LOW POWER ENERGY RECOVERY COMPLEMENTARY
Energy Recovery能量回收介绍
06583 06583 06583 676 06589 06589 06589 687
06585 06585 06585 06585 06585
ER选项-改良冷却回路
冷却水流程
OC HP LP IC AC RV1 油冷却器 高压转子冷却水夹套 低压转子冷却水夹套 中间冷却器 后冷却器 温度控制阀
冷却水出口位置
泵站
热量吸收装置
大多数情况下,我们需要另外增加一套后冷却器用于减少后处理设备负荷,改善空气干燥质量;
无油螺杆空压机ER选项
Model Cooling Dryer Voltage Energy Recovery
675 Z110 Z132 Z145 Z110 Z132 Z145 Z110 Z132 Z145 Z160 Z200 Z250 Z275-7.5 Z275-8.6/10 Z160 Z200 Z250 Z275-7.5 Z275-8.6/10 A A A W W W W W W A A A A A W W W W W P P P P P P FF FF FF P P P P P P P P P P 380 380 380 380 380 380 380 380 380 380 380 380 380 380 380 380 380 380 380
两级压缩9% 中冷37% 后冷42%
环境空气中的热量10%
油冷12%
无油螺杆空压机能量回收装置的组成
一套完整的适用于ZR机型的能量回收装置包括
– – – 改良内部冷却回路的ZR压缩机 泵站:用于将回收能量从压缩机的冷却系统传递到热量吸收装置 热量吸收装置:用于将能量传递到生产过程的设备
改良内部冷却回路的 ZR压缩机
H1
90°C
火力发电厂英语单词大全
英文全称缩写中文Aabort 中断,停止abnormal 异常abrader 研磨,磨石,研磨工具absence 失去Absence of brush 无(碳)刷Absolute ABS 绝对的Absoluteatmosphere ATA 绝对大气压AC Lub oil pump 交流润滑油泵absorptance 吸收比,吸收率acceleration 加速accelerator 加速器accept 接受access 存取accomplish 完成,达到accumulator 蓄电池,累加器Accumulator battery 蓄电池组accuracy 准确,精确acid 酸性,酸的Acid washing 酸洗acknowledge 确认,响应acquisition 发现,取得action 动作Active power 有功功率actuator 执行机构address 地址adequate 适当的,充分的adjust 调整,校正Admission mode 进汽方式Aerial line 天线after 以后air 风,空气Air compressor 空压机Air duct pressure 风管压力Air ejector 抽气器Air exhaust fan 排气扇Air heater 空气加热器Air preheater 空气预热器Air receiver 空气罐Alarm 报警algorithm 算法alphanumeric 字母数字Alternating current 交流电Altitude 高度,海拔Ambient 周围的,环境的Ambient temp 环境温度ammeter 电流表,安培计Ammonia tank 氨水箱Ampere 安培amplifier 放大器Analog 模拟Analog input 模拟输入Analog-to-digital A/D 模拟转换Analysis 分析Angle 角度Angle valve 角伐Angle of lag 滞后角Angle of lead 超前角anthracite 无烟煤Anion 阴离子Anionic exchanger 阴离子交换器Anode 阳极,正极announce 通知,宣布Annual 年的,年报Annual energyoutput 年发电量anticipate 预期,期望Aph slow motionmotor 空预器低速马达Application program 应用程序approach 近似值,接近Arc 电弧,弧光architecture 建筑物结构Area 面积,区域armature 电枢,转子衔铁Arrester 避雷器Ash 灰烬,废墟Ash handling 除灰Ash settling pond 沉渣池Ash slurry pump 灰浆泵assemble 安装,组装Assume 假定,采取,担任Asynchronous motor 异步马达atmosphere 大气,大气压Atomizing 雾化Attempt 企图Attemperater 减温器,调温器Attention 注意Attenuation 衰減,减少,降低Auto reclose 自动重合闸Auto transfer 自动转移Autoformer 自耦变压器Automatic AUTO 自动Automatic voltageregulator 自动调压器Auxiliary AUX 辅助的Auxiliary power 厂用电Available 有效的,可用的Avoid 避免,回避Avometer 万用表,安伏欧表计Axial 轴向的Axis 轴,轴线Axis disp protection 轴向位移,保护Axle 轴,车轴,心捧BBack 背后,反向的Back pressure 背压Back wash 反冲洗Back up 支持,备用Back ward 向后Baffle 隔板Bag filter 除尘布袋Balance 平衡Ball 球Ball valve 球阀Bar 巴,条杆Bar screen materialclassifier 栅形滤网base 基础、根据Base load 基本负荷Base mode 基本方式Batch processingunit 批处理单元Battery 电池Bearing BRG 轴承before 在…之前bell 铃Belt 带,皮带Bend 挠度,弯曲Besel 监视孔BLAS 偏置,偏压Binary 二进制,双Black 黑色Black out 大停电,全厂停电blade 叶片Bleed 放气,放水Blocking signal 闭锁信号Blow 吹Blow down 排污Blowlamp 喷灯blue 蓝色Bms watchdog Bms看门狗,bms监视器boiler BLR 锅炉Boiler feedwaterpump BFP 锅炉给水泵Boil-off 蒸发汽化 bolt 螺栓 bore 孔,腔boost BST 增压,提高 Boost centrifugal pumpBST CEP 凝升泵 Boost pump BP 升压泵Boot strap 模拟线路,辅助程序 bottom 底部 Bowl mill 碗式磨brash 脆性,易脆的bracket 支架,托架,括号 breadth 宽度break 断开,断路breaker 断路器,隔离开关 Breaker coil 跳闸线路 breeze微风,煤粉Brens-chluss 熄火,燃烧终结 bridge 电桥,跨接,桥形网络brigade 班,组,队,大队 broadcast 广播brownout 节约用电 brush电刷,刷子 Brush rocker 电刷摇环 Brown coal褐煤Buchholtz protecter 瓦斯保护 bucket 斗,吊斗 Buffer tank 缓冲箱 built 建立bulletin 公告,公报 bump 碰,撞击 bunker 煤仓 burner燃烧器Burner management system燃烧器管理系统 Bus section 母线段 busbar母线Busbar frame 母线支架 buscouple 母联 button按钮 Bypass/by pass BYP 旁路 Bypass valve旁路阀Ccabinet 柜 cable 电缆 calculator 计算器caliber 管径、尺寸、大小 calorie 卡caloric 热的、热量 Caloric value 发热量、热值 calorific 发热的、热量的 Calorific efficiency 热效率cancel取消、省略 capacitance CAPA C电容 Capacitive reactance 容抗capacity 容量、出力、能量 card (电子)板、卡 carrier 搬运机、载波、带电粒子Carrier protection 高频保护 cascade CAS 串级 Case pipe 套管 casine 壳、箱casual 偶然的、临时、不规则的Casual inspection 不定期检查、临时检查casualty 人身事故、伤亡、故障catastrophe灾祸、事故 Catastrophe failure 重大事故 Cat-pad猫爪cathode阴板、负极 Cathode ray tube CRT 显示器Cation exchanger 阳离子交换器 caution 注意 Center 中心centigrade摄氏温标 Central control room 中控室Central processing unitCPU 中央处理器 Centrifugal 离心的Certificate证明书、执照 Centrifugal fan 离心风机Certification of fitness 合格证书、质量证书 Chamber 办公室、会议室 Change 改变Channel 通道、频道 Character字符Characteristics 特性、特性曲线 Charge负荷、充电、加注 Charge indicator 验电器、带电指示器 Chart 图、图线图 chassis底座、机壳 Chassis earth 机壳接地 Check检查Check valve CK VLV 截止线、止回线 Chemical化学Chemical dosing 化学加药 Chest 室Chief主要的、首长、首领 Chief engineer 总工程师 Chief operator 值班长Chimney 烟囱、烟道 Chlorine 氯 Circuit电路Circuit breaker 电路断路器 Circuit diagram 电路图 Circular current 环流 Circulating 循环Circulating water pump循环水泵Circulating cooling water 循环冷却水 Clamp夹具、钳 Clarification 澄清Class类、等级、程度 Class of insulation 绝缘等级Clean 清洁的、纯净的 Cleanse 净化、洗净、消毒 Clear清除CLEARING OF FAULT故障清除Clock interface unit CIU 时钟接口单元 Clockwise 顺时针、右旋的 Close关闭Closed cooling water 闭式冷却水 Closed-loop 闭环Cluster 电池组、组、群 Coal 煤 Coal ash 煤灰 Coal breaker碎煤机Coal consumption 耗煤量、煤耗 Coal crusher 碎煤机Coal handling 输煤设备、输煤装置 Coal dust 煤粉Coal-fired power plant燃煤发电厂 Coal hopper 煤斗 Coal yard 煤场Coarse粗的、不精确的 Coaxial cable 同轴电缆 Code 代号、密码 Coil线圈Coil pipe 蛇形管 Cold 冷 Cold air冷风Cold reheater CRH 再热器冷段 Cold reserve 冷备用(锅炉) Cold start 冷态启动 Cold test 冷态试验 Collect收集 Collecting pipe 集水管 Collector 收集器 Colour颜色 Colour library 颜色库 Combin 合并、联合 Combustion 燃烧 Command 命令、指挥 Commission 使投入、使投产 Common共同的、普通的 Communication 联系、通讯 Commutator 换向器 Compensation 补偿 CompanyCO 公司 Company limited COLTD 有限公司 Complexity 复杂 Complete 完成 Component 元件 Compress 压缩 Compress air 压缩空气 Compresser 压缩机 Computer 计算机 Concrete 混凝土制的 Concurrent同时发生的、一致的 Concurrent boiler 直流锅炉 Cond press 凝结器压力 Condensate 冷凝、使凝结 Condensate extraction pumpCEP 凝结水泵 Condenser COND/CNDE R凝结器Condensive reactance 容抗 Condition 条件、状况 Conduct 传导 Conductivity 导电率 Conference 会议、商讨、谈判 Congealer 冷却器、冷冻器 Configure 组态 Connection 联接 Connector 联接器、接线盒 Console 控制台 Consult 商量、咨询、参考 Consumption 消费、消耗 Consumption steam 汽耗 Constant 恒定的 Contact 触点 Contactor 接触器、触头 Contact to earth 接地、触地、碰地 Content 目录 Contin blwdwn 连排 Continuous 连续的 Contract 合同Control CNTR/CNTPL 控制Control & instrument 仪控 Control loop 控制环 Control oil 控制油 Control panel 控制盘 Controller 控制器 Control stage 调节级、控制级 Control valve 调节阀 Conve cton sh 低温过热器 Convection 对流 Convertor 运输机、传输机Cool 冷的Cooler 冷却器 Cooling 冷却 Cooling fan 冷却风机 Cooling water pump 冷却水泵 Cooling tower 冷却塔Coordinate COOR D协调 Coordinate boiler follow mode协调的锅炉跟随方式 Coordinate control system协调控制系统 Coordinate turbine follow mode 协调的汽机跟随方式 Copy 拷贝 Core 铁心、核心、磁心 Core loss 铁(芯损)耗 Corner 角落 Correction 修正、改正 Corrosion 腐蚀 Cost 价格、成本、费用 Cost of fuel 燃料费用 Cost of upkeep 日常费用、维护费用 Coupler 联轴器 Coupling 耦合、联轴 Couple CPL 联轴器 Crane 起重机 Critical 临界的 Critical speed 临界速度 Crusher 碎渣机Current transformer CT 电流互感器 Cube 立方(体) Cubicle illumination 箱内照明 Curdle 凝固 Current 电流、当前 Cursor 光标 Curve 曲线 Custom 习惯、海关 Custom keys 用户键 Cutter 切削工具 Cyanic 青色、深蓝色 Cycle 循环、周期、周波 Cymometer 频率表 Cyclome classifier 旋风分离器 Cylinder CYL 汽缸DDaily load curve 日负荷曲线 Daily load 日负荷 Damage 损坏、破坏 Damper DMPR 阻尼器、挡板 Danger 危险、危险物 Dank 潮湿 Danger zone 危险区 Data 数据 Data base 数据库 Data acquisition systemDAS 数据采集系统 Data highway 数据高速公路 Date 日期 Data pool 数据库 Dc lub oil pump 直流润滑油泵 Dead band 死区Deaerator DEA/DEAE/D EAER除氧器Decimeter 分米 Decrease DEC 减少 Deep 深度、深的、深 Default 默认、缺席 Degree 度、等级 Demand 要求、查问 Delay 延迟 Delay time 延时 Delete 删除Demineralized water 除盐水Demineralizer 除盐装置Deposit 沉积结垢Desalt 除盐设备Description 说明、描述Destination 目标、目的地Desuperheater 减温器Desuperheater water DSHWTE 减温水Detail 细节Detect 发现、检定Deviate 偏离、偏差Device 设备、仪器Diagnosis 诊断Diagram 图形、图表Diagram directory 图目录Diagram number 图形号Diameter 直径Diaphragm 膜片、隔板Dielectric 介质、绝缘的Diesel generator 柴油发电机Difference 差异、差别、差额Differentialprotection 差动保护Diff press 差压Diff expansion DIFFEXP 胀差Differential pressure DP/DSP 差压Digital 数字的Digital electrichydraulic 电调Digital input/output 数字量输入/输出Digital-to-analog D/A 数/模转换Dioxde 二氧化碳Direct current DC 直流(电)Direct digital control DDC 直接数字控制Disassembly 拆卸Disaster 事故、故障Disc 叶轮Disaster shutdown 事故停机Discharge 排除、放电、卸载Discharge current 放电电流、泄漏电流Disconnector 隔离器、隔离开关Disconnect switch 隔离开关Discrete input/output 离散输入/输出Disk 磁盘Disk managecommands 磁盘管理命令Dispatch 调度、发送派遣Dispatcher 调度员Dispatching station 调度站(局)Disconnector 隔离器、隔离开关Discrete input/output 离散输入/输出Disk 磁盘Displacement 位移Displacement pump 活塞泵Display 显示、列屏Distance 距离Distilled water DISTLWTR 蒸馏水Distributed 分布\分配\配电(水、汽)Distributed controlsystem DCS 集散控制系统Distributedprocessing unit DPU 分布处理单元Distributing board 配电盘Distribution network 配电网络Distributionsubstation 二次变电站Disturbance 扰动Diverter vlv 切换线Divided by 除以Design 设计、发明Division 分界、部门Division wall 分割屏Documentation 文件Door 门Dosing pump 加药泵Dowel pin 定位销Down pipe 下降管Download 下载Downtime 停机时间Dozer 推土机Draft 通风、草图Drain DRN 疏水、排放Drain pump 疏水泵Drain tank 疏水箱Drawing 图样、牵引Drill 钻孔、钻头、钻床Drive 驱动、强迫Drn collector 疏水收集器Drop 站Drowned pump 潜水泵Drum 汽包Drum-type boiled 汽包式锅炉Dry 干、干燥Dual 双重的Duct 风道、管道Dust 灰尘Dust helmet 防尘罩Dust catcher 除尘器、吸尘器Duty 责任Dynamic 动态的Dynamometer 功率表EEarth 大地Earth fault 接地故障Earth connector 接地线、接地Earth lead 接地线、接地Eccentricity 偏心、扰度Econ recirc vlv 省煤器再循环线Economizer ECON 省煤器Edit 编辑Efficiency 效率Eject pump 射水泵Ejection 射出Ejector 抽气器Electric 电的Elbow 弯管、弯头Electric-hydrauliccontrol 电/液控制Electrical 电的、电气的Electrical lockoutsolenoid vlv 电磁阀锁阀Electrical machine 电机Electrical service 供电Electric powerindustry 电力工业Electrode 电极Electric powercompany 电力公司Electric powersystem 电力系统Electronic 电子的、电子学的Electrotechnics 电工学、电工技术Electrostaicprecipitator 静电除尘器Electrostatic 静电的Element 元件、零件、单元Elevation ELEV 标高Elevator 升降机Ellipse 椭圆Emergency decree 安规Emerg lub oil 事故润滑油Emerg off 事故停/关闭Emerg seal oil 事故密封油Emergency EMER紧急事故GEmergency drain 事故疏水 Emergency governet /intercepter 危急遮断器 Employee 雇员 Empty 排空 Enclosure 外壳、包围 End 末端、终结 End cover 端盖 Energize 激励、加电 Energy 能、能量 Energy meter 电度表 Energy source 能源 Engineer keyboard 工程师键盘 Engineer station 工程师站 Engineer's console 工程师操作站 Engineering 工程 Enter 开始、使进入 Entry 输入 Equalizer valve 平衡线 Equipment 设备 Erase 删除 Error 错误 Escape valve 安全线 Evaporate 蒸发、冷化 Evaporating 蒸发量 Event 事件 Excess 超过、过度 Excess combustion air过剩燃烧空气 Excitation 励磁 Exciter 励磁机 Exhaust EXH 排汽 Exhaust portion 排汽段 Exit 出口 Expansion EXP 膨胀 Expansion tank 扩容箱 Expenditure 费用 Expert 专家、能手 Explosion 爆炸 Exponent 指数幂 External 外部的、表面的 Extinguisher 灭火器 Extinguishing medium 灭弧介质 Extraction check valve EXTR CHKVLV抽汽逆止阀 Extra-high voltage 超高压 Extend 扩展、延伸 Exteral 外部的、表面的 Extr press 抽汽压力 Extr temp 抽汽温度 Extraction EXTR 抽汽FFactor 因素、因数 Fahrenheit 华式温标 Failure FAIL 失败 FALSE 假的、错误的 Fan 风扇、风机 Fan duty 风机负荷 Fast cut back FCB 快速切回 Fault 故障 Faulty operation 误操作 Features 特点 Feed 馈、供给 Feedback 反馈 Feed forward 前馈 Feed water 给水 Feed-water makeup 补给水 Fiber optic 光纤 Field 磁场、现场 Field operator 现场运行人员 Figure 数字、图案File 文件Filter 滤网、过滤器 Filter differential pressure FILTR DP 滤网压差 Final 最后的 Final super-heater FSH 末级过热器、高过 Fine ash silo 细灰库 Fire 燃烧、火焰 Fire-proof 耐火的、防火的 Fire-extinguisher 灭火器 Fire-hose 消防水带 Fire hydrant 消防栓 Fire-fight 灭火 Fireproof 防火的、阻燃的 Fire pump 消防水泵 First stage 第一级、首级 First stage guide vane 第一级导叶 Flame 火焰 Flame check 火检Flame detect cable FLMDET CAB火检电缆Flange 法兰 Flange joint 法兰结合面 Flank 侧翼、侧面 Flash 闪光、闪烁、闪蒸 Flash lamp 闪光灯 Flash light 闪光 Flasher 闪光装置 Flexible 灵活的、柔性的 Flexible joint 弹性联接器 Flip-flop 触发器、双稳态电路 Float-charge 浮充电 Floppy disk 软磁盘 Floppy driver 磁盘机 Flow 流量、流动 Flowmeter 流量计 Flue 烟道 Format 形式、格式 Flue gas 烟气 Fluid 液体 Fly ash 飞灰 Follow 跟随 Forbid 禁止 Force 强制 Force circulation 强制循环 Force draft fan 送风机 Forney 福尼(公司) Forward 向前 Free end 自由端 Frequency 频率 From 从、来自 Front 前面的 Fuel 燃料 Fuel safety 燃料保护 Full speed 额定频率 Fully 充分的、完全的 Function 功能 Function group 功能组 Furnace 炉膛 Fuse 保险丝、熔断器 Fuse holder 保险盒 Fusible cutout 熔断开关 Fw bypass 给水旁路GGAIN 增益 Gang 班、组 Gas 气体、烟气 Gate 闸门 Gate damper 闸门式挡板 Gateway 入口、途径 Gauge 仪表、标准 Gauge float 水位、指示、浮标Gear 齿轮 Gear pump 齿轮泵 Gear shift housing 变速箱 Gen main breaker 发电机出口总开关 General control panel总控制屏 General vlv 总阀 Generate 引起、产生 Generator 发电机、发生器 Gland 密封套Gland heater GLAN D HTR 轴封加热器Gland seal 轴封 Glass-paper 砂纸 Goal 目的、目标 Go on 继续 Govern vlv GV 调速器、调节器 Graphics 调节阀 Grease 图形 Green 绿色 Grid 高压输电网、铅板 Grid system 电网系统 Gross rating 总出力、总额定值 Ground/earth 地、大地 Group 组、群 Group library 组库HHalt instruction 停机指令 Hangers 悬吊管 Hardware 硬件 Hardness 硬度、困难的 Hazardous 危险的、冒险的 Header 联箱 Heat 热、加热 Heater 加热器 Heating 加热 Heat rate 热效率 Heat soak 暖机 Hertz HZ 赫兹 Hesitate HESI 暂停、犹豫High 高的、高等的、高大的High pressure HP 高压High pressure heater HPH 高压加热器 History 历史 Historical date reporterHDR 历史数据报告 Historical storage & retrieval unit HSR 历史数据报告存储与检索单元 Hold 保持 Home 家、处所 Hopper 漏斗、料斗 Hori vib(vibration) 水平振动 Horizontal 水平的、横式 Horse power 马力 Hose 软管、水龙带 Hot 热的 Hot air 热风 Hot rh 再热(器)热段 Hot start 热态启动 Hot well 热水井 Hour 小时 Hp cyl cross pipe 高压缸短管 Hp turb exh press 高压缸排汽压力 Hybrid 混合物 Hydraulic 液压 Hydrogen 氢(H ) Hydrogen purity 氢气纯度 Hydrobin/ dewatering bin脱水仓 IIdiostaic 同电位的 Idle 空载的、无效的 Ignition light oil 轻油点火Ignition引燃、电火 Ignitor 电火器 Ignore 忽视 Illustrate 说明Impeller 推进器、叶轮 Impedance 阻抗Import 进口、引入Impulse 脉冲、冲击、冲量 Inch IN 英寸Inching 缓动、点动 Income 进线 Increase INC 增加Index 索引、指示 Indicator 指示器Individual单个的、独立的 Inductive reactance 感抗Input/outputI/O 输入/输出 Induced draft fan IDF 引风机 Inductance电感Induction motor 异步电动机 Industrial water 工业水 Industry工业Inflatable seal 充气密封 Inhibit 禁止 Initial 最初的 Inlet入口 Input group 输入组 Insert 插入Inside 内侧、内部 Inspection 观察、检查 Install安装Inspection hole 检查孔、人孔 Installed capacity 装机容量Instantaneous即时的、瞬时的 Instantaneous power 瞬时功率Instruction 说明书、指南、指导 Instrument仪器 Instrument panel 仪表盘Insulate 绝缘、绝热、隔离 Insulator 绝缘子Intake 输入端、进线 Integer 整数 Integral 积分 Intensity 强度 Interpole换向板 Inter-stage extraction 中间抽头 Interface 接口Interference 干扰、干涉 Interlock 联锁 Intermediate 中间的 Internal内部的Interrogation 质问、问号 Interrupt 中断 Interval间隔Interlock auto on 联锁投自动Inverter 逆变器、反向器、非门InvoiceINV 发票、发货单、托运 Intermediate pressureIP 中压Intermediate relay 中间继电器Invalid无效的、有病的 Investment 投资Ion-exchange 离子交换器 IP .cyl 中压缸 Isolation 隔离Isolator 隔离、刀闸 J Jacking oil 顶轴油 Jacking pump 顶轴泵 Job 工作Jumper跳线、跨接 Junction box接线盒Key键销、钥匙、键槽 Keyboard 键盘 Key library 键库 Key switch键开关 Kilovolt-ampere KVA 千伏安 Kink 弯曲、缠绕 Knack技巧、窍门、诀窍 Knife-switch闸刀开关 LLabel 标号、标签 Laboratory 实验室 Labyrinth seal 迷宫密封 Ladder 梯子、阶梯 Ladder diagram 梯形图 Lamp 灯、光源Large platen LARG E PLT大屏 Last 最后的 Latch 止动销、挂闸、插锁 Leak 泄漏(动词) Leakage 泄漏(名词) Left 左 Length 长度 Level 液位、水平 Lifebelt 安全带、保险带 Lift 提、升Light 光亮、点、点燃、照亮Lightning 雷电 Light run 空转 Lightning arrestor 避雷器 Limit LMT 极限、限制 Limiter 限制器、限位开关 Line 线、直线 Line impedance 线路阻抗 Lining 衬层、内衬 Linkage 连杆 List 列表 Liter 公升 Ljungstrom trisector air preheaters 容克式空预器 Load 负荷 Load demand computeLDC 负荷指令计算 Load impedance 负荷阻抗 Load limit 负荷限制 Load rejection 甩负荷 Load shedding 甩负荷 Loading 加负荷 Load thrown on 带负荷 Local 局部 Local attendant 现场值班员 Local repair 现场检修 Local start 就地启动 Local stop 就地停止 Location 处所、位置 Lock 闭锁、密封舱、固定 Logger 记录器、拖车 Logic 逻辑 Long 长 Loop 环、回路 Loss 损失、减少 Loss of excitation 励磁损失 Loss of phase 失相 Low 低 Low press LP 低压 Low press heater LPH 低压加热器 Low-half 下半 Lower 较低的、降低 Lower heating value 低位发热量 Low pressure cylinder LPC/L P CYL 低压缸 Low temperature superheaterLT SH 低温过热器 Lub oil润滑油Lub oil pump 润滑油泵 LubricateLUB 润滑MMagenta 品红色 Magnet 磁Main 主要的/主蒸汽的/电力网 Main oil tank 主油箱 Main screen 主屏 Main steam 主蒸汽 Main transformer 主变压器Maintenance 维护、检修、小修 Maintenance manual 检修手册 Major overhaul 大修Make up 补充(补给) Makers works 制造厂Malfunction 出错、误动、失灵 Management 管理、控制、处理 Manhole人孔、检查孔、出入孔Manifold 各式各样的联箱、集气管Manometer 压力表 Man-machine interaction 人机对话 Manual 手动、手册 Manual reject MRE 手动切换Manual/Auto station M/ASTATI ON手动/自动切换站Mark 型号、刻度、标志、特征Mass memory 大容量存储器 Master 主要、控制者 Master control room 主控室、中央控制室 Master fuel trip MFT 主燃料跳闸 Maximum 最高的、最大 Maximum continue rateMCR 最大连续率 Mechanocaloric 热机的 Mean 平均值、中间的 Mean water level 平均水位 Measure 量度、测量 Mechanical 机械的、力学的 Mechanical trip vlv 机械跳闸阀 Mechanism 机械、力学、方法 Medial 中间的、平均的 Mediate 间接的、调解 Medium 装置、介质、工质 Megawatt 兆瓦 Memory 存储 Metal 金属 Meter 集量器、仪表、米 Meter switch 仪表开关 Method 方法、规律、程序 Method of operation 运行方式 Mica 云母 Mica dielectric 云母电介质 Microcallipers 千分尺 Microphone 麦克风、话筒 Middle MID 中间的Middle-temperature rh MT RH 中温再热器 Mill 磨、磨煤机、铣刀 Minimum 最小的 Minor overhaul 小修 Minus 减、负号 Minus phase 负相位 Minute 分钟 Miss operation 误动作、误操作 Miss trip 拒跳闸 Mistake 错误、事故 Mixed bed 混床Mixture 混合物 Man-machine interface MMI 人机接口 Modem 调制解调器 Modify 修改 Modulating control 调节控制 Modulating valve 调节阀 Module 模件 Moisture 湿度、湿汽 Monitor 监视器、监视 Monoxide 一氧化物 Month 目 Motor MTR 马达Motor control center MCC 马达控制中心 Motor winding 电动机组绕组 Mouldproof 防霉的 Mount 安装、固定 Mountain cork 石棉 Mouse 鼠标 Move 移动 Multidrop 多站 Multispeed 多速 Mult-multi 多、多倍 Multimeter 万用表 Multiplication 乘 Multivibrator 多谐振荡器NName 名、名字 Natural 自然的 Naught line 零线 Needlepoint vlv 针阀 Negative 负的Negative pressure NEGPRES S负压Neon tester 试电表 Net ratine/net output 净出力 Network 网络 Neutral line 中性线 Neutral 中性的 Neutral point 中性点 Next 其次的 Night shift 夜班 Nipper 钳子、镊子 Noise 噪音 No-loading 空载 Nominal 标称的、额定的 Nominal power 额定功率 Nominal rating 标称出力、额定出力 Non-return vlv 逆止线 Non-work 非工作的 Normal 正常的、常规的 Normal closed contact常闭触点 Normal makeup wtr 正常补水 Not available 无效、不能用 No touch relay 无触点继电器 Non-work pad / n-work pad 非工作瓦 Nozzle 喷嘴 Number 数字、号码、数目 Number of turns 匝数 Nut 螺母、螺帽OOccur 发生 Odd 奇数 Office 办公室 Oil 油 Oil breaker 油开关 Oiler 注油器 Oil fuel trip OFT 油燃料跳闸 Oil gun 油枪 Oil immersed natural cooling油浸自然冷却 Oil purifier油净化装置 On-line在线、联机的 