剪切力的计算方法
方钢剪切力计算公式
方钢剪切力计算公式在工程中,方钢的剪切力计算是一个非常重要的问题。
方钢剪切力的计算公式可以帮助工程师们准确地评估结构的稳定性和安全性。
本文将介绍方钢剪切力的计算公式及其相关知识。
1. 方钢剪切力的定义。
方钢剪切力是指在工程中,施加在方钢上的剪切力。
剪切力是一种使物体产生剪切变形的力,它是沿着物体表面的切线方向施加的力。
在工程中,方钢通常承受着各种不同方向的剪切力,因此需要计算出其受力情况,以保证结构的安全性。
2. 方钢剪切力的计算公式。
方钢剪切力的计算公式可以通过简单的力学分析得出。
在计算方钢剪切力时,需要考虑方钢的几何形状和受力情况。
一般来说,方钢的剪切力可以通过以下公式计算:F = τ A。
其中,F表示方钢的剪切力,τ表示方钢的剪切应力,A表示方钢的截面积。
3. 方钢剪切应力的计算。
在计算方钢的剪切力时,需要先计算出方钢的剪切应力。
剪切应力是指单位面积上的剪切力,可以通过以下公式计算:τ = F / A。
其中,τ表示方钢的剪切应力,F表示方钢的剪切力,A表示方钢的截面积。
4. 方钢截面积的计算。
在计算方钢的剪切力时,需要先计算出方钢的截面积。
方钢的截面积可以通过以下公式计算:A = b h。
其中,A表示方钢的截面积,b表示方钢的宽度,h表示方钢的高度。
5. 方钢剪切力的实际应用。
方钢剪切力的计算公式可以应用于工程中各种不同的情况。
工程师们可以通过该公式计算出方钢在受力情况下的剪切力,并据此评估结构的稳定性和安全性。
在设计和施工过程中,方钢剪切力的计算公式可以帮助工程师们更好地了解结构的受力情况,从而做出合理的设计和施工方案。
6. 方钢剪切力计算公式的应用案例。
下面通过一个具体的应用案例来说明方钢剪切力计算公式的应用。
假设一个工程中需要使用一根方钢,其宽度为20厘米,高度为30厘米。
在受力情况下,方钢的剪切应力为200兆帕。
现在需要计算方钢在受力情况下的剪切力。
首先,可以通过方钢的截面积公式计算出方钢的截面积:A = 20厘米 30厘米 = 600平方厘米。
剪切力的计算方法
第3章剪切和挤压的实用计算3.1剪切的概念在工程实际中,经常遇到剪切问题。
剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(m - n面)发生相对错动(图3-1b)。
图3-1工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。
构件剪切面上的内力可用截面法求得。
将构件沿剪切面m-n假想地截开,保留一部分考虑其平衡。
例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力F Q (图3-1C)的作用。
F Q称为剪力,根据平衡方程',=0,可求得F Q二F。
剪切破坏时,构件将沿剪切面(如图3-la所示的m-n面)被剪断。
只有一个剪切面的情况,称为单剪切。
图3-1a所示情况即为单剪切。
受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。
在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。
实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。
工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。
3.2剪切和挤压的强度计算3.2.1剪切强度计算剪切试验试件的受力情况应模拟零件的实际工作情况进行。
图试验装置的简图,试件的受力情况如图 3-2b 所示,这是模拟某种销钉联接的工作情形。
当载荷F 增大至破坏载荷 F b 时,试件在剪切面 m - m 及n - n 处被剪断。
这种具有两个剪切面的情况,称为双剪切。
由图 3-2c 可求得剪切面上的剪力为F Q图3-2由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。
