(完整word版)数字信号处理试卷及答案_程培青(第三版),推荐文档

合集下载

数字信号处理试卷及详细答案三套

数字信号处理试卷及详细答案三套

数字信号处理试卷答案完整版一、填空题:(每空1分,共18分)1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。

2、 双边序列z 变换的收敛域形状为 圆环或空集 。

3、 某序列的DFT 表达式为∑-==10)()(N n knMW n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。

4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为2,2121-=-=z z ;系统的稳定性为 不稳定 。

系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。

5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。

6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。

用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。

7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H eH =,则其对应的相位函数为ωωϕ21)(--=N 。

8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。

二、判断题(每题2分,共10分)1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。

《数字信号处理》第三版答案(非常详细完整)

《数字信号处理》第三版答案(非常详细完整)

答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试成功!!电子科技大学微电子与固体电子学钢教授著数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。

数字信号处理试卷及答案_程培青(第三版)

数字信号处理试卷及答案_程培青(第三版)

数字信号处理 试卷一、填空题:(本大题共10小题,每空2分,共28分)请在每个空格中填上正确答案。

错填、不填均无分。

1、一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 2y(n);输入为x (n-3)时,输出为 y(n-3)。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs 关系为: f ≥2fs 。

3、已知一个长度为N 的序列x(n),它的傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X (e jw )的 N 点等间隔 抽样 。

4、有限长序列x(n)的8点DFT 为X (K ),则X (K )= ()70()nkNn X k x n W==∑ 。

5、无限长单位冲激响应(IIR )滤波器的结构上有反馈,因此是_递归型_的。

6、若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 8 。

7、已知因果序列x(n)的Z 变换为X(z)=eZ -1,则x(0)=_ 0_ _。

8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,级联型,并联型四种。

9、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的__主值序列 ,,而周期序列可以看成有限长序列的__周期序列__。