On-load test 带负荷试验 On/off 开/关Onset 开始、发作 Open 开、打开Open-air 露天的、开启的 Open-loop 开环Open work户外作业 Operating panel 操作盘Operation操作、运行 Operational log 运行记录 Operator操作员Operator keyboard 操作员键盘 Operator station 操作员站Operator's alarm console 操作员报警台 Optimal最优的、最佳的 Optimal value 最佳值 Optional可选的 Option switch 选择开关 Orifice plate 孔板Original 初始的、原始的 Oscillator 振荡器 Oscilloscope 示波器 Out 出、出口 Outage停用Out-of-service 为投入运行的 Outlet 出口Output产量、产品、输出 Output group 输出组Outside外边、外面 Over current 过流 Over load过负荷 Overload protection 过载保护 Overall design 总体设计 Over voltage 过压 Overflow溢流Overflow vlv station 溢流阀门站 Overhaul 大修Overhaul life 大修间隙 Overhead 顶部 Overhead line 架空线 Override 超越 Overspeed 超速Overspeed trip 超速跳闸 Overview 概述、总述 Own demand 厂用电量Oxide film 氧化膜、氧化层 Oxygen氧P Package组件、包 Packed group 组合组 Pad 瓦、衬垫 Page 页Panel屏、盘 Parameter 参数Part部分、部件 Part per million PPM 百万分率 Password 口令 Path 路线 Peak峰值Peak load 峰值负荷 Pendant悬吊Pendant pull switch 拉线开关 Penthouse 顶棚Penumatics 汽动装置 Percent PCT 百分数 Percentage 百分比Perfect完全的、理想的 Perfect combustion 完全燃烧Performance 完成、执行、性能 Performance性能计算Performance curve 性能曲线 Periodic 周期的、循环的 Periodic inspection 定期检查 Peripheral 周围的 Peripheral equipment 外围设备 Permanent 永久的、持久的 Permanent magnetic generator 永磁发电机 Permit 允许 Permit to work 允许开工 Petrol 汽油 Phase PH 阶段、状态、方面、相 Phase angle 相角 Phase-failure protection断相保护 Phase not together 缺相、失相 Phase sequence 相序 Phase-in 同步 Piezometer 压力计 Pitch coal 烟煤 Pid drawing 流程图Pilot 导向、辅助的、控制的Pilot bearing 导向轴承 Pipe 管、管道 Pitch 投、掷、节距、螺距 Plan 计划 Plant 工场、车间 Plant load factor 电厂负荷因数 Plastics 塑料 Platen 台板、屏式Platen superheater PLT SH屏式过热器 Plug 塞子、栓、插头 Plug socket 插座 Plunger 柱塞、滑阀 Plunger pump 柱塞泵 Plus 加 Plyers 钳子、老虎钳 Pneumatic 气动的 Point 点 Point database 测点数据库 Point directory 测点目录 Point name 测点名 Point record 测点记录 Point field 泡克区 Phase voltage 相电压 Pole 机、柱 Policher 除盐装置 Pollution 污染 Pop valve 安全阀、突开阀 Portion 一部分 Position POS 位置Positive 确定的、正的、阳性的Potable water 饮用水Potential transformer PT 电压互感器 Pound LB 磅 Power PWR 功率、电源 Power factor 功率因子 Power plant 电厂 Pre-alarm 预报警Precipitator PRECI/PREC IP除尘器Preheat 预热 Pre light 预点火 Preliminary 准备工作 Present 出现 Preset 预设、预置 Pressure PRES 压力 Primary 初级的、一次的Primary air 一次风Primary air fan PAF 一次风机 Primary superheater 低温过热器 Primary grid substation 主网变电站 Prime 首要的 Printer 打印机 Principle 原理、原则 Priority 优先级、优点 Probe 探头 Process 过程、方法 Processing time 处理时间 Program 程序 Programmable 可编程的 Programmable logical controller PLC 可编程逻辑控制器 Prohibit 禁止 Proportional / integral / derivative PID 比例/积分/微分 Protection PROT 保护 Protection bolt 危急遮断器飞锤 Protection ring 危急遮断器飞环 Protocol 规约(数据通信) Potential transformer PT 电压互感器Psig 磅/平方英寸(表压力)Psia 磅/平方英寸(绝对压力)Puffer breaker 压力式断路器 Pulse 脉冲、脉动 Pulverizer PULV 磨煤机 Pump 泵 Punch 冲床、冲压机 Purge 净化、吹扫 Purifier 净化器 Purify 纯度 Purpose 目的、用途 Push and pull switch 推拉开关 Push button 按钮 Put into operation 投入运行 Pyod 热电偶 Pyrology 热工学QQ-line Q 线 Quad 回芯组线 Quality 质量 Quartz 石英、水晶 Query 询问、查询 Quick 快 Quicksilver 水银、汞 Quick open 快开 Quit 停止、离开、推出RRack earth 机壳接地 Radial 径向的、半径的 Radication 开方 Radiator wall rh 壁式再热器 Radiator 散热(辐射)器 Radiation fin 散热片 Raise 升高 Range 范围、量程 Rap 敲打 Rap device (除尘器)振打装置 Rapid charge 快速充电 Rated 额定的、比率的 Rated conditions 额定条件 Rated power 额定功率 Ratio 比率 Raw material 原材料 Ray 光线、射线 Reactance 电抗、反作用 Reactive capacity 无功容量 Reactive power 无功功率 Read out 读出、结果传达Ready 准备好Real power 有效功率Real time 实时的Rear 后面Recall 重新调用、重查Receive tank 回收箱、接收箱Recipe 处方、配方Recire/Recycledamper 再循环挡板Recirculate 再循环Reclaim 再生回收Reclosing 重合闸Recommend 介绍、建议Recording 记录、录音、唱片Recovery 恢复、再生Recovery time 恢复时间Rectification 整流、检波、调整Rectifier 整流器Red 红色Reduction 还原、缩小、降低Redundancy 冗余、多余Reference REF 参考、参照、证明书Reflux 倒流、回流Region 地域、领域Register 寄存器Regulate 调节、控制Regulating stage 调节级Regulating valve 调节阀Reheater RH 再热器Relative REL 相对的Relative expansion 相对膨胀Relay 继电器Relay panel 继电器屏Release 释放Reliability 可靠的、安全的Relief 去载、卸载、释放、解除Relieve valve 安全阀、减压阀Remote 遥远的、远方的Remote select 遥控选择Remote technicalcenter RTC 遥控技术中心Renewal 更新、更换Repair 修理Repairer 修理工、检修工Repeat 重复、反复Replacement parts 备件、替换零件Request REO 请求Require 要求Reserve parts 备件Reserved 备用的Reset 复位Resistance 阻力、电阻Resonate 谐振、调谐Response 响应Responsibility 责任Retract 可伸缩的、缩回Retractablethermoprobe 可伸缩的温度探头Retrieval 可检索的、可追忆的Return 返回Return oil 回油Reverse power 逆功率Reverse rotation 反转Review 检查Rig 安装、装配、调整Right 右Right-of-way 公用线路Ring 环Roller 辊子Roof 顶、炉顶Root 跟Rotary switch 转换开关Rotating 旋转Rotating joint 液压联轴器Rotor 转子Routine 例行的、日常的Routing inspection 日常检查、日常检测Routingmaintenance 日常维护Run 运行Run back 返回Rundown 迫降Running conditions 运行情况Running current 工作电流Running in 试运行、试转Running/operationoverhaul 临时检修SSafe 安全的、可靠的、稳定的Safe potential 安全电压Safety 安全Safety cap 安全帽Safety measure 安全措施Safety rules 安全规程Safety valve 安全线Sample 取样、举例Sampler 取样器Saturate 饱和Saturate condition 饱和条件、饱和状态Saturated steam SATSTM 饱和蒸汽Scale 铁锈水垢Scan 扫描Schedule 时间表、计划表Schematic 图解的、简图Scoop 勺管Scr controller 屏幕控制器Screen 屏幕Screw 螺杆、螺丝Screwdriver 螺丝刀Scroll 滚屏Sea 海Seal 密封Seal air 密封风Sealing gland 密封盖Seal oil 密封油Seal steam SEALSTM 密封蒸汽Search 寻找、查找Seawater 海水Second 秒、第二Second air SECAIR 二次风Secondary 二次的Seep 渗出、渗漏Seepage 渗漏现象Select 选择Self 自己、自我、本人Self-hold 自保持Self-running 自启动Sensor 传感器Sensitive 灵敏器Sensitiveness 灵敏性Separator 分离器Sequence 顺序、序列Sequence ofemergence SOE 事故追忆Sequential controlsystem SCS 顺序控制系统Series-longitudinallayout 串联纵向布置Service 服务、伺服Service power 厂用电Servomotor 伺服电机Set 设定Setpoint 设定点Set up 安装、调整、建立Severity 刚度、硬度、严重Sewage treatment 废水处理Shadow 影子、屏蔽Shaft 轴、烟囱Shaft seal 轴封Shake 摇动、振动Shakeproof 防振Shaft 轴、手柄、矿井Shaped 形状Share 共享、分配Share memory 共享存储器Sheet 表格、纸张Shell 壳Shield 屏蔽层Shift 值、替换Shift chargeengineer 值班工程师Shoe 推力瓦Shortage of water 缺水Short circuit 短路Shot 发射、冲击、钢粒Shunt reactor 并联电抗器Shut off 关闭Shutdown 停止、停机Siccative 干燥剂Side 侧边Sidewall 侧墙Sifter 筛子、滤波器Signal 信号Signal lamp 信号等Sign 标记、注册Significance 意义、有效Silence 消音、沉寂Silicon SI 硅Silicon stack 硅堆Silo 灰库Single 单个的、个体的Station interfacemodule SLM 站接口模件Simple 单纯的、简单的Similar 同样的、类似的Simulator 仿真机Single blade switch 单刀开关Sinusoid 正弦曲线Site 现场Site commissioningtest 现场投运方式Size 尺寸、大小Size of memory 存储量Sketch 图纸、草图Skin effect 集肤效应Skip 空指令、跳跃Slag 结垢Sliding key 滑销Sliding press mode 消压方式Sluiceway 水沟Slurry 灰浆Smoke 烟、冒烟Smokes-stack 烟囱Smooth 平滑的、光滑的Socket 插座Soft 软的、柔软的Software 软件Solenoid SOLN 螺线圈Solid 固体Sootblower 吹灰、吹灰器Sound detection 声音探测Source 源、电源Spanner 扳手Spare 备用的、空余的Spare parts 备件、备品Specification 技术说明Specific weight 比重Speed 速度Speed protection 超速保护Spray 喷射Spray nozzle 喷嘴Spray water 喷水Spring 弹簧、春天Spring clutch 弹簧离合器Square 广场、方的Squirrel-cagearmature 鼠笼式电枢Stabiliser 稳定器Stability 稳定(性)Stack 烟囱Staff 职工Stage 级、台Stall 停车、阻止Standard 标准Standby 备用、待机Standby heat 热备用Star 星、星形连接Star connectedsystem 星形连接制"Y" Start 启动、开始Starting conditions 启动条件Start up 启动Start-up sequence 启动程序State 状态Statement 说明、语句Static 静电Static storage 静态存储器Station 站、发电厂、地点Station capacity 发电厂容量Station interface unit SLU 站接口单元Stator 静子Stator coil 定子线圈Stator core 定子铁芯Status 状态Status display 状态显示Steadiness 稳定性Steam STM 蒸汽Steam cylinder 汽缸Steam exhaust 乏气、废气Steam feed pump 汽动给水泵Steam-turbinegenerator 汽轮发电机Step 步Step-by-step motor 步进电动机Step ladder 阶梯Step-downtransformer 降压变压器Step-up transformer 升压变压器Stere 立方米Stockyard 储煤场Stop 停止Stop vlv 主汽线Storage 储存Storage battery 蓄电池Storage tank 储存箱Straight 直的、直线Strainer 滤网Stress 应力、强调Styrofoam 泡沫塑料Subcritical 亚临界Subgraph 子图Subject 题目、科目Submerged chainconveyor 捞渣机Submeter 分表Subscreen 子屏Subsequent flow 续流Substation 变电站、子站Subtransmission 二次输电Suction 抽吸Suction pump 真空泵Suction vlv 入口阀Supercritical 超临界Superheater 过热器Supersaturation 过饱和Supervision 监视、管理Supervisor's desk 值长台Supervisory 监督、监视、管理Supply 供给Supply district 供电区、供电范围Supply vlv 供给阀、入口阀Support 支持、支撑Support bracket 支架Supporting ring 支持环Sure 确信的、可靠的Surface 表面的Surge 喘振Sustain 维持、确认Switch 开关、切换Switchboard 开关盘Switch blade 开关闸刀Switching off 断开Switching on 接通Switch panel 开关屏Switching pushbutton 开关按钮Switching room 配电室Switchgear 开关机构Sylphon 波纹管、膜盒Symbol 符号Symbolic code 符号码Symmetrical 对称的Symmetricalpolyphase system 对称多相制Synchronization 同步Synchronizer 同步器Synchronoscope 同期表Synthesis 合成、综合Syren 汽笛、报警器Syringe 注油器System 系统TTab 表格Tachogenerator 测速发电机Tag 结束语、标签Tandem 串联Tank 箱Tap 抽头、分布Tape armour 钢带铠装Taper 锥体、楔销Taper key 斜键、楔键Taper pin 锥形销、斜销Target 目标T-beam 丁字梁Temperature 温度Temperaturecompensation 温度补偿Temperature limingrelay 热继电器Tempered 热处理的Template 模板、样板Tensile 拉力的、张力的Total control unit TCU 总控单元T-junction 三通Text 出口Terminal 端子、接线柱Test 试验Thermal 热的/热量的/由热驱动的Thermal conduction 热传导Thermal convection 热对流Thermal couple 热电偶Thermal cycle 热力循环Thermal power plant 热力发电厂Thermal radiation 热辐射Thermometer 温度计Thermotechnical 热工的Thickness 厚度、浓度Third 第三Three elementscontrol 三冲量控制Throttle 节流Throttle orifice 节流孔板Throttle pressure THRTPRS 主汽压、节流压力Thrust 冲击、推力Thrust bearing 推力轴承Thrust pad 推力瓦Thumb rule 安培右手定则Thyristor 晶闸管Tight 紧密的Tilt 倾斜Tilting 摆动Time-lag relay 延时继电器Tin soldering 焊锡Tin soldering paster 焊锡膏Title 题目、标题Total 总计的To 到、去Token 标志Tool 工具Tool box 工具箱Tong-test ammeter 钳式电流表Torque 扭矩、力矩Tough rubber 硬橡胶Track 跟踪Training officer 培训主管Transducer XDUCER 传感器、交流器Transfer 转换Transfer pump 传输泵Transformer XFORMER 变压器Transmission 传输Transmitter XMITEER 变送器Transwitch 可控硅开关Travel 过程、运转、进行、移动Trend 趋势、方向Triangle 三角板Trigger 触发器Tri-way vlv 三通阀Trim spray 微量喷水Trip 跳闸、断开Triple 三信的Trouble 事故、故障、干扰Try square 直角尺、曲尺True 真实的、调整、校正Trunk (输电)干线、通风道T-square 丁字尺TUNE 调节Tuning 调谐Turbing TURB 汽轮机、涡轮、水轮机Turbing follow mode 汽机跟踪方式Turbing iroper 汽轮机本体Turbogenerator 汽轮机发电机Turbulence 紊流Turning gear 盘车齿轮Turning gear piggyback 盘车齿轮啮合Turning motor 盘车电机Tweezers 镊子、钳子Twin-delta 双"△"(连接)Twist drill 麻花钻Type 类型、标志U。
热泵提取含油污水余热技术的创新与应用
目前,大庆油田已进入特高含水开发后期,某油田区块回注含油污水可利用低温余热量约为224MW;而其生产过程中掺水、热洗、采出液外输均需要加热升温,热量消耗巨大,现有加热工艺主要是通过加热炉燃烧天然气生产热能。
某油田区块在用加热炉约540套,用热量约为510MW;办公、生活配套采暖总面积约56×104m 2,用热量在60MW 左右,合计约570MW。
为更好的降低运行成本,尽早实现“双碳”目标,余热利用越发紧迫。
热泵技术具有环保、高效等特点,因此,国内各油田多次应用热泵技术回收油田污水余热,取得热泵提取含油污水余热技术的创新与应用王琦(大庆油田有限责任公司第二采油厂)摘要:大庆油田回注含油污水温度约为35℃,可利用含油污水余热总量巨大,同时,油田生产过程中掺水、热洗、采出液外输均需要加热升温,热量消耗量巨大,存在着巨大的开发利用空间。
热泵技术是比较成熟的低温余热利用提取方式,大庆油田应用的热泵普遍存在运行稳定性差,制热能力衰减快的现象,导致热泵性能系数COP 普遍较低,经济效益不佳。
某油田通过技术攻关,开展提高热泵性能系数COP 研究,创新开发了油田型双蒸发器含油污水直进热泵工艺技术,解决了高效稳定含油污水低温余热提取和热泵性能系数COP 提高等技术难题,节能减排效果显著。
关键词:热泵技术;余热利用;含油污水;节能减排DOI :10.3969/j.issn.2095-1493.2023.09.002Innovation and application of heat pump to extract waste heat technology from oily sewage WANG QiNo.2Oil Production Plant of Daqing Oilfield Co .,Ltd .Abstract:The temperature of oily sewage reinjection in Daqing oilfield is about 35℃,and the total amount of waste heat from the available oily sewage is huge.At the same time,in the production pro-cess of oilfield,water blending,hot washing and produced liquid export need to be heated up,so there is a huge heat consumption,which is a huge space for development and utilization.The heat pump technology is a relatively mature extraction method of low-temperature waste heat utilization .The heat pump applied in Daqing oilfield generally has the phenomenon of poor operation stability and fast decay of heating capacity,leading to low performance coefficient COP of heat pump and poor economic benefits.Through technical breakthroughs,an oilfield has carried out research on improv-ing the COP of heat pump performance coefficient,and innovatively developed the process technology of direct injection of oily sewage into the heat pump through oil-bearing double evaporator,which has solved the technical problems of efficient and stable low-temperature waste heat extraction of oily sewage and improvement of COP of heat pump performance coefficient,and achieved remarkable ener-gy conservation and emission reduction effects .Keywords:heat pump technology;waste heat utilization;energy conservation and emission reduction 作者简介:王琦,工程师,2010年毕业于东北石油大学(资源环境与城乡规划管理),从事油田热工、注水、污水及建筑给排水设计工作,136****2730,***********************,黑龙江省大庆油田第二采油厂工艺研究所,163414。
艾伦 Bussmann 系列 PVM 快速保护电流分析器的产品说明说明书
Fast-acting protection forphotovoltaic applications2011/65/EUProduct description:Eaton’s Bussmann™ series PVM fuses are UL ® 248-19 Listed for photovoltaic (PV) applications.They are specifically designed to protect PVsystems in extreme ambient temperatures, high cycling and low level fault current conditions.PVM fast-acting fuses are available in 4-30 amps, all rated to 600 Vdc.With 10x38 mm footprint, our range of PVM fuses provides industry-leading protection without taking up valuable space.Bussmann series PVM fuses deliver superior PV system protection in acompact midget fuse size.Features and benefits:•UL Listed for use in 600 Vdc photovoltaic systems•Provides fast-acting protection under low-fault current conditions that occur in PV systems •Demonstratedperformance in extreme temperature cycling conditions.•Low power loss provides increased energy savings.Complementary products:Bussmann series CHPV fuse holder, see data sheet no. 10508Bussmann series in-line fuse holders, see data sheet nos. 2127 and 2126Bussmann series BPVMmodular fuse blocks, see datasheet no. 10265PVM 10x38 mm (midget) photovoltaic fusesEaton and Bussmann are valuabletrademarks of Eaton in the US and other countries. You are not permitted to use the Eaton trademarks without prior written consent of Eaton.CSA is a registered trademark of the Canadian Standards Group.NEC is a registered trademark of the National Fire Protection Association, Inc.UL is a registered trademark of the Underwriters Laboratories, Inc.Eaton1000 Eaton Boulevard Cleveland, OH 44122United States Bussmann Division 114 Old State Road Ellisville, MO 63021United States/bussmannseries © 2017 EatonAll Rights Reserved Printed in USAPublication No. 3188Januaruy 2017Follow us on social media to get the latestproduct and support information.For Eaton’s Bussmann series product information,call 1-855-287-7626 or visit:/bussmannseriesSpecificationsCatalog symbol:•PVM-_Agency information:•UL Listed 248-19, Guide JFGA, File E335324• CSA ® component certified C22.2•RoHS compliantRatings:• V olts 600 Vdc • Amps 4 to 30 A •Interrupting rating 50 kAPower loss (watts)PVM-1515 1.00 1.72PVM-30301.652.91* I n=rated currentPVM-5PVM-8PVM-12PVM-25PVM-6PVM-9PVM-15PVM-30Features and product benefits:•Specifically designed to protect PVsystems in extreme ambient temperatures •Capable of withstanding high cycling and low level fault current conditionsT ypical applications:• Solar combiner boxes • •Inverters•Solar string protectorsSee data sheet no. 2153 for additional information.Dimensions — in (mm)。
EY系列1200瓦特高压DC电源1kV-60kV机械式安装3.5英寸面板高度实验室性能CE和半导体S
EY Series 1200W Regulated High Voltage DC Power Supplies1 kV to 60 kV Rack Mount 3.5 Inch Panel HeightLaboratory PerformanceCE and Semi S2-93 Compliant Fully RoHS CompliantThe EY Series of 1200 watt high voltage sup-plies feature flexible embedded controls with low ripple and noise. They are air insulated, fast response units, with tight regulation and extremely low arc discharge currents.Please refer to Technology > Applications page on our web site for typical applications.The EY Series are fully compliant with the Following European Directives:EN61000-3-2, Line HarmonicsEN61010/ IEC61010, SafetyEN61000-6-4, Conducted and Radiated EmissionsEN61000-6-2:2005, Conducted and Radiated Immunity2011/65/EU, Restriction of the use of haz-ardous substances (RoHS).Features:Arc Quench. The HV output is inhibitedfor a short period after each load arc to helpextinguish the arc.Arc Count. Internal circuitry constantlysenses and integrates arcs that occur overa given time. In the event a system or loadarcing problem develops and exceeds fac-tory-set parameters, the power supply willcycle off in an attempt to clear the faultand then automatically restart after a pre-set “off dwell time”.Pulse-Width Modulation.Off-the-linepulse-width modulation provides highefficiency and a reduced parts countfor improved reliability.Embedded Microcontroller control.Front panel digital encoders provide highresolution local adjustment of voltage andcurrent program. Integral RS-232, USB andoptional ethernet communications provideremote control program and monitor.Low Ripple.Typically, ripple is less than0.02% RMS of rated voltage at full load.Air Insulated. The EY Series features“air” as the primary dielectric medium. Nooil or encapsulation is used to impede ser-viceability or increase weight.Constant Voltage/Constant CurrentOperation. Automatic crossover fromconstant-voltage to constant-current reg-ulation provides protection against over-loads, arcs, and short circuits.Redundant Thermal OverloadProtection.Thermostats and fan RPMsensing shut down the power supply dueto over temperature or reducedfan speeds.Tight Regulation.Voltage regulation isbetter than 0.005% for allowable line andload variations.Current regulation is bet-ter than 0.1% from short circuitto rated voltage.Constant Current/Current Trip. A rearpanel switch allows selection of either cur-rent mode.Slow Start. Adjustable ramp time from 0 -30 seconds. Output ramps from 0 V to pro-grammed voltage level.Warranty. All power supplies are warrantedfor three years. A formal warranty state-ment is available.Models from 0 to 1 kV through 0 to 60 kV, 3.5” H x 20.5” D, 18.5 lbs.Stability:0.01% per hour after 1/2 hour warm-up, 0.05% per 8 hours.Voltage Rise/Decay Time Constant:The voltage rise time constant is 50 ms typical for all models using either HV enable or remote programming control.The voltage decay time constant is 50ms with a 10% resistive load. Temperature Coefficient:0.01% /°C.Ambient Temperature:-20 to +40° C, operating; -40 to +85° C, storage.Polarity: Available with either positive,negative or hardware configurable reversable polarity with respect to chassis ground.Protection:Automatic current regulation protects against all overloads, including arcs and short circuits. Thermal switches and RPM sensing fans protect against thermal overload. Fuses, surge-limitingresistors, and low energy components provide ultimate protection.Arc Quench:An arc quench feature provides sensing of each load arc and quickly inhibits the HV output for approximately 20 ms after each arc. Standard on 8 - 60 kV models;optional on 1- 6 kV models.Arc Count:Internal circuitry senses the number of arcs caused by external load discharges. If the rate of consecutive arcs exceeds approximately one arc per second for five arcs, the supply will turn off for approximately 5 seconds to allow clearance of the fault. After this period the supply will automatically return to the programmed kV value with the rise time constant indicated.If the load fault still exists, the above cycle will repeat. Standard on 8 - 60 kV models; optional on 1- 6 kV models.External Interlock:Open = off,closed = on. Normally latching except for blank front panel version where it is non-latching.Remote HV Enable/Disable: 0 - 1.5 V = OFF, 2.5 - 15 V = ON.RS232/USB/Ethernet Programming and Monitor Accuracy:Resolution:0.025% of full scale for both the voltage and the current programs. 