在这种计算方法中,假设应力在剪切面内是均匀分布的。
剪切与挤压的实用计算
剪切与挤压的实用计算1.基本理论剪切是指沿着平面内条线上的应力沿剪切方向相对另一平面移位的力。
材料在受到剪切力作用时,会发生剪切变形并产生剪切应力。
剪切应力τ的计算公式为:τ=F/A其中,τ表示剪切应力,F表示受力,A表示受力面积。
材料的抗剪强度表示了材料在剪切载荷下破坏的抵抗能力,通常用剪切强度σs表示,剪切强度也可以通过横截面上的最大剪切应力来计算,即σs = τmax。
2.剪切计算方法在实际工程中,剪切常常涉及到材料的剪切强度计算、剪切连接件的设计以及剪切抗力的计算等。
(1)剪切强度计算根据材料的剪切性能参数,可以计算材料的抗剪强度。
一般来说,剪切强度与材料的抗拉强度有一定的关系。
对于金属材料来说,一般有以下公式用于计算剪切强度:σs=k·σu其中,σs表示材料的剪切强度,k表示剪切系数,一般取0.6~0.8,σu表示材料的抗拉强度。
(2)剪切连接件设计在机械设计中,常常需要设计剪切连接件,如销轴连接、键连接等。
设计剪切连接件时,需要根据剪切载荷和材料的强度参数来计算连接件的尺寸。
以销轴连接为例,假设在动力传动系统中,传递的扭矩为T,需设计一个销轴连接。
根据材料的抗剪强度和材料的弹性模量,可以计算出销轴的直径d。
d=[16·T/(π·τs)]^(1/3)其中,d表示销轴的直径,T表示扭矩,τs表示材料的抗剪强度。
(3)剪切抗力计算在工程结构设计中,剪切抗力的计算是非常重要的。
常见的剪切抗力计算方法有剪切弯曲理论、剪切流动理论等。
对于简支梁的剪切抗力计算来说,可以使用剪切弯曲理论。
根据弯矩与剪力之间的关系,可以得到梁上任意一点的剪切力V和弯矩M之间的关系:V = dM / dx其中,V表示剪切力,M表示弯矩,dM表示单位长度上的弯矩的变化,dx表示单位长度。
1.基本理论挤压是指沿轴线方向作用于材料上的静态或动态力。
当材料受到挤压力作用时,会发生长度方向的变形,并产生挤压应力。
剪切力的计算方法
第3章 剪切和挤压的实用计算3.1 剪切的概念在工程实际中,经常遇到剪切问题。
剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(面)发生相对错动(图n m -3-1b)。
图3-1工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。
构件剪切面上的内力可用截面法求得。
将构件沿剪切面假想地截开,保n m -留一部分考虑其平衡。
例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力(图3-1c)的作用。
称为剪力,根据平衡方程,可求Q F Q F ∑=0Y 得。
F F Q =剪切破坏时,构件将沿剪切面(如图3-la 所示的面)被剪断。
只有一个剪切面的n m -情况,称为单剪切。
图3-1a 所示情况即为单剪切。
受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。
在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。
实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。
工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。
3.2 剪切和挤压的强度计算3.2.1 剪切强度计算剪切试验试件的受力情况应模拟零件的实际工作情况进行。
图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。
当载荷增大至破坏载荷时,试件在剪切面及处被剪断。
这种F b F m m -n n -具有两个剪切面的情况,称为双剪切。
由图3-2c 可求得剪切面上的剪力为2F F Q =图3-2由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。
