2 BQ=1 2 (6-t)cm,∵a=5 2 ,∴PB=5 2 tcm,∵AD⊥BC,∴PE∥AD,∴PB:AB=BE:BD,即5 2 t 10 =1 2 (6-t) 6 ,解得:t=3 2 ,∴PQ=PB=5 2 t=15 4 (cm);②不存在.理由如下:∵四边形PQCM为平行四边形,∴PM∥CQ,PQ∥CM,PQ=CM,∴PB:AB=CM:AC,∵AB=AC,∴PB=CM,∴PB=PQ.若点P在∠ACB的平分线上,则∠PCQ=∠PCM,∵PM∥CQ,∴∠PCQ=∠CPM,∴∠CPM=∠PCM,∴PM=CM,∴四边形PQCM是菱形,∴PQ=CQ,∴PB=CQ,∵PB=atcm,CQ=BD+QD=6+t(cm),∴PM=CQ=6+t(cm),AP=AB-PB=10-at(cm),即at=6+t①,∵PM∥CQ,∴PM:BC=AP:AB,∴6+t 12 =10-at 10 ,化简得:6at+5t=30②,把①代入②得,t=-6 11 ,∴不存在实数a,使得点P在∠ACB的平分线上.【点评】此题考查了相似三角形的判定与性质、平行四边形的性质、菱形的判定与性质以及等腰三角形的性质等知识.此题难度较大,注意数形结合思想与方程思想的应用.【33. 2012某某】25.已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运到,连结DP,作⊥DP于点M,且交直线AB于点N,连结OP,ON。

全国中考数学平行四边形的综合中考真题分类汇总及答案解析

全国中考数学平行四边形的综合中考真题分类汇总及答案解析

全国中考数学平行四边形的综合中考真题分类汇总及答案解析一、平行四边形1.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积2.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为多少(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.【答案】(1)P点坐标为(x,3﹣x).(2)S的最大值为,此时x=2.(3)x=,或x=,或x=.【解析】试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.(3)本题要分类讨论:①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.试题解析:(1)过点P作PQ⊥BC于点Q,有题意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.∴S=(4﹣x)×x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值为,此时x=2.(3)延长MP交CB于Q,则有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,则CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.综上所述,x=,或x=,或x=.考点:二次函数综合题.3.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN ∥AE ,MN=AE ,利用三角形全等证出AE=AF ,而DM=AF ,从而得到DM ,MN 数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM 、MN 的位置关系是垂直.试题解析:(1)∵四边形ABCD 是正方形,∴AB=AD=BC=CD ,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF ,∴BC ﹣CE=CD ﹣CF ,即BE=DF ,∴△ABE ≌△ADF ,∴AE=AF ,∴△AEF 是等腰三角形;(2)DM 、MN 的数量关系是相等,DM 、MN 的位置关系是垂直;∵在Rt △ADF 中DM 是斜边AF 的中线,∴AF=2DM ,∵MN 是△AEF 的中位线,∴AE=2MN ,∵AE=AF ,∴DM=MN ;∵∠DMF=∠DAF+∠ADM ,AM=MD ,∵∠FMN=∠FAE ,∠DAF=∠BAE ,∴∠ADM=∠DAF=∠BAE ,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM ⊥MN ;(3)(2)中的两个结论还成立,连接AE ,交MD 于点G ,∵点M 为AF 的中点,点N 为EF 的中点,∴MN ∥AE ,MN=AE ,由已知得,AB=AD=BC=CD ,∠B=∠ADF ,CE=CF ,又∵BC+CE=CD+CF ,即BE=DF ,∴△ABE ≌△ADF ,∴AE=AF ,在Rt △ADF 中,∵点M 为AF 的中点,∴DM=AF ,∴DM=MN ,∵△ABE ≌△ADF ,∴∠1=∠2,∵AB ∥DF ,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM ,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN ∥AE ,∴∠DMN=∠DGE=90°,∴DM ⊥MN .所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.4.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【答案】(1)证明见解析;(2)①AF 2AE =②42或22.【解析】【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF ≌EDA 再证明AEF 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:四边形ABFD 是平行四边形,AB DF ∴=,AB AC =,AC DF ∴=,DE EC =,AE EF ∴=,DEC AEF 90∠∠==,AEF ∴是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .四边形ABFD 是平行四边形,AB//DF ∴,DKE ABC 45∠∠∴==,EKF 180DKE 135∠∠∴=-=,EK ED =,ADE 180EDC 18045135∠∠=-=-=,EKF ADE ∠∠∴=,DKC C ∠∠=,DK DC ∴=,DF AB AC ==,KF AD ∴=,在EKF 和EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,EKF ∴≌EDA ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==,AEF ∴是等腰直角三角形,AF 2AE ∴=.②如图③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===22AH (25)(2)32=-=,AE AH EH 42=+=,=时,四边形ABFD是菱形,易知如图④中当AD AC=-=-=,AE AH EH32222综上所述,满足条件的AE的长为42或22.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.5.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.6.已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF.求证:四边形AECF是菱形.【答案】见解析【解析】【分析】由菱形的性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形.【详解】证明:∵四边形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四边形AECF是平行四边形又∵AF=CF,∴四边形AECF是菱形【点睛】本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.7.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH3;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH =3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH =3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.8.如图,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,E 、F 在菱形的边BC ,CD 上.(1)证明:BE=CF .(2)当点E ,F 分别在边BC ,CD 上移动时(△AEF 保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC ,进而求证△ABC 、△ACD 为等边三角形,得∠4=60°,AC=AB 进而求证△ABE ≌△ACF ,即可求得BE=CF ;(2)根据△ABE ≌△ACF 可得S △ABE =S △ACF ,故根据S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC 即可解题;(3)当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.△AEF 的面积会随着AE 的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.9.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222-=-8.106DF CF∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A (0,8),B (6,0),C (﹣4,0)∴AB 2268+10,BC =10.∴AB =BC ,(1)由结论得:P 1D 1+P 1E 1=OA =8∵P 1D 1=1=2,∴P 1E 1=6 即点P 1的纵坐标为6又点P 1在直线l 2上,∴y =2x+8=6,∴x =﹣1,即点P 1的坐标为(﹣1,6);(2)由结论得:P 2E 2﹣P 2D 2=OA =8∵P 2D 2=2,∴P 2E 2=10 即点P 1的纵坐标为10又点P 1在直线l 2上,∴y =2x+8=10,∴x =1,即点P 1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.10.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【解析】【分析】(1)先求证BD∥AF,证明四边形ABDF是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD平分∠ABC,得到BD垂直平分线段AC,进而证明△DAC是等腰三角形,根据BD⊥AC,AF⊥AC,找到角度之间的关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解.【详解】(1)如图1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等边三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四边形ABDF是平行四边形,∵AB=AF,∴四边形ABDF是菱形.(2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.11.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值.【答案】(1)证明见试题解析;(2).【解析】试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.12.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由见解析;(4)CP=QC﹣QP=.【解析】试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P 在运动中保持∠APD=90°,所以点P 的路径是一段以AD 为直径的弧,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最小,再由勾股定理可得QC 的长,再求CP 即可.试题解析:(1)AE=DF ,AE ⊥DF .理由:∵四边形ABCD 是正方形,∴AD=DC ,∠ADC=∠C=90°.在△ADE 和△DCF 中,,∴△ADE ≌△DCF (SAS ).∴AE=DF ,∠DAE=∠CDF ,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE ⊥DF ; (2)是; (3)成立.理由:由(1)同理可证AE=DF ,∠DAE=∠CDF 延长FD 交AE 于点G ,则∠CDF+∠ADG=90°, ∴∠ADG+∠DAE=90°. ∴AE ⊥DF ; (4)如图:由于点P 在运动中保持∠APD=90°,∴点P 的路径是一段以AD 为直径的弧, 设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最小, 在Rt △QDC 中,QC=,∴CP=QC ﹣QP=.考点:四边形的综合知识.13.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =. (1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数. (2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.①若30α=︒,60β=︒,AB 的长为______.②若改变,αβ的大小,但90αβ+=︒,ABC 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.【答案】(1)120°;(2)①25;②25 【解析】试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可;②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:解:(1)∵AE=AB ,AD=AC , ∵∠EAB=∠DAC=60°,∴∠EAC=∠EAB+∠BAC ,∠DAB=∠DAC+∠BAC , ∴∠EAC=∠DAB ,在△AEC 和△ABD 中{AE ABEAC BAD AC AD=∠=∠=∴△AEC ≌△ABD (SAS ), ∴∠AEC=∠ABD ,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE , ∴∠BFC=∠AEB+∠ABE=120°, 故答案为120°;(2)①如图2,以AB 为边在△ABC 外作正三角形ABE ,连接CE .由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60°,∠ABC=30°,∴∠EBC=90°.在RT△EBC中,EC=6,BC=4,∴2264--22EC BC∴5②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.∵AH⊥BC于H,∴∠AHC=90°.∵BE∥AH,∴∠EBC=90°.∵∠EBC=90°,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K为BE的中点,BE=2AH,∴BK=AH.∵BK∥AH,∴四边形AKBH为平行四边形.又∵∠EBC=90°,∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.∴AK是BE的垂直平分线.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC与△BAD中{AB AEEAC BAD AC AD=∠=∠=∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE=22EC BC-=25,∴AH=12BE=5,∴S△ABC=12BC•AH=25考点:全等三角形的判定与性质;等腰三角形的性质14.数学活动课上,老师给出如下问题:如图,将等腰直角三角形纸片沿斜边上的高AC剪开,得到等腰直角三角形△ABC与△EFD,将△EFD的直角顶点在直线BC上平移,在平移的过程中,直线AC与直线DE交于点Q,让同学们探究线段BQ与AD的数量关系和位置关系.请你阅读下面交流信息,解决所提出的问题.展示交流:小敏:满足条件的图形如图甲所示图形,延长BQ与AD交于点H.我们可以证明△BCQ≌△ACD,从而易得BQ=AD,BQ⊥AD.小慧:根据图甲,当点F在线段BC上时,我们可以验证小慧的说法是正确的.但当点F在线段CB的延长线上(如图乙)或线段CB的反向延长线上(如图丙)时,我对小慧说法的正确性表示怀疑.(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由.(选择图乙或图丙的一种情况说明即可).(2)小慧思考问题的方式中,蕴含的数学思想是.拓展延伸:根据你上面选择的图形,分别取AB、BD、DQ、AQ的中点M、N、P、T.则四边形MNPT 是什么样的特殊四边形?请说明理由.【答案】成立;分类讨论思想;正方形.【解析】试题分析:利用等腰直角三角形的性质结合全等三角形的判定与性质得出BQ=AD,BQ⊥AD;利用已知条件分类得出,体现数学中的分类讨论思想,拓展延伸:利用三角形中位线定理结合正方形的判定方法,首先得出四边形MNPT是平行四边形进而得出它是菱形,再求出一个内角是90°,即可得出答案.试题解析:(1)、成立,理由:如图乙:由题意可得:∠FDE=∠QDC=∠ABC=∠BAC=45°,则DC=QC,AC=BC,在△ADC和△BQC中∵,∴△ADC≌△BQC(SAS),∴AD=BQ,∠DAC=∠QBC,延长AD交BQ于点F,则∠ADC=∠BDF,∴∠BFD=∠ACD=90°,∴AD⊥BQ;(2)、小慧思考问题的方式中,蕴含的数学思想是:分类讨论思想;拓展延伸:四边形MNPT是正方形,理由:∵取AB、BD、DQ、AQ的中点M、N、P、T,∴MN AD,TP AD,∴MN TP,∴四边形MNPT是平行四边形,∵NP BQ,BQ=AD,∴NP=MN,∴平行四边形MNPT 是菱形,又∵AD⊥BQ,NP∥BQ,MN∥AD,∴∠MNP=90°,∴四边形MNPT是正方形.考点:几何变换综合题15.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.(1)过D作DH AB,垂足为H,若DH=,BE=AB,求DG的长;(2)连接CP,求证:CP FP;(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.【答案】(1)1;(2)见解析;(3).【解析】试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC 得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1、证明:连接CG、CF由(1)知△PDG≌△PEF ∴PG=PF在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如图:CP⊥GF仍成立理由如下:过D作EF的平行线,交FP延长于点G连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==考点:三角形全等的证明与性质.。