0.1% of full scale for both the voltage and the current monitorsSpecifications(Specifications apply from 5% to 100%rated voltage. Operation is guaranteed down to zero voltage with a slight degradation of performance.)Input:180 to 264 VRMS single-phase,48-63 Hz, 1500 VA maximum at full load. C14 connector per IEC 60320with mating line cord.Efficiency: Typically greater than 85%at full load.Power Factor: > 0.995.Output:Continuous, stable adjust-ment, from 0 to rated voltage or cur-rent by panel mounted optical rotary encoder or by external +10V signals.Voltage accuracy is 0.5% of setting +0.2% of rated. Optical rotary encoder resolution: 0.025% with "FineAdjustment" mode selected. 0.25%with "Coarse Adjustment" mode (default). Repeatability is < 0.1% of rated.Static Voltage Regulation: Better than ±0.005% for specified line variations and 0.005% + 0.5 mV/mA for no load to full load variations.Dynamic Voltage Regulation:For load transients from 10% to 99% and 99% to 10%, typical deviation is less than 2% of rated output voltage with recovery to within 1% in 500 us and recovery to within 0.1% in 1 ms.Ripple:Better than 0.02% of rated voltage + 0.5 V RMS at full load. Current Regulation:When in current regulation mode, better than 0.1% from short circuit to rated voltage at any load condition.Voltage Monitor:0 to +10 V equivalent to 0 to rated voltage.Accuracy: 0.5% of reading + 0.2% of rated. Impedance is 10 K W .Current Monitor:0 to +10 V equivalent to 0 to rated current. Accuracy: 1% of reading + 0.1% of rated. Impedance is 10 K W .Remote setting accuracy:Voltage setting accuracy is better than 0.5%of setting + 0.2% of rated. Remote reading accuracy:Voltage reading accuracy is 0.5% of reading + 0.2% of rated. Current reading accuracy is 1% of reading + 0.1% of rated.Front Panel Elements.Output Voltage & Current Display:3.5 Digit digital meters. 1250 count maximum.Indicators:AC Power, Current Mode, Voltage Mode, Pol +, Pol -,Fault, Fine Adjustment, Preset,Control Lock, Remote Enable,Remote Program, HV On.AC Power:Rocker switchSwitches (momentary):HV On,SS Slope, Standby, Remote Enable,Remote Program, Preset, Fine Adjust, Control Lock.Rotary Encoders:Voltage Adjust,Current Adjust.Rear Panel Elements . AC power entry connector, fuses, power on indicator, ground stud, HV output connector,remote interface connector, RS232/USB connectors.The signals provided on the remote interface connector are as follows: Inputs:Safety interlock, output voltage and current program signals, high voltage enable and remote HV on.Outputs:Output voltage andcurrent monitor signals, HV status,fault status, I/V mode status and a +10 V reference source.Signal common and ground reference terminals are also provided.Accessories:Detachable, 8 foot,shielded high voltage coaxial cable (see models chart for cable type),6 foot NEMA 6-15 line cord, 10 foot null modem cable and 10 foot USB cable are provided.Weight:Approximately 18.5 lbs.Options (contact sales for details)Symbol DescriptionNC Blank front panel, power switch and indicator only. ZR Zero start interlock. Voltage control, local or remote, must be at zero before the HV will enable.5VC 0-5 V voltage and current program/monitor.ARC Arc count and quench as described in thespecifications for 1 - 6 kV models.AC Arc Count OnlyAQ Arc Quench OnlyETH Virtual RS-232 COM port over Ethernet network. (Requires compatible OS (eg Windows) for COM drivers)Models。
Energy Recovery能量回收介绍
温度控制阀
ER选项-改良冷却回路
管路系统的走向:串联 压缩机冷却水量的自动调节
– 根据冷却水出口温度,温度调节阀(RV1 比例阀)将全部或部分旁路,调整出口水 温控制在90℃以内,防止压缩机排气温度过高的同时,获得最好的可回收热量品质 。
ER90-900(泵站) 4 个规格 :
• ER 90 • ER 275 • ER 425 • ER 900
• 型号的数字 =一台或几台水冷压缩机最大轴功率 (kW)
• 设计工况 => Tin 40°C – Tout 90°C (或∆ T 50K) •降低 ∆ T => 降低了最大可联接的设备总功率 • AML 数据作为参考 • 计算程序
ER90-900
新产品具有 “艺术性” 水量和温度的控制
– 可同时联接多台压缩机
Q(KW ) = 4.18 × Δt × l m 3 h / 3.6
(
)
节能的计算
为客户算好成本和收益
订货支持
工作流程
销售工具
– 样本、证书、PPT、计算器、方案模板、参考客户、价格表
合同订货
– 从无锡订购压缩机,GA订标准机,ZR订带ER option的机器 – 能量回收装置作为外购件,联系市场部
压缩过程中焓值不变的证明(参考空气状态表)
压缩前的空气h1=313.67kJ/kg (0.1Mpa,40°C) 压缩后的空气h3=311.88kJ/kg (1.0Mpa,40°C) 结论:压缩后的空气焓值基本不变 。
压缩过程的能量 (ZR55 实验测试数据)
环境空气 40C 70% RH 121 l/s 第一级压缩 中间冷却器 51C 2.6 bar (e) 第二级压缩 后冷却器 48C 9.8 bar (e)
2018新能源专业英语
新能源专业英语l.Put the following phrase into English.Unit 12.温室效应the greenhouse effect2.可再生能源renewable energy3.太阳能电池solar cell4.风力发电系统wind turbine system5.核能nuclear energy6.海洋能ocean energyUnit 21•辐射度irradiance2.负载load3.耐候性weather fastness4.光电效应photoelectric effect5.光生伏打效应photovoltaic effectUnit 31•风电场wind farm2.装机容量installed capacity3.涡轮机turbine4.水泵water pumping5.风光互补wind and photovoltaic hybrid power6.混合动力装置hybrid power system7.电网utility grid8.电池batteryUnit 41.热交换器heat exchanger2.核反应堆nuclear reactor3.浓缩铀enriched uranium4.低温冷却水subcooled water5.千瓦kilowatt6.沸水反应堆boiling water reactor7.商用发电站commercial power plant8.快速中子反应堆a fast neutron reactor Units2.生物质biomass2.植物vegetation3.肥料manure4.残留物residue5.光合作用photosynthesis6.碳水化合物carbohydrate7.化石燃料fossil fuels8.固定碳carbon fixedUnit 61.万有引力gravitational pull2.潮汐tide3.大陆架continental shelf4.海岸线coastline5.农历lunar6.港湾harbor7.月亮角度正交moon quadrature8.局部共振local resonanceUnit 72.火山爆发volcanic eruption2.放射性衰变radioactive decay3.间歇岩geyser4.注射injection5.水库reservoir6.裂纹crackUnit 81.利用harness2.盐度salinity3.潮汐tide4.动能kinetic energy5.水力发电hydro-electric power6.引力gravitational pull2.Translate the following sentences.Unitl1.Energy is an important material and energy foundation of human survival and development, its plays a vital role in the development of human civilization . New energy usually refers to the new energy technologies based on new development and utilization of energy, including solar, biomass, wind, geothermal, ocean energy and hydrogen etc.能源是人类生存和发展的重要材料和能量基础,它在人类文明的发展中扮演着至关重要的角色。
宜兴抽水蓄能电站专业英语词汇
第一部分英译汉Aascend 升(降)abbreviation 缩写ability of withstand seism 耐受地震能力abrasion-resistant 耐磨absorber 吸附装置absorptance 吸收比abut(ting) 毗邻AC (Assembling Check) 安装检查AC input reactor 交流输入电抗器AC sampling module 交流采样模件acceleration 加速度accessible 可进入accommodate 容纳;使适应accounts for 含量为acetylene 乙炔acoustic 声波acquisition 征地activate 激活active power 有功功率adapt to 适应adaptability to 适应能力adhesiveness 附着性adjustable current limiting resistor 可调式限流电阻admission 允许进入adverse influence to 对……不利于adverse 不利的AECR (Automatic Excitation Current Regulator)自动励磁电流调节aeration 通风通气affiliate 隶属affix 粘贴afforest 绿化AGC (automatic generating control) 自动发电控制aggregate 骨料aggregating 密集aging 老化AGM (air gap measurement) 气隙测量AI (analog input) 模拟量输入Air compressor 空压机air condition 空调air cooler 空气冷却器air gap 气隙air gap monitoring system 气隙监测系统air housing 风洞air purification device 空气净化装备Air reservoir 储气罐alarm cycles 报警呼叫周期algorithms 算法alias 别名化名aligne 对齐成一线altitude 海拔alignment 校正alkali 碱alleviate 缓和allot 分派alloy steel 合金钢along with 随着Alternate 替补侯选alternating current 交流altitude 海拔altitude difference 交差aluminum alloy 铝合金aluminum spacer 铝制撑条ambient temperature 环境温度ambiguity 含糊、不明确amendment 修改件amicably 友善ammeter 电流表amortisseur bar 阻尼条amortisseur ring 阻尼环amortisseur ring connector 阻尼环接头amortisseur ring pulling rod 阻尼环拉杠amortisseur winding 阻尼绕组amortisseur 阻尼器amortization 分期偿还ample 足够amplitude 振幅amplitude coefficient 振幅系数analog input ( AI) signals 模拟量输入信号analog output ( AO) signals 模拟量输出信号analogue signal 模拟信号analysis 分析anchor bar 锚杆anchorage 锚固ancillary 辅助的、副的ancillary to 附属Anionic(Cationic) 阴 /阳Anneal 退火annealed copper 退火软铜annual forced outage ratio 年强迫停运率annual leakage rate 年泄漏率annuity 年本息anti wear plate 抗磨板anticipate 预期anti-corona layer 防晕层anti-corrosion copper earthing terminals 防锈铜接地端子anti-interference capacity 抗干扰能力anti-pumping 防跳跃anti-water hammer 防水锤AO (analog output) 模拟量输出Apparent 明显Appearance 外观application software 应用软件application tools 应用工具approved products 定型arbitrary 仲裁;公断arc contact 电弧触头arc extinguishing chamber 灭弧室architecture 体系;结构archived as-built drawings 档案竣工图argil 陶土argon arc electrical welding method 氩弧焊方式argon arc electrical 氩弧arm 支臂arm fabricated type 支臂组合式armature 电枢armored ayer 铠装层array of 一批arrestor 避雷器art design 工艺设计artesian 干线artesian 自流井自喷井artificial 人工as pertains to 部分asbestos 石棉asbestos product 石棉制品as-built 竣工ascertain 查明aspire 追求assembling stress 装配应力assembly 装配assignment 转让assume 承担assumption 假定asymmetrical fault 不对称故障asymmetrical short circuit 不对称短路asymmetry 不对称asynchronously 不同步atmospheric over voltage 大气过电压attenuation 衰减attenuator 衰减器attest 证明attorney 委托audible alarming system 音响报警系统AFC(automatic frequency control unit) 自动频率控制ALR(automatic load regulator) 自动负载调节器auspices(under the ~ of )赞助领导automatic alarm device 自动告警系统automatic bi-directional self-balancing follower自动双相自平衡跟踪装置automatic blow-off valve 自动排气阀automatic elements 自动化元件automatic excitation current regulator 自动励磁电流调节器automatic excitation regulating system 自动励磁调节系统automatic phonetic alarming system 语音电话自动告警系统automatic signal identification 自动识别automatic synchronizing device 自动准同步装置(AVR)automatic thermostatic heater 自动恒温控制加热器automatic voltage regulator 自动电压调节器automatic water spray system 自动喷水系统automatically 自动地autonomous 自发auxiliaries 附属设备AVC (automatic voltage control) 自动电压控制AVR (automatic voltage regulator) 自动电压调节axes 轴axially 轴向axonometric 轴侧法azimuth 方位角B(BDS) Bid Data Sheet 投标资料表(naval) brass 黄铜(oriented)(pre-split)blast (定向)(予警)爆炸(to be)Bound to 一定B/L bill of lading 提货单Babbit metal 巴氏合金back-to-back starting method 背靠背起动方式baffle 缓冲板balance weight 平衡重锤balancing weight 平衡重锤/配重balustrade 栏栅balustrade 护栏balustrade 拉杆banking fire 压火barracks 营房barrier 隔板屏障base plate 基础板base settlement 基础沉降BCDI/BCDO (BCD code input/output) 码输入/输出be galvanized 镀锌be polished 抛光be updated 升级bearing 轴承bearing capacity 承载能力bearing lubricating system 轴承润滑系统bearing pad 轴瓦bearing support 轴承支架bellow 波纹管bellow 伸缩bench 形成台阶beneficiary 受益方BER (Bit Error Rate) 误码率berm 马道between opened gap 断口间Bevel 斜角Bifurcation 分枝岔管BIL (lightning impulse withstand voltage)雷电冲击耐受电压blank endorse 空白背书blister 泡block cylinder 封堵缸体block diagram 框图block stone 块石block 封堵blockage 阻塞blow-off valve 排气阀bolt 螺栓bolts 螺栓book-type 笔记本boom 吊臂booster pump 增压泵borrowing 取土动土bottom plate 底板bottom ring 底环bound separately 独立成册brace 支撑拉条bracket 盖板机架braid 辫子brake piston 制动活塞brake ring 制动环braking friction 制动摩擦braking shoe 制动瓦braking system 制动(停机)系统branch circuit 分支回路brazed joint failure 机械损伤brazing machine 焊机breach 不履行breaking capacity 开断容量breaking load current 开断负荷电流breaking ring 制动环breast walls 防浪墙breather 吸潮器bridge crane 桥式起重机brightness 亮度broach 拉刀brochure 小册子bronze 青铜bruise 擦伤brush holder 刷握buchholtz 瓦斯buckle (由于压力热力)变形buffer layer 缓冲层buffer 缓冲器Bulkhead for water pressure test 涡壳试压封堵盖bulkhead gate 检修闸门bulkhead 堵头burden 负载bus coupler 母联busbar circuit breaker 母联断路器busbar tunnel 母线洞bushing 套管bushing axis 套管轴bushing conductor 套管导体bus-tie 母联butterfly spring 蝶形弹簧buzz 蜂鸣by-pass disconnector 旁路隔离开关C(to be)conversant with 熟练cable 电缆cable clamps 电缆卡具cable conduits 电缆管cable connector 电缆接线器cable general layout 缆总布置图cable joint 电缆接头cable metal protection sheathes 电缆金属护层cable monitoring device 电缆监测装置cable rack and fittings 电缆架及紧固件cable seal-ends 电缆终端cable trays 电缆桥架calcification 钙质calculation capability 运算能力calibration 标准校正caliper 卡钳call 调用calorimetric 卡cantilever 悬臂capacitance cone 电容锥capacitive current 电容电流capacity tariff 容量价capacity 容量capillary 毛细管capital investment 固定资产投资carbon brush 碳刷carbon steel 碳素钢cards frame 插件框架cards 插接板carrying capacity 载流能力cash trees land 经济林cashier’s or certified check本票或保付汇票casing 外壳cast epoxy bushing 环氧模压绝缘套管cast steel 铸钢catalogue cuts 样本摘要categorization 范畴化caterpillar crane 履带起重机cavern 洞室cavitation 空蚀cavity 洞CBFP(circuit-breaker failure protection)断路器故障保护CD-Recorder device 可刻写光盘设备center column 中心柱center frame for measuring 转子测圆架the circularity of rotorcenter frame for measuring 定子测圆架the circularity of statorcenter hub upper and lower disc 中心体上、下园盘center hub vertical rib & supporting plat中心体立筋、撑板central control building 中控楼central control room 中控室central controller of protective relaying information继电保护信息集中管理器centrifugal force 离心力centrifuge 离心certify 证实change over 切换channel automatic changeover 通信自动切换char 炭黑characteristic 特性chassis 底盘check valve 逆止阀chipper 铲头工具chisel 凿chock 垫木chopped wave 截波chopped 载chord 衍铉chromaticity 色度CIECC (China international engineering 中国国际工程咨询公司consulting company)CIF (Cost, Insurance and Freight) 成本加保险费、运费CIP [Carriage and Insurance Paid to (place)]运费和保险费付至(地点) circuit breaker 断路器circuit transformer 电流互感器circular broach 圆拉刀circular hoisting track 环形吊轨circulation fund 流动资金circumferential speed 圆周速度civil works 土建clamping fixture 夹具clarification 澄清classification 分类clear width 净宽clearance 间隙clearance customs 清关clearance 间距clockwise 顺时针CMT(Commissioning and Maintenance Test) 调试及维护试验CNAO(China National Audit Office ) 中国国家审计署cockle 折皱codes 规程cofferdam 围堰cohesion 粘合力内聚力cold rolled silicon steel sheet 冷轧硅钢片cold-roll silicon steel sheet ofgrain orientation withhigh magnetic conductivity 导率高的晶粒取向冷轧硅钢片collar 滑转子打眼collate 比照collector assembly 集电装置collector ring 集电环collision 碰collocate 布置collusive 勾结color photo jet printer 彩色照相喷墨打印机combinational screen wall 组合屏幕墙combined axial load 组合轴向荷载combined tangential and radial key 径,切向复合键combined/intersection network 组合/交汇网combustion chamber 燃烧室commence 开始commissioning 试运行commitment fee 承诺费common mode noise attenuation 共模抑制communication interface 通信接口communication optic fiber cables 通信光缆communication processor and controller 通信处理器及控制器communication protocol 通信规约commutation diode 硅整流二级管commutation diode 整流comparison 比较compartment(alize) 分割小室compatibility 兼容性compatible to 匹配compensating the displacement 位移补偿competent 有能力的competitiveness 竞争性compile 汇编编写compliance with 依照comply (with)满足compo insurance 工伤保险component of negative sequence current 负序电流分量composite video port 复合视频接口composite 混合复合compound materials 复合材料comprise 组成compulsory 强制性的concavity 凹computer supervisory and control system 计算机监控系统conceived 设想concentricity 同心度concise 简明concrete floor 混凝土楼板concrete foundation 混凝土基础concrete pole 水泥杆concrete Pump Truck 砼泵concurrently 同时发生concurs with 同意condensation 收缩condenser mode 调相工况condenser mode 调相condenser operation 调相conducting ring 导电环conductivity 导电conductor 导体conductor screening 导体屏蔽conductor temperature 线芯温度conduit 管道confidential 秘密configuration 外形、轮廓、布置、配置configuration drawing 配置图configuration software 组态软件configuration 配置confiscate 被征用conflict 矛盾conflict 冲突conformity to 附合congregate 组装conical 锥connecting bolt between main shaft and runner主轴与转轮连接螺栓connecting bolt for shaft coupling flange 转轴连接法兰螺栓connecting cable 连接电缆connecting pipe 连接管路connecting studs 接线柱connecting terminals 接线端子connection wires 连接导线consecutive 联续consecutive 连续consent 同意、一致conservation of water and soil 水土保持conservative 保守consigne 委托consignee 收货人consistency 一致性consistent with 一致console 控制台console 台面conspicuous 连续constant frequency and constant voltage 恒频恒压constant 常数constitute 构成组成任命constrainedly 勉强constraint 强制construction substation 施工变电所construe 解释consumable 易耗件contaminate 污染contaminate 弄脏contamination 污染contingency 偶然意外continuous charging capacity 持续充电容量continuous reactive output 持续无功出力contracted 承包contradiction 矛盾contrary to 相反contrast 对照contrast 对比度control cable 控制电缆control cubicle 控制柜control mode selector switch 控制权选择开关control panel 控制盘control protection cable 控制保护电缆control switch for unit start/stop 机组启、停控制开关convene 召开convener 召集人convenient 便利的converge 汇聚conversion accuracy 转换精度convexity 凸conveyance 输送cool state 冷态cooler 冷却器cooling system 冷却系统cooling tube of cooler 冷却器冷却管cooper lugs 铜鼻子coordination 协调copper busbar 铜排copper earthing screw 铜质接地螺钉copper flexible braid 铜编织线copper lug 铜鼻子copper pigtails 铜辨子copper strand wires 铜绞线copper strip 铜片copper wire 铜线core end plate 齿压板core number 芯数corollary 辅助配套corona inception 起晕corrosion 