2012年上海黄浦中考二模数学试题含答案

合集下载

2012黄浦区二模试卷答案

2012黄浦区二模试卷答案

答案要点及评分标准一阅读(80分)(一)(16分)1.(2分)B2.(2分)卖桔子不是为了赚钱,而是为研究经济理论。

3.(3分)C4.(2分)强调顾客相信自己买到了足够便宜的商品。

5.(3分)照应标题,用卖桔贯穿全文;(1分)与首段呼应,突出实证研究的重要性;(1分)肯定自己的研究结论,委婉批评史德拉的观点。

(1分)6.(4分)可以同时同地将顾客分开来获取利润;顾客付价的高低有时与顾客所掌握的讯息有关;特定情况下,只有价格分歧才能赚到钱。

(答对1点给2分,答对2点给3分,答对3点给4分)(二)(20分)7.(2分)增强语势;(1分)表明二郎镇先民未必是隐居者,进而猜测他们定居此地的各种缘由。

(1分)8.(3分)从程度上,对形容的事物起到强调的作用;突出了“二郎镇”与“大山之外”的不同。

(答对1点给2分,答对2点给3分)9.(3分)照应第②段的“静谧”,(1分)进一步表现了街巷古老、神秘和幽深的特点,(1分)体现了作者对街巷由浅入深的认识体验。

(1分)10.(2分)酒中有悠长的民族文化历史,有丰富的百姓生活。

11.(6分)A E12.(4分)全文以游踪(或赤水)为线索,文章浑然一体;(1分)文章先写边地的“寂寞”,与后文写“不再是寂寞边地了”形成鲜明对照;(2分)突出了边地经济的繁华和文化的丰富。

(1分)(三)(6分)13.(1)失之东隅(2)惠风和畅(3)迷花倚石忽已暝(4)香雾云鬟湿(5)刘郎才气(6)更那堪冷落清秋节(7)樯倾楫摧(8)登东皋以舒啸(四)(9分)14.(2分)D15.(4分)千年的慢与流逝的速对比、一日的短与难熬的长对比;(1分)千年与一日的对比,千年犹速与一日为长对比;(1分)突出心理感觉上的反差(或矛盾),(1分)表达了盛世遗恨和现实悲愁的伤感。

(1分)16.(3分)登楼所见,感慨汉、魏气象,已为陈迹;(1分)故乡沦落、辗转漂泊、征战思归;(1分)将个人的坎坷命运和国家的衰败动荡结合起来,丰富了“自伤”内涵。

上海市两区2012年中考二模数学试题及答案

上海市两区2012年中考二模数学试题及答案

上海市两区2012年中考二模数学试题及答案一、 选择题(每小题2分,共20分)1、︱-32︱的值是( )A 、-3B 、3C 、9D 、-92、下列二次根式是最简二次根式的是( )A 、{ EMBED Equation.3 |21 B 、 C 、 D 、以上都不是 3、下列计算中,正确的是( )A 、X 3+X 3=X 6B 、a 6÷a 2=a 3C 、3a+5b=8abD 、(—ab)3=-a 3b 34、1mm 为十亿分之一米,而个体中红细胞的直径约为0.0000077m ,那么人体中红细胞直径的纳米数用科学记数法表示为( )A 、7.7×103mmB 、7.7×102mmC 、7.7×104mmD 、以上都不对5、如图2,天平右盘中的每个砝码的质量为10g ,则物体M 的质量m(g)的取值范围,在数轴上可表示为( )6、如图3,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A ’D 重合,A ’E 与AE 重合,若∠A =300,则∠1+∠2=( )A 、500B 、600C 、450D 、以上都不对 7、某校九(3)班的全体同学喜欢的球类运动用图4所示的统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系。

8、下列各式中,能表示y 是x 的函数关系式是( )A 、y=B 、y=C 、y=D 、y=9、如图5,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=8,OA=6,则tan∠APO的值为()A、 B、 C、 D、10、在同一直角坐标系中,函数y=kx+k,与y=(k)的图像大致为()二、填空题(每小题2分,共20分)11、(-3)2-(л-3.14)0=。

2012年上海市浦东新区中考数学二模试卷(含解析版)

2012年上海市浦东新区中考数学二模试卷(含解析版)

°.
17.(4 分)如图,在矩形 ABCD 中,点 E 为边 CD 上一点,沿 AE 折叠,点 D
恰好落在 BC 边上的 F 点处,若 AB=3,BC=5,则 tan∠EFC 的值为

18.(4 分)如图,在直角坐标系中,⊙P 的圆心是 P(a,2)(a>0),半径为 2;
直线 y=x 被⊙P 截得的弦长为 2 ,则 a 的值是
么平移后的二次函数解析式为

14.(4 分)已知一个样本 4,2,7,x,9 的平均数为 5,则这个样本的中位数


15.(4 分)如图,已知点 D、E 分别为△ABC 的边 AB、AC 的中点,设 , ,
则向量 =
(用向量 、 表示).
16.(4 分)如图,BE 为正五边形 ABCDE 的一条对角线,则∠ABE=
B.当 a<1 时,点 B 在圆 A 内
C.当 a<﹣1 时,点 B 在圆 A 外
D.当﹣1<a<3 时,点 B 在圆 A 内
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)Leabharlann 7.(4 分)4 的平方根是

8.(4 分)因式分解:x3﹣9x=

第 1页(共 24页)
9.(4 分)求不等式 2x+3>7 的解集

第 2页(共 24页)
三、解答题:(本大题共 7 题,满分 78 分)
19.(10 分)计算:

20.(10 分)解方程:

21.(10 分)已知:如图,点 D、E 分别在线段 AC、AB 上,AD•AC=AE•AB. (1)求证:△AEC∽△ADB; (2)AB=4,DB=5,sinC= ,求 S△ABD.