在这种计算方法中,假设应力在剪切面内是均匀分布的。
m30螺杆的剪切力
m30螺杆的剪切力摘要:1.引言2.m30 螺杆的概述3.剪切力的定义和计算方法4.m30 螺杆的剪切力分析5.结论正文:1.引言在机械制造领域,螺杆是一种常见的传动装置,广泛应用于各种工业设备中。
其中,m30 螺杆作为一种重要的螺杆类型,在很多应用场景中都发挥着重要作用。
本文主要针对m30 螺杆的剪切力进行分析,以期为相关领域的研究和应用提供参考。
2.m30 螺杆的概述m30 螺杆,即公称直径为30mm 的螺杆,是一种常见的标准螺杆规格。
它具有结构简单、传动效率高、承载能力大等优点,在各种工业设备和机械传动系统中都有广泛应用。
3.剪切力的定义和计算方法剪切力,又称剪力,是指在剪切作用下,单位面积上受到的力。
在螺杆传动中,剪切力主要作用在螺杆的螺纹部分,其计算公式为:剪切力F = T / A其中,F 表示剪切力,T 表示扭矩,A 表示螺纹的截面积。
4.m30 螺杆的剪切力分析以m30 螺杆为例,我们可以根据其公称直径、螺距和螺纹截面形状来计算其螺纹截面积。
假设螺距为4mm,螺纹截面为正六边形,则螺纹截面积A 可计算如下:A = π* (d/2)^2 * (1 + √3) / 4= π* (30/2)^2 * (1 + √3) / 4≈706.86 mm假设m30 螺杆所承受的扭矩为100 N·m,则可以根据上述公式计算出剪切力:F = T / A= 100 / 706.86≈0.141 N因此,m30 螺杆在这种情况下的剪切力约为0.141 N。
5.结论通过对m30 螺杆的剪切力进行分析,我们可以得出结论:m30 螺杆在承受100 N·m 扭矩时,其剪切力约为0.141 N。
在实际应用中,根据不同的使用环境和承载要求,m30 螺杆的剪切力可能会有所不同。
剪切力的计算方法精编版
剪切力的计算方法精编版首先,我们先来了解一下剪切力的概念和背景知识。
剪切力是指物体在受到垂直于其截面的剪切应力时,所受到的力的大小。
剪切应力是指物体内部由于受到力的作用而产生的应力,其沿截面施加的作用力垂直于截面。
1.应力-应变关系法应力-应变关系法是计算剪切力最常用的方法之一、根据钢材等材料的线性弹性特性,剪切应力和应变之间存在线性关系,可以通过杨氏模量来计算剪切力。
公式如下所示:剪切力=剪切应力×截面积其中,剪切应力可以通过应力-应变关系得出,应变根据物体的受力情况和形状可以进行计算。
2.扭矩法扭矩法是一种通过扭转杆件来计算剪切力的方法。
当杆件受到扭矩作用时,杆件会在截面上产生剪切应力,从而产生剪切力。
根据弹性力学理论,扭矩和剪切力之间存在线性关系,公式如下所示:剪切力=扭矩×距离/截面极性矩其中,截面极性矩可以通过截面形状进行计算。
3.力矩法力矩法是一种通过受力物体的力矩平衡条件来计算剪切力的方法。
根据力矩平衡定律,物体受到的剪切力和力矩之间存在平衡关系,公式如下所示:剪切力=ΣM/距离其中,ΣM表示所有受力物体的力矩的代数和,距离表示力矩的作用距离。
4.梁的转角法梁的转角法是一种通过梁的转角来计算剪切力的方法。
当梁受到外力作用时,会产生转角,根据梁的弹性力学公式可以计算出剪切力。
公式如下所示:剪切力=F×L/θ其中,F表示梁所受外力的大小,L表示梁的长度,θ表示梁的转角。
这些方法可以根据具体情况和需求来选择使用。
在进行剪切力的计算时,需要明确剪切应力、截面积、扭矩、距离、力矩和转角等参数的具体值,并进行合理的单位换算以确保计算结果的准确性。
需要注意的是,剪切力的计算方法可能会受到材料的非线性特性、几何形状的复杂性等多种因素的影响,因此在实际应用中需要进行合理的简化和适当的修正。
综上所述,剪切力的计算方法包括应力-应变关系法、扭矩法、力矩法和梁的转角法等。
选择适当的计算方法需要根据具体情况和实际需求来决定,同时需要注意考虑材料的特性以及几何形状的复杂性等因素。
剪切力的计算方法
剪切力的计算方法剪切力是物体在受到两个相互作用的力的情况下,使物体发生剪切变形的力。