2012年中考数学试题及答案

2012年中考数学试题及答案

2012年中考数学试题及答案一、选择题1. ( ) 设a、b、c、d是四个不同的整数,且a<b<c<d,那么它们中最小的一个是?A. aB. bC. cD. d2. ( ) 从一个圆盘上切下一个小扇形的时候,整个圆盘的周长减小7cm,小扇形的周长减小7cm的结果是原来的周长的等于1/3,那么整个圆盘的面积减小的结果是?A. 2/7B. 1/3C. 1/7D. 3/73. ( ) 如果x+y=200,x>y,那么x.y的最大值是A. 40000B. 40401C. 40500D. 405014. ( ) 如图,正方形ABCD中,E、F分别为AB和CD的中点,连结EF.求证:EF⊥BC.A. 对,方法不唯一B. 对,方法唯一C. 对,方法准确D. 错5. ( ) 如图,已知∠A=42°,AP和BP分别是△ABC的角平分线,且∠APC=∠BPC=96°,求∠PBC=_______°.A. 18B. 42C. 48D. 54二、填空题6. 六个完全相同的圆半径的和是90,则r的值为______.8. 如图,是一块标有长方体的正六面体.4、5、6三点所在直线交EF于点P,其中,exE=16cm,则EP=________cm.9. √(7+√41) +(7-√41) = ______10. 如图,ABCD是一个平行四边形,四边中点依次为E、F、G、H.则EFHG是平行四边形吗?(是或否)三、解答题11. 一个正整数恰好被13整除,当它的各位数字交换后,所得的数恰好被17整除,那么这个数是多少?12. 如图,①是一个等边三角形,边长为20cm.分别以A、B为圆心,AB为半径交于点P.连结OP,OP与②的交点为Q.求过P,Q两点的直线的长度13. 解方程:3(x-1)+4(x-2)=5(x+3)14. 如图,是一个摄影器材专卖店的平面图.把ㄨBCD┼縄顺时针旋转100°。

2012中考数学试题及答案分类汇编:四边形

2012中考数学试题及答案分类汇编:四边形

2012中考数学试题及答案分类汇编:四边形一、选择题1. (北京4分)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的A OC O值为A、12B、13C、14D、19【答案】B。

【考点】梯形的性质,相似三角形的判定和性质。

【分析】根据梯形对边平行的性质易证△AOD∽△COB,然后利用相似三角形的性质即可得到AO:CO的值:∵四边形ABCD是梯形,∴AD∥CB,∴△AOD∽△COB,∴A D A OB C C O=。

又∵AD=1,BC=3,∴AO1C O3=。

故选B。

2.(天津3分)如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为(A) 15°(B) 30°(C) 45°(D) 60°【答案】C。

【考点】折叠对称,正方形的性质。

【分析】根据折叠后,轴对称的性质,∠ABE=∠EBD=∠DBF=∠FBC=22.50,∴∠EBF=450。

故选C。

3.(内蒙古包头3分)已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是A.16 3 B.16 C.8 3 D.8【答案】C 。

【考点】菱形的性质,含30°角直角三角形的性质,勾股定理。

【分析】由四边形ABCD 是菱形,根据菱形的性质,得AC ⊥BD ,OA=12AC ,∠BAC=12∠BAD ;在Rt △AOB 中,根据30°角所对的直角边等于斜边的一半的性质和勾股定理即可求得OB=23,从而得BD=2OB=43。

根据菱形的面积等于其对角线乘积的一半,即可求得该菱形的面积。

该菱形的面积是:12AB•BD=12×4×43=83。

故选C 。

4.(内蒙古呼和浩特3分)下列判断正确的有①顺次连接对角线互相垂直且相等的四边形的各边中点一定构成正方形; ②中心投影的投影线彼此平行; ③在周长为定值π的扇形中,当半径为4π时扇形的面积最大;④相等的角是对顶角的逆命题是真命题.A 、4个B 、3个C 、2个D 、1个【答案】B 。

备战2012中考数学 多边形与平行四边形真题试题汇编

备战2012中考数学 多边形与平行四边形真题试题汇编

备战2012中考:多边形与平行四边形真题试题汇编一、选择题1. (2011安徽,6,4分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11【答案】D2. (2011广东广州市,2,3分)已知□ABCD的周长为32,AB=4,则BC=().A.4B.12C.24D.28【答案】B3. (2011山东威海,3,3分)在□ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:5【答案】A4. (2011四川重庆,9,4分)下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为( )……图①图②图③图④A.55 B.42 C.41 D.29【答案】C5. (2011江苏泰州,7,3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有A.1组 B.2组 C.3组 D.4组【答案】C6. (2011湖南邵阳,7,3分)如图(二)所示,A B C D中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是()A.AC ⊥BDB.AB =CDC. BO=ODD.∠BAD=∠BCD【答案】A.7. (2011重庆市潼南,9,4分)如图,在平行四边形 ABCD 中(AB≠BC ),直线EF 经过其对角线的交点O,且分别交AD 、BC 于点M 、 N ,交BA 、DC 的延长线于点E 、F ,下列结论: ①AO=BO ;②OE=OF ; ③△EAM ∽△EBN ; ④△EAO ≌△CNO ,其中正确的是A. ①②B. ②③C. ②④D.③④【答案】B8. (2011广东东莞,5,3分)正八边形的每个内角为( ) A .120° B .135° C .140° D .144° 【答案】B9. (2011浙江省,8,3分)如图,在五边形ABCDE 中,∠BAE=120°, ∠B=∠E=90°,AB=BC ,AE=DE ,在BC ,DE 上分别找一点M,N ,使得△AMN 的周长最小时,则∠AMN+∠ANM 的度数为( ) A. 100° B .110° C. 120° D. 130°【答案】C10. (2011台湾台北,33)图(十五)为一个四边形ABCD ,其中AC 与BD 交于E 点,且两灰色区域的面积相等。