2012年上海市各区中考数学二模压轴题图文解析

2012年上海市各区中考数学二模压轴题图文解析

4a 2b c 3, 得 c 3, 9a 3b c 0.
解得 b 2,
a 1, c 3.
所以抛物线的解析式为 y=-x2+2x+3.顶点 E 的坐标为(1,4).
2Байду номын сангаас
华东师大出版社荣誉出品 《挑战中考数学压轴题》系列产品·6
(3)如图 3,图 4,在△ACD 中,由 A(2,3)、 C(2,1)、D(3,0), 得∠ACD=135°, CD= 2 ,CA=2. 由 A(2,3)、E(1,4),知 AE= 2 ,AE 与抛物线的对称轴的夹角为 45°. 因此要使得△AEF 与△ACD 相似,只有点 F 在点 E 的上方时,∠AEF= 135°. ①如图 3,当
华东师大出版社荣誉出品 《挑战中考数学压轴题》系列产品·6
2012 年上海市各区中考数学二模压轴题图文解析
例1 例2 例3 例4 例5 例6 例7 例8 例9 例 10 例 11 例 12 例 13 例 14 例 15 例 16 例 17 例 18 例 19 例 20 例 21 例 22 例 23 例 24 例 25 2012 年上海市宝山区中考模拟第 24 题 2012 年上海市宝山区中考模拟第 25 题 2012 年上海市奉贤区中考模拟第 25 题 2012 年上海市虹口区中考模拟第 25 题 2012 年上海市黄浦区中考模拟第 24 题 2012 年上海市黄浦区中考模拟第 25 题 2012 年上海市金山区中考模拟第 24 题 2012 年上海市金山区中考模拟第 25 题 2012 年上海市静安区中考模拟第 24 题 2012 年上海市静安区中考模拟第 25 题 2012 年上海市闵行区中考模拟第 24 题 2012 年上海市闵行区中考模拟第 25 题 2012 年上海市浦东新区中考模拟第 24 题 2012 年上海市浦东新区中考模拟第 25 题 2012 年上海市普陀区中考模拟第 24 题 2012 年上海市普陀区中考模拟第 25 题 2012 年上海市松江区中考模拟第 24 题 2012 年上海市松江区中考模拟第 25 题 2012 年上海市徐汇区中考模拟第 25 题 2012 年上海市杨浦区中考模拟第 24 题 2012 年上海市杨浦区中考模拟第 25 题 2012 年上海市闸北区中考模拟第 24 题 2012 年上海市闸北区中考模拟第 25 题 2012 年上海市长宁区中考模拟第 24 题 2012 年上海市长宁区中考模拟第 25 题 /2 /4 /6 /8 / 10 / 12 / 14 / 16 / 18 / 20 / 22 / 24 / 26 / 28 / 30 / 32 / 34 / 36 / 38 / 40 / 42 / 44 / 46 / 48 / 50

2012年上海市中考数学试卷及答案解析课件.doc

2012年上海市中考数学试卷及答案解析课件.doc

2012 年上海市中考数学试卷一.选择题(共 6 小题)1.(2012 上海)在下列代数式中,次数为 3 的单项式是()2 3 3 3A.xyB.x +y C..x y D..3xy考点:单项式。

解答:解:根据单项式的次数定义可知:2的次数为3,符合题意;A、xy3 3B、x +y 不是单项式,不符合题意;3C、x y 的次数为4,不符合题意;D、3xy 的次数为2,不符合题意.故选A.2.(2012 上海)数据5,7,5,8,6,13,5 的中位数是()A.5 B.6 C.7 D.8考点:中位数。

解答:解:将数据5,7,5,8,6,13,5 按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3.(2012 上海)不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<2考点:解一元一次不等式组。

解答:解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.4.(2012 上海)在下列各式中,二次根式的有理化因式是()A.B.C.D.考点:分母有理化。

解答:解:∵×=a﹣b,∴二次根式的有理化因式是:.故选:C.5.(2012 上海)在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形C.正五边形D.等腰三角形考点:中心对称图形。

解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合, A 、C、D 都不符合;是中心对称图形的只有B.第 1 页共10 页故选:B.6.(2012 上海)如果两圆的半径长分别为 6 和2,圆心距为3,那么这两个圆的位置关系是()A.外离B.相切C.相交D.内含考点:圆与圆的位置关系。

解答:解:∵两个圆的半径分别为 6 和2,圆心距为3,又∵6﹣2=4,4>3,∴这两个圆的位置关系是内含.故选:D.二.填空题(共12 小题)7.(2012 上海)计算= .考点:绝对值;有理数的减法。