10、对长度为N 的序列x(n)圆周移位m 位得到的序列用x m (n)表示,其数学表达式为x m (n)= x((n+m))N R N (n) _。

二、选择填空题(本大题共6小题,每题2分,共12分)1、δ(n)的z 变换是 A 。

A. 1B.δ(w)C. 2πδ(w)D. 2π2、序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是 B , 5点圆周卷积的长度是 。

A. 5, 5B. 6, 5C. 6, 6D. 7, 53、在N=32的时间抽取法FFT 运算流图中,从x(n)到X(k)需 B 级蝶形运算 过程。

数字信号处理第三版习题答案

数字信号处理第三版习题答案

数字信号处理第三版习题答案数字信号处理(Digital Signal Processing,简称DSP)是一门研究如何对数字信号进行处理和分析的学科。

它在现代通信、音频处理、图像处理等领域有着广泛的应用。

为了更好地理解和掌握数字信号处理的知识,许多人选择了《数字信号处理(第三版)》这本经典教材。

本文将为大家提供一些《数字信号处理(第三版)》习题的答案,以帮助读者更好地学习和巩固所学知识。

第一章:离散时间信号和系统1.1 习题答案:a) 离散时间信号是在离散时间点上取值的信号,而连续时间信号是在连续时间上取值的信号。

b) 离散时间系统是对离散时间信号进行处理的系统,而连续时间系统是对连续时间信号进行处理的系统。

c) 离散时间信号可以通过采样连续时间信号得到。

1.2 习题答案:a) 线性系统满足叠加性和齐次性。

b) 时不变系统的输出只与输入的时间延迟有关,与输入信号的具体形式无关。

c) 因果系统的输出只与当前和过去的输入有关,与未来的输入无关。

第二章:离散时间信号的时域分析2.1 习题答案:a) 离散时间信号的能量是信号幅值的平方和,而功率是信号幅值的平方的平均值。

b) 离散时间信号的能量和功率可以通过计算信号的幅值序列的平方和和平方的平均值得到。

2.2 习题答案:a) 离散时间信号的自相关函数是信号与其自身经过不同时间延迟的乘积的和。

b) 离散时间信号的自相关函数可以用于确定信号的周期性和频率成分。

第三章:离散时间信号的频域分析3.1 习题答案:a) 离散时间信号的频谱是信号在频率域上的表示,可以通过对信号进行傅里叶变换得到。

b) 离散时间信号的频谱可以用于分析信号的频率成分和频谱特性。

3.2 习题答案:a) 离散时间信号的频谱具有周期性,其周期等于采样频率。

b) 离散时间信号的频谱可以通过对信号进行离散傅里叶变换得到。

第四章:离散时间系统的频域分析4.1 习题答案:a) 离散时间系统的频率响应是系统在不同频率下的输出与输入之比。

(完整版)数字信号处理试卷及答案_程培青(第三版),推荐文档

(完整版)数字信号处理试卷及答案_程培青(第三版),推荐文档

《数字信号处理》试卷 A 第 6 页 ( 共 6 页 )
数字信号处理基础 试卷答案及评分标准
一、 填空题:(共 28 分,每空 2 分)
7
建议收藏下载本文,以便随时学习! (1)2y(n),y(n-3) (2)f≥2fs (3)N,抽样 (4) X (k) xnWNnk n0
(5)递归型
(6)8
Z-1 0.5 -1.4
Z-1 -0.8 1
Z-1
Z-1
-0.8
1
3、
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格
复加所需时间T1 0.5106 N N 1 0.5106 512 511 0.130816s
所以T T1 T2 1.441536s
2、用 FFT 计算
复乘所需时间
T1
5 106
N 2
log2
N
5 106
512 2
log2
512
0.01152s
复加所需时间T2 0.5106 N log2 N 0.5106 512 log2 512 0.002304s
3、请画出 8 点的按频率抽取的(DIF)基-2 FFT 流图,要求输入自然数顺序,输出倒 位序。
2、用级联型结构实现以下系统函数,试问一共能构成几种级联型网络,并画出结构 图。
4Z 1Z 2 1.4Z 1 H (z) Z 0.5Z 2 0.9Z 0.8
专业班级:
学院名称
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格

A. 1
B.δ(w)
C. 2πδ(w)

程佩青《数字信号处理教程(第三版)》课后习题答案精编版

程佩青《数字信号处理教程(第三版)》课后习题答案精编版
4
第一章 离散时间信号与系统
1 .直接计算下面两个序列的卷积和 y( n ) = x( n )* h( n )
h (n )
=
⎧an ⎨
⎩0
, 0 ≤ n ≤ N −1 , 其他n
x (n )
=
⎧⎪ β ⎨
n−n 0
⎪⎩ 0
,n0 ≤ n , n < n0
请用公式表示。
分析:
①注意卷积和公式中求和式中是哑变量 m ( n 看作参量),
y (n ) ={1,2,3,3,2,1} ;
②δ (n)* x(n) = x(n) , δ (n − m)* x(n) = x(n − m) ;
③卷积和求解时, n 的分段处理。
6
解:(1) y(n) = x(n) * h(n) = R5(n) (2) y(n) = x(n) * h(n) = {1,2,3,3,2,1}
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
∑ ∑( ) n α m−n0 n−m = β α = β m=n0
nn β
n0
α
n β −n0
− β n0
α
β n +1 α
1

β α
α β =
− n +1− n0

(完整)数字信号处理试卷及答案,推荐文档

(完整)数字信号处理试卷及答案,推荐文档

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A.有限长序列B.无限长序列C.反因果序列D.因果序列 9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理试卷 程培青(第三版)

数字信号处理试卷 程培青(第三版)

数字信号处理试卷一、填空题:(本大题共10小题,每空2分,共28分)1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为;输入为x(n-3)时,输出为。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs关系为:。

3、已知一个长度为N的序列x(n),它的傅立叶变换为X(ejw),它的N点离散傅立叶变换X(K)是关于X(ejw)的点等间隔。

4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。

5、无限长单位冲激响应(IIR)滤波器的结构上有反馈,因此是_ _____型的。

6、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 。

7、已知因果序列x(n)的Z变换为X(z)=eZ-1,则x(0)=__________。

8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,___ ___和__ _ ___四种。

9、DFT与DFS有密切关系,因为有限长序列可以看成周期序列的__________,而周期序列可以看成有限长序列的__________。

10、对长度为N的序列x(n)圆周移位m位得到的序列用xm(n)表示,其数学表达式为xm(n)=__________。

二、选择填空题(本大题共6小题,每题2分,共12分)1、δ(n)的z变换是。

A. 1B.δ(w)C. 2πδ(w)D. 2π2、序列x1(n)的长度为4,序列x2(n)的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是。

A. 5, 5B. 6, 5C. 6, 6D. 7, 53、在N=32的时间抽取法FFT运算流图中,从x(n)到X(k)需级蝶形运算过程。

A. 4B. 5C. 6D. 34、下面描述中最适合离散傅立叶变换DFT的是()A.时域为离散序列,频域也为离散序列B.时域为离散有限长序列,频域也为离散有限长序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散周期序列,频域也为离散周期序列5、设系统的单位抽样响应为h(n),则系统因果的充要条件为()A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0C.当n<0时,h(n)=0 D.当n<0时,h(n)≠06、已知序列Z变换的收敛域为|z|<1,则该序列为( )。