备战2012中考数学:多边形与平行四边形真题试题汇编400套

备战2012中考数学:多边形与平行四边形真题试题汇编400套

适用精选文件资料分享2012 中考数学:多形与平行四形真(400 套)2012 中考:多形与平行四形真(400 套)一、1. (2011 安徽,6,4 分)如,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分是 AB、AC、CD、BD的中点,四形EFGH的周是() A.7 B.9 C.10 D.11【答案】 D 2. (2011 广广州市, 2,3 分)已知□ ABCD的周32,AB=4,BC=(). A.4 B.12 C.24 D.28 【答案】 B 3. (2011山威海, 3,3 分)在□ ABCD中,点 E AD的中点,接 BE,交AC于点 F,AF:CF=() A .1:2 B.1:3 C.2:3 D.2:5 【答案】A 4. (2011 四川重,9,4 分)下边形都是由同大小的平行四形按必定的律成,此中,第①个形一共有 1 个平行四形,第②个形一共有 5 个平行四形,第③个形一共有11 个平行四形,⋯⋯,第⑥个形中平行四形的个数 ( )⋯⋯①② ③ ④ A.55 B. 42 C.41 D.29 【答案】 C 5.(2011江泰州, 7,3 分)四形 ABCD中,角 AC、BD订交于点 O,出以下四条件:① AB∥CD,AD∥BC;② AB=CD, AD=BC;③ AO=CO,BO=DO;④ AB∥CD,AD=BC.此中必定能判断个四形是平行四形的条件有A .1B .2 C.3 D.4 【答案】 C6. (2011 湖南邵阳, 7,3 分)如(二)所示,中,角 AC,BD订交于点 O,且 AB≠AD,以下式子不正确的选项是()⊥BD B.AB =CDC.BO=OD.∠BAD=∠BCD【答案】A. 7. ( 2011 重市潼南 ,9,4 分)如,在平行四形 ABCD中(AB≠BC),直 EF 其角的交点 O,且分交 AD、BC于点 M、N ,交 BA、DC的延于点 E、F,以下:①AO=BO;②OE=OF;③△EAM∽△ EBN;④△ EAO≌△ CNO,此中正确的选项是 A. ①② B. ②③ C.②④ D.③④【答案】 B 8. (2011广莞 ,5,3 分)正八形的每个内角() A .120° B.135°C.140° D.144°【答案】B 9.(2011 浙江省, 8,3 分)如,在五形 ABCDE中,∠ BAE=120°,∠B=∠E=90°, AB=BC,AE=DE,在 BC,DE上分找一点 M,N,使得△ AMN的周最小,∠ AMN+∠ANM的度数() A. 100° B.110° C. 120° D. 130°【答案】 C 10. (2011 台湾台北,33)( 十五 ) 一个四形,此中与交于 E 点,且两灰色地域的面积相等。