剪切力的计算方法取决于物体的几何形状和相互作用力的性质。
本文将介绍一些常见的剪切力计算方法。
1. 直角剪切力(Shear force)当物体受到垂直于其截面的力时,产生的剪切力称为直角剪切力。
通常情况下,直角剪切力可以通过以下公式计算:F=Q/A其中,F为剪切力,Q为作用在物体上的拉力或推力的大小(单位为牛顿),A为物体的截面面积(单位为平方米)。
2. 斜向剪切力(Shear force)当物体受到斜向作用力时,产生的剪切力称为斜向剪切力。
通常情况下,斜向剪切力可以通过以下公式计算:F=F1+F2其中,F为剪切力,F1和F2分别为作用在物体上的两个力的大小。
3.构件(梁)上的剪切力计算在构件或梁上,剪切力的计算通常依赖于结构力学的原理和公式。
以下是一些常见的方法:3.1剪力图法剪力图法是一种常见的方法,用于计算梁上各点的剪切力。
通过在梁上绘制剪力图,可以确定不同截面位置上的剪切力大小。
该方法通常结合力的平衡条件和梁弯曲方程使用。
3.2截面法截面法是一种常见的方法,用于确定不同截面位置上的剪切力大小。
通过分析截面的受力情况,可以得出不同截面位置上的剪切力大小。
该方法通常结合应力分布的假设和材料力学性质使用。
3.3超静定梁的剪切力算例在超静定梁上,梁的支座和跨中通常没有直接的外力作用。
在这种情况下,可以使用弯矩分布法来计算剪切力。
通过将弯矩分布转换为剪切力分布,可以确定梁上不同截面位置上的剪切力。
综上所述,剪切力的计算方法取决于物体的几何形状和作用力的性质。
在实际应用中,需要结合具体情况选择合适的计算方法。
同时,结构力学和材料力学的原理和公式对于剪切力的计算也起到重要的指导作用。
钢板剪切力计算范文
钢板剪切力计算范文钢板剪切力是指在剪切过程中作用在钢板上的力量。
钢板剪切力的大小直接影响到钢板的剪切强度和剪切性能。
因此,准确计算钢板剪切力对于设计和选择材料具有重要意义。
本文将结合相关理论和实例,探讨钢板剪切力的计算方法。
1.钢板剪切力的产生原因钢板剪切力的产生主要是由于外力对钢板的作用,例如剪切力、挤压力、冲击力等。
在实际工程中,常见的钢板剪切力包括切割力、折弯力、铣削力等。
这些力量会导致钢板发生塑性变形,在一定程度上影响钢板的强度和形状。
2.钢板剪切力的计算方法F=τ*A其中,F为剪切力,τ为剪切应力,A为钢板的剪切面积。
剪切应力的计算方法为:τ=τ₀+τ₁+τ₂其中,τ₀为弯曲应力,τ₁为应力集中系数造成的应力,τ₂为剪切失效面积系数造成的应力。
弯曲应力的计算方法为:τ₀=(M*y)/I其中,M为弯矩,y为距离中性轴的垂直距离,I为惯性矩。
应力集中系数的计算涉及到钢板的形状和载荷情况,一般可以通过查阅相关手册或进行有限元分析来获取。
剪切失效面积系数的计算方法为:τ₂=k*τ₀其中,k为钢材的剪切失效面积系数,可以通过查阅相关标准或进行实验测试获得。
钢板剪切面积的计算方法与钢板形状有关,常见的钢板形状包括矩形、圆形、槽形等。
对于矩形钢板来说,剪切面积的计算方法为:A=t*b其中,t为钢板的厚度,b为钢板的宽度。
3.钢板剪切力计算的案例分析以钢板剪切刀具的设计为例,对钢板剪切力的计算进行案例分析。
假设钢板的厚度为50mm,宽度为200mm,切割刀具的材料为高速钢。
切割过程中产生的剪切应力为300MPa,弯矩为500Nm,距离中性轴的垂直距离为100mm。
根据上述公式,可以计算出剪切力的大小。
首先计算弯曲应力:τ₀ = (M * y) / I = (500Nm * 100mm) / I然后计算剪切面积:A = t * b = 50mm * 200mm最后计算剪切力:F=τ*A=(τ₀+τ₁+τ₂)*A通过上述计算,可以得出该案例中的钢板剪切力大小。
剪切力的计算方法
第3章剪切与挤压得实用计算3、1 剪切得概念在工程实际中,经常遇到剪切问题.剪切变形得主要受力特点就是构件受到与其轴线相垂直得大小相等、方向相反、作用线相距很近得一对外力得作用(图3—1a),构件得变形主要表现为沿着与外力作用线平行得剪切面(面)发生相对错动(图3—1b)。