腐蚀corrosion-resistance 抗腐蚀能力corruption 腐败counter clockwise 逆时针counter measures 对策countersign 会签counterweight 配重coupler 电容耦合器coupling flange 连接法兰coupling surface 法兰接合面coupon 附单CPM (Critical Path Method) 关键路径法CPU (Central Processing Unit) 中央处理器CPU redundant CPU冗余crack 裂缝cracking 龟裂crank 曲柄crank shaft box 曲轴箱crawler Hydraulic Pressure Forward Excavator履带式正铲挖掘车crawler-type Surface Hydraulic Drill Rig 履带式露天钻creepage 漏电crest 脊criteria 标准criterion 尺度标准依据critical speed 临界速度critical speed 临界转速cross section 截面cross-check 仔细检查cross-link polyethylene insulation (XLPE) 交联聚乙烯cross-section 截面CRT 屏幕显示器crushed stone 碎石CSCS (computer supervisory and control system)计算机监控系统CT’s (Current transformers) 电流互感器cubicle 柜cultural relics 文物culture 放养current balancing factor 均流系数current carrying area 过流面积current carrying capacity 载流量current density 电流密度current limiting reactor 限流电抗器current 气流current-carrying 载流量cursor 光标cushion layer 过渡层(垫层)cushioning 缓冲custody 监护保管D(as-built)drawing 竣工(partial)discharging 局部放电dacron 涤纶dam crest 坝脊面dam site 坝址damping winding 阻尼绕组damping 阻尼damp-proof 耐潮的damp-proof measures 防潮措施DAQ(Data Acquisition System) 数据采集系统data acquisition 数据采集data acquisition and processing 数据采集与处理data buffer 数据缓冲data light processing projector 数字光处理投影机data sampling 数据采样database management system 数据库管理系统database 数据库DC Dimensional Check 尺寸检查DC 220V distribution cable 直流220V配电电缆DC distribution panel 直流分配电屏DC field flashing circuit 直流起励回路DC flat-wave reactor 直流平波电抗器DC resistance 直流电阻De-aerate 除气debugging 调试debugging terminal 调试终端debugging 调试debur 去毛刺decompose 分解deduct 扣除de-excitation 灭磁deficiency 缺陷deficit 抵债definite time 定时deflection 挠度deflection / deformation 变型degrade 瓦解de-ionize 去离子delineate 描写deliver inductive reactive power 发送感性无功demagnetize 消磁demarcation 勘测demonstrate 论证denominate 给…命名denotation 表示dense 密集dependability 可靠性deposit 料场depreciation 折旧费贬值depression 凹地deprive 剥夺derivative 派生derivative 微分derive 获得deriving from 由…造成de-sicator 干燥器designation 标记destination port 目的港detecting leakage 检漏deterioration 变质detriment 损害deviation 偏差devoman 泥盆纪dewater 压水DI (digital input) 数字输入dial indicator 百分表dialect 方言diaphragm 横膈膜dielectric dissipation factor test 介质损失角测量试验dielectric loss angle 介电损失角dielectric loss 介质损耗dielectric resistance 绝缘电阻dielectric strength test 介电强度试验dielectric 介质diesel generator 柴油发电机differential initiation 微差起爆differential mode noise attenuation 常模抑制differential protection 差动保护differential settlement 变形digital input ( DI) signals 数字量输入信号digital multimeter 数字万用表digital output ( DO) signals 数字量输出信号dike 堤堰坝dilatancy 膨胀diluted 冲淡dip(ped) 倾向(浸)dipped 浸direct axis and quadrate axis 直轴与横轴disburse 支付disc type 圆盘式discharge arcing 晕带discharge counter/ recorder 放电记数器discharge ring 泄流环disconnector 隔离开关disconnector of starting circuit 起动回路隔离开关discrepancy 不符discrete 分立的discretion 处理权限dispute 争议discriminates 区别dismantle 拆装dismantling 拆卸dispatch 调度dispatching calibre 配电能力displacement 位移display picture generation 画面生成disposition 配置dissipation 驱散distinction 区别distinctive seasons 四季分明distinguishability/resolution 分辨率distortion 畸变distribution room 配电室distribution transformer 配电变压器disturbance 扰动diversion 引水divert 转移dividend 分红利divulge 泄漏DLP (Data Light Processing Projector) 数字光处理器DMD (digital micro mirror device) 数字微反射器DO (digital output) 数字量输出dominant 支配double coil, two positionelectromagnetic valve 双线圈两位电磁阀dovetail (key bar)燕型橛dovetail pin 燕尾销dowel pins 定位销down-land 丘陵draft tube lower liner 尾水管下部里衬draft tube 尾水管[(upper /lower) liner] 尾水管[(上/下部)里衬drain valve 排水阀drainage ditches 排水沟drainage 排水draw ring 牵引环, 拉延环drawing software 图形软件DRC 数字式保护校验仪(Digital protection relay checkout device)dredge 疏竣dressing stick 整形棒drift 漂移driving vibrator 单钢轮振动压实机droop characteristic 调差特性DSCR(debt service coverage rate)偿债保证比DSP(digital signal processor) 数字信号处理DTV (draft tube valve) 尾管阀门dump truck 自卸车dumping 缓冲duplicable 可复制的duplicate bus input circuit 双总线输入回路duplicate channel digital oscillograph 双通道数字型示波器duplicate trip coil 双跳闸线圈durable 耐用的dust catcher 粉尘吸附装置dust collecting system 粉尘收集系统DVD-ROM 光盘驱动器dyke of 岩脉dynamic balancing 动平衡dynamic stability 动态稳定性dynamometer 测力计功率计Eearthing current-return wires 接地回流导线earthing grids 接地网earthing steel flats 接地扁钢earthing switch 接地开关earthing terminal 接地端子eccentricity 偏心度eccentricity 偏心ECDC (East China Power Dispatch Center) 华东网调ECIDI (East China Investigation and 华东勘测设计研究院Designing Institute)ecologic 生态eddy current displacement transducer 涡流位移传感器eddy loss 涡流损耗eddy 涡流EDI (Electronic Data Interchange) 电子数据交换EDR (equalizing discount rate) 等值折扣率/调整贴现率education tax 教育税EIA (environmental impact assessment) 环境影响评估elasticity 弹性elasticity 椭圆率elbow 肘管electric braking device 电气制动装置electric breaking breaker 电制动断路器electric clearance 电气间隙electric fan 电动风机electric firing method 电触发方式electric gear shifting 电子换档electric interlock 电气闭锁electric output 电气输出electric quantity transducer 电量变送器electric saw 电锯electric spray valve 电动喷雾阀门electrical braking device 电气制动装置electrical contacts 电接点electrical interlock 电气闭锁electrical magnetic force 电磁力electrically independent, 单极双掷、single-pole normally-open andnormally-closed contact circuit 电气独立的接点电路electric-magnetic performance 电磁性能electro-corrosion resistant property耐电腐蚀能力electro-corrosion 电腐蚀electrolytic 电解electrolytic aluminum alloy 电解铝合金electrolytic copper 电解铜electro-magnetic environment 电磁环境electromagnetic hydraulic valve 电磁液压阀electromagnetic interference 电磁干扰electromagnetic shield 电磁屏蔽electromagnetic starter 电磁启动器electromagnetic valve 电磁阀electro-magnetic wave disturbance 电磁波干扰electromanetism compatible 电磁兼容抗扰度试验anti-interference testelectrostatic filter 静电过滤器electrostatic plate 静电板elevation of runner center line 设备安装高度of pump-turbineeligibility 合格ellipticity 椭圆度elongation 延伸embedded part 预埋件emboss 压花emergency shutdown circuit 紧急停机电路EMF (electro-magnetic flux) 电磁通量EMS (Energy Management System) 能源管理系统emulsification 乳化EN(European Standard) 欧洲标准ENAA (Engineering Advancement 日本项目促进协会Association of Japan)enamel 搪瓷珐琅encapsulate 用胶囊包装enclosed metal cubicle 封闭金属柜enclosure 外壳encoder 编码器end connector 端部接头end hoop of winding 定子绕组的端箍endanger 危及endurance duration 承受时间endurance 耐久/承受energizing pick-up type 带电动作型energy dissipation 消能English edition 英文版epidemic prevention 防疫epoxy encapsulated 环氧浇注epoxy resin 环氧树脂epoxy resin infusion capacitance type 环氧树脂浸渍电容式equalized load 平衡负荷equalizing beam 平衡梁equidistantly 等距离equilibrium 平衡平静equity investment 资本金equivalent 等值erection bay 安装间erection pedestal 安装支墩ergonomically 人类工程学erode 腐蚀escalate 逐步上升escape of oil fumes from the bearing 轴承油雾溢出essential software 基本软件ETD method 检温计法ethernet 以太网ethics 道德EUR (European EUPO) 欧元evacuation 抽出evaporation 蒸发even order harmonic voltage component 偶次谐波电压含有率even order 偶次even 均匀evenness 均匀度excitation control panel 励磁控制盘excitation cubicle 励磁柜excitation grounding detector 励磁接地探测器excitation over-voltage relay 励磁过电压继电器exciting circuit conductor 励磁回路导线execution 执行exert 发挥expansion bolts 膨胀螺栓expansion cards 扩展插件expansion joint 伸缩节expediently 方便expert system interfaces 专家系统接口expiration 期满exponential [数]指数extende 加深extension 延伸节extinguishing device 灭火装置extract active power 吸收有功extruded semi-conducting compound 挤包半导体化合物EXW (Ex factory, ex works or ex warehouse)出厂、出车间或出仓库eye ring of balancing beam 平衡梁套环excitation regulator 励磁调节器excitation system loss 励磁系统损耗excitation transformer 励磁变压器exciter transformer 励磁变excitation panel 磁盘excitation power supply 励磁电源F(empirical ) formula 经验公式(proper) frequency 固有频率3-D FEA 三维有限元fabrication 制造factice 油膏factory Acceptance Test (FAT) 工厂验收实验failure mode 容错模式fatigue (fault) 疲劳faucet 旋塞fault retrospection reviews 事故追忆fault signal 故障信号fault tolerance 容错fault treatment method 故障处理方法FCA (Free Carrier) 货交承运人FD(Flaw Detection)探伤fender-guard 防护(保险杠) ferromagnetic 铁磁ferrule 金属包头festoon 区域fiber-optic connector 光导纤维连接FIDIC (International Federation 国际咨询工程师联合会of Consulting Engineers)field erection 现场安装field pole 磁极field test 现场试验field 磁场filtration 过滤final two years 最后两年finance indicator 经济指标financing 融资findings 调查结果finite element method 有限充分价位finite element method 有限充分价位fire-extinguishing 消防fire-retardant 阻燃firewall 防火墙FIRR (Finance Internal Return Rate) 财务内部收益率first-pole-to-clear 首相开断系数fissure 裂缝fitting 附件fixture 固定体flake (成)薄片flame-retard 阻燃flange 法兰flashing circuit 起励flashover. 闪烙flaw 缺陷flexible connection 软连接flexible fixing 挠性固定flicker 闪烁float gauge 液位计floating point calculation 浮点运算能力floppy disk driver 软盘驱动器flow production method 流水作业法flowmeter 流量计fluctuation 波动flush 冲洗flush-type 嵌入式flux 焊药FOB (Free on Board) 装运港船上交货FOR (forced outage ratio) 强迫停运率formality 手续formula 公式fortify 防御forward voltage drop 正向压降foundation 基础foundation bolt 基础螺栓fracture 碎frame wall 机座壁francis 混流frequency transducers 频率变送器frequency 频率fret 使发热front-end fee 启动费frontispiece 插页FRR (fault retrospection reviews) 事故追忆Fs (safety factor)保安系数full wave 全波full-face steel lining 全断面钢衬full-graphic color VDU 彩色显示器functional keyboard 功能键盘fundamental wave 基波fuses 熔断器Ggable 山墙gall 擦伤galvanize 电镀galvanized steel structure 镀锌钢结构gang 联动gantry 门架gapless arrestor shunted with 与电容器并联的无间隙避雷器capacitorgas pipe 油管gas protection 瓦斯保护gas relay 气体继电器gasket 垫片gateways 远动网关gauge 规,计,表,样板gauge 标准尺、量表GCB (generator circuit breakers) 发动机出口断路器GCC(General Conditions of Contract) 通用合同条款gear operation mechanism 联动操作机构GECH II (General Electric Canada Hydro International Inc) GECI (General Electric Canada Inc)GECII (General Electric Canada International Inc)GEEN (General Electric Energy)generation surplus 窝电generator 发电机generator mode 发电工况generator terminal voltage overshoot 发电机机端电压超调量generator voltage circuit equipment 发电机电压设备generator/motor circuit breaker 发电电动机断路器控制开关control switchgenerator/motor-transformer block 发电电动机-变压器单元geometrical 几何的geomorphology 地貌geotextile filter 滤土工布gland 密封压盖glare 弦光glossary 汇编glossy 有光泽的got rid of from 排除govern 服从government sponsored social 社会统酬insurance fundgovernor pressure oil pipes 调速器压力油管路GPS 卫星同步时钟系统(satellite synchronizing clock system)grace period 宽限期gradation(grade) 级配grade ability 爬坡grain orientation 晶粒方向grand Canal 大运河granite 花岗岩granite porphyry 花岗岩graphical interface support 图形界面支持graphical station 图形站gravity center 重心gravity moment 重力矩gravity retaining wall 重力挡水墙graze 擦伤groove 企口groove 坡口grotto 洞ground fault current 接地故障电流grouser 履带齿片GSI (Geological Strength Index) 地质强度指标guide bearing 导轴承guide bearing loss 导轴承损耗guide bearing pad 导轴衬瓦gully-originated depression 沟源凹地gushe 涌HHalogen 卤素hand compressed air driller 手风钻hand-cart switch 手车式开关handhole 手孔hardened and tempered 调质hard-fill dam 硬填坝hardness 硬度hardware 硬件hardwired link 硬布线连接harmonic analyzer 谐波分析仪harmonic wave test 谐波试验harmonic 谐波harmoniously 和谐地harness 治理harsh class 严酷等级harsh 严酷hatch 吊物孔head cover 顶盖headrace tunnel 引水洞heartfelt thanks 忠心感谢heat endurance lever 耐热水平heat sink 散热器heat-dissipating area 散热区域heat-dissipating 散热hereinafter the same 下同hexagon 六角hierarchical 分层等级high pressure oil lifting device 高压油顶起装置high strength punched thin steel sheet 高强度薄钢板冲片hot standby 热备用hot-dip galvanizing 热浸锌hub 轮彀humidity 湿度hydraulic hoist 液压启闭机hydraulic packing 液压、密封hydraulic thrust 水推力hydraulic wrench 液压扳手hydrogeology 水文地质hydrology 水文hydropower 水电hystersis 迟后hollow 空心homogeneous 均匀homogeneous 同类的、均匀的homologous to 相似horizontal acceleration 水平加速度hot set test 热延伸特性试验hot spot oil temperature 热点油温hoisting 起吊holder rack 支架holding company 控股公司high-conductance 热导性hoist 卷扬机high voltage neutral bushing 高压中性点套管IIBRD (International Bank for 国际复兴开发银行Reconstruction and Development)ICC (International Chamber of Commerce) 国际商会IDA (International Development Association) 国际开发协会ideal 理想identical 相同一致identification system 标识系统identification 区别IFB (Invitation for Bids) 招标邀请imitative operation test 模拟动作试验immune to 不受影响免除immunity 免除免疫impact 冲击impact 影响impair 损害妨碍影响impaired mode 容错impedance 阻抗impedance protection relay 阻抗保护继电器impedance voltage 阻抗电压impedance 阻抗impede 妨碍impeller 叶轮impending 迫近imperative 迫切imperfection 缺陷impervious(blanket)防渗(阻漏毡)implementation 实施impregnate 充填饱和impregnate 充填impulse withstand voltage 雷电冲击耐受电压In the light of 由于inadequate 不充足inaugurated 就职典礼incandescent 白炽的incidental 附带incineration 烧尽焚化火葬inclined cable shaft 电缆斜井inclinometers 倾斜仪inclusions 夹杂income tax 所得税incoming line circuit breaker 进线断路器inconsistent/consistent 不一致/一致increment 增量increments 增加incur 招至损失indemnify …….against(from)保护..避免indemnity 赔偿independent duplicate 独立双调节通道regulating channelindex 指标indispensable for 必不可少的indispensable 不可缺少的,必不可少的indoor 户内induced current 感应电流induced voltage 感应电压induced 诱发inductance 电感industrial television monitoring system工业电视监视系统inertia (GD2) 惯性inevitable 不可避免inferior to 次于infiltration 渗透infinite 无限inflation 膨胀率infrared temperature detector 红外线测温仪infrared 红外线infringement 违反ingress 进入inherent 固有inhibit 禁止initial corona discharge voltage 起晕电压initial cost estimate 投资估算initial 最初initiating 起动inlet line 进线inlet valve body 进水阀阀体inlet valve pressure oil pipes 进水阀压力油管路inlet valve rotor 进水阀活门inlet valve sealing ring 进水阀止水环inlet valve servomotor cylinder 进水阀接力器缸体inlet valve servomotor piston 进水阀接力器活塞inlet valve shaft 进水阀轴inner circulating type with runner self pumping镜板泵内循环方式inner stator circumference 定子内圆innovate 创新改革inquiry/inquire 查寻inside-bridge wiring connection 内桥接线in-situ 自然位置,原位置insolvency 破产inspection window 观察窗institutional 职能instruction to applicant 申请人须知instrument 仪器insulation 绝缘insulation oil 绝缘油insulation resistance 绝缘电阻insulation strength 绝缘强度insulation withstand voltage test 绝缘耐受电压insulator 绝缘子intact 未经受损的intangible and deferred assets 递延和无形资产integral 积分integrity 完整性intelligent 智能型intensity 强度interbeds 夹板intercalated with 夹intercepting trenches 截洪沟interchangeable 可互换的interchangeable 互换interconnect 互连interface 接口interim operating 临时运行interlock 闭锁interlocking circuit 闭锁电路interlocking device 闭锁装置intermediate floor 中间层ITB (Instructions to Bidders) 投标者须知iron core loss 铁芯损耗iron core tooth pressing plat 铁芯齿压板iron core lamination 铁芯片isolated phase enclosed bus 离相封闭母线isolated phase enclosed bus bar 离相封闭母线isolated phase enclosed busbar of main circuit主回路离相封闭母线irreversible 不可逆irrevocable 不可撤消inundation 淹没inventory 库存inventory 财产目录实物盘存inversing 转换inverted field discharge 逆变灭磁inverter 逆变器intrinsic frequency 固有频率J(3-boom hydraulic) jumbo (三臂)凿岩机(anti-)jamming (防)卡(contraction) joint 伸缩缝jacking pads 顶起垫jacking 千斤顶jeopardize 危害jig 装配架夹具journal 日记、轴颈JPEPC(Jiangsu Provincial Electric Power Company)江苏省电力公司JPPC(Jiangsu Province Pricing Bureau)江苏省物价局JSPDC (Jiangsu Provincial Power Dispatch Center )江苏网调JVA (Joint Venture Agreement) 合资协定JVC (joint voltage control) 组电压控制isolated phase enclosed busbar 离相封闭母线IT(information technology) 信息技术interposing relay 中间继电器interposing (relays)中间(继电器)intuitively 直觉intersection angle 夹角intrinsic 固有内在的intrusion 侵入Kkerosene 煤油key 键key way broach 键槽拉刀keyboard 键盘kind affect 实物影响kick-off meeting 碰头会L"Limited Slip" rear axle 防滑后桥in lieu of 替代label 标志labyrinth ring 止漏环ladder 梯子lagging 滞后laminated silicon steel sheet 硅钢叠片lamination (factor) 叠压(系数) lamination segments of the rim (扇形)磁轭冲片LAN (Local Area Network) 局域网land (ac)requisition 征地large scale integrated circuit 大规模集成电路laser printer 激光打印机lash 捆绑latch 锁lateral 横向侧面latitude 行动或言论自由LAU(Launcher Unit)Layout 布置LCD(Liquid Crystal Display)LCGEP(Least Cost Generation Expansion Plan)最低价支付计划LCU (local control unit) 现场控制单元leading power factor mode 进相leading power factor 进相工况leading wire 引线leakage current test 泄漏电流测定legend 图例legible 醒目length of antenna feeder 天线馈线长度liability 负债life projection 寿命预测lift ring 吊环lifting lug 吊耳lighting equipment 照明设备light color and matt-paint 浅色无光漆limit switch 限位开关line voltage 线电压line voltage wave form distortion factor线电压波形畸变率lines of credit 信贷资金link 连接器liquid assets 流动资金liquid level transducer 液位变送器liquidate 清算liquidated damages 违约金literature 文字litho logical Units 岩性litigation 诉讼。
Ocean Energy