2012年上海中考数学真题卷含答案解析

2012年上海中考数学真题卷含答案解析

2012年上海市初中毕业统一学业考试数学3A(满分:150分 时间:100分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共6题,每题4分,满分24分)1.在下列代数式中,次数为3的单项式是( )A.xy 2B.x 3+y 3C.x 3yD.3xy 2.数据5,7,5,8,6,13,5的中位数是( ) A.5 B.6 C.7 D.83.不等式组{-2x <6,x -2>0的解集是( )A.x>-3B.x<-3C.x>2D.x<24.在下列各式中,二次根式√a -b 的有理化因式是( ) A.√a +b B.√a +√b C.√a -bD.√a -√b5.在下列图形中,为中心对称图形的是( )A.等腰梯形B.平行四边形 C .正五边形 D.等腰三角形6.如果两圆的半径分别为6和2,圆心距为3,那么这两圆的位置关系是( ) A.外离 B.相切 C.相交 D.内含第Ⅱ卷(非选择题,共126分)二、填空题(本大题共12题,每题4分,满分48分)7.计算:|12-1|= . 8.因式分解:xy-x= .9.已知正比例函数y=kx(k ≠0),点(2,-3)在函数图象上,则y 随x 的增大而 (选填“增大”或“减小”).10.方程√x+1=2的根是.11.如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实数根,那么c的取值范围是.12.将抛物线y=x2+x向下平移2个单位,所得新抛物线的解析式为.13.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.14.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示(其中每个分数段可包括最小值,不包括最大值),结合表格的信息,可得测试分数在80~90分数段的学生有名.0~9090~1000.25⃗⃗⃗⃗ =a,AB⃗⃗⃗⃗ =b,那么AC⃗⃗⃗⃗ =(用a,b表示).15.如图,已知梯形ABCD,AD∥BC,BC=2AD,如果AD16.在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么边AB的长为.17.我们把两个三角形的重心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一对角成对顶角时重心距为 .18.如图所示,Rt △ABC 中,∠C=90°,BC=1,∠A=30°,点D 为边AC 上的一动点,将△ADB 沿直线BD 翻折,点A 落在点E 处,如果DE ⊥AD,那么DE= .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:12×(√3-1)2+1√2-1+312-(√22)-1.20.(本题满分10分)解方程:x x+3+6x 2-9=1x -3.21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在Rt △ABC 中,∠ACB=90°,D 是边AB 的中点,BE ⊥CD,垂足为E. 已知AC=15,cos A=35. (1)求线段CD 的长;(2)求sin∠DBE的值.22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元)与生产数量x(吨)的函数关系式如图所示.(1)求y与x的函数关系式,并写出其定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)3B23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图所示,在菱形ABCD中,点E、F分别在边BC、CD上,∠BAF=∠DAE,AE与BD交于点G.(1)求证:BE=DF;(2)当DFFC =ADDF时,求证:四边形BEFG是平行四边形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)如图,在平面直角坐标系中,二次函数y=ax2+6x+c过点A(4,0)和B(-1,0),并与y轴交于点C,点D在线段OC上,设DO=t,点E在第二象限,∠ADE=90°,tan∠DAE=12,EF⊥OD于F.(1)求二次函数的解析式;(2)用含t的代数式表示EF和OF的长;(3)当∠ECA=∠CAO时,求t的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)已知扇形AOB中,∠AOB=90°,OA=OB=2,C为AB⏜上的动点,且不与A、B重合,OE⊥AC于E,OD⊥BC于D.