图3-1工程中得一些联接件,如键、销钉、螺栓及铆钉等,都就是主要承受剪切作用得构件。
构件剪切面上得内力可用截面法求得。
将构件沿剪切面假想地截开,保留一部分考虑其平衡。
例如,由左部分得平衡,可知剪切面上必有与外力平行且与横截面相切得内力(图3—1c)得作用.称为剪力,根据平衡方程,可求得。
剪切破坏时,构件将沿剪切面(如图3-la所示得面)被剪断。
只有一个剪切面得情况,称为单剪切。
图3—1a所示情况即为单剪切.受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲与拉伸等作用。
在图3-1中没有完全给出构件所受得外力与剪切面上得全部内力,而只就是给出了主要得受力与内力.实际受力与变形比较复杂,因而对这类构件得工作应力进行理论上得精确分析就是困难得.工程中对这类构件得强度计算,一般采用在试验与经验基础上建立起来得比较简便得计算方法,称为剪切得实用计算或工程计算。
3、2 剪切与挤压得强度计算3、2、1剪切强度计算剪切试验试件得受力情况应模拟零件得实际工作情况进行.图3—2a为一种剪切试验装置得简图,试件得受力情况如图3-2b所示,这就是模拟某种销钉联接得工作情形。
当载荷增大至破坏载荷时,试件在剪切面及处被剪断。
这种具有两个剪切面得情况,称为双剪切。
由图3-2c可求得剪切面上得剪力为图3—2由于受剪构件得变形及受力比较复杂,剪切面上得应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件得应力.在这种计算方法中,假设应力在剪切面内就是均匀分布得。
若以A表示销钉横截面面积,则应力为(3—1)与剪切面相切故为切应力。
以上计算就是以假设“切应力在剪切面上均匀分布”为基础得,实际上它只就是剪切面内得一个“平均切应力”,所以也称为名义切应力。
不锈钢剪切力计算公式
剪切力计算公式
剪切力F(牛)=截面积S(平方毫米)×屈服强度σ(帕)
“剪切”是在一对相距很近、大小相同、指向相反的横向外力(即垂直于作用面的力)作用下,材料的横截面沿该外力作用方向发生的相对错动变形现象。
能够使材料产生剪切变形的力称为剪力或剪切力。
扩展资料:
判断是否“剪切”的关键是材料的横截面是否发生相对错动。
因此,菜刀切菜不是剪切现象(因蔬菜的横截面没有发生相对错动),而用剪刀剪指甲则是(指甲的横截面发生相对错动。
注:用指甲剪剪指甲不是一种剪切现象,虽然它同样能把指甲剪下来。
它属于挤压变形)。
至于“剪切力”的来源,当然是压力造成的。
也可以说,剪切力是一种特殊形式的压力。
45号钢的剪切力
45号钢的剪切力取决于其剪切面积和抗剪强度。
抗剪强度通常是抗拉强度的50%~60%,而45号钢的抗拉强度为355MPa,因此其抗剪强度约为178MPa。
如果需要计算45号钢的具体剪切力,需要知道其剪切面积。
剪切面积可以通过公式计算,公式为:剪切面积 = (剪力/抗剪强度)²π。
假设剪力为15吨,那么45号钢的剪切面积可以通过公式计算,即(15/178)²π≈ 0.0164平方米。
然后可以通过剪切面积和剪力来计算45号钢的剪切力,公式为:剪切力 = 抗剪强度×剪切面积 = 178 × (15/2)²π = 31439.25牛。
以上信息仅供参考,如果需要更多信息,建议咨询专业人士。
剪切力的计算方法
第3章剪切和挤压的实用计算剪切的概念在工程实际中,经常遇到剪切问题。
剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(nm-面)发生相对错动(图3-1b)。
图3-1工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。
构件剪切面上的内力可用截面法求得。
将构件沿剪切面n m-假想地截开,保留一部分考虑其平衡。
例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力F(图3-1c)Q的作用。
F称为剪力,根据平衡方程∑=0Y,Q可求得FF=。
Q剪切破坏时,构件将沿剪切面(如图3-la 所示的n m-面)被剪断。