中考数学平行四边形综合题含答案

中考数学平行四边形综合题含答案

中考数学平行四边形综合题含答案一、平行四边形1. 如图,矩形ABCD中,AB=6, BC=4,过对角线BD中点0的直线分别交AB, CD边于点E, F.(1)求证:四边形BEDF是平行四边形;【解析】分析:(1)根据平行四边形ABCD的性质,判定△ BOE^A DOF (ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt A ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出0B,再由勾股定理求出E0,即可得出EF的长.详解:(1)证明::•四边形ABCD是矩形,0是BD的中点,••• / A=90 , AD=BC=4, AB// DC, OB=OD,••• / OBE=Z ODF,在厶BOE和厶DOF中,OBE ODFOB ODBOE DOF•••△BOE^A DOF (ASA),• EO=FO,•四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,BD丄EF,设BE=x 则DE=x AE=6-x,在Rt A ADE 中,DE2=AD2+AE2,• x2=42+ (6-x) 2,13解得:x=-3T BD= ', AD2AB2 =213 ,•/ BD丄EF,二EO=,BE2OB2=2^3• •• EF=2EO=4 13.23点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质, 熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键2. 如图,在 Rt A ABC 中,/ B=90° AC=60cm, / A=60°点D 从点C 出发沿 CA 方向以 4cm/秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀 速运动,当其中一个点到达终点时,另一个点也随之停止运动•设点 D 、E 运动的时间是t秒(O v t w 15 •过点D 作DF 丄BC 于点F ,连接DE , EF.(1) 求证:AE=DF ; (2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由;(3) 当t 为何值时,△ DEF 为直角三角形?请说明理由.15【答案】(1)见解析;(2)能,t=10 ; ( 3) t= 或12. 【解析】 【分析】(1) 利用t 表示出CD 以及AE 的长,然后在直角 △ CDF 中,利用直角三角形的性质求得 DF 的长,即可证明;(2) 易证四边形 AEFD 是平行四边形,当 AD=AE 时,四边形 AEFD 是菱形,据此即可列方 程求得t 的值;(3) △ DEF 为直角三角形,分 / EDF=90和/DEF=90两种情况讨论. 【详解】解:(1)证明:•••在 Rt A ABC 中,/ C=90 — / A=30° ,1 1…AB= —AC=— X 60=30cm2 2•/ CD=4t , AE=2t ,又•••在 Rt A CDF 中,/ C=30 ,1• DF= CD=2t, • DF=AE (2)能,•••DF // AB , DF=AE•••四边形AEFD 是平行四边形,当AD=AE 时,四边形 AEFD 是菱形,即60 - 4t=2t ,解得:t=10 , •••当t=10时,AEFD 是菱形;(3 )若厶DEF 为直角三角形,有两种情况:t=15则 AE=2AD,即 2t 2(60 4t),解得:t=12,15t= 或12时,△ DEF 为直角三角形.23. 如图,△ ABC 中,AD 是边BC 上的中线,过点 A 作AE// BC,过点D 作DE// AB , DE 与 AC 、AE 分别交于点 0、点E ,连接EC. (1) 求证:AD=EC(2) 当/ BAC=Rt/时,求证:四边形 ADCE 是菱形.【答案】(1 )见解析; (2)见解析. 【解析】综上所述,当 ①如图 1,/ EDF=90° DE// BC,则 AD=2AE,即卩 60 - 4t=2 X 2t 解得:【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由/ BAC=90° AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:•/ AE// BC, DE// AB ,•••四边形ABDE是平行四边形,••• AE=BD,••• AD是边BC上的中线,• BD=DC,• AE=DC,又••• AE// BC,•四边形ADCE是平行四边形.⑵证明:•••/ BAO90 ° AD是边BC上的中线.• AD=CD•••四边形ADCE是平行四边形,•四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理•根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键4. 如图,ABCD是正方形,点G是BC上的任意一点,DE丄AG于E, BF// DE,交AG于F.【分析】由四边形ABCD为正方形,可得出 / BAD为90° AB=AD,进而得到/ BAG与/ EAD互余,又DE 垂直于AG,得至U / EAD与/ ADE互余,根据同角的余角相等可得出/ ADE=Z BAF,利用AAS可得出△ ABF^A DAE;利用全等三角的对应边相等可得出BF=AE由AF-AE=EF 等量代换可得证•【详解】T ABCD是正方形,• AD=AB, / BAD=90 °•••DE 丄AG,••• / DEG=Z AED=90 °••• / ADE+Z DAE=90 °又•/ Z BAF+Z DAE=Z BAD=90 ,•Z ADE=Z BAF.•/ BF// DE,•Z AFB=Z DEG=Z AED.在厶ABF与厶DAE中,AFB AEDADE BAF ,AD AB•△ ABF^ △ DAE (AAS).• BF=AE•/ AF=AE+EF• AF=BF+EF点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.5. 如图,在平行四边形ABCD中,AD丄DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF, EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE= BD,求Z EDF的度数.A E B【答案】(1)四边形BCGD是矩形,理由详见解析;(2) Z EDF= 120°【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2 )根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,• •四边形ABCD是平行四边形,••• BC// AD,即卩BC// DG,由折叠可知,BC= DG,•四边形BCGD是平行四边形,•/ AD丄BD,•/ CBD= 90 °•四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,• BD 丄EF, DP= BP,•/ AD丄BD,• EF// AD// BC,AE PD ,1BE BP• AE= BE,• DE是Rt A ADB斜边上的中线,• DE= AE= BE,•/ AE= BD,• DE= BD= BE,•△ DBE是等边三角形,•/ EDB= / DBE= 60 :•/AB// DC,•/ DBC= / DBE= 60 °•/ EDF= 120 :【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度6. 如图,在平面直角坐标系中,直线DE交x轴于点E (30, 0),交y轴于点D (0,140),直线AB: y= x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作3EF丄x轴交直线AB于点F,以EF为一边向右作正方形EFGH(1)求边EF的长;(2)将正方形EFGH沿射线FB的方向以每秒.10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).3 , 404 x+40,3直线AB 与直线DE 的交点P (21, 12), 由题意知F ( 30, 15), ••• EF = 15; (2)①易求 B (0, 5),(1)根据已知点E (30, 0),点D (0 , 40),求出直线 DE 的直线解析式y='x+40,可3求出P 点坐标,进而求出 F 点坐标即可;(2)①易求B (0, 5),当点F 1移动到点B 时,t=10、. 10 10=10;②F 点移动到F'的距离是、、T0t , F 垂直x 轴方向移动的距离是t ,当点H 运动到直线DE 上时在 Rt A F'NF 中-NF =! EM=NG'=15-F'N=15-3t 在' 'NF 3' ' Rt A DMH'中 出丄 -'EM 3 '1 45 1023t=4 , S=- X (12+ ) X 11= ;当点G 运动到直线 DE 上时,2 4 8在 Rt A F'PK 中,=-, F K 3 PK=t-3, F'K=3t-9 ,在 Rt A PKG 中,= t―3 =-, KG 15 3t 9 3t=7, S=15X (15-7) =120.【详解】(1)设直线 将点E ( 30, DE 的直线解析式 y = kx+b , 0),点 D (0, 40),30k b 040【解析】① 当点F 1移动到点B 时,求t 的值;② 当G 1 , H 1两点中有一点移动到直线 DE 上时,请直接写出此时正方形EF 1G 1H 1与厶APE二 BF = 10 .10 ,••• PF = 3 ,10 ,• PF - . 10 t - 3、、10 , 在 Rt A F'PK 中,.10 - 10;在 Rt A F'NF 中,NF =1 NF =3FN = t , F'N = 3t , MH' = FN = t ,EM = NG'= 15 - F'N = 15 - 3t , 在 Rt A DMH'中,MH 4EM 3,. t 4 "15 3t 3 ' • t = 4,• EM = 3, MH' = 4,145 • S =(12) 11 241023•••当点F i 移动到点B 时,t = 10 .10 ②当点H 运动到直线DE 上时,F 点移动到F'的距离是 10 t ,当点G 运动到直线DE 上时,F 点移动到F'的距离是 、10 t ,PK 1••• PK = t - 3, F'K = 3t - 9,• t = 7,• S = 15 x ( 15 - 7)= 120. 【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角 形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影 部分的面积是解题的关键.7.(问题情境)在 △ ABC 中,AB = AC,点P 为BC 所在直线上的任一点,过点P 作PD 丄AB ,PE ± AC ,垂足分别为D 、E,过点C 作CF 丄AB ,垂足为F.当P 在BC 边上时(如 图 1),求证:PD+PE= CF.证明思路是:如图 2,连接AP,由厶ABP 与厶ACP 面积之和等于 △ ABC 的面积可以证得: PD+PE= CF.