(1)若BC=1,求OD的长;(2)在△DOE中,是否存在长度保持不变的边?若存在,求出该边的长;若不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y与x的函数关系式及定义域.2012年上海市初中毕业统一学业考试一、选择题1.A根据单项式定义,可知选项A、C、D中的代数式均为单项式,又由单项式的次数定义可知次数为3的单项式是xy2,故选A.评析本题主要考查了单项式和单项式次数的定义,属于容易题.正确理解两个概念是解决此类问题的关键,易混易错之处是当计算单项式的次数时,常常忽略指数是1的字母,导致确定单项式的次数有误.2.B根据中位数的定义,先把该组数据排序,若有奇数个,则中位数是中间的那个数;若有偶数个,则中位数是中间两个数的平均数.显然在给出的7个数据中,排序后最中间的数据是6,故选B.3.C解不等式-2x<6得x>-3,解不等式x-2>0得x>2,∴不等式组{-2x<6,的解集为x>2.故选C.x-2>04.C根据有理化因式的定义,只要二次根式√a-b乘一个适当的因式,能将其转化为有理式即可.而√a-b·√a-b=a-b,故选C.评析 本题主要考查有理化因式的概念,有理化因式的形式分为两种:①√a 的有理化因式是√a ;②√a ±√b 的有理化因式是√a ∓√b ,属简单题. 5.B 因为绕一个点旋转180度后能与自身重合的图形是中心对称图形,所以选项中的四种图形,只有平行四边形是中心对称图形,故选B.6.D 设R=6,r=2,d=3,则R-r=6-2=4>3,即R-r>d,所以两圆内含.故选D. 二、填空题7.答案 12解析 根据有理数的运算法则和绝对值的意义,得|12-1|=|-12|=12. 8.答案 x(y-1)解析 本题运用提取公因式法进行因式分解,所以xy-x=x(y-1). 9.答案 减小解析 ∵点(2,-3)在函数图象上,∴把(2,-3)代入y=kx(k ≠0)中,得-3=2k,解得k=-32,显然k<0,故y 随x 的增大而减小.评析 本题综合考查了待定系数法求函数的解析式、正比例函数的性质等知识点.熟练掌握正比例函数的性质是解题关键,属容易题. 10.答案 x=3解析 可以把无理方程转化成算术平方根,2是x+1的算术平方根,则x+1=4,易得x=3. 11.答案 c>9解析 由题意得Δ=b 2-4ac<0,即(-6)2-4×1×c<0,解得c>9.. 12.答案 y=x 2+x-2解析 因为二次函数的图象平移时遵循“上加下减,左加右减”的规律,所以向下平移2个单位后,所得抛物线的解析式是y=x 2+x-2. 13.答案 13解析 P(恰好为红球)=红球的个数白球的个数+红球的个数=36+3=13. 14.答案 150解析根据频数、频率分布的知识可知,所有的频数之和等于总数,所有频率之和等于1,则得分数在80~90分数段分数在80~90分数段的学生的频率为1-0.2-0.25-0.25=0.3,由频率=频数总数的学生有0.3×500=150(名).15.答案2a+b解析利用向量的加法法则易知AC⃗⃗⃗ =AB⃗⃗⃗⃗ +BC⃗⃗⃗ =2a+b.16.答案3解析∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴S △ADE∶S△ACB=AE2∶AB2,即4∶9=22∶AB2,∴AB=3..17.答案4解析如图1和图2所示,等边三角形的重心是它三条中线的交点,交点分每一条中线得到的两条线段的比值(短∶长)为1∶2,当两个等边三角形一边重合时,重心距是两条短线段之和,所以每条短线段的长度为1,长线段的长度为2.因此当两个等边三角形的一对角成对顶角时,重心距为2+2=4.评析本题主要考查了等边三角形的重心及其性质,属中等难度题.18.答案√3-1解析如图,由翻折的性质可知AD=DE,∠ADP=∠EDP.又由AD⊥ED 得,∠ADP=∠EDP=45°,所以∠BDC=45°,因为∠C=90°,所以BC=CD=1,又因为∠A=30°,BC=1,所以AB=2,AC=√3,所以DE=AD=√3-1.评析本题涉及的知识点有对折、等腰直角三角形、垂直、解直角三角形,有一定区分度,属中等难度题.三、解答题19.解析原式=12×(4-2√3)+√2+1+√3-√2(8分)=2-√3+√2+1+√3-√2=3.(10分)评析本题主要考查了实数的混合运算、分数指数、负指数以及分母有理化、完全平方公式等,均是中考常考的基础知识,但是学生容易马虎丢分,属中等难度题.20.解析去分母,得x(x-3)+6=x+3,(3分)整理,得x2-4x+3=0,(5分)解得x1=1,x2=3.(9分)经检验,x=3是增根,x=1是原方程的根.所以原方程的根是x=1.(10分)21.