只有一个剪切面的情况,称为单剪切。
图3-1a所示情况即为单剪切。
受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。
在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。
实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。
工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。
剪切和挤压的强度计算剪切强度计算剪切试验试件的受力情况应模拟零件的实际工作情况进行。
图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。
当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。
这种具有两个剪切面的情况,称为双剪切。
由图3-2c 可求得剪切面上的剪力为 2F F Q= 图3-2由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。
在这种计算方法中,假设应力在剪切面内是均匀分布的。
若以A 表示销钉横截面面积,则应力为A F Q=τ(3-1)τ与剪切面相切故为切应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 剪切和挤压的实用计算3.1 剪切的概念在工程实际中,经常遇到剪切问题。
剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。
图3-1工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。
构件剪切面上的内力可用截面法求得。
将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。
例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。
Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。
剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。
只有一个剪切面的情况,称为单剪切。
图3-1a 所示情况即为单剪切。
受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。
在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。
实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。
工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。
3.2 剪切和挤压的强度计算3.2.1 剪切强度计算剪切试验试件的受力情况应模拟零件的实际工作情况进行。
图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。
当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。
这种具有两个剪切面的情况,称为双剪切。
由图3-2c 可求得剪切面上的剪力为2F F Q =图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。
在这种计算方法中,假设应力在剪切面内是均匀分布的。
若以A 表示销钉横截面面积,则应力为AF Q =τ (3-1) τ与剪切面相切故为切应力。
以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。
当F 达到b F 时的切应力称剪切极限应力,记为b τ。