(不要证明)(变式探究)(1)当点P 在CB 延长线上时,其余条件不变(如图 3),试探索PD PECF 之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点 C 处,点P 为折痕EF 上的任一点,过点 P 作PG 丄BE 、PH 丄BC,垂足分别为 G 、H ,若AD =16 , CF = 6,求 PG+PH 的值.4(迁移拓展)(3)在直角坐标系中,直线 11: y =x+8与直线12: y =- 2x+8相交于点3A ,直线11、12与x 轴分别交于点B 、点C.点P 是直线12上一个动点,若点 P 到直线|1的 距离为2 .求点P 的坐标.在 Rt A PKG 中,PKKGt 3 _ 4 15 3t 9 — 3【答案】【变式探究】证明见解析【结论运用】 8【迁移拓展】(-1, 6)【解析】 【变式探究】连接AP,同理利用△ ABP 与厶ACP 面积之差等于△ ABC 的面积可以证得; 【结论运用】过点E 作EQ 丄BC,垂足为Q ,根据勾股定理和矩形的性质解答即可; 【迁移拓展】分两种情况,利用结论,求得点 P 到x 轴的距离,再利用待定系数法可求出【详解】变式探究:连接AP ,如图3:•/ PD 丄 AB , PE! AC, CF 丄AB ,且 S A ABC = S\ACP - S\ABP , ••• - AB?CF = -AC?PE- - AB?PD.2 2 2•/ AB = AC, • CF = PD- PE;结论运用:过点E 作EQ 丄BC,垂足为Q ,如图④,圏① 图②(1, 10)P 的坐标.•••四边形ABCD是长方形,••• AD= BC, / C= Z ADC= 90 °AD= 16, CM 6,• BF= BC- Cl AD - Cl 5,由折叠可得:DF= BF, Z BEF= Z DEF.DF= 5.•/ Z C= 90 °•DC= .. DF2 CF2、、10262=8•/ EQ丄BC, Z C= Z ADC= 90 °•Z EQC= 90 = Z C= Z ADC.•四边形EQCD是长方形.• EQ= DC= 4.•/AD// BC,•Z DEF= Z EFB•/ Z BEF= Z DEF,•Z BEF= Z EFB.• BE= BF,由问题情境中的结论可得:PG+PH= EQ.•PG+PH= 8.• PG+PH的值为8;迁移拓展:如图,由题意得:A (0, 8), B (6, 0), C (- 4, 0)••• AB= . 6282= 10, BC= 10.AB= BC?(1) 由结论得:P I D I+P I E I = OA= 8•••P I D I = 1 = 2,• P1E1 = 6即点P I的纵坐标为6又点P I在直线12上,• y = 2x+8= 6,•- x=- 1,即点p i的坐标为(-1 , 6);(2) 由结论得:P2E2 - P2D2= OA= 8■/ P2D2 = 2,• P2E2= 10即点P l的纵坐标为10又点p i在直线12上,• y = 2x+8= 10,• x= 1,即点P I的坐标为(1, 10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.8. 如图1,在正方形ABCD中,AD=6,点P是对角线BD上任意一点,连接P A PC过点P 作PE± PC交直线AB于E.(1)求证:PC=PE;(2)延长AP交直线CD于点F.①如图2,若点F是CD的中点,求△ APE的面积;②若△ AP 的面积是 ,则DF 的长为 25(3)如图3,点E 在边AB 上,连接EC 交BD 于点M,作点E 关于BD 的对称点 Q ,连接 7j2PQ, MQ ,过点 P 作 PN //CD 交 EC 于点 N ,连接 QN ,若 PQ=5, MN= —2,则△ MNQ 的3面积是5【答案】(1)略;(2)©8,②4或9 ; ( 3)-6【解析】 【分析】(1 )利用正方形每个角都是 90°对角线平分对角的性质,三角形外角等于和它不相邻的 两个内角的和,等角对等边等性质容易得证 ;(2)作出△ ADP 和厶DFP 的高,由面积法容易求出这个高的值•从而得到△ PAE 的底和高,并求出面积第2小问思路一样,通过面积法列出方程求解即可 ;(3)根据已经条件证出 △MNQ 是直角三角形,计算直角边乘积的一半可得其面积 .【详解】(1)证明:•••点P 在对角线BD 上,•••△ ADP ^A CDP••• AP=CP / DAP =Z DCP•/ PE 丄 PC, • / EPC=/ EPB+Z BPC=90, °•/ / PEA=/ EBP+/ EPB=45+90 -/ BPC=135-/ BPC, •/ / PAE=90-° DAP = 90 -/ DCP / DCP=/ BPC-/ PDC=/ BPC-45 , ° • / PAE=90-(° BPC-45 )= 135 -/BPC, • / PEA=/ PAE, •PC=PE;a(2)①如图2,过点P分别作PH丄AD,PG丄CD垂足分别为H、G延长GP交AB于点•••四边形ABCD 是正方形,P 在对角线上, •四边形HPGD 是正方形, • PH=PG,PM 丄 AB,设 PH=PG=a,••• AM=HP=2,MP=MG -PG=6-2=4,又:PA=PE,• AM=EM,AE=4,1S n APE = — EA MP2解得b=2.4或3.6,•当 b=2.4 时,DF=4;当 b = 3.6 时,DF = 9, 即DF 的长为4或9; (3)如图,M. H.••• F 是CD 中点, AD = 6,贝U FD =3,S n ADF=9,T S n ADF =S n ADP1 Sn DFP =AD2PH -DF2PG ,•• 1a 6 1a2 23 9,解得 a=2.8,②设HP = b,由①可得 AE=2b,MP=6-b,• S nApE =22b 6 216 b 251Sn ADF =Sn ADPSn DFP = — AD2PH 丄DF 2 PG ,1 6 b 1 DF b =DF2 2 26,•/ E 、Q 关于 BP 对称,PN// CD,•••/ 1= Z 2, / 2+ / 3=/ BDC=45,°••• / 1 + Z 4=45 ,° • / 3=/ 4,易证△ PEM B △ PQM, △ PNQ B △ PNC, • / 5=/ 6, / 7=/ 8 ,EM=QM,NQ=NC, • / 6+/ 7=90 °• △ MNQ 是直角三角形, 设EM=a,NC=b 列方程组可得-ab=5,2 6V MNQ6【点睛】本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、全等三角 形的判定与性质等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角 形全等是解决问题的关键•要注意运用数形结合思想•9. 在平面直角坐标系中, O 为原点,点A (- 6, 0)、点C (0, 6),若正方形 点O 顺时针旋转,得正方形 OA B',C 记旋转角为 a:(1) 如图①,当a= 45°时,求BC 与A B 勺交点D 的坐标; (2) 如图②,当a= 60°时,求点B'的坐标;(3) 若P 为线段BC 的中点,求AP 长的取值范围(直接写出结果即可).b 27,2OABC 绕【答案】(1) (6 6 2,6) ;( 2) (3.3 3,3 3一3) ; ( 3) 3「2 3剟AP 3「2 3.【解析】【分析】(1 )当a= 45°时,延长0A经过点B,在Rt A BA D中,/ OBC= 45°, A'肛6J2 6,可求得BD 的长,进而求得CD的长,即可得出点D的坐标;(2)过点C作x轴垂线MN,交x轴于点M,过点B作MN的垂线,垂足为N,证明△ OMC^A C NB可得C N 0M = 3后,B'N C'4 3,即可得出点B的坐标;(3) 连接OB, AC相交于点K,贝U K是0B的中点,因为P为线段BC的中点,所以PK=10C= 3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围.2【详解】解:(1) •/ A (- 6, 0 )、C (0, 6), 0 (0, 0),•••四边形OABC是边长为6的正方形,当a= 45°时,如图①,延长0A经过点B,■/ 0B= 6 2 , 0A = 0A= 6, / OBC= 45°,•- A = 6近 6 ,•-BD=( 6,2 6)X. 2 12 6.2 ,• CD= 6-( 12 6 2 ) =6 2 6 ,图①(2)如图②,过点C'作x轴垂线MN,交x轴于点M,过点B作MN的垂线,垂足为N,•/ / OC ' =B90 °••• / OC 'M 90 °- Z B ' CtC' B ' N•/ OC '= B ' ,C'Z OMC'=Z C ' NB 90 ° • △ OMC' ◎△ C ' NB AAS ), 当a= 60°时,•/ Z A ' OC90 ° OC = 6,• Z C ' OM30 °• C ' = OM = 3品,B ' = C ' M 3, •••点B 的坐标为3.3 3,3 3.3 ;【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.( 利用中位线定理得出点 P 的轨迹.•/ AK = 3 2 , •AP 最大值为3 2 3,AP 的最小值为 ^2 3,3)问解题的关键是(3)如图③,连接OB , AC 相交于点K, 则K 是OB 的中点,••• P 为线段BC 的中点,1• PK = — OC = 3,2• P 在以K 为圆心,3为半径的圆上运动,10. 如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B处.AB与CD交于点E.(1) 求证:△ AED^A CEB;(2) 过点E作EF丄AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C / B=Z D=Z B',且/ AED=Z CEB;利用AAS证明全等,则结论可得;(2)由厶AED^A CEB可得AE=CE且EF丄AC,根据等腰三角形的性质可得EF垂直平分AC, / AEF=Z CEF 即AF=CF, / CEF=/ AFE=Z AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1) T四边形ABCD是平行四边形••• AD= BC, CD// AB, / B= / D•••平行四边形ABCD沿其对角线AC折叠• BC= B'C, / B= / B'•/ D= / B', AD= B'C且 / DEA= / B'EC•△ADE^A B'EC(2)四边形AECF是菱形•/ △ADE^A B'EC• AE= CE•/ AE= CE EF± AC• EF 垂直平分AC, / AEF= / CEF• AF= CF•「CD// AB•/ CEF= / EFA且 / AEF= / CEF•/ AEF= / EFA• AF = AE• AF = AE= CH CF•四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.11. 如图,在正方形 ABCD 中,点G 在对角线BD 上(不与点 B , D 重合),GE 丄DC 于点 E , GF 丄BC 于点F ,连结AG. AG, GE GF 长度之间的数量关系,并说明理由;【解析】试题分析:(1)结论:AG 2=GE 2+GF 2 •只要证明GA=GC 四边形 GE=CF 在Rt A GFC 中,禾U 用勾股定理即可证明;(2)作BN 丄AG 于N ,在BN 上截取一点 M ,使得 AM=BM .