解析(1)在Rt△ABC中,∠ACB=90°,AC=15,cos A=ACAB =35,(1分)∴AB=25.(2分)∵D是AB的中点,∴CD=AB2=252.(4分)(2)在Rt△ABC中,BC=√AB2-AC2=20.(5分)∵BD=CD=AB2=252,∴∠DCB=∠DBC.(6分)∴cos∠DCB=cos∠ABC=BCAB =45.(7分)在Rt△CEB中,∠E=90°, CE=BC·cos∠BCE=16.(8分)∴DE=CE-CD=72.(9分)在Rt△DEB中,∠DEB=90°,∴sin∠DBE=DEBD =725.(10分)22.解析(1)设函数解析式为y=kx+b,(1分)得{10=10k+b,6=50k+b.(2分)解得{k=-110,b=11.(3分)∴y与x的函数关系式为y=-110x+11,(4分)定义域是10≤x≤50.(5分)(2)由题意,得xy=280,(6分)即x(-110x+11)=280,(7分)整理,得x2-110x+2800=0,(8分)解得x1=40,x2=70.(9分)x=70不合题意,舍去.答:该产品的生产数量为40吨.(10分)评析本题主要考查了利用函数图象获取信息、建立函数模型、确定函数解析式和定义域.属中等难度题.23.证明(1)∵∠BAF=∠DAE,∴∠BAE+∠EAF=∠DAF+∠EAF,∴∠BAE=∠DAF.(1分)∵四边形ABCD是菱形,∴AB=AD,∠ABE=∠ADF.(3分)∴△ABE≌△ADF,(4分)∴BE=DF.(5分)(2)∵DFFC =ADDF,DF=BE,∴DFFC=ADBE.(6分)∵AD∥BC,∴DGGB =ADBE,(7分)∴DFFC =DGGB,(8分)∴GF∥BC.(9分)∵BE=DF,BC=DC,∴BEBC =DFDC,(10分)∴EF∥BD.(11分)∴四边形BEFG是平行四边形.(12分)24.解析(1)由二次函数y=ax2+6x+c过点A(4,0)、B(-1,0),得{0=16a+24+c,0=a-6+c.(1分)解得{a=-2,c=8.(2分)∴二次函数的解析式为y=-2x2+6x+8.(3分)(2)∵点D在线段OC上,点E在第二象限,∠ADE=90°,EF⊥OD,∴∠EDF+∠ADO=∠DAO+∠ADO=90°,∴∠EDF=∠DAO,∴Rt△DFE∽Rt△AOD,(4分)∴EFDO =DFAO=DEAD.(5分)在Rt△ADE中,∠ADE=90°,tan∠DAE=DEAD =1 2 ,∴EFDO =DFAO=12,∴EF=12DO,DF=12AO.(6分)∵DO=t,∴EF=t2,(7分)∵点A的坐标为(4,0),∴AO=4,DF=2,∴OF=t-2.(8分)(3)由(1)得,点C的坐标为(0,8).延长CE交x轴于点G,设点G的坐标为(x,0).∵∠ECA=∠CAO,∴CG=AG,(9分)∴√x2+82=√(x-4)2,解得x=-6,∴GO=6.(10分)由已知,可得点F在线段OD上,又∵OF=t-2,∴FC=OC-OF=10-t.(11分)∵EF∥GO,∴EFGO =CF CO,∴t26=10-t8,解得t=6.(12分)评析本题主要考查了二次函数解析式的确定、相似三角形的判定与性质、三角函数、勾股定理等知识的综合应用.本题共有3个小题,第(1)小题较易,第(2)小题难度适中,把相似三角形和三角函数结合起来求解较为简便,第(3)小题偏难,利用勾股定理列方程是解题关键.25.解析(1)在扇形AOB中,∵OD⊥BC,∴BD=12BC.(1分)∵BC=1,∴BD=12.(2分)∵OB=2,∴OD=√OB2-BD2=√152.(3分)(2)存在,边DE的长度保持不变.(4分)连结AB,∵∠AOB=90°,OA=OB=2,∴AB=√OB2+OA2=2√2.(5分)∵OD⊥BC,OE⊥AC,∴CD=BD,CE=AE,(7分)∴DE=12AB=√2.(8分)(3)连结OC,∵点C在AB⏜上,∴OC=OB.∵OD⊥BC,∴∠COD=12∠BOC,同理,∠COE=12∠AOC,(9分)∴∠DOE=12∠BOC+12∠AOC=12∠AOB,∵∠AOB=90°,∴∠DOE=45°.(10分)过点D作DH⊥OE,垂足为H.在Rt△OBD中,OD=√OB2-BD2=√4-x2.在Rt△ODH中,∠DOH=45°,OH=DH=OD·sin45°=√2√4-x2.(11分)2x.(12分)在Rt△DEH中,HE=√DE2-DH2=√22∴OE=OH+HE=√2√4-x2+√22x.2OE·DH,∵S△DOE=12,(13分)∴函数解析式为y=4-x2+x√4-x24定义域为0<x<√2.(14分)评析本题是几何与代数综合的压轴题,综合考查了垂径定理、勾股定理、三角形的中位线的性质、等腰直角三角形的性质以及利用三角形面积进行函数建模,综合性比较强,尤其是第(2)问存在性问题设计得比较巧妙.。