Ocean EnergyOcean energy: what is the ocean energy?With the rapid envelopment of economy, the issue of environment increasingly causes more concerns. At present, we are trying to explore more energy for achieving the goal of sustainable development. Fortunately, we have found a clean energy, namely ocean energy. Ocean energy refers to the attachment in seawater renewable energy, oceans through various physics processes to receive, store and distribute energy. The energy exists in the form of the tides, waves, temperature differences, salinity gradient, currents energy.Figure 1.It shows the proportion of a part of ocean energy. We can clearly know about the most is the thermal energy.Thermal energy: ocean thermal energy refers to the energy conservation of water temperature difference between the surface water and deep water. It is an important form of ocean energy. Higher low latitude sea surface temperature, there is a temperature differences between the storage of thermal energy is proportional to the temperature difference between the size of its energy and water.Salinity gradient energy: salt is the difference between energy and both seawater and freshwater with salt chemical potential difference between different waters can. It is a form of chemical energy of the ocean can occur. Mainly with junction. Meanwhile, the Slat Lake and freshwater underground salt mines rich regions can also use salt poor performance. Salt difference could be one of the largest ocean energy density of renewable energy.It is estimated that the world’s poor estuary salt can be reached 30 TW, there may utilize 2.6TW. Our salt difference can be estimated as 1.1x108KW, mainly concentrated in the major rivers of the sea at the same time, China’s Qinghai Province, there are many other places inland salt lake can be utilized. Salt poor to be able to study the United States, Israel’s first, China, Sweden and Japan have carried out research. But in general, the difference can this salt is still in the research of mew energy level laboratory experiments, demonstration and application as well as from a long distance.The main advantage of the temperature difference between the way energy is electricity. First proposed the use of ocean thermal power generation is envisaged that the Frenchphysicist Antony Cristobal. In 1926, Claude Antony Cristobal students successfully tested ocean thermal power generation. In 1930, Claude waterfront in Cuba built the world’s first ocean thermal power stations, gained 10KW of power. The maximum temperature difference can take advantage of the difficulties is the temperature difference in size and low energy density. Only about 3% of its efficiency and heat transfer area, high construction costs, countries still actively exploring.Currents energy: is the function of the sea currents can flow, mainly refers to the seabed and the Strait waterway flows and a more stable flow of energy due to the tidal waters caused arising regularly, is another form of kinetic energy of the ocean appeared.Ocean current energy use patterns are mainly for power generation, wind power generation and its principle is similar. Theoretical estimates of current energy worldwide is about 10^8KW magnitude. 130 use Chinese coastal waterways, aviation doors of observations and data analysis, statistical calculation to obtain the average power of the theory of China's coastal ocean current value of approximately 1.4X107KW.Density is one of the world's largest regional power, including Liaoning, Shandong, Zhejiang, Fujian and Taiwan coastal currents can be more abundant, many waterways of the energy density 15 ~30kW / m2 as a good development value. Especially the golden pond, waiting Kamemeama and West Gate waterway Zhejiang Zhoushan Islands, the average power density in 20kW/m2 above, the development environment and in very good condition.These are the most ordinary energy above.Ocean energy: specific advantages and disadvantages Disadvantages: the best way to get energy is no consensus on large projects may disrupt the natural currents, tides and ecosystems.Pros: it is an inexhaustible renewable resource. Tidal energy is a pattern. We can develop it at any size. These have renewable energy and do not pollute the environment. It is an urgent need for new energy development and utilization of strategic significance. According to the scientists estimated that the energy reserves on Earth Waves up to 90 trillion degrees. Large wave generators have been available. Wave power in our country but also to conduct research and testing, and made into a power plant for use beacon lights. The future of the world, each one will have a part of our ocean wave energy power plants in China. It will make a significant contribution for the country’s electricity industry.Tidal power, according to the World Power Conference estimates that by 2020, tidal power capacity worldwide will reach 1000-3000 million kilowa tts. The world’s largest tidal power station is a power station in northern France Rance estuary on the English Channel. It has been working for over 30 years, generating capacity of 240,000 kilowatts. China built in Zhejiang Province Jiang Tidal Power Station, with a total capacity of 3,000 kilowatts. Ocean energy: application statusSome of these different forms of energy has been the use of human, and some have been included in the development and utilization plan, but the extent of people’s ocean energy development and utilization is still very low.Despite the differences between these various ocean energy resources, but also has some of the same characteristics. Each ocean energy resources have considerable energy flux: tidal energy and salinity gradient energy is about 2TW; wave energy is also on this order of magnitude; while at least this big ocean thermal energy than two orders of magnitude. But these energy spread over a wide geographical area, so they are actually quite low energy density, and most of these resources are hidden away in the waters of the central area of electricity. Therefore, there can be only a small part of the ocean energy development and utilization of resources can be.These have some applications. Ocean thermal energy is a non-azeotropic Media as medium, the output power is 1.1 to 1.2 times previously. 75 kilowatts commissioning a pilot plant to prove, because the heat exchanger using tablet devices,the required pumping capacity is small, the transmission consumes very little power, other accessories are also low cost, coupled with a computer-controlled, the net electrical output power can be 70% of the rated power. A 3,000-kilowatt power plant, the cost per kilowatt hour of electricity is only 50 yen or less, the price is lower than diesel generation. It is expected that the use of OTEC, if they can be achieved within a century, could become a new starting point for new energy evelopment.An important way of tidal power generation is the use of tidal energy. According to preliminary estimates, the world's tidal energy is about more than one billion kilowatts, the annual power generation of 2 to 3 trillion KWh. The length of the 18,000 kilometers, according to 1958 census estimated that at least 28 million kilowatts of tidal power resources, the lowest annual generation capacity of no less than 70 billion KWh.English Channel is the world most famous tide zone, where the climax of the difference of 14.6meters, the Atlantic coast tidal range is also up 4 to 7.4 meters. Our Hangzhou Bay, "the upsurge of" The tidal range of up to 9 meters.It is estimated that China will be able to just north branch of the Yangtze River estuary to build 800,000 kilowatts tidal power, the generating capacity of 23 billion KWh, close to the total hydropower generation Xin'an River and Fu chun.Qian tang River mouth can be built 5,000,000 kilowatts tidal power, years generating about more than 180 billion KWh, equivalent to about 10 Xin’anjiang hydropower generating capacity of.After the liberation of our country was built on the coast some small tidal power station. For example, Guangdong Province Shun de County benign tidal power (144KW), and the United States Pacific Xiamen tidal power (220KW), Wen ling sand hills tidal power (40 kilowatts)and Tong Xiangshan high tidal power (450Tidal power has many advantages. For example, the tides come and go regularly, are not affected by the flood or dry; in estuaries or bays as natural reservoirs, not flooded large areas of land; does not pollute the environment; does not consume fuel. But tidal power project is also difficult, high cost, the water has a corrosive effect on the underwater equipment and other shortcomings. However, the results of a comprehensive economic comparison, tidal power cost less than thermal power.Our country can develop tidal energy resources are mainly in Fujian and Zhejiang provinces, accounting for 88.6% of the country's provinces distribution table.Table: List of tidal power stations can be developedstage. Although China from 1958 began to use some small power station construction, but then technical conditions, poor quality, most have been scrapped demolition.Our theoretical potential tidal energy resources accounted for 3.7% of the world, and tidal energy resources can be developed according to the annual generating capacity calculation accounts for 34% of the world to 44%. Develop a high degree of visibility can tidal energy resource development conditions better.Looking to the future, tidal power has an attractive prospect. I believe in the near future roaring tide will be fully utilized humans, resulting in electricity and other benefits.Ocean energy: my views about itThere still exist some difficulties. The main reason a lot of ocean energy has not been used in two ways: first, economic efficiency and high cost. Second, some of the technical issues have not yet pass. Nevertheless, many countries face organizational research to address these issues, while at the development of the magnificent ocean energy planning. France plans to the end of the century, such as the use of tidal power 35 billion KWh, the UK plans to build a 100-megawatt wave energy power plant, to be built 500 US ocean thermal power stations on the East Coast. From the development trend, the ocean will become coastal countries especially one of the important energy developed coastal countries.Marine energy intensity is lower than the conventional energy. Seawater temperaturedifference is small, the larger the temperature difference between the sea and 500 to 1000m deep water between only 7-10 meters, larger wave is only three meters high. Tide, currents velocity is small, only a section of a larger flow rate of 4 to 7. Even so, in renewable energy, ocean energy still has considerable energy density. In the wave energy. For example, the average signal power per meter shoreline waters is most abundant 50 kilowatts, generally 5 to 6 kilowatts. Solar flux density which corresponds to one kilowatt / m 2). Another example is the trend of energy, a maximum flow rate of the Zhoushan Islands trend 3 m / s. the trend in the average power of a tide cycle up to 4.5 kW / m 2. Ocean energy as a natural energy is always changing. But the ocean is a huge storage library, such as solar and wind energy derived in the form of heat , mechanical energy , such as storage in the sea , on land and in the air is not as easy as lost . Seawater temperature, salinity and currents are worse than the stable 24-hour circadian fluctuation is small, only slight seasonal variations. Tides, the trend is to make constant changes periodically, on the tide, neap tide, high tidal, low tide, tide, tidal speed, direction can be accurately predicted. Ocean waves are the most unstable seasonal, cyclical, and the adjacent cycle is changing. But waves are waves and swell the sum, while the vast sea swells from continuing time wind, sun and wind is not as easy as the local sudden, sudden stop and the affected local meteorology.。
维克ト恩能源生产力系统配置助手说明书
Overview of available AssistantsClick on the thumbnails to see the full screenshot.1. Assistants related to SolarMake sure to read Configuring solar systems with Quattros and Multis when configuring a solar system.ESS AssistantFor Energy Storage Systems (ESS). The Assistant manages the prioritising of Solar Power. Documentation.PV Inverter supportUse this Assistant in Off-grid systems that have AC-Coupled solar power: a grid-tie PV inverter connected to the AC out of a Multi or Quattro inverter/charger.Documentation.DEPRECATED Self-consumption Hub-1 - for dc-coupled systems2022-06-01assistants:overview_of_available_assistants https:///live/assistants:overview_of_available_assistants 13:41Note that Hub-1 is deprecated in favor of ESS.Hub-1 Assistant documentation.Hub-1 is only for hardware with new microprocessor (26 or 27).Hub-1 and Hub-2 Assistant notesDEPRECATED Self-consumption Hub-2 v3 - for ac-coupled systemsTake note of the factor 1.0 rule.Deprecated in favor of ESS.Only for hardware with new microprocessor (26 or 27).Hub-1 and Hub-2 Assistant notesDEPRECATED Self-consumption Hub-2 v2 - for ac-coupled systemsUse only on hardware with old microprocessor (19 or 20). On newer systems, use the version 3 instead, see above.Take note of the factor 1.0 rule.Note that all Hub-2 Assistant versions have been deprecated in favor of ESS.Hub-1 and Hub-2 Assistant notesDEPRECATED Self-consumption Hub-4Do not use Hub-4 for new installs. It is deprecated in favor of ESS.Hub-4 manual.Only for hardware with new microprocessor (26 or 27).2. Functional AssistantsGenerator start and stopAutomatically start and stop a generator based on battery state of charge andactual load of a system. Note that automatic genset start/stop functionality isalso available on the Virtual switch tab in VEConfigure, which is easier to workwith.This is one of the available options to automatically start and stop a generator using Victron equipment. See the auto-generator-start-stop document for an overview of all options. More general information about using a generator in combination with Victron is available here.This Generator start and stop Assistant is also the one to use to configure Ignore AC Input using Assistants.AC Current sensor2022-06-01assistants:overview_of_available_assistants https:///live/assistants:overview_of_available_assistants 13:41Reads PV Inverter current, using an AC Current sensor (CSE000100000),connected to a VE.Bus product. More information available in the AC Currentsensor manual.Silence fanDisable the fans at night with a simple external switch, to ensure a quiet night.Very useful for boats and motorhomes.Input current limit controlAutomatically set the input current limit to a predefined value based on thestate of an aux input or rpm measured with the 1140 interface. Used in thefollowing systems:1.A variable speed generator, flywheel generator or waterturbine, where the available AC powerdepends on the rpm. See the Interface 1140 (ASS030510000) manual for more information.Vehicles or boats that have two different types of shore plugs. One high power plug and one low 2.power plug. Use the assistant to automatically set the input current limiter based on the used plug.And there are more situations that can come to mind, for example a Multi connected behind a 3.transfer switch.Charge current controlSets the charge current to a predefined setpoint, based on the active AC Input(for Quattros) or the state of an aux input.Safety switchUsed to wire an emergency stop button to a VE.Bus system. DEPRECATED VE.Bus BMS supportDeprecated: per VE.Bus firmware version 489, this Assistant is no longer required. When installing a system with VE.Bus BMS, our advice is to first update the firmware of the inverter, using VictronConnect, and thereafter do the configuration. No Assistant needed.Required in combination with a VE.Bus BMS, used with our 12.8 V Lithium batteries. This Assistant communicates with the BMS and controls the Multi based on the BMS measurements.Two-Signal BMS support (previously called Lynx Ion BMS support)Required in combination with a Lynx Ion BMS, used with our 24 V 180 AhLithium system. This Assistant can also be used to control the Multi with a thirdparty Lithium system including BMS. See our PDF Connecting other lithiumbattery systems to Multis and Quattros for more information.3. Advanced AssistantsProgrammable relay2022-06-01assistants:overview_of_available_assistants https:///live/assistants:overview_of_available_assistants 13:41Relay lockerGeneral flag userDISQUSView the discussion thread.。
ENERGY RECOVERY VENTILATOR
专利名称:ENERGY RECOVERY VENTILATOR 发明人:DOBBS, Gregory, M.,BENOIT, Jeffrey, T.,LEMCOFF, Norberto, O.申请号:US2009049347申请日:20090701公开号:WO10/002957P1公开日:20100107专利内容由知识产权出版社提供摘要:An energy recovery heat exchanger (100) includes a housing (102). The housing has a first flowpath (144) from a first inlet (104) to a first outlet (106). The housing has a second flowpath (146) from a second inlet (108) to a second outlet (110). Either of two cores may be in an operative position in the housing. Each core has a number of first passageways having open first and second ends and closed first and second sides. Each core has a number of second such passageways interspersed with the first passageways. The ends of the second passageways are aligned with the sides of the first passageways and vice versa. A number of heat transfer member sections separate adjacent ones of the first and second passageways. An actuator is coupled to the carrier to shift the cores between first and second conditions. In the first condition, the first core (20) is in the operative position and the second core (220) is not. In the second condition, the second core is in the operative position and the first core is not. When a core is in the operative position, its first passageways are along the first flowpath and the second passageways are along the second flowpath.申请人:DOBBS, Gregory, M.,BENOIT, Jeffrey, T.,LEMCOFF, Norberto, O.地址:US,US,US,US国籍:US,US,US,US代理机构:COLBURN II, Philmore H.更多信息请下载全文后查看。
Clean Energy Systems