《数字信号处理》第三版答案(非常详细完整)

《数字信号处理》第三版答案(非常详细完整)

答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试成功!!电子科技大学微电子与固体电子学陈钢教授著数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。

数字信号处理试卷及详细答案(三套)要点

数字信号处理试卷及详细答案(三套)要点
用双线性变换法将一模拟滤波器映射为数字滤波器时模拟频率与数字频率之间的映射变换关系为7当线性相位fir数字滤波器满足偶对称条件时其单位冲激响应8请写出三种常用低通原型模拟滤波器巴特沃什滤波器一个信号序列如果能做序列的傅里叶变换dtft也就能对其做dft变换
数字信号处理试卷答案
完整版 一、填空题: (每空 1 分,共 18 分)
y (n) 3 y( n 1) 2 y(n 2) x(n) 2 x(n 1) 系统初始状态为 y( 1) 1, y( 2) 2 ,系统激励为 x(n) (3)n u(n) ,
(╳)
试求:( 1)系统函数 H ( z) ,系统频率响应 H (e j ) 。
( 2)系统的零输入响应 yzi (n) 、零状态响应 y zs (n) 和全响应 y( n) 。
3、 一个信号序列,如果能做序列的傅里叶变换(
DTFT ),也就能对其做 DFT 变换。(╳)
4、 用双线性变换法进行设计 IIR 数字滤波器时, 预畸并不能消除变换中产生的所有频率点的非
线性畸变。
(√)
5、 阻带最小衰耗取决于窗谱主瓣幅度峰值与第一旁瓣幅度峰值之比。 三、( 15 分)、已知某离散时间系统的差分方程为
2
2
y( k )
y zi ( k)
yzs ( k)
9 [
12(2 ) k
2
15 (3) k ] (k ) 2
四 、回答以下问题:
( 1) 画出按 时域抽取 N 4 点 基 2FFT 的信号流图。
( 2) 利用流图计算 4 点序列 x(n) (2,1,3,4) ( n 0,1,2,3)的 DFT 。
( 3) 试写出利用 FFT 计算 IFFT 的步骤。
1 2z 1

(完整word版)数字信号处理试卷及答案(word文档良心出品)

(完整word版)数字信号处理试卷及答案(word文档良心出品)

A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。

A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。

A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。

A.有限长序列B.右边序列C.左边序列D.双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

3、对两序列x(n)和y(n),其线性相关定义为 。

4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。

5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。

三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。

(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。

《数字信号处理教程》第三版(程佩青_)答案___课后题答案1

《数字信号处理教程》第三版(程佩青_)答案___课后题答案1

第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2)列表法x(m)()h n m -n1 1 1 0 0 0 0 y(n) 0 11 1 1 12 2 1 1 13 3 1 1 1 1 34 0 1 1 1 1 25 0 011111(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。

4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。

解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。

(完整word版)数字信号处理试卷答案(word文档良心出品)

(完整word版)数字信号处理试卷答案(word文档良心出品)

一、填空题:(每空1分,共18分)1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。

2、 双边序列z 变换的收敛域形状为 圆环或空集 。

3、 某序列的DFT 表达式为∑-==1)()(N n knMWn x k X ,由此可以看出,该序列时域的长度为N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。

4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。

系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。

5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。

6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。

用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2TΩ=ω。

当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H e H =,则其对应的相位函数为ωωϕ21)(--=N 。

8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。

二、判断题(每题2分,共10分)1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。

数字信号处理答案(第三版)程佩青

数字信号处理答案(第三版)程佩青

数字信号处理教程课后习题及答案目录第一章离散时间信号与系统第二章Z变换第三章离散傅立叶变换第四章快速傅立叶变换第五章数字滤波器的基本结构第六章无限长单位冲激响应(IIR)数字滤波器的设计方法第七章有限长单位冲激响应(FIR)数字滤波器的设计方法第八章数字信号处理中有限字长效应第一章 离散时间信号与系统1 .直接计算下面两个序列的卷积和)n (h *)n (x )n (y =请用公式表示。

分析:①注意卷积和公式中求和式中是哑变量m ( n 看作参量), 结果)(n y 中变量是 n ,; )()()()()(∑∑∞-∞=∞-∞=-=-=m m m n x m h m n h m x n y ②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,; )( )( 4n y n n y n 值的,如此可求得所有值的)相加,求得一个(③ 围的不同的不同时间段上求和范一定要注意某些题中在n00 , 01()0 , ,()0,n n n a n N h n n n n x n n n β-⎧≤≤-=⎨⎩⎧≤⎪=⎨<⎪⎩其他如此题所示,因而要分段求解。