对于上述剪切试验,剪切极限应力为AF b b 2=τ 将b τ除以安全系数n ,即得到许用切应力 []n bττ=这样,剪切计算的强度条件可表示为[]ττ≤=A F Q(3-2)3.2.2 挤压强度计算一般情况下,联接件在承受剪切作用的同时,在联接件与被联接件之间传递压力的接触面上还发生局部受压的现象,称为挤压。
例如,图3-2b 给出了销钉承受挤压力作用的情况,挤压力以bs F 表示。
当挤压力超过一定限度时,联接件或被联接件在挤压面附近产生明显的塑性变形,称为挤压破坏。
在有些情况下,构件在剪切破坏之前可能首先发生挤压破坏,所以需要建立挤压强度条件。
图3-2a 中销钉与被联接件的实际挤压面为半个圆柱面,其上的挤压应力也不是均匀分布的,销钉与被联接件的挤压应力的分布情况在弹性范围内如图3-3a 所示。
图3-3与上面解决抗剪强度的计算方法类同,按构件的名义挤压应力建立挤压强度条件[]bs bsbs bs A F σσ≤= (3-3) 式中bs A 为挤压面积,等于实际挤压面的投影面(直径平面)的面积,见图3-3b 。
bs σ为挤压应力,[]bs σ为许用挤压应力。
由图3-2b 可见,在销钉中部n m -段,挤压力bs F 等于F ,挤压面积bs A 等于td 2;在销钉端部两段,挤压力均为2F ,挤压面积为td 。
许用应力值通常可根据材料、联接方式和载荷情况等实际工作条件在有关设计规范中查得。
一般地,许用切应力[]τ要比同样材料的许用拉应力[]σ小,而许用挤压应力则比[]σ大。
对于塑性材料 []()[]στ8.0~6.0=[]()[]σσ5.2~5.1=bs对于脆性材料 []()[]στ0.1~8.0=[]()[]σσ5.1~9.0=bs本章所讨论的剪切与挤压的实用计算与其它章节的一般分析方法不同。
由于剪切和挤压问题的复杂性,很难得出与实际情况相符的理论分析结果,所以工程中主要是采用以实验为基础而建立起来的实用计算方法。
例3-1 图3-4中,已知钢板厚度mm 10=t ,其剪切极限应力MPa 300=b τ。
若用冲床将钢板冲出直径mm 25=d 的孔,问需要多大的冲剪力F ?图3-4解 剪切面就是钢板内被冲头冲出的圆柱体的侧面,如图3-4b 所示。
其面积为22mm 785mm 1025=⨯⨯π=π=dt A冲孔所需的冲力应为kN 236N 103001078566=⨯⨯⨯=τ≥-b A F例3-2 图3-5a 表示齿轮用平键与轴联接(图中只画出了轴与键,没有画齿轮)。
已知轴的直径mm 70=d ,键的尺寸为mm 1001220⨯⨯=⨯⨯l h b ,传递的扭转力偶矩m kN 2⋅=e T ,键的许用应力[]MPa 60=τ,[]MPa 100=σbs 。
试校核键的强度。
图3-5解 首先校核键的剪切强度。
将键沿n n -截面假想地分成两部分,并把n n -截面以下部分和轴作为一个整体来考虑(图3-5b)。
因为假设在n n -截面上的切应力均匀分布,故n n -截面上剪力Q F 为ττbl A F Q ==对轴心取矩,由平衡条件∑=0o M ,得e Q T d bl d F ==22τ 故[]ττ<=⨯⨯⨯⨯⨯==-MPa 6.28Pa 1090100201022293bld T e , 可见该键满足剪切强度条件。
其次校核键的挤压强度。
考虑键在n n -截面以上部分的平衡(图3-5c),在n n -截面上的剪力为τbl F Q =,右侧面上的挤压力为bs bs bs bs l h A F σσ2== 由水平方向的平衡条件得 bs Q F F = 或 bs l h bl στ2=由此求得[]bs bs h b σ<=⨯⨯=τ=σMPa 3.95MPa 126.282022 故平键也符合挤压强度要求。
例3-3 电瓶车挂钩用插销联接,如图3-6a 所示。
已知mm 8=t ,插销材料的许用切应力[]MPa 30=τ,许用挤压应力[]MPa 100=bs σ,牵引力kN 15=F 。
试选定插销的直径d 。