Clean Energy SystemsClean energy systems have become a critical topic in today's world, as the need for sustainable and environmentally friendly energy sources has become increasingly urgent. The term "clean energy" refers to energy sources that have minimal impact on the environment, such as solar, wind, hydro, and geothermal power. These sources of energy are renewable, meaning they are naturally replenished and will not run out. Clean energy systems are essential for reducing greenhouse gas emissions, combating climate change, and ensuring a sustainable future for generations to come. The development of clean energy systems has arich historical background, with significant milestones and advancements that have shaped the industry. The use of renewable energy sources dates back to ancient times, with civilizations harnessing the power of the sun, wind, and water for various purposes. However, the modern clean energy movement can be traced back to the 1970s, when concerns about environmental pollution and the finite nature of fossil fuels began to gain widespread attention. This led to the development of technologies such as solar panels, wind turbines, and hydroelectric dams, which have since become integral components of clean energy systems. From a historical perspective, the evolution of clean energy systems has been marked by bothprogress and challenges. On one hand, there has been a significant increase in the adoption of clean energy technologies, driven by advancements in technology, government incentives, and growing public awareness of environmental issues. However, the transition to clean energy has also faced resistance from vested interests in the fossil fuel industry, as well as logistical and economic barriers. Despite these challenges, the momentum behind clean energy continues to grow, with an increasing number of countries and businesses committing to renewable energy targets. The topic of clean energy systems elicits a range of perspectives and opinions, reflecting the complex and multifaceted nature of the issue. Proponents of clean energy emphasize its potential to reduce carbon emissions, mitigate climate change, and create new economic opportunities. They argue that investingin clean energy systems is not only an ethical imperative but also a soundbusiness decision, as renewable energy sources become increasingly cost-competitive with traditional fuels. On the other hand, critics of clean energysystems often raise concerns about the intermittency of renewable energy sources, the need for backup power systems, and the potential impact on traditional energy industries. These differing viewpoints underscore the need for a nuanced and balanced approach to the adoption of clean energy systems. To illustrate thereal-world impact of clean energy systems, it is valuable to examine case studies and examples from various regions and industries. For instance, countries like Germany and Denmark have made significant strides in transitioning to clean energy, with a substantial portion of their electricity coming from renewable sources. In the United States, companies like Tesla have revolutionized the automotiveindustry with their electric vehicles, demonstrating the potential for cleanenergy to disrupt established sectors. Furthermore, developing nations such asIndia and China are investing heavily in clean energy infrastructure, recognizing the long-term benefits of sustainable energy systems. These examples highlight the diverse applications and potential of clean energy systems across different contexts. Despite the undeniable benefits of clean energy systems, it isessential to critically evaluate their limitations and drawbacks. One of the primary challenges of renewable energy is its intermittency, as solar and wind power generation is dependent on weather conditions. This variability can pose challenges for grid stability and necessitate the use of energy storage solutions. Additionally, the upfront costs of implementing clean energy systems can be significant, although the long-term economic and environmental benefits often outweigh these initial investments. Furthermore, the transition away from fossil fuels may have social and economic implications for communities that rely on traditional energy industries, requiring thoughtful planning and support for affected workers and regions. Looking ahead, the future implications of clean energy systems are profound and far-reaching. As technology continues to advance, the cost of renewable energy is expected to decrease, making it more accessibleand widespread. The integration of smart grid technologies, energy storage solutions, and advanced analytics will further enhance the reliability and efficiency of clean energy systems. Moreover, the global commitment to reducing carbon emissions and achieving climate targets will drive the continued expansion of clean energy infrastructure. In this context, recommendations for policymakers,businesses, and individuals include continued investment in research and development, supportive policy frameworks, and consumer education to acceleratethe transition to clean energy. In conclusion, clean energy systems represent a pivotal solution to the pressing environmental and energy challenges facing the world today. The historical development, diverse perspectives, real-world examples, and critical evaluation of clean energy systems provide a comprehensive understanding of their significance. As we navigate the complexities and opportunities of clean energy, it is crucial to recognize the potential forpositive change and the need for collaborative efforts to realize a sustainableand prosperous future for all.。
充电模块中的快恢复二极管
充电模块中的快恢复二极管英文回答:The fast recovery diode in a charging module plays a crucial role in rectifying and controlling the charging process. It is responsible for ensuring efficient transfer of energy from the power source to the battery and preventing damage to the charging circuitry.Key Functions of the Fast Recovery Diode:1. Rectification: The fast recovery diode rectifies the alternating current (AC) input from the power source, converting it into direct current (DC) suitable for charging the battery.2. Freewheeling: During the charge cycle, when the battery voltage exceeds the voltage of the power source, the fast recovery diode provides a low-impedance path for the reverse current to flow back into the power source,preventing voltage spikes and protecting the charging module.3. Reverse Recovery: Fast recovery diodes are designed to minimize reverse recovery time, which is the interval during which the diode remains conductive after the reverse current has stopped flowing. This characteristic prevents energy loss and optimizes the charging efficiency.4. Protection: The fast recovery diode protects the charging module against overcurrent and voltage transients by providing a low-impedance path for excess energy to dissipate.Characteristics of Fast Recovery Diodes:1. Low Reverse Recovery Time: The faster the reverse recovery time, the more efficient the charging process.2. High Forward Current Capability: The diode must havea sufficient current rating to handle the charging current.3. Low Forward Voltage Drop: A low forward voltage drop minimizes energy loss during the charging process.4. Robust Construction: The diode should be able to withstand the harsh conditions of a charging environment, such as high temperatures and vibration.Selection of Fast Recovery Diode:When selecting a fast recovery diode for a charging module, consider the following factors:1. Charging Current: The diode must have a current rating greater than the maximum charging current.2. Reverse Voltage: The diode must be able to withstand the reverse voltage generated by the charging circuit.3. Forward Voltage Drop: Choose a diode with a low forward voltage drop to minimize power loss.4. Reverse Recovery Time: Select a diode with a reverserecovery time that is as low as possible for optimal charging efficiency.中文回答:充电模块中快速恢复二极管的作用。
Atlas Copco 油气压缩机能耗节能系统说明书
Save energy withoil-free water-cooled compressorsEnergy recovery solutions (ER 90-900)Industries & applicationsHot water recovered from the compressed air system can be used for showering, space heating and is particularly suitable for process applications. Using the hot water as boiler pre-feed or directly in processes requiring up to 90°C / 194°F hot water can save costly energy sources such as natural gas and heating oil.Heat driven chillers are another potential application for the heat recovered from the compressed air system providing industry with more opportunities to save energy.Food & BeverageHot water and steam are used in many dairy processes. Steam is commonly used for pasteurization, scalding, cleaning and sterilizing cooking vessels, drying products, etc.In larger dairies, huge amounts of hot water and steam are required in continuous processes. Here, the hot water energy recovery system of the compressor can provide substantial energy savings. PharmaceuticalsLarge amounts of steam are used in the pharmaceutical industry and in manufacturing processes.Fermentation temperature control, drying and sterilization processes are part of the daily routine of the pharmaceutical industry.The CIP (Clean In Place) cleaning method, SIP (Sterilization In Place), direct contact sterilization in bioreactors and fermenters, and steam barriers against bacteria are commonly employed in these manufacturing units.The heat energy recovered from our air compressor contributes to a higher bottom line.AutomotiveHot water and steam are used in many automotive processes. T ypically it is used for following applications:• Pre-painting and painting process of shock absorbers, car bodies,… Hot water is used for degreasing and phosphate tanks. Hot water or steam is used for air make-up units and flash ovens in paint booths.• Heating, ventilation and air-conditioning of production spaces and office buildings.• Hot water can be used for air handling units and/or space heating.• Production of powertrain – transmission, engine and engine parts.• Production of electronic control units.• Curing process of tires.• Steam is used for supplying heat and pressure for the chemical crosslinking of the rubber and vulcanizing agents.Hence, the hot water energy recovery system providessubstantial energy savings.ChemicalsThe chemical industry and refineries are major users of steam. Some applications are:• Thermal steam crackers require highly superheated steam at typically 40 bar(e) / 580 psi.• Re-boilers and stripping employ superheated medium pressure steam at typically 10 bar(e) / 145 psi.• Heat tracing and other applications require superheated low pressure steam at typically 2 bar(e) / 29 psi.In some processes, a great deal of hot water is recovered after the steam condenses. Hot water from compressors is used as make-up water to supplement the losses.T extilesColoring of fabric makes use of considerable volumes of hot water at 80C° to 90°C / 176°F to 194°F .Energy Recovery systems of our compressors can directly offer the hot water to the process.For yarn and fibre treatment steam is used for heat-setting manmade fibers to achieve dimensional stability, increased volume, and wrinkle and temperature resistance.Pulp & PaperSignificant volumes of compressed air are used in the wood pulp and paper industry. Vast amounts of steam are also used in the industrial processes. Typical applications are bleaching, digesters, pulp machines and black liquor evaporators.ElectronicsSteam is used for humidification since it is clean and inherently sterile.Clean room humidification in electronics assembly, chip manufacture and in pharmaceutical industry is common practice. As this steam is used as a utility, continuous replenishment water is required. Hot water from the air compressor can pre-heat the replenishment water, and consequently, reduce the energy consumption of thesteam boiler.100%Electrical energy inputLosses in radiationcondensation heatCondensation heat in suction airSwitch your compressor into an energy sourceAccording to the laws of thermodynamics, the energy used to compress air is trans f ormed into heat. T he major portion of this heat - more than 90% - remains in the compressed air and lubrication oil. A small part is lost to the environment through radiation.atmosfericAir outputcompressedEnergy output hot waterEnergy input electricity The water-cooled design of the cooling system of the ZR oil-free screw compressor with energy recoveryallows to fully capture all this heat from the compressed air and oil system. As a result, the total energy recovered as hot water amounts up to 80-105% of the electrical input energy, depending on the actual site conditionsand pressure of the compressed air system. In most industrial conditions it will be up to 95%.This feature sets the ZR water-cooled oil-free screw compressor with energy recovery apart from any other compressor technology.Electrical input is not the only source of energy entering the system. T he suction air for the compressor contains water vapour. T he heat stored in the vapour is released through condensation in the inter- and aftercooler of the compressor. T ypically the condensation heat, contained in the suction air, is equivalent to 5-20% of the electrical input energy.A 400 kW compressor with an energy recovery of 90%, can save annually about 250,000 m 3 natural gas, 550 ton CO 2 and € 150,000.(1)Energy Recovery as hot water on site condition (2) According to reference conditions at full load operationA 700 kW compressor with an energy recovery of 90%, can save annually about 400,000 ltr heating oil, 1,066 ton CO 2 and € 200,000.Running hours 6,000 / boiler efficiency 80%Heating oil (2)Natural gas (2)Calorific value 43,000 kJ/l 39,000 kJ/m 3Cost 0.5 €/l 0.6 €/m 3CO 2/MWh0.279 ton0.203 ton100%100%90%90%80%80%70%70%60%60%50%50%E n e r g y R e c o v e r y (1)E n e r g y R e c o v e r y (1)Potential savings with energy recoveryReference conditionsABCAdvantages• Regulation of compressor cooling water pressure and temperature to keep the compressed air system working optimally.• Compressor operates independently from the customers’ process.• Optimal compressor cooling water quality.• Connectable compressors: Control units are available to handle the heat energy in the cooling water flow of multiple water-cooled compressors, and this up to a maximum of 4 compressors connected to 1 single control unit.There are 5 sizes of control units available – ER 90, ER 275, ER 425, ER 650 and ER 900 – which can handle the energy recovered from any water-cooled oil-free compressor up to 900 kW. T he power consumption of one energy recovery unit is less than 4 kW.A comprehensive standard execution can be extended with a number of application specific options.The energy recovery control unitEnergy Recovery control units are specifically designed to transfer the energy recovered from any oil-free air water-cooled compressors to the customers’ process. T he control unit is installed between the compressor and the customers’ cooling- and heating circuit. A modular design guarantees perfect integration of the Energy Recovery unit in the application.Standard scope of supply• Variable speed water pump• Electronic controlled 3 way by-pass valve• Elektronikon ® microprocessor with graphical display for monitoring & contol system• Common baseframe with all pipes and connections included• Protective canopy• Single point inlet and outlet connections • Pre-mounted electrical cubicle • Single point of electrical connection• Stainless steel gasketted plate heat exchanger(s)• Pressure relief valve • Pressure expansion vessel• Automatic de-aeration valve• Pressure approval depend on site requirementOptional equipment• Built-in heat exchanger for the customers’ processcircuitA stainless steel gasketted plate heat exchanger forprocess water.• Built-in back-up heat exchangerMakes sure the requested set point of the coolingwater delivered to the compressor is maintained. Incase not all the heat energy (hot water delivered by thecompressor) is consumed by the customers’ process,the fresh cooling water circuit connected to this heatexchanger will further reduce the temperature.• Stand-by water pumpA redundant variable speed driven water circulationpump will kick in automatically when the duty pumpstops. Isolating and check valves are included.• Anchor padsFixation to the foundation of the unit can beguaranteed.Intelligence is part of the package• High resolution color display gives you an easy tounderstand readout of the equipment’s running conditions.• Clear icons and intuitive navigation provides you fastaccess to all of the important settings and data.• Monitoring of the equipment running conditions andmaintenance status; bringing this information to yourattention when needed.• Operation of the equipment to deliver specifically andreliably to your compressed air needs.• Built-in remote control and notifications functionsprovided as standard, including simple to use Ethernetbased communication.• Support for 31 different languages, including characterbased languages.Online & mobile monitoringMonitor your compressors over the Ethernet withthe new Elektronikon® controller. Monitoring featuresinclude warning indications, compressor shut-down andmaintenance scheduling. An App is available for iPhone/Android phones as well as iPad and Android tablets. Itthrough your own secured network.® unit controller is specially designed to2935 0584 12 – © 2017, A t l a s C o p c o , B e l g i u m . A l l r i g h t s r e s e r v e d . D e s i g n s a n d s p e c i fi c a t i o n s a r e s u b j e c t t o c h a n g e w i t h o u t n o t i c e o r o b l i g a t i o n . R e a d a l l s a f e t y i n s t r u c t i o n s i n t h e m a n u a l b e f o r e u s a g e .Committed to sustainable productivityWe stand by our responsibilities towards our customers, towards the environment and the people around us. We make performance stand the test of time. This is what we call - Sustainable Productivity.。