)(5.0)(,)1(2 )()4()(5.0)(,)2( )()3()()(,)( )()2()()(,)( )()1(3435n u n h n u n x n R n h n n x n R n h n R n x n R n h n n x n n n =--==-=====δδ2 .已知线性移不变系统的输入为)n (x ,系统的单位抽样响应 为)n (h ,试求系统的输出)n (y ,并画图。

分析:①如果是因果序列)(n y 可表示成)(n y ={)0(y ,)1(y ,)2(y ……},例如小题(2)为)(n y ={1,2,3,3,2,1} ;②)()(*)( , )()(*)(m n x n x m n n x n x n -=-=δδ ;③卷积和求解时,n 的分段处理。

《数字信号处理》第三版答案(非常详细完整)

《数字信号处理》第三版答案(非常详细完整)

答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试成功!!电子科技大学微电子与固体电子学陈钢教授著数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南工业大学数字信号处理 试卷考试方式:闭卷复查总分 总复查人一、填空题:(本大题共10小题,每空2分,共28分)请在每个空格中填上正确答案。

错填、不填均无分。

1、一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为;输入为x (n-3)时,输出为 。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs 关系为: 。

3、已知一个长度为N 的序列x(n),它的傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X (e jw )的 点等间隔 。

4、有限长序列x(n)的8点DFT 为X (K ),则X (K )= 。

5、无限长单位冲激响应(IIR )滤波器的结构上有反馈,因此是_ _____型的。

6、若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 。

7、已知因果序列x(n)的Z 变换为X(z)=eZ -1,则x(0)=__________。

8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,___ ___和__ _ ___四种。

9、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的__________,而周期序列可以看成有限长序列的__________。

10、对长度为N 的序列x(n)圆周移位m 位得到的序列用x m (n)表示,其数学表达式为x m (n)=__________。

《数字信号处理》试卷A 第1页 ( 共 6 页 )二、选择填空题(本大题共6小题,每题2分,共12分)1、δ(n)的z 变换是 。

A. 1B.δ(w)C. 2πδ(w)D. 2π2、序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是 , 5点圆周卷积的长度是 。

A. 5, 5B. 6, 5C. 6, 6D. 7, 53、在N=32的时间抽取法FFT 运算流图中,从x(n)到X(k)需 级蝶形运算 过程。

A. 4B. 5C. 6D. 3 4、下面描述中最适合离散傅立叶变换DFT 的是( ) A .时域为离散序列,频域也为离散序列B .时域为离散有限长序列,频域也为离散有限长序列C .时域为离散无限长序列,频域为连续周期信号D .时域为离散周期序列,频域也为离散周期序列5、设系统的单位抽样响应为h(n),则系统因果的充要条件为( ) A .当n>0时,h(n)=0 B .当n>0时,h(n)≠0 C .当n<0时,h(n)=0 D .当n<0时,h(n)≠06、已知序列Z 变换的收敛域为|z |<1,则该序列为( )。

A.有限长序列 B.右边序列 C.左边序列 D.双边序列《数字信号处理》试卷A 第2页 ( 共 6 页 )学院名 专业班级: 姓名: 学号密 封 线 内 不 要 答 题┃┃┃┃┃┃┃┃┃┃┃┃┃┃┃ 密 封┃┃┃┃┃┃┃┃┃┃┃ 线┃┃┃┃┃┃┃┃┃┃┃┃┃┃┃三、计算题(本大题共3小题,每题10分,共30分)1、如果一台计算机的速度为平均每次复乘5µS ,每次复加0.5µS ,用它来计算512点的DFT[x(n)],问直接计算需要多少时间,用FFT 运算需要多少时间。

2、用长除法、留数定理法、部分分式法分别求以下X(Z)的Z 反变换:(1) 121112(),1214Z X z z Z ---=>-; (2) 11121(),1414Z X z z Z ---=<-; (3) 1(),1Z a X z z aZ a-=>-数字信号处理》试卷A 第3页 ( 共 6 页 )4、设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