2012年上海市中考数学试卷及答案

2012年上海市中考数学试卷及答案

2012年上海市初中毕业统一学业考试数 学1. 在下列代数式中,次数为三的单项式是( )A .2xyB .33x y +C .3x yD .3xy2. 数据5,7,5,8,6,13,5的中位数是( )A .5B .6C .7D .83. 不等式组2620x x -<⎧⎨->⎩的解集是( )A .3x >-B .3x <-C .2x >D .2x <4. 在下列根式中,二次根式a b -的有理化因式是( )A .a b +B .a b +C .a b -D .a b -5. 在下列图形中,为中心对称图形的是( )A .等腰梯形B .平行四边形C .正五边形D .等腰三角形6. 如果两圆的半径分别为6和2,圆心距为3,那么这两圆的位置关系是( )A .外离B .相切C .相交D .内含7. 计算:112-= . 8. 因式分解:xy x -= .9. 已知正比例函数(0)y kx k =≠,点(2,3)-在函数上,则y 随x 的增大而(选填“增大”或“减小”).10. 方程12x +=的根是 .11. 如果关于x 的方程260x x c -+=(c 为常数)没有实数根,那么c 的取值范围是 .12. 将抛物线2y x x =+向下平移2个单位,所得的新抛物线的解析式为.13. 布袋中装有个3红球和6个白球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,那么所摸到的球恰好为红球的概率是 . 14. 某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示,其中每个分数段可包括最小值,不包括最大值,结合表格的信息,可得测试分数在8090 分数段的学生有 名.15. 如图,已知梯形ABCD ,AD //BC ,2BC AD =,若AD a =,AB b = ,那么AC = (用a ,b表示).16. 在ABC 中,点D ,E 分别在AB ,AC 上,AED B ∠=∠,如果2AE =,ADE 的面积为4,四边形BCED 的面积为5,那么边AB 的长为 .17. 我们把两个三角形的中心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一分数段 60~70 70~80 80~90 90~100 频率 0.20.250.25DCBA A BD CE对角成对顶角时重心距为 .18. 如图所示,Rt ABC 中,90C ∠=︒,1BC =,30A ∠=︒,点D 为边AC 上的一动点,将ABD 沿直线BD 翻折,点A 落 在点E 处,如果DE AD ⊥时,那么DE = .19. 计算:1122112(31)32221-⎛⎫⨯-++- ⎪-⎝⎭20. 解方程:261393x x x x +=+--21. 如图所示,在Rt ABC ,90ACB ∠=︒,D 是边AB 的中点,BE CD ⊥,垂足为E ,已知15AC =,35cosA =.①求线段CD 的长; ②求sin DBE ∠的值.22. 某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y 万元与生产数量x 吨的函数关系式如图所示.①求y 与x 的函数关系式,并写出其定义域;②当生产这种产品的总成本为280万元时,求该产品的生产数量. (注:总成本=每吨的成本×生产数量)CBDAE DBCA105010xOy623. 如图所示,在菱形ABCD 中,点E 、F 分别在BC 、CD 上,BAF DAE ∠=∠,AE 与BD 相交于点G .①求证:BE DF =; ②当DF AD FC DF=时,求证:四边形BEFG 是平行四边形.24. 如图,在平面直角坐标系中,二次函数26y ax x c =++过点(4A ,0)和(1B -,0),并与y 轴交于点C ,点D 在线段OC 上,设DO t =,点E 在第二象限,且90ADE ∠=︒,12tan DAE ∠=,EF OD ⊥于F . ①求二次函数的解析式;②用含t 的代数式表示EF 和OF 的长; ③当ECA CAO ∠=∠时,求t 的值.25. 已知扇形AOB 中,90AOB ∠=︒,2OA OB ==,C 为 AB 上的动点,且不与A 、B 重合,OE AC ⊥于E ,OD BC ⊥于D . ①若1BC =,求OD 的长;②在DOE 中,是否存在长度保持不变的边,若存在,求出该边的长; 若不存在,请说明理由;③设BD x =,DOE 的面积为y ,求y 与x 的函数关系式及定义域.xD FEO B ACy AOBCDEEDCB AFG2012年上海市初中毕业统一学业考试数学参考答案1 2 3 4 5 6 7 8 9A B C C B D 1/2 (1)x y-减小10 11 12 13 14 15 16 17 183x=9c>22y x x=+-13150 2a b+3 4 31-【详解】1、解:根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选A.2、解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3、解:-2x<6 ①x-2>0 ②,由①得:x>-3,由②得:x>2,所以不等式组的解集是x>2.故选C.4、5、解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.7、8、解:xy-x=x(y-1).故答案为:x(y-1).9、10、11、12、13、14、解:80~90分数段的频率为:1-0.2-0.25-0.25=0.3, 故该分数段的人数为:500×0.3=150人. 故答案为:150. 15、16、17、19 .3. 解 :原式=23122324-+++- =231232-+++-=3. 20.1x =.解:x(x-3)+6=x-3 x 2-4x+3=0 x1=2或x2=3经检验:x=3是方程的增根 x=1是原方程的根21.225(或12.5); 257.分析:(1)应用锐角三角比,求出斜边AB 即可(2)运用3cos 5B =,算出CE=16,DE=16-(25/2)=7/2,而DB=25/2 所以7sin 25DE DBE DB ∠==22. ① y=-101x+11(10≤x ≤50) ② 40.分析 (1)直接(10,10)、(50,6)代入 y=kx+b(2) 1(11)28010x x -+= 解得:140x =或270x = 由于1050x ≤≤,故40x = 23 分析(1)利用()ABE ADF ASA ∆≅∆(2)证明://AD BCAD AD DG DF DF BE GB FC∴===//GF BE ∴ 易证:GB=BE所以四边形BEFG 是平行四边形24 第一小问:第二小问:第三小问:25 第一小问解析:第二小问解析:第三小问解析:。

2012年上海黄浦高三数学二模(含答案)

2012年上海黄浦高三数学二模(含答案)