Clean Energy Systems
Clean Energy SystemsClean energy systems have become increasingly important in today's world as we strive to reduce our carbon footprint and combat climate change. One of the most widely discussed clean energy sources is solar power. Solar panels harness thesun's energy and convert it into electricity, providing a renewable and sustainable energy source. The use of solar power has grown significantly in recent years, with many homeowners and businesses opting to install solar panels on their properties. This shift towards solar energy is driven by a desire to reduce reliance on fossil fuels and decrease greenhouse gas emissions. In addition to solar power, wind energy is another key player in the clean energy sector. Wind turbines convert the kinetic energy of the wind into electricity, offering another renewable energy source that can help reduce our dependence on non-renewable resources. Wind farms have been established in various locations around the world, taking advantage of areas with strong and consistent wind patterns. While some may argue that wind turbines can be unsightly and disrupt local wildlife, the benefits of wind energy in terms of reducing air pollution and combating climate change cannot be ignored. Hydropower is another important clean energy source that has been utilized for centuries. By harnessing the power of flowing water, hydroelectric dams generate electricity in a sustainable manner. While there are concerns about the environmental impact of large-scale hydroelectric projects, smaller run-of-river hydroelectric systems offer a more environmentally friendly alternative. Hydropower has the potential to play a significant role in our transition to a clean energy future, providing a reliable and renewable source of electricity. Geothermal energy is another clean energy option that harnesses the heat from the Earth's core to generate electricity. Geothermal power plants utilize the natural heat stored beneath the Earth's surface to produce electricity, offering a reliable and consistent source of renewable energy. While geothermal energy has the potential to play a significant role in our transition to clean energy, the high upfront costs of geothermal power plants have hindered their widespread adoption. However, advancements in technology and government incentives may help drive the growth of geothermal energy in the coming years. Biomass energy is another clean energy source thatutilizes organic materials such as wood, crop residues, and animal waste to generate electricity. By burning these materials in a controlled environment, biomass power plants can produce electricity in a sustainable manner. While biomass energy has the potential to reduce greenhouse gas emissions and provide a reliable source of renewable energy, there are concerns about the environmental impact of large-scale biomass production. It is important to carefully considerthe sustainability of biomass sources and ensure that they are managed in an environmentally responsible manner. In conclusion, clean energy systems play a crucial role in our efforts to combat climate change and transition to a more sustainable future. Solar power, wind energy, hydropower, geothermal energy, and biomass energy all offer renewable and sustainable alternatives to traditional fossil fuels. While each clean energy source has its own advantages and challenges, it is clear that a combination of these technologies will be necessary to meet our growing energy needs while reducing our impact on the environment. By investing in clean energy systems and embracing renewable energy sources, we can create a more sustainable future for generations to come.。
电能表专业术语中英文对照
电能表专业术语中英文对照有功电度表——watt-hour meter静止式有功电度表——static watt-hour meter 多费率电度表——multi-rate meter仪表型式——meter type测量器件——measuring element测试输出——test output工作指示器——operation indicator贮存器——memory非易失贮存器——non-volatile memory显示器——display计度器——register电流线路——current circuit电压线路——voltage circuit辅助线路——auxiliary circuit常数——constant室内仪表——indoor meter室外仪表——outdoor meter表底——base插座——socket表盖——meter cover表壳——meter case可触及导电部件——accessible conductive part 保护接地端——protective earth terminal端子座——terminal block端子盖——terminal cover间隙——clearance爬电距离——creepage distance基本绝缘——basic insulation附加绝缘——supplementary insulation双重绝缘——double insulation加强绝缘——reinforced insulationI类防护绝缘包封仪表——insulating encased meter of protective class III类防护绝缘包封仪表——insulating encased meter of protective class II参比电流——reference current基本电流*(Ib)——basic current (Ib)额定电流*(In)——rated current (In)最大电流*(Imax)——maximum current (Imax)参比电压*(Un)——reference voltage(Un)参比频率——reference frequency等级指数——class index百分数误差——percentage error影响量——influence quantity参比条件——reference conditions由影响量引起的误差改变量——variation of error due to an influence quantity畸变因数——distortion factor电磁骚扰——electromagnetic disturbance参比温度——reference temperature平均温度系数——mean temperature coefficient额定工作条件——rated operating conditions规定的测量范围——specified measuring range规定的工作范围——specified operating range极限工作范围——limit range of operation贮存和运输条件——storage and transport conditions 正常工作位置——normal working position热稳定性——thermal stability型式试验——type test电度表型号——meter type标准表——reference meter无功功率(乏)——reactive power(var)无功电能(乏一小时)——reactive energy(var-hour)单相电路中无功电能——reactive energy in a single-phase circuit三相电路中无功电能——reactive energy in a three-phase circuit无功电度表——var-hour meter静止式无功电度表——static var-hour meter多费率仪表——multi-rate meter无功功率的方向和符号——directions and sign of reactive power测量元件——measuring element输出装置——output devices感应式仪表——induction meter仪表转子——meter rotor仪表驱动元件——meter driving element仪表制动元件——meter braking element仪表计度器(计数机构)——register of a meter(counting mechanism) 仪表底座——meter base仪表插座——meter socket仪表基架——meter frame接线端座——terminal block接线端盖——terminal cover基本转速——basic speed基本转矩——basic torque仪表常数——meter constant绝缘——insulation型式——type型式检验——type test型式验证程序——type approval procedure鉴定程序——qualification procedure影响量或影响因数——influence quantity or factor?? 垂直工作位置——vertical working position等级指数——class index测量单元——measuring unit数据处理单元——data processing unit多功能电能表——multifunction watthour meter需要周期——demand interval最大需量——maximum demand滑差时间——sliding window time??尖、峰、谷、平时段——(sharp、peak、shoulder、off—peak time consumption)额定最大脉冲频率——rated maximum impulse frequency最大需量复零装置——maximum demand reset zero unit辅助电源——auxiliary supply电磁骚扰——electromagnetic disturbance产品——item修理的产品——repaired item不修理的产品——non-repaired item服务——service规定功能——required function时刻——instant of time时间区间——time interval持续时间——time duration累积时间——accumulated time量度——measure工作——operation修改——modification(of an item)效能——effectiveness固有能力——capability耐久性——durability可靠性——reliability维修性——maintainability维修保障性——maintenance support performance 可用性——availability可信性——dependability失效——failure致命失效——critical failure非致命失效——non-critical failure误用失效——misuse failure误操作失效——mishandling failure弱质失效——weakness failure设计失效——design failure制造失效——manufacturing failure老化失效;耗损失效——ageing failure;wearout failure 突然失效——sudden failure渐变失效;漂移失效——gradual failure;drift failure 灾变失效——cataleptic failure关联失效——relevant failure非关联失效——non-relevant failure独立失效——primary failure从属失效——secondary failure失效原因——failure cause失效机理——failure mechanism系统性失效;重复性失效——systematic failure;reproducible failure 完全失效——complete failure退化失效——degradation failure部分失效——partial failure故障——fault致命故障——critical fault非致命故障——non-critical fault重要故障——major fault次要故障——minor fault误用故障——minor fault误操作故障——mishandling fault弱质故障——weakness fault设计故障——design fault制造故障——manufacturing fault老化故障;耗损故障——ageing fault;wearout fault程序-敏感故障——programme-sensitive fault数据-敏感故障——data-sensitive fault完全故障;功能阻碍故障——complete fault;function-preventing fault 部分故障——partial fault持久故障——persistent fault间歇故障——intermittent fault确定性故障——determinate fault非确定性故障——indeterminate fault潜在故障——latent fault系统性故障——systematic fault故障模式——fault mode故障产品——faulty item差错——error失误——mistake工作状态——operating state不工作状态——non-operating state待命状态——standby state闲置状态;空闲状态——idle state;free state不能工作状态——disable state;outage处因不能工作状态——external disabled state不可用状态;内因不能工作状态——down state;internal disabled state 可用状态——up state忙碌状态——busy state致使状态——critical state维修——maintenance维修准则——maintenance philosophy维修方针——maintenance policy维修作业线——maintenance echelon;line of maintenance维修约定级——indenture level(for maintenance)维修等级——level of maintenance预防性维修——preventive maintenance修复性维修——corrective maintenance受控维修——controlled maintenance计划性维修——scheduled maintenance非计划性维修——unscheduled maintenance现场维修——on-site maintenance;in sits maintenance;field maintenance 非现场维修——off-site maintenance遥控维修——remote maintenance自动维修——automatic maintenance逾期维修——deferred maintenance基本的维修作业——elementary maintenance activity维修工作——maintenance action;maintenance task修理——repair故障识别——fault recognition故障定位——fault localization故障诊断——fault diagnosis故障修复——fault correction功能核查——function check-out恢复——restoration;recovery监测——supervision;monitoring维修的实体——maintenance entity影响功能的维修——function-affecting maintenance妨碍功能的维修——function-preventing maintenance 减弱功能的维修——function-degreding maintenance 不影响功能的维修——function-permitting maintenance 维修时间——maintenance time维修人时——MMH maintenance man-hours实际维修时间——active maintenance time预防性维修时间——preventive maintenance time修复性维修时间——corrective maintenance time实际的预防性维修时间——active preventive maintenance time 实际的修复性维修时间——active corrective maintenance time 未检出故障时间——undetected fault time管理延迟(对于修复性维修)——administrative delay后勤延迟——logistic delay故障修复时间——fault correction time技术延迟——technical delay核查时间——check-out time故障诊断时间——fault diagnosis time故障定位时间——fault localization time修理时间——repair time工作时间——operating time不工作时间——non—operating time??需求时间——required time无需求时间——non-required time待命时间——stand-by time闲置时间——idle time;free time不能工作时间——disabled time不可用时间——down time累积不可用时间——accumulated down time外因不能工作时间——external disabled time;external loss time 可用时间——up time首次失效前时间——time to first failure失效前时间——time to failure失效间隔时间——time between failures失效间工作时间——operating time between failures恢复前时间——time to restoration;time to recovery 使用寿命——useful life早期失效期——early failure period恒定失效密度期——constant failure intensity period 恒定失效率期——constant failure rate period耗损失效期——wear-out failure period瞬时可用度——A(t) instantaneous availability瞬时不可用度——U(t) instantaneous unavailability 平均可用度——A(t1,t2)mean availability平均不可用度——U(t1,t2)mean unavailability渐近可用度——A asymptotic availability稳态可用度——steady-state availability渐近下可用度——U asymptotic unavailability稳态不可用度——steady-state unavailability渐近平均可用度——A??asymptotic mean availability渐近平均不可用度——U asymptotic mean unavailability平均可用时间——MUT mean up time平均累积不可用时间——MADT mean accumulated down time可靠度——R(t1,t2)reliability瞬时失效率——λ(t)??instantaneous failure rate平均失效率——λ(t1,t2)mean failure rate瞬时失效密度——Z(t) instantaneous failure intensity平均失效密度——Z(tl,t2) mean failure intensity平均首次失效前时间——MTTFF mean time to first failure平均失效前时间——MTTF mean time to failure平均失效间隔时间——MTBF mean time between failures平均失效间工作时间——MTBF mean operating time between failures 失效率加速系数——failure rate acceleration factor失效密度加速系数——failure intensity acceleration factor维修度——maintainability瞬时修复率——μ(t)instantaneous repair rate平均修复率——μ(t1,t2)mean repair rate平均维修人时——mean maintenance man-hours平均不可用时间——MDT mean down time平均修理时间——MRT mean repair timeP—分位修理时间——p—fractile repair time平均实际修复性维修时间——mean active corrective maintenance time 平均恢复前时间——MTTR??mean time to restoration故障识别比——fault coverage修复比——repair coverage平均管理延迟——MAD mean administrative delayp—分位管理延迟——p-fractile administrative delay平均后勤延迟——MLD mean logistic delayP—分位后勤延迟——P—fractile logistic delay试验——test验证试验——compliance test测定试验——determination test实验室试验——laboratory test现场试验——field test耐久性试验——endurance test??加速试验——accelerated test步进应力试验——step stress test筛选试验——screening test时间加速系数——time acceleration factor维修性检验——maintainability verfication维修性验证——maintainability demonstration 观测数据——observed data试验数据——test data现场数据——field data基准数据——reference data冗余——redundancy工作冗余——active redundancy备用冗余——standby redundancy失效安全——fail safe故障裕度——fault tolerance故障掩盖——fault masking预计——prediction可靠性模型——reliability model可靠性预计——reliability prediction可靠性分配——reliability allocation;reliability apportionment故障模式与影响分析——FMEA fault modes and effects analysis故障模式、影响与危害度分析——FMECA fault modes,effects and criticality analysis 故障树分析——FTA fault tree analysis应力分析——stress analysis可靠性框图——reliability block diagram故障树——fault tree状态转移图——state-transition diagram应力模式——stress madel??故障分析——fault analysis失效分析——failure analysis维修性模型——maintainability model维修性预计——maintainability prediction维修树——maintenance tree维修性分配——maintainability allocation;maintainability apportionment 老练——burn in可靠性增长——reliability growth可靠性改进——reliability improvement可靠性和维修性管理——reliability and maintainability management可靠性和维修性保证——reliability and maintainability assurance可靠性和维修性控制——reliability and maintainability control可靠性和维修性大纲——reliability and maintainability programme 可靠性和维修性计划——reliability and maintainability plan可靠性和维修性审计——reliability and maintainability audit可靠性和维修性监察——reliability and maintainability surveillance 设计评审——design review真实的…——true…预计的…——predicted…外推的…——extrapolated…估计的…——estimated…固有的…——intrinsic…;inherent…使用的…——operational…平均的…——mean…P-分位…——P-fratile…瞬时的…——instantaneous…稳态的…——steady state。
Clean Energy Systems
Clean Energy SystemsClean energy systems are becoming increasingly important in today's world as we strive to reduce our carbon footprint and combat climate change. One of the most popular clean energy sources is solar power, which harnesses the energy ofthe sun to generate electricity. Solar panels are becoming more affordable and efficient, making them a viable option for many homeowners and businesses looking to reduce their reliance on fossil fuels. Another clean energy source that is gaining popularity is wind power. Wind turbines can be installed on land or offshore to harness the power of the wind and convert it into electricity. While wind power does have its limitations, such as being dependent on the weather, advancements in technology are making it a more reliable source of clean energy. Hydropower is another clean energy source that has been used for centuries. By harnessing the power of flowing water, hydropower plants can generate electricity without producing harmful emissions. However, the construction of dams for hydropower can have negative environmental impacts, such as disrupting ecosystems and displacing communities. Geothermal energy is a clean energy source thatutilizes the heat from the Earth's core to generate electricity. Geothermal power plants can be found in areas with high geothermal activity, such as Iceland and parts of the United States. While geothermal energy is a reliable and sustainable source of power, it is limited to specific geographic locations. Bioenergy is another clean energy source that is derived from organic materials, such as plants and animal waste. Bioenergy can be used to generate electricity, heat buildings, and even power vehicles. While bioenergy is considered carbon-neutral, as the carbon dioxide released during combustion is offset by the carbon absorbed by the plants during growth, there are concerns about the sustainability of using food crops for bioenergy production. In conclusion, clean energy systems play acrucial role in reducing our reliance on fossil fuels and combating climate change. By harnessing the power of renewable energy sources such as solar, wind, hydropower, geothermal, and bioenergy, we can create a more sustainable future for generations to come. It is important for governments, businesses, and individuals to invest in clean energy systems and support policies that promote theirdevelopment and implementation. Together, we can transition to a cleaner, greener energy future.。
Clean Energy Systems