设AN=x .易证 AM=BM=2x , MN= J ・x ,在 Rt A ABN 中,根据 AB 2=AN 2+BN 2,可得 1=x 2+ (2x+,' x ) 2,解得试题解析:(1)结论:AG 2=G E 2+G F 2. 理由:连接CG.•••四边形ABCD 是正方形, ••• A 、C 关于对角线BD 对称, •••点 G 在 BD 上, • GA=GC,••• GE 丄DC 于点E , GF 丄BC 于点F , • / GEC=/ ECF 2 CFG=90 ,° •四边形EGFC 是矩形, • CF=GE在 Rt A GFC 中,•/ CG ?=G F 2+CF 2, • AG 2=G F 2+G E ?.(2)作BN 丄AG 于N ,在BN 上截取一点 M ,使得 AM=BM .设AN=x .•/ / AGF=105 , ° / FBG=/ FGB=/ ABG=45 ,°• / AGB=60 , / GBN=30 , / ABM=/ MAB=15 : • / AMN=30 ;• AM=BM=2x , MN= x , 在 Rt A ABN 中,•/ ABJ A ^+BN 2, •仁x 2+ (2x+J x ) 2,(1 )写出线段(2 )若正方形ABCD 的边长为1, / AGF=105,求线段 【答案】(1) AG 2=G E ?+G F 2 (2)=—EGFC 是矩形,推出再根据BG=BN^ cos30即可解决问题即; ,解得:x=5 , CE=8- x=3 , •••"'.解得x=L宀,4• RN=U * I12.如图,在矩形 ABCD 中,点E 在边CD 上,将该矩形沿 AE 折叠,使点D 落在边BC 上 的点F 处,过点F 作FG// CD,交AE 于点G ,连接DG.(1) 求证:四边形 DEFG 为菱形;CE1(2 )若 CD=8, CF=4,求 的值.3【答案】(1)证明见试题解析;(2)弓 【解析】试题分析:(1)由折叠的性质,可以得到 DG=FG ED=EF , /仁/ 2,由FG// CD,可得 /仁/ 3,再证明FG=FE 即可得到四边形 DEFG 为菱形;CE(2) 在Rt A EFC 中,用勾股定理列方程即可 CD CE,从而求出"再的值. 试题解析:(1)由折叠的性质可知: DG=FG ED=EF /仁/2, •/ FG// CD, 2=Z 3 ,• FG=FE •- DG=GF=EF=DE •四边形 DEFG 为菱形; (2 )设DE=x 根据折叠的性质,EF=DE=x EC=8- x ,在Rt A EFC 中,CE\ 33、勾股定理,4、直角三角形30度的性2、矩形的判定和性质,质••• BG=BN - cos30 气1ADE3 0 1 c考点:1翻折变换(折叠问题); 2 .勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.13 •如图1所示,(1)在正三角形 ABC 中,M 是BC 边(不含端点B 、C )上任意一点,P 是BC 延长线上一点, N 是/ ACP 的平分线上一点,若 / AMN=60,求证:AM=MN . (2)若将(1)中 正三角形ABC 改为 正方形ABCD , N 是/DCP 的平分线上一点,若 / AMN=90 °则AM=MN 是否成立?若成立,请证明;若不成立,说明理由.(3)若将(2)中的 正方形ABCD 改为 正n 边形厲险心:其它条件不变,请你猜想:1)要证明AM=MN ,可证AM 与MN 所在的三角形全等,为此,可在A B 上取一 AE=CM,连接ME ,利用ASA 即可证明△ AEM ^ △ MCN ,然后根据全等三角形的对应边成比例得出 AM=MN .(2)同(1),要证明AM=MN ,可证AM 与MN 所在的三角形全等,为此,可在AB 上取一点E ,使AE=CM,连接ME ,利用ASA 即可证明△ AEM ◎△ MCN ,然后根据全等三角形 的对应边成比例得出 AM=MN .详(1)证明:在边 AB 上截取AE=MC,连接ME .••• / NMC=180 -Z AMN- / AMB=180 B-Z AMB=Z MAE ,【解析】 分析:( 点E ,使BE=AB-AE=BC-MC=BM••• / BEM=60 ° ••• / AEM=120 ,°••• N是/ ACP的平分线上一点,•/ ACN=60 ;:• / MCN=120 °在厶AEM 与厶MCN 中,/ MAE=Z NMC, AE=MC, / AEM=Z MCN ,•△AEM^A MCN ( ASA ,•AM=MN.(2 )解:结论成立;理由:在边AB上截取AE=MC,连接ME.•••正方形ABCD中,/ B=Z BCD=90 , AB=BC•/ NMC=180 -Z AMN- / AMB=180 -°Z B-Z AMB=Z MAB=Z MAE,BE=AB-AE=BC-MC=BM•Z BEM=45 ° • Z AEM=135 °••• N是Z DCP的平分线上一点,•Z NCP=45 , • Z MCN=135 °在厶AEM 与厶MCN 中,Z MAE=Z NMC, AE=MC, Z AEM=Z MCN ,• △AEM^A MCN ( ASA ,•AM=MN.(3)由(1)( 2)可知当Z A n-2MN等于n边形的内角时,结论A n-2M=MN仍然成立; n 2180°即Z A n-2MN= 时,结论A n-2M=MN仍然成立;n故答案为[n 2 180 ].点睛:本题综合考查了正方形、等边三角形的性质及全等三角形的判定,同时考查了学生的归纳能力及分析、解决问题的能力.难度较大.14. 如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3, 3).将正方形ABCO 绕点A顺时针旋转角度a ( 0°< aV 90° ,得到正方形ADEF ED交线段OC于点G, ED的延长线交线段BC 于点P,连AP、AG.(1)求证:△ AOG^A ADG;(2 )求/ PAG的度数;并判断线段OG、PG BP之间的数量关系,说明理由;(3) 当/仁Z 2时,求直线PE的解析式;(4 )在(3 )的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.JaP /G C 八E【答案】(1)见解析(2)/ PAG =45, PG=OG+BP理由见解析(3) y=^x- 3.( 4)【解析】试题分析:(1)由AO=AD, AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△ AOG^^ ADG即可.⑵首先根据三角形全等的判定方法,判断出△ ADP^ △ ABP,再结合△ AOG^ △ ADG,可得 / DAP=Z BAP, / 仁/ DAG;然后根据/ 1+ / DAG+Z DAP+Z BAP=90,求出/ PAG的度数;最后判断出线段OG PG、BP之间的数量关系即可. ⑶首先根据△ AOG^^ ADG,判断出Z AGO=Z AGD;然后根据Z 1+ Z AGO=90 , Z 2+Z PGC=90,判断出当Z 1 = Z 2 时,Z AGO=Z AGD=Z PGC-而Z AGO+Z AGD+Z PGC=180 ,°求出Z仁Z 2=30;最后确定出P、G两点坐标,即可判断出直线PE 的解析式.(4) 根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M 在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可./ O = AD试题解析:⑴在Rt A AOG和Rt A ADG 中,:(HL) /• △ AOG^A ADG.AG-= AG(2)在Rt A ADP 和Rt A ABP 中,〔口严二△ ADP^ △ ABP,贝U Z DAP=Z BAP;AP = AP•/△AOG^A ADG, ••• Z 1 = Z DAG;又T Z 1 + Z DAG+Z DAP+Z BAP=90 ,°••• 2 Z DAG+2Z DAP=90 / • Z DAG+Z DAP=45 ,°•/ Z PAG=Z DAG+Z DAP, • Z PAG=45 ;•/△AOG^A ADG, • DG=OG, •/ △ADP^A ABP, • DP=BF, • PG=DG+DP=OG+BP(3)解:•/△AOG^A ADG, • Z AGO=Z AGD ,又T Z 1 + Z AGO=90 , Z 2+Z PGC=90°,Z 仁Z 2 ,• Z AGO=Z PGC, 又T Z AGO=Z AGD , • Z AGO=Z AGD=Z PGC,又T Z AGO+Z AGD+Z PGC=180 , •• Z AGO=Z AGD=Z PGC=180 - 3=60;• Z 1 = Z 2=90 - 60 =30 ;在Rt A AOG 中,T AO=3,• G点坐标为(J , 0) , CG=3-」,在Rt A PCG中,1),二P点坐标为:(3, 3」-3 ),设直线PE的解析式为:y=kx+b,贝卩[k = J3 厂解得:[ r,二直线PE的解析式为y=Jj x- 3.ft =^3k⑷①如图1,当点M在x轴的负半轴上时,,•/ AG=MG,点A坐标为(0, 3), •••点M坐标为(0,- 3).②如图2,当点M在EP的延长线上时,,由(3),可得/ AGO=Z PGC=60°• EP与AB的交点M,满足AG=MG,•/ A点的横坐标是0,G点横坐标为J ,•- M的横坐标是2\-,纵坐标是3,•••点M坐标为(: ,3).综上,可得点M坐标为(0,- 3)或(2「,3).考点:几何变换综合题.15. (本题满分10分)如图1,已知矩形纸片ABCD中,AB= 6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP= x cm , DM = y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)① 当折痕MN的端点N在AB上时,求当△ PCN为等腰三角形时x的值;② 当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式必+兰1【答案】(1) AD= 3. ; ( 2) y= —「其中,0 v x v 3; ( 3) x= ; ( 4)3\矽+叭仔S= .【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt A MPD的勾股定理求出函数关系式;( 3)过点N作NQ丄CD,根据Rt A NPQ的勾股定理进行求解;(4)根据Rt A ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式•试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm根据Rt A PBC的勾股定理可得:AD=3\ .(2)由折叠可知AM = MP,在Rt A MPD中,|:匚八;=::•••卜几沪7WL y=—「其中,0v x v 3.(3)当点N 在AB上, x>3 二PCC3,而PN>^,N O^.•••△PCN为等腰三角形,只可能NC= NP.过N点作NQ丄CD,垂足为Q,在Rt A NPQ中,卜孑…•::存=*心1 ? 1 2(3-詐 +心)2 =(3 + 昇 -•' - 解得x=2.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.* + 27设MP= y,在RgADM中,总心炉=^声,即:—H —疋用厂=沪.• S= 1考点:函数的性质、勾股定理.。