A
因为 n2 ⊥ PB , n2 ⊥ BC ,所以 n2 ⋅PB = 0 , n2 ⋅ BC = 0 ,
即 4u − 5 w = 0 , −4u + 4v = 0 ,解得 w = 4 u , v = u ,
B x
5
��
取 u = 5,得 n2 = (5,−5,4).
(4分)
�� �� 设 n1 与 n2 的夹角为 ϕ ,则 cos ϕ =
2012 年上海市嘉定、黄浦区高三年级第二次模拟考试
数学试卷(理科)
(2012 年 4 月 12 日) 考生注意: 1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解
答一律无效. 2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚. 3.本试卷共 23 道试题,满分 150 分;考试时间 120 分钟. 一、填空题(本大题满分 56 分)本大题共有 14 小题,考生应在答题卷相应编号的空格内直接
[解](1)解法一:设 BC 的中点 D,联结 AD , PD ,易知在等腰三角形 PBC 、 ABC 中,
PD ⊥ BC , AD ⊥ BC ,故 ∠PDA为二面角 P − BC − A 的平面角.
(2分)
在等腰 Rt △ ABC 中,由 AB = AC = 4 及 AB ⊥ AC ,得 AD = 2 2 .
D.至多有两个钝角
三、解答题(本大题满分 74 分)本大题共有 5 题,解答下列各题必须在答题卷相应的编号规
定区域内写出必要的步骤.
19.(本题满分 12 分)本题共有 2 个小题,第 1 小题满分 8 分,第 2
P
小题满分 4 分.
已知三棱锥 P − ABC , PA ⊥平面 ABC , AB ⊥ AC ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄浦区2012年初中毕业统一学业模拟考试数学试卷(时间100分钟,满分150分) 2012.4.考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.计算()23-的结果是( ▲ )A .6;B .6-;C .9;D .9-.2 ▲ )A ;BCD 3.下列函数中,y 随x 的增大而减小的是( ▲ ) A .13y x =; B .13y x =-; C .3y x=; D .3y x =-.4.从1,2,3,4,5,6中任意取一个数,取到的数是6的因数的概率是( ▲ ) A .12; B .13; C .23; D .16. 5.下列图形中,既是轴对称图形,又是中心对称图形的是( ▲ )A .等边三角形;B .等腰梯形;C .平行四边形;D .正十边形. 6.下列命题中,假命题是( ▲ )A .一组邻边相等的平行四边形是菱形;B .一组邻边相等的矩形是正方形;C .一组对边相等且有一个角是直角的四边形是矩形;D .一组对边平行且另一组对边不平行的四边形是梯形. 二、填空题(本大题共12题,每题4分,满分48分) 7.计算:()2a a b += ▲ . 8= ▲ .9.上海原世博园区最大单体建筑“世博轴”,将被改造成为一个综合性的商业中心,该项目营业面积将达130000平方米,这个面积用科学记数法表示为 ▲ 平方米.10.如果()kf x x=,()23f =-,那么k = ▲ . 11.若将直线21y x =-向上平移3个单位,则所得直线的表达式为 ▲ .12.在方程2234404x x x x+-+=-中,如果设24y x x =-,那么原方程可化为关于y 的整式方程是 ▲ .13x 的解是x = ▲ .14.用a 辆车运一批橘子,平均每辆车装b 千克橘子,若把这批橘子平均分送到c 个超市,则每个超市分到橘子 ▲ 千克.15.已知梯形的上底长是5cm ,中位线长是7cm ,那么下底长是 ▲ cm . 16.如图1,AF 是BAC ∠的角平分线,EF ∥AC ,如果125∠=︒,那么BAC ∠= ▲ °.17.如图2,在ABC ∆中,点G 是重心, 设向量AB a = ,GD b = ,那么向量BC =▲ (结果用a 、b表示).18.如图3,在Rt ACB ∆中,90ACB ∠=︒,点O 在AB 上,且6CA CO ==,1cos 3CAB ∠=,若将ACB ∆绕点A 顺时针旋转得到Rt ''AC B ∆,且'C 落在CO 的延长线上,联结'BB 交CO 的延长线于点F ,则BF = ▲ . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简:111111a a a a ⎛⎫+÷+ ⎪+-+⎝⎭. 20. (本题满分10分)解不等式组:()461,315,x x x x +>-⎧⎪⎨-≤+⎪⎩并把解集在数轴上表示出来.21.(本题满分10分)如图4,AB 是圆O 的直径,作半径OA 的垂直平分线,交圆O 于C 、D 两点,垂足为H ,联结BC 、BD .(1)求证:BC =BD ;(2)已知CD =6,求圆O 的半径长.22.(本题满分10分)某公司组织员工100人外出旅游.公司制定了三种旅游方案供员工选择: 方案一:到A 地两日游,每人所需旅游费用1500元;图3C AB O F 'C 'B 图1 A BC E F 1图4图2方案二:到B 地两日游,每人所需旅游费用1200元; 方案三:到C 地两日游,每人所需旅游费用1000元;每个员工都选择了其中的一个方案,现将公司员工选择旅游方案人数的有关数据整理后绘制成尚未完成的统计图,根据图5与图6提供的信息解答下列问题:(1)选择旅游方案三的员工有 ▲ 人,将图5补画完整;(2)选择旅游方案三的女员工占女员工总数的 ▲ (填“几分之几”); (3)该公司平均每个员工所需旅游费 ▲ 元;(4)报名参加旅游的女员工所需旅游费为57200元,参加旅游的女员工有 ▲人. 23.(本题满分12分)如图7,在正方形ABCD 中,E 为对角线AC 上一点,联结EB 、ED ,延长BE 交AD 于点F . (1)求证:∠BEC =∠DEC ;(2)当CE =CD 时,求证:2DF EF BF = .24.(本题满分12分)已知一次函数1y x =+的图像和二次函数2y x bx c =++的图像都经过A 、B 两点,且点A 在y 轴上,B 点的纵坐标为5. (1)求这个二次函数的解析式;(2)将此二次函数图像的顶点记作点P ,求△ABP 的面积; (3)已知点C 、D 在射线AB 上,且D 点的横坐标比C 点的横坐标大2,点E 、F 在这个二次函数图像上,且CE 、DF 与y 轴平行,当CF ∥ED 时,求C 点坐标.120︒方案一 方案二 方案三 公司女员工选择旅游 方案人数统计图 图6公司员工选择旅游方案人数统计图方案 图5 A BCD E F 图7图825.