图3-6解 插销的受力情况如图3—6b ,可以求得kN 5.7kN 2152===F F Q 先按抗剪强度条件进行设计[]2426m 105.2m 10307500-⨯=⨯=τ≥QF A即242m 105.24-⨯≥πd mm 8.17m 0178.0=≥d再用挤压强度条件进行校核[]bs 63MPa 7.52Pa 108.178210152σσ<=⨯⨯⨯⨯===-td F A F bs bs bs 所以挤压强度条件也是足够的。
查机械设计手册,最后采用mm 20=d 的标准圆柱销钉。
例3-4 图3-7a 所示拉杆,用四个直径相同的铆钉固定在另一个板上,拉杆和铆钉的材料相同,试校核铆钉和拉杆的强度。
已知kN 80=F ,mm 80=b ,mm 10=t ,mm 16=d ,[]MPa 100=τ,[]MPa 300=bs σ,[]MPa 150=σ。
图3-7 解根据受力分析,此结构有三种破坏可能,即铆钉被剪断或产生挤压破坏,或拉杆被拉断。
(1)铆钉的抗剪强度计算当各铆钉的材料和直径均相同,且外力作用线通过铆钉组剪切面的形心时,可以假设各铆钉剪切面上的剪力相同。
所以,对于图3-7a 所示铆钉组,各铆钉剪切面上的剪力均为kN 20kN 4804===F F Q 相应的切应力为[]τ<=⨯⨯π⨯==τ-MPa 5.99101641020623Pa A F Q(2)铆钉的挤压强度计算四个铆钉受挤压力为F ,每个铆钉所受到的挤压力bs F 为kN 204==F F bs 由于挤压面为半圆柱面,则挤压面积应为其投影面积,即td A bs =故挤压应力为[]bs bs bs bs A F σσ<=⨯⨯⨯==-MPa 125Pa 101610102063(3)拉杆的强度计算其危险面为1-1截面,所受到的拉力为F ,危险截面面积为()t d b A -=1,故最大拉应力为()[]σσ<=⨯⨯-⨯==-MPa 125Pa 101016801080631A F 根据以上强度计算,铆钉和拉杆均满足强度要求。
习 题3-1 试校核图示联接销钉的抗剪强度。
已知kN 100=F ,销钉直径mm 30=d ,材料的许用切应力[]MPa 60=τ。
若强度不够,应改用多大直径的销钉?题3-1图3-2 在厚度mm 5=t 的钢板上,冲出一个形状如图所示的孔,钢板剪切极限应力MPa 3000=τ,求冲床所需的冲力F 。
题 3-2图 题3-3图3-3 冲床的最大冲力为kN 400,被剪钢板的剪切极限应力MPa 3600=τ,冲头材料的[]MPa 440=σ ,试求在最大冲力下所能冲剪的圆孔的最小直径min d 和板的最大厚度max t 。
3-4 销钉式安全联轴器所传递的扭矩需小于300m N ⋅,否则销钉应被剪断,使轴停止工作,试设计销钉直径d 。
已知轴的直径mm 30=D ,销钉的剪切极限应力MPa 3600=τ。
题 3-4图3-5 图示轴的直径mm 80=d ,键的尺寸mm 24=b ,mm 14=h 。
键的许用切应力[]MPa 40=τ,许用挤压应力[]MPa 90=σbs 。
若由轴通过键所传递的扭转力偶矩m kN 2.3⋅=e T ,试求所需键的长度l 。
题3-5图 题3-6图3-6 木榫接头如图所示。
mm 120==b a ,mm 350=h ,mm 45=c kN 40=F 。
试求接头的剪切和挤压应力。
3-7 图示凸缘联轴节传递的扭矩m kN 3⋅=e T 。
四个直径mm 12=d 的螺栓均匀地分布在mm 150=D 的圆周上。
材料的许用切应力[]MPa 90=τ,试校核螺栓的抗剪强度。
题3-7图3-8 厚度各为10mm 的两块钢板,用直径mm 20=d 的铆钉和厚度为8mm 的三块钢板联接起来,如图所示。
已知F =280kN ,[]MPa 100=τ,[]MPa 280=bs σ,试求所需要的铆钉数目n 。
题3-8图3-9图示螺钉受拉力F 作用。
已知材料的剪切许用应力[]τ和拉伸许用应力[]σ之间的关系为[][]στ6.0=。
试求螺钉直径d 与钉头高度h 的合理比值。
题3-9图3-10 两块钢板用7个铆钉联接如图所示。
已知钢板厚度mm 6=t ,宽度mm 200=b ,铆钉直径mm 18=d 。