中考数学平行四边形的综合题试题附答案

中考数学平行四边形的综合题试题附答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)∠BHO=45°.【解析】试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;(2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立;(3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO 平分∠BHG,即∠BHO=45°.试题解析:(1)①∵四边形ABCD为正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;②AG⊥BE.理由如下:∵四边形ABCD为正方形,∴AB=DC,∠BAD=∠CDA=90°,在△ABE和△DCF中,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,∵∠DAG=∠DCG,∴∠DAG=∠ABE,∵∠DAG+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AHB=90°,∴AG⊥BE;(2)由(1)可知AG⊥BE.如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.∴∠MON=90°,又∵OA⊥OB,∴∠AON=∠BOM.∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.在△AON与△BOM中,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN为正方形,∴HO平分∠BHG.(3)将图形补充完整,如答图2示,∠BHO=45°.与(1)同理,可以证明AG⊥BE.过点O作OM⊥BE于点M,ON⊥AG于点N,与(2)同理,可以证明△AON≌△BOM,可得OMHN为正方形,所以HO平分∠BHG,∴∠BHO=45°.考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质2.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.3.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵22AD AB +13 ∴OB=1213 ∵BD ⊥EF ,∴22BE OB -213 ∴413 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键4.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .()1请直接写出线段AF ,AE 的数量关系;()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.【答案】(1)证明见解析;(2)①AF 2AE =②42或22.【解析】【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明EKF ≌EDA 再证明AEF 是等腰直角三角形即可;②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.【详解】()1如图①中,结论:AF 2AE =.理由:四边形ABFD 是平行四边形,AB DF ∴=,AB AC =,AC DF ∴=,DE EC =,AE EF ∴=,DEC AEF 90∠∠==,AEF ∴是等腰直角三角形,AF 2AE ∴=.故答案为AF 2AE =.()2①如图②中,结论:AF 2AE =.理由:连接EF ,DF 交BC 于K .四边形ABFD 是平行四边形,AB//DF ∴,DKE ABC 45∠∠∴==,EKF 180DKE 135∠∠∴=-=,EK ED =,ADE 180EDC 18045135∠∠=-=-=,EKF ADE ∠∠∴=, DKC C ∠∠=,DK DC ∴=,DF AB AC ==,KF AD ∴=,在EKF 和EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩, EKF ∴≌EDA ,EF EA ∴=,KEF AED ∠∠=,FEA BED 90∠∠∴==,AEF ∴是等腰直角三角形,AF2AE∴=.=时,四边形ABFD是菱形,设AE交CD于H,易知②如图③中,当AD AC=+=,EH DH CH2===,22=-=,AE AH EH42AH(25)(2)32=时,四边形ABFD是菱形,易知如图④中当AD AC=-=-=,AE AH EH32222综上所述,满足条件的AE的长为4222【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.5.如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当∠B=70°时,求∠AEC的度数;(3)当△ACE为直角三角形时,求边BC的长.【答案】(1)()22303y x x x =-++<<;(2)∠AEC =105°;(3)边BC 的长为2117+. 【解析】试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∠AET =∠B =70°.又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴22221y x =+-, 则()22303y x x x =-++<<(2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∴∠AET =∠B =70°.又AD =AE =1,∴∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,∴∠AEC =70°+35°=105°.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2.②当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-- 则22411724AD CA x x AC CB x x -=⇒=⇒=-(舍负) 易知∠ACE <90°,所以边BC 117+ 综上所述:边BC 的长为2117+.点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.6.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【答案】(1)见解析;(2)能,t=10;(3)t=152或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.【详解】解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=12AC=12×60=30cm,∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=12CD=2t,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;(3)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=152,②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t2(604t)=-,解得:t=12,综上所述,当t=152或12时,△DEF为直角三角形.7.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E 是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.【答案】(1)见解析;(2)S平行四边形ADBC=32.【解析】【分析】(1)在Rt△ABC中,E为AB的中点,则CE=12AB,BE=12AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33∴S平行四边形BCFD=3×3393,S△ACF=12×3×3332,S平行四边形ADBC=32.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)43;(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S 四边形AECF =S △ABC ===; (3)解:由“垂线段最短”可知,当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又S △CEF =S 四边形AECF ﹣S △AEF ,则△CEF 的面积就会最大.由(2)得,S △CEF =S 四边形AECF ﹣S △AEF =﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE ≌△ACF 是解题的关键.9.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =54或52-或32. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4, 代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,x=54; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG ,∴EH HG AF AG =, ∴124222x x x -=--, ∴125555x x -+==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE ,∴CE DE CD DF=,∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32, 综上,x =54或5-5或32. 【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.10.如图,已知矩形ABCD 中,E 是AD 上一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC . (1)求证:△AEF ≌△DCE .(2)若DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF ⊥CE ,求证∠AEF=∠ECD .再利用AAS 即可求证△AEF ≌△DCE . (2)利用全等三角形的性质,对应边相等,再根据矩形ABCD 的周长为32cm ,即可求得AE 的长.详解:(1)证明:∵EF ⊥CE ,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD .在Rt △AEF 和Rt △DEC 中,∠FAE=∠EDC=90°,∠AEF=∠ECD ,EF=EC .∴△AEF ≌△DCE .(2)解:∵△AEF ≌△DCE .AE=CD .AD=AE+4.∵矩形ABCD 的周长为32cm ,∴2(AE+AE+4)=32.解得,AE=6(cm ).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.。