(本题满分14分)如图9,已知ABC ∆中,90C ∠=︒,AC BC =,6AB =,O 是BC 边上的中点,N 是AB 边上的点(不与端点重合),M 是OB 边上的点,且MN ∥AO ,延长CA 与直线MN 相交于点D ,G 点是AB 延长线上的点,且BG AN =,联结MG ,设AN x =,BM y =. (1)求y 关于x 的函数关系式及其定义域;(2)联结CN ,当以DN 为半径的D 和以MG 为半径的M 外切时,求ACN ∠的正切值;(3)当ADN ∆与MBG ∆相似时,求AN 的长.A B CON MD G 图9 备用图aABC O 备用图bABCO黄浦区2012年初三学业考试模拟考数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.C ; 2. A ; 3.B ; 4.C ; 5. D ; 6.C . 二、填空题(本大题共12题,每题4分,满分48分)7.22a ab +; 81; 9.51.310⨯; 10.6-; 11.22y x =+;12.2430y y ++=; 13.2; 14.abc; 15.9; 16.50; 17.26a b -+ ;18.14. 三、解答题:(本大题共7题,满分78分)19.解:原式()()111111a a a a a a-+++=⨯+-+……………………………………………(4分)2111a a a -=+-- ……………………………………………………(4分) 11a a +=-. …………………………………………………………(2分) 20. 解不等式组:()461,315,x x x x +>-⎧⎪⎨-≤+⎪⎩①②,由①得45x x +>-,1x >-,……………………………………………………(3分)由②得335x x -≤+,4x ≤,……………………………………………………(3分) 所以,原不等式组的解集为14x -<≤,…………………………………………(2分) 不等式组的解集在数轴上表示正确. ……………………………………………(2分) 21.(1)∵AB 是圆O 的直径,且AB ⊥CD ,∴CH DH =,………………… (2分)∴BC =BD . …………………………………………………………………(2分)(2)联结OC . ………………………………………………………………………(1分)∵CD 平分OA ,设圆O 的半径为r ,则OH =12r ,∵6CD =,∴132CH CD ==,………………………………………………(1分)∵∠CHO 90=°,∴222OH CH CO +=,……………………………………(2分)∴222132r r ⎛⎫+= ⎪⎝⎭,∴r =……………………………………………… (2分) 22.(1)35;(2)512;(3)1205;(4)48. ……………(2分,2分,3分,3分) 23. (1)∵四边形ABCD 是正方形,∴BC =CD ,且∠BCE =∠DCE . …………(2分) 又∵C E 是公共边,∴△BEC ≌△DEC ,………………………………………… (2分) ∴∠BEC =∠DEC .………………………………………………………………… (1分) (2)联结BD .………………………………………………………………………(1分) ∵CE =CD ,∴∠DEC =∠EDC .…………………………………………………… (1分)∵∠BEC =∠DEC ,∠BEC =∠AEF ,∴∠EDC =∠AEF . ∵∠AEF +∠FED =∠EDC +∠ECD ,∴∠FED =∠ECD .………………………………………………………………… (1分) ∵四边形ABCD 是正方形,∴∠ECD =12∠BCD =45°, ∠ADB =12∠ADC = 45°,∴∠ECD =∠ADB .… (1分)∴∠FED =∠ADB . ……………………………………………………………… (1分) 又∵∠BFD 是公共角,∴△FDE ∽△FBD ,…………………………………… (1分) ∴EF DF DF BF=,即2DF EF BF = . ………………………………………………(1分) 24.(1)A 点坐标为(0,1)…………………………………………………………(1分) 将=5y 代入1y x =+,得=4x∴B 点坐标为(4,5)…………………………………………………………………(1分) 将A 、B 两点坐标代入2y x bx c =++ 解得=-3=1b c ⎧⎨⎩ ∴二次函数解析式为231y x x =-+……………………………………………(2分)(2)P 点坐标为(32,54-)…………………………………………………(1分) 抛物线对称轴与直线AB 的交点记作点G ,则点G (32,52)∴PG =5515()244--=, ∴152ABP APG BPG S S S =+= .…………………………………………………(2分) (3)设C 点横坐标为a则C 点坐标为(,1)a a +,D 点坐标为(2,3)a a ++,…………………………(1分) E 点坐标为2(,31)a a a -+,F 点坐标为2(2,1)a a a ++-,…………………(1分) 由题意,得 CE =24a a -+,DF =24a -,∵且CE 、DF 与y 轴平行,∴CE ∥DF ,又∵CF ∥ED ,∴四边形CEDF 是平行四边形,∴CE DF =,…………………………………(1分)∴2244a a a -+=-,解得11a =21a =,…………………(1分)∴C 点坐标为(12.………………………………………………(1分)25. 解:(1)∵MN ∥AO ,∴MB BNBO AB=,……………………………………(2分) ∵90C ∠=︒,AC BC =,6AB =,∴BC =, ∵O 是BC边上的中点,∴BO =1分) ∵AN x =,BM y =66x-=,∴)()6064x y x -=<<.………(2分)(2)∵以DN 为半径的D 和以MG 为半径的M 外切,∴DN MG DM +=,又DN MN DM +=,∴MG MN =,…………………(1分) ∴MNG G ∠=∠, 又MNG AND ∠=∠,∴AND G ∠=∠, ∵AC BC =,∴CAB CBA ∠=∠,∴DAN MBG ∠=∠,又AN BG =,∴AND ∆≌BGM ∆, ∴DN MG MN ==,…………………(1分) ∵90ACB ∠=︒,∴CN DN =,∴ACN D ∠=∠, …………………………(1分)∵90ACB ∠=︒,AC BC =,O 是BC 边上的中点,∴1tan 2CO CAO AC ∠==,(1分) ∵MN ∥AO ,∴CAO D ∠=∠,∴CAO ACN ∠=∠,∴1tan 2ACN ∠=,…(1分)(3)∵DAN MBG ∠=∠,当ADN ∆与MBG ∆相似时, ①若D BMG ∠=∠时,过点G 作GE CB ⊥,垂足为点E . ∴1tan 2GE BMG ME ∠==,∴BM BE =,∴y =,………………………(1分)又)64x y -=,∴2x =.………………………………………………………(1分)②若D G ∠=∠时,过点M 作M F AB ⊥,垂足为点F . ∴1tan 2G ∠=,∴BF BG =,∴x =,……………………………………(1分)又)64x y -=,∴65x =.………………………………………………………(1分) 综上所述,当ADN ∆与MBG ∆相似时,AN 的长为2或65. (以上各题,若有其他解法,请参照评分标准酌情给分)。

相关文档
最新文档