四、证明、画图题(本大题共3小题,每题10分,共30分)1、 设系统差分方程 y(n)=ay(n-1)+x(n)其中x(n)为输入,y(n)为输出。

当边界条件选为y(-1)=0时,是判断系统是否线性的、移不变的。

《数字信号处理》试卷A 第4页 ( 共 6 页 )学院名 专业班级: 姓名: 学号密 封 线 内 不 要 答 题密┃┃┃┃┃┃┃┃┃┃┃ 封┃┃┃┃┃┃┃┃┃┃┃ 线┃┃┃┃┃┃┃┃┃┃┃┃┃┃┃2、用级联型结构实现以下系统函数,试问一共能构成几种级联型网络,并画出结构图。

()()()()2241 1.41()0.50.90.8Z Z Z H z Z Z Z +-+=-++《数字信号处理》试卷A 第5页 ( 共 6 页 )3、请画出8点的按频率抽取的(DIF )基-2 FFT 流图,要求输入自然数顺序,输出倒位序。

《数字信号处理》试卷A 第6页 ( 共 6 页 )学院名 专业班级: 姓名: 学号密 封 线 内 不 要 答 题┃┃┃┃┃┃┃┃┃┃┃┃┃┃┃ 密┃┃┃┃┃┃┃┃┃┃┃ 封┃┃┃┃┃┃┃┃┃┃┃ 线┃┃┃┃┃┃┃┃┃┃┃┃┃┃┃数字信号处理基础 试卷答案及评分标准一、填空题:(共28分,每空2分)(1)2y(n),y(n-3) (2)f ≥2fs (3)N ,抽样 (4)()7()nk N n X k x n W ==∑(5)递归型 (6)8 (7)0 (8)级联型,并联型 (9)主值序列,周期序列 (10)x((n+m))N R N (n) 二、 选择题:(共12分,每空2分)(1) A (2)B (3)B (4)B (5)C (6)C 三、 计算题(共30分) (1)(10分)答: 1、 直接计算复乘所需时间 62621510510512 1.31072T N s --=⨯⨯=⨯⨯=复加所需时间()6610.51010.5105125110.130816T N N s --=⨯⨯⨯-=⨯⨯⨯=所以12 1.441536T T T s =+=2、用FFT 计算复乘所需时间 66122512510log 510log 5120.0115222N T N s --=⨯⨯=⨯⨯= 复加所需时间662220.510log 0.510512log 5120.002304T N N s --=⨯⨯=⨯⨯=所以120.013824T T T s =+=(2)(10分)a. 长除法 1()()2nx n u n ⎛⎫=-⋅ ⎪⎝⎭b .留数法 ()()1()8714nx n n u n δ⎛⎫=+-- ⎪⎝⎭c .部分分式法 ()()111()1nx n n a u n a a a δ⎛⎫⎛⎫=-+-- ⎪⎪⎝⎭⎝⎭(3)(10分)1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1} 2.6点圆周卷积={5,7,9,10,6,3} 3.8点圆周卷积={4,7,9,10,6,3,1,0}四、 证明、画图题(共30分)1、① 令1111()(),()(1)()x n n y n ay n x n δ==-+则111111111(0)(1)(0)1(1)(0)(1)()(1)()ny ay x y ay x ay n ay n x n a =-+==+==-+=M同样可求得 1111(1)(2)0,()0n y y y n ≤-=-===L 即 所以 ()1()n y n a u n =②令2222()(1),()(1)()x n n y n ay n x n δ=-=-+则2222221222(0)(1)(0)0(1)(0)(1)1()(1)()n y ay x y ay x y n ay n x n a -=-+==+==-+=M同样可求得 2221(1)(2)0,()0n y y y n ≤-=-===L 即所以 ()12()1n y n a u n -=-因为1()x n 与2()x n 为移1位关系,而且1()y n 与2()y n 也是移1位关系,所以在y(-1)=0条件下,系统是移不变系统。

③令312333()()()()(1),()(1)()x n x n x n n n y n ay n x n δδ=+=+-=-+n<0时,3331(2)(3)0,()0n y y y n ≤--=-===L 即n>=0时,3333331333(0)(1)(0)1(1)(0)(1)1()(1)()n n y ay x y ay x a y n ay n x n a a -=-+==+=+=-+=+M综上,可得()()1312()()(1)n n y n a u n a u n y n y n -=+-=+所以系统是线性系统。

2、x(n)y(n) 40.51-0.9-1.41-0.8Z-1Z-1Z-1x(n)y(n)40.51-0.9-1.41-0.8Z-1Z-1Z-1x(n)y(n)40.5-1.4-0.911-0.8Z-1Z-1Z-1Z-1x(n)y(n)40.5-1.4-0.911-0.8Z-1Z-1Z-1Z-13、。

相关文档
最新文档