数学中考2012年全国各地市中考数学模份-33平行四边形166

数学中考2012年全国各地市中考数学模份-33平行四边形166

平行四边形一、选择题1、(2012苏州市吴中区教学质量调研)如图,在平行四边形ABCD 中,BD =4cm ,将平行四边形ABCD 绕其对称中心O 旋转90°,则点D 经过的路径长为( )(A)4πcm (B)3πcm (C)2πc m (D) πcm 答案:D2、(2012双柏县学业水平模拟考试)已知□ABCD 的周长为32,AB =4,则BC 等于【 】 A .4 B .12 C .24 D .28 答案:B3、(海南省2012年中考数学科模拟)如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A. AB=CD B. AD=BC C. AB=BC D .AC=BD 答案:D4、(2012年福州模拟卷)下列四边形中,对角线不可能相等的是 A .直角梯形 B .正方形 C .等腰梯形 D .长方形 答案: A二、填空题1、如图,平行四边形ABCD 中,AB =6,BC =4,∠A =60°, 要用一块矩形铝板切割出这样的平行四边形,使废料最少, 则所需铝板的面积最小应是_______ 答案:3202(2012年南岗初中升学调研).在ABCD 中,对角线AC 、BD 相交于点0,点E 在边AD 上,且AE :DE=1:3,连结BE ,BE 与AC 相交于点M,若AC=62,则M0的长 是.A B C D 第1题图答案:9253、(2012广西贵港)如图所示,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD 15=2cm ,S △BQC 25=2cm ,则阴影部分的面积为 2cm . 答案:404、(盐城地区2011~2012学年度适应性训练)如图,□ABCD 中,∠A =120°,则∠1= ▲°.答案605、(2012年香坊区一模)如图,平行四边形ABCD 的对角线AC 、BD 相交于点0,点E 是CD 的中点,∆ABD 的周长为l6cm ,则∆DOE 的周长是 cm 答案:8三、解答题1(西城2012年初三一模).如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30º,EF ⊥AB ,垂足为F ,连结DF . (1)求证:AC =EF ;(2)求证:四边形ADFE 是平行四边形.答案:略2、(2012年上海青浦二模)如图,在平行四边形ABCD 中,5AB =,8BC =,AE BC ⊥,垂足为E ,53cos =B . (1)求BE 、DE 的长; (2)求CDE ∠的正切值.A BCDE F 1120°DC B A答案:解:(1) ∵Rt △ABE 中,ABBEB =cos , ∴BE=AB 3535cos =⨯=B . ∴AE =4352222=-=-BE AB ,∵□ABCD 中,AD //BC ,∴∠DAE =∠AEB =90º,AD =BC =8, ∴DE=54842222=+=+AD AE . (2)∵CD =AB =5,CE =BC –BE =8–3=5,∴CD =CE ,∴∠CDE =∠CED=∠ADE .∴tan ∠CDE =tan ∠ADE =2184==AD AE . 3、(2012年浙江丽水一模)如图,已知平行四边形ABCD 中, 点E 为BC 边的中点,延长DE AB ,相交于点F . 求证:CD BF =.答案:证明:∵四边形ABCD 是平行四边形,DC AB ∴∥,即DC AF ∥. 1F ∴∠=∠,2C ∠=∠.∵E 为BC 的中点,CE BE ∴=. DCE FBE ∴△≌△(SAS).CD BF ∴=4、(2012年浙江金华一模)(本题8分)已知:如图,在□ABCD 中,E 是CA 延长线上的点,F 是AC 延长线上的点,且AE =CF .求证:(1)△ABE ≌△CDF ;(2)BE ∥DF .答案:第1题图12 3EDCFBA第1题答图ADBCFEDC F B AE O(1)5,(2')(1')180(1')(1')ABCD AB CD AB CD BAC DCA BAC BAE DCA DCF BAE DCF AE CF ABE CDF ∴=∴∠=∠∠+∠=∠+∠=∴∠=∠=∴∆≅∆共分四边形是平行四边形22'1')ABE CDFE F BE DF ∆≅∆∴∠=∠∴()共3分()(5、已知:如图,BD 为平行四边形ABCD 的对角线,O 为BD 的中点,EFBD ⊥于点O ,与AD ,BC 分别交于点E F ,. 求证:⑴DOE BOF ∆∆≌. ⑵DE DF =答案:略6、如图,四边形ABCD 是平行四边形,△AB’C 和△ABC 关于AC 所在的直线对称,AD 和B’C 相交于点O ,连接BB’.(1)请直接写出图中所有的等腰三角形(不添加字母); (2)求证:△AB’O ≌△CDO .7(2012山东省德州一模)已知:如图,在△ABC 中,D 、E 、F 分别是各边的中点,AH 是边BC 上的高.那么,图中的∠DHF 与∠DEF 相等吗?为什么?答案:解:∠DHF=∠DEF ……………………………1’ 如图. ∵AH ⊥BC 于HO B'AB C D EFDABCH又∵D 为AB 的中点 ∴DH=21AB=AD ∴∠1=∠2,同理可证:∠3=∠4∴∠1+∠3=∠2+∠4即∠DHF=∠DAF ……… 4’ ∵E 、F 分别为BC 、AC 的中点 ∴EF ∥AB 且EF=21AB 即EF//AD 且EF=AD ∴四边形ADEF 是平行四边形………………7’ ∴∠DAF=∠DEF ∴∠DHF=∠DEF ……………8’8、 (2012兴仁中学一模)(10分)如图,在□ABCD 中,E 为BC 的中点,连接DE .延长DE 交AB 的延长线于点F .求证:AB=BF .【答案】解:由□ABCD 得AB ∥CD , ∴∠CDF =∠F ,∠CBF =∠C . 又∵E 为BC 的中点, ∴△DEC ≌△FEB . ∴DC =FB .由□ABCD 得AB =CD , ∵DC =FB ,AB =CD , ∴AB =BF .9、(2012年北京市延庆县一诊考试)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB =AF .EBCDAF证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD . ∴∠F =∠2, ∠1=∠D∵E 为AD 中点, ∴AE =ED .在△AEF 和△DEC 中21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC .∴AF =CD . ∴AB =AF .10、(杭州市2012年中考数学模拟)如图:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,与两坐标轴交点为点A 和点C ,与抛物线2y ax ax b =++交于点B ,其中点A (0,2),点B (– 3,1),抛物线与y 轴交点D (0,– 2).(1) 求抛物线的解析式; (2) 求点C 的坐标;(3) 在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.答案:解:(1) 将(–3,1),(0,–2)代入得:1193222a a b a b b ⎧=-+=⎧⎪⎪⎨⎨-=⎪⎪⎩=-⎩解得 ∴ 抛物线的解析式为:211222y x x =+- (2) 过B 作BE ⊥x 轴于E ,则E (–3,0),易证△BEC ≌△COA∴ BE = AO = 2 CO = 1 ∴ C (–1,0)(3) 延长BC 到P ,使CP = BC ,连结AP ,则△ACP 为以AC 为直角边的等腰直角三角形 过P 作PF ⊥x 轴于F ,易证△BEC ≌△DFC ∴ CF = CE = 2 PF= BE = 1 ∴ P (1,– 1)将(1,– 1)代入抛物线的解析式满足 若90CAP ∠=︒,AC = AP 则四边形ABCP 为平行四边形过P 作PG ⊥y 轴于G ,易证△PGA ≌△CEB ∴ PG = 2 AG = 1 ∴ P (2,1)在抛物线上∴ 存在P (1,– 1),(2,1)满足条件 11.(2012广西贵港)(本题满分7分)如图所示,在平行四边形ABCD 的各边DA CD BC AB 、、、上,分别取点N M L K 、、、,使DN BL CM AK ==、.求证:四边形KLMN 为平行四边形.答案:证明:∵四边形ABCD 是平行四边形.∴D B C A CD AB BC AD ∠=∠∠=∠==,,,……………1分 ∵DN BL CM AK ==,,∴AN CL DM BK ==, ……………2分∴△AKN ≌△CML ,△BKL ≌△DMN ………………………… 4分 ∴MN KL ML KN ==, …………………………6分∴四边形KLMN 是平行四边形. ………………………………………7分12(柳州市2012年中考数学模拟试题)(12分)如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上.(1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在一点P ,使得四边形DCEP 是平行四形?若存在,请求出此时P 点的坐标;若不存在,请说明理由.ABCD MLKN答案:(1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ∴ m=1.设所求二次函数的关系式为y=a(x-1)2.∵ 点A(3,4)在二次函数y=a(x-1)2的图象上, ∴ 4=a(3-1)2, ∴ a=1.∴ 所求二次函数的关系式为y=(x-1)2. 即y=x 2-2x+1. (2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E =(x+1)-(x 2-2x+1) =-x 2+3x. 即h=-x 2+3x (0<x <3). (3) 存在.解法1:要使四边形DCEP 是平行四边形,必需有PE=DC.∵ 点D 在直线y=x+1上,∴ 点D 的坐标为(1,2),∴ -x 2+3x=2 .即x 2-3x+2=0 .解之,得 x 1=2,x 2=1 (不合题意,舍去) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形. 解法2:要使四边形DCEP 是平行四边形,必需有BP ∥CE. 设直线CE 的函数关系式为y=x+b.∵ 直线CE 经过点C(1,0), ∴ 0=1+b,∴ b=-1 .∴ 直线CE 的函数关系式为y=x-1 .∴ ⎩⎨⎧+-=-=1212x x y x y 得x 2-3x+2=0. 解之,得 x 1=2,x 2=1 (不合题意,舍去)∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形.13、(2012年上海市静安区调研)已知:如图,在□ABCD 中,AB =5,BC =8,AE ⊥BC ,垂足为E ,53cos =B . 求:(1)DE 的长; (2)∠CDE 的正弦值. 答案:解:(1) ∵Rt △ABE 中,ABBE B =cos ,…………………………………………………(1分) ∴BE=AB 3535cos =⨯=B . ……………………………………………………(1分)E BA C PO xy D (第1题图) ABC ED∴AE =4352222=-=-BE AB ,…………………………………………(2分)∵□ABCD 中,AD //BC ,∴∠DAE =∠AEB =90º,AD =BC =8,………………(1分)∴DE=54842222=+=+AD AE .………………………………………(1分)(2)∵CD =AB =5,CE =BC –BE =8–3=5,∴CD =CE ,………………………………(1分)∴∠CDE =∠CED=∠ADE .………………………………………………………(1分)∴sin ∠CDE =sin ∠ADE =55544==DE AE .……………………………………(2分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形
【双基检测】 一.选择题:
1.(2012聊城)如图,四边形ABCD 是平行四边形,点E 在边BC 上,如果点F 是边AD 上的点,那么△CDF 与△ABE 不一定全等的条件是( )
A .DF=BE
B .AF=CE
C .CF=AE
D .CF∥AE
2.(2011广州)已知□ABCD 的 周长为32,AB =4,则BC =( )
A.4
B.12
C.24
D.28
3.(2012武汉)在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB=5,BC=6,则CE+CF 的值为( ) A . 11+ B . 11﹣ C . 11+
或11﹣
D . 11﹣
或1+
4. ( 2012巴中)不能判定一个四边形是平行四边形的条件是( ) A.两组对边分别平行 B.一组对边平行另一组对边相等
C.一组对边平行且相等
D.两组对边分别相等
5.(2012绥化)如图,在平心四边形ABCD 中,E 为CD 上一点,DE :EC=2:3,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则DEF S ∆:EBF S ∆:ABF S ∆=( )
A .2:5:25
B .4:9:25
C .2:3:5
D .4:10:25 6.(2012莱芜)如图,在梯形ABCD 中,AD ∥BC ,∠BCD=90°,
BC=2AD ,F 、E 分别是BA 、BC 的中点,则下列结论不正确的是( )
A .△ABC 是等腰三角形
B .四边形EFAM 是菱形
C .ADC BEF S S ∆∆=
2
1 D .DE 平分∠FDC
7.(2011山东)如图,在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF :
CF =( ) A .1:2 B .1:3 C .2:3 D .2:5
8.(2012泰安)如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB ,垂足为E ,若∠EAD=53°,则∠BCE 的度数为( ) A.53° B.37° C.47° D.127°
9.(2011柳州)如图5-4-5,在平行四边形ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形的个数共有( ) A .12个 B .9个 C .7个
D .5个
10.(2011泰州)四边形ABCD 中,对角线AC 、BD 相交于点O ,给出
下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC .其中一定能判定这个四边形是平行四边形的条件有( ) A .1组 B .2组 C .3组 D .4组
11.(2012成都)如图,将□ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.
E
12.(2012泸州)如图,在□ABCD 中,若AB=5cm , BC=4cm ,则□ABCD 的周长为 cm .
13.(2011临沂)如图,□ ABCD 中,E 是BA 延长线上一点,AB =AE ,连结CE 交AD 于点
F ,若CF 平分∠BCD ,AB =3,则BC 的长为 .
15. 如图,E 、F 分别是□ ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若APD S ∆=15,BQC S ∆=25,则阴影部分的面积为 .
三、解答题
16.(2012泰州)如图,四边形ABCD 中,AD ∥BC,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE=CF ,求证:四边形ABCD 是平行四边形.
17.(2012广安)如图8,四边形ABCD 是平行四边形,点E 在BA 的延长线上,且BE=AD ,点F 在AD 上,AF=AB 。

求证:△AEF ≌△DFC 。

18.(2012黄石)如图(8)所示,已知在平行四边形ABCD 中,BE =DF.求证:∠DAE =∠BCF.
19.(2012湖州)已知,如图,在□ABCD 中,点F 在AB 的延长线上,且BF=AB ,连接FD 交BC 于点E 。

(1)说明△DCE ≌△FBE 的理由; (2)若EC=3,求AD 的长。

20.(2012青岛)已知:如图,四边形ABCD 的对角线AC 、BD 交于点O ,BE ⊥AC 于F ,点O 既是AC 的中点,又是EF 的中点.
⑴求证:△BOE ≌△DOF ;
⑵若OA=1
2BD ,则四边形ABCD 是什么特殊四边形?说明理由.
21.(2012临沂)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,
且AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形,
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
【探究创新】
22.(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB 于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.。

相关文档
最新文档