Clean Energy SystemsClean energy systems have become a critical topic in today's world as the need for sustainable and environmentally friendly energy sources continues to grow. The shift towards clean energy is driven by concerns about climate change, air pollution, and the finite nature of traditional fossil fuels. As a result, governments, businesses, and individuals are increasingly investing in and adopting clean energy systems such as solar, wind, hydroelectric, and geothermal power. While the transition to clean energy presents numerous benefits, it also comes with its own set of challenges and considerations. One of the most significant advantages of clean energy systems is their positive impact on the environment. Unlike traditional fossil fuels, which release harmful greenhouse gases and pollutants when burned, clean energy sources produce minimal to no emissions. This reduction in emissions helps to mitigate climate change, improve air quality, and protect ecosystems. Additionally, clean energy systems often have a smaller physical footprint and are less disruptive to natural landscapes,further minimizing their environmental impact. In addition to their environmental benefits, clean energy systems also offer economic advantages. The renewable nature of clean energy sources means that they are not subject to the same price volatility and supply constraints as fossil fuels. This can lead to greater energy security and stability for both individual consumers and entire economies. Furthermore, the growth of the clean energy sector has the potential to create new jobs and stimulate economic growth. As investment in clean energy technologies and infrastructure increases, so too does the demand for skilled workers in fields such as engineering, manufacturing, installation, and maintenance. Despite these benefits, the transition to clean energy is not without its challenges. One of the most significant obstacles is the intermittency of certain renewable energy sources, such as solar and wind power. Unlike traditional power plants, which can generate electricity consistently, these renewables are dependent on weather conditions and daylight hours. This variability can make it difficult to maintain a stable and reliable energy supply, particularly without the use of energy storage technologies. Additionally, the initial investment costs for clean energy systems can be higher than those for traditional fossil fuel infrastructure,although the long-term operational costs are typically lower. Another challenge facing the adoption of clean energy systems is the need for updated infrastructure and grid modernization. Many existing energy grids were designed to accommodate centralized power plants and one-way energy flow, whereas clean energy systems often involve distributed generation and bi-directional energy flow. Adapting the grid to integrate and manage these new dynamics requires significant investment and planning. Furthermore, regulatory and policy barriers can hinder the widespread deployment of clean energy technologies, as outdated or restrictive regulations may favor traditional energy sources or impede the development of clean energy projects. In addition to technical and regulatory challenges, the transition to clean energy also requires changes in consumer behavior and attitudes. Individuals and businesses may need to adjust their energy consumption patterns, invest in energy-efficient technologies, and embrace new ways of generating and managing energy. This shift in mindset and behavior can bedifficult to achieve, particularly in cultures and societies that have long relied on conventional energy sources. Education and outreach efforts are crucial in helping people understand the benefits of clean energy and the role they can play in supporting its adoption. Despite these challenges, the momentum behind clean energy systems continues to grow. Advances in technology, declining costs, and increasing awareness of environmental issues are driving the expansion of clean energy infrastructure worldwide. Governments are implementing policies and incentives to support clean energy development, and businesses are recognizing the economic and reputational advantages of embracing sustainability. As a result, the clean energy sector is poised for continued growth and innovation, offering a promising path towards a more sustainable and resilient energy future.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Circuits,Systems,and ComputersVol.15,No.4(2006)491–504c World Scientific Publishing CompanyLOW POWER ENERGY RECOVERY COMPLEMENTARYPASS-TRANSISTOR LOGICROBERT C.CHANG∗Department of Electrical Engineering,National Chung Hsing University,Taiwanchchang@.twPO-CHUNG HUNG†Cheertek Co.,Ltd.,TaiwanJohnHung@HSIN-LEI LIN∗Department of Electrical Engineering,National Chung Hsing University,Taiwand9164302@.twRevised18November2005A proposed adiabatic logic called Energy Recovery Complementary Pass-transistor Logic(ERCPL)is presented in this paper.It operates with a two-phase nonoverlapping power-clock supply.It uses bootstrapping to achieve efficient power saving and eliminates anynonadiabatic losses on the charge-steering devices.A scheme is used to recover partof the energy trapped in the bootstrapping nodes.We compare the energy dissipationbetween ERCPL and other logic circuits by simulation.Simulation results show that apipelined ERCPL carry look-ahead adder can achieve a power reduction of80%overthe conventional CMOS case.Operation of an8-bit ERCPL CLA fabricated using theTSMC0.35µm1P4M CMOS technology has been experimentally verified.Keywords:Low power;ERCPL;CLA.1.IntroductionDue to the increasing demand for portable electronic equipment with state-of-the-art computational power and reliability,reducing power consumption has become an important issue in integrated circuit design.Adiabatic logic(or so-called energy recovery logic)is a design style to reduce power consumption.Adiabatic switch-ing can circumvent the CV2dissipated energy barrier,generated by operating ∗No.250,KuoKuang Rd.,South District,Taichung City402,Taiwan(R.O.C.).†No.2,Dusing1st Rd.,Hsinchu City300,Taiwan(R.O.C.).491492R.C.Chang,P.-C.Hung&H.-L.LinCMOS circuits conventionally.1The energy dissipated in adiabatic circuits can be divided into two kinds:adiabatic loss and nonadiabatic loss.2An adiabatic circuit cannot avoid adiabatic loss.Adiabatic logics can usually reduce only part of the nonadiabatic loss.Various adiabatic logic architectures have been proposed for low power VLSI design.2−5Most use diodes or diode-like devices for precharge,which causes unavoidable energy loss due to the voltage drop across the diodes.4ECRL,4 ADCPL,5PAL,6PAL-2N,7and CAL8were proposed to eliminate the precharge diodes,but they suffer from a close recovery path.The key component in adiabatic circuits is an energy-efficient charge-steering device.9–13For full energy recovery,the path between the power-clock supply and an output node may not be closed during charging or discharging.To assure this condition,a retractile cascade timing scheme is required.13The bootstrapping technique is an approach to form retractile cascade timing scheme without generating complex clock phases.This technique precharges the charge-steering transistor gate high and makes the transistor turn on as the power-clock supply begins to ramp high.Effective bootstrapping makes the switch transistor gate voltage rise high enough above the highest applied clock voltage to keep the channel conductance high.14NMOS Energy Recovery Logic(NERL) was proposed in the bibliography.15NERL exhibits low energy consumption due to efficient energy transfer and recovery using bootstrapping.Figure1shows an NERL inverter.Its energy dissipation can be written as in the bibliography.15E NEAR=C boot V dd V th,(1) where C boot is the capacitance of the bootstrapping node,V dd is the peak value of the power supply,and V th is the threshold voltage of the isolation transistors M5and M6.This paper describes a proposed adiabatic logic family called Energy Recovery Complementary Pass-transistor Logic(ERCPL).It uses a complemen-tary pass-transistor logic tree(CPL)as the logic-evaluating tree and bootstrapping technique.ERCPL is diode free and is a dual-rail logic family operated with a two-phase nonoverlapping supply clock.Energy is recovered in the recovery phase of the power clock.A pipeline structure can be directly implemented without any specific latch.In Sec.2,the basic ERCPL design and operation will be presented.Circuit design is given in Sec.3.Experimental results are presented in Sec.4.Section5is the conclusion.2.Energy Recovery Complementary Pass-Transistor Logic2.1.ERCPL gatesAn ERCPL gate constitutes a differential structure and uses only NMOS transistors. It operates with a two-phase nonoverlapping power-clock supply.The basic ERCPL inverter circuit is illustrated in Fig.2.An ERCPL gate can be divided into two parts, logic function and charge-discharge circuit.The logic function part(M9–M12)uses complementary pass-transistor for generating a proper logic value.Different logic can be acquired by changing this part with different logic tree.The logic trees ofLow Power Energy Recovery Complementary Pass-Transistor Logic493Fig.1.Schematic of the NERL inverter.Fig.2.Schematic of an ERCPL inverter.basic gates such as AND,XOR,and AND–OR are shown in Fig.3.The charge-discharge part(M1–M8)uses bootstrapping for full energy recovery.M1and M2act as bootstrapping NMOS transistors.M7and M8are isolation switches.Transistors M3–M6are used to discharge bootstrapping nodes for correct operation.494R.C.Chang,P.-C.Hung&H.-L.LinFig.3.Logic trees of complementary pass-transistor using in ERCPL gates.(a)AND,(b)XOR, and(c)AND–OR.Two nonoverlap power-clock supplies(φ1andφ2)are used with180◦phase difference.Figure4shows the ERCPL inverter chain.The phase arrangement and timing diagram of ERCPL inverter chain is shown in Fig.5.The waveform of the power clock can be trapezoid or triangular.Here we used a triangular waveform for convenience.φ1is used to control the isolation transistor to precharge the boot-strapping node(BN1or BN2).Whenφ1rises,we assume that IN whose phase is no different withφ1also rises,and INbar remains low.The transistors M7,M8,M9, and M11turn on.BN1is precharged to V dd–V th,and BN2is still at low voltage.Low Power Energy Recovery Complementary Pass-Transistor Logic495Fig.4.ERCPL inverter chain.Fig.5.Simulated timing waveforms of ERCPL inverter chain.496R.C.Chang,P.-C.Hung&H.-L.LinWhenφ1and IN ramps down,M7,M8,M9,and M11turn off,the bootstrapping nodes are isolated from the input and BN1stores a high voltage information.φ2, which is used to transfer charge from power-clock supply through turned-on tran-sistor M1,then ramps from0to V dd.At the same time,BN1is bootstrapped to a voltage higher than V dd due to the gate-to-channel capacitance of transistor M1 and turns on M1.Power-clock supplyφ2charges the output node OUT in an adia-batic manner to V dd,and drives the next stage in the phase ofφ2.Whenφ2ramps down,OUT also ramps down,and the charge stored on it is recovered to supply through the entire discharge process.The energy on the output node is fully recov-ered but not on the bootstrapping node.The NERL connects the bootstrapping node to the ground and releases the energy as heat.Instead,our ERCPL wastes part of this energy and distributes the other part for storage in the capacitance of the input nodes and inner nodes.ERCPL dissipates less energy as heat.The bootstrapping node discharge process that saves the trapped charge is described as follows.2.2.Charge recycle in ERCPLConsider the ERCPL cascaded inverter chain given in Fig.4.Figure4also shows the phase arrangement of the cascaded ERCPL inverter chain.The bootstrapping node discharge process consists of two successive stages.This process is illustrated in Fig.6.We only show half of the circuit for simplicity.The waveforms of the node voltages in Fig.6are shown in Fig.7.During period t1,we assume thatFig.6.Bootstrapping node discharge process.Low Power Energy Recovery Complementary Pass-Transistor Logic497Fig.7.Timing waveforms of node voltages during the discharge process.node A is charged high followingφ2,and BN2is charged to V dd–V th.Thenφ2 ramps down,and isolation switch M7of stageφ2turns off.Charge is trapped in node q and BN2.During period t3,φ2rises again.If A is low and A is high,M7 and M10of stage2will turn on.The transistor M3of stage1turns on.Current willflow through M7of stageφ2,M10of stageφ2,and M3of stage1due to voltage drop.This charge-sharing process will stop when the nodes reach a bal-anced voltage.The diode-connected transistor M5of stage1adjusts the voltage in the following way:if the balanced voltage is higher than V th,M5of stage1 will turn on until the balanced voltage is lower than V th.If the balanced voltage is lower than V th,its voltage level remains.Therefore,there is charge saved at most asQ saved=V th C share,(2) where C share is the total node capacitance participated in the charge-sharing pro-cess.We can see that the current Iflows through M7of stage2due to charge498R.C.Chang,P.-C.Hung&H.-L.Linsharing.This bootstrapping node discharge process is nonadiabatic.However,a part of energy is saved from the energy dissipation in Eq.(2).3.Circuit DesignIn order to compare power dissipation of ERCPL and NERL,a carry look-ahead adder of NERL is designed.The only difference of CLA between NERL and ERCPL is the clocking arrangement.Because ERCPL computes only one logic evaluation per phase,a complex logic with a long chain of stages will cause a long latency and inefficient performance.For example,a32-bit ripple carry adder needs32-phases to execute one addition,and the latency is16cycles.There are some pipelined CLA structures adopted in different adiabatic logic style designs that can reduce the latency proposed by those two references.4,5In this paper,we constructed an8-bit CLA using ERCPL,for examining and evaluating the performance and power dissipation.This design is similar to the one in the bibliography,4except that our ERCPL CLA uses a2-phase power-clock supply rather than4-phase.The schematic of the ERCPL CLA is shown in Fig.8.Four kinds of ERCPL gates—AND,XOR,AND–OR,and buffer—are needed in this adder design.The basic cell,depicted as a rectangle,consists of one AND gate and one AND–OR gate. Because the charge-discharge part of the ERCPL gate acts like a clock-powered latch,the circuit constructed with it has an inherent functionality of pipeline. For this reason,buffers are needed for signal synchronization.This8-bit CLA calculates thefirst result of addition throughfive stages,and the latency is2.5 cycles.4.Experimental Result4.1.Simulation resultsIn order to compare the power dissipation with conventional CMOS,4NERL and our proposed logic,we simulated those circuits with HSPICE.We used device models available for the TSMC0.35µm1P4M CMOS technology for simulation. The peak voltage of the power-clock supply is3.3V.Except that the bootstrap-ping NMOS transistor sizes are chosen large enough for correct bootstrapping function,the other transistors are chosen with the smallest size.The W/L ratio of transistors M5and M6in Fig.2can be larger for higher operation fre-quency.Ideal power-clock generator is used in our simulation.Figure9shows the power consumption versus frequency of the10-stage inverter chain offive different kinds of logic.The output load is0.1pF.In thefigure,we can see that the NERL dissipated67%of energy dissipated in conventional CMOS at 125MHz.The ERCPL takes a further step in reducing the power dissipation to52%.Table1lists the percentage of power dissipation of adiabatic inverter chains to conventional paring with the performances of the logic schemes,the transistor number of our proposed ERCPL technique is more thanLow Power Energy Recovery Complementary Pass-Transistor Logic499Fig.8.Schematic of an8-bit carry look-ahead adder.that of CMOS,but its power dissipation is half than that of CMOS.Although our proposed ERCPL technique is only more than the NERL by two transis-tors,our scheme is efficient to save about one-fourth of power dissipation.The area penalty decreases with the increase of the logic tree and the progress of the process.500R.C.Chang,P.-C.Hung&H.-L.LinFig.9.Power consumption versus frequency for the inverter chains.Table1.Percentage of power dissipation from adiabatic inverterchains to conventional CMOS.10-stage inverter chain@125MHz CMOS NERL ERCPLPower dissipation(µW)185.6124.796.0Percentage to CMOS100%67.2%51.7%Transistor counts31012Fig.10.Power consumption versus frequency for the8-bit CLAs.Low Power Energy Recovery Complementary Pass-Transistor Logic501Fig.11.Photomicrograph of an8-bit ERCPL carry look-ahead adder.Fig.12.Generated2-phase nonoverlapping signal.Above:φ1.Below:φ2.502R.C.Chang,P.-C.Hung&H.-L.LinFig.13.Output waveforms.Above:φ1.Below:C out=logic“1”.A comparison of the power dissipation versus operation frequency of the8-bit CLA is shown in Fig.10.The result shows that ERCPL can be more energy efficient than the NERL and conventional CMOS.At125MHz,conventional CMOS CLA,NERL CLA,and ERCPL CLA consume0.868mW,0.256mW,and0.177mW, respectively.Thus,NERL CLA can save71%and80%energy of CMOS CLA and ERCPL CLA,respectively.4.2.Measurement resultsAn8-bit ERCPL carry look-ahead adder was designed and fabricated using the TSMC0.35µm1P4M CMOS technology.A photomicrograph of the8-bit ERCPL CLA is shown in Fig.11.To test this chip,we must generate two nonoverlap-ping power-clock signals to serve as the supply for the adiabatic circuit.Figure12 shows the two-phase nonoverlapping power-clock signals that are obtained from the function generator and a simple rectifying circuit.If the inputs of the adders are A8...A1=11111111and B8...B1=00000001,then the results are C out=1and S8...S1=00000000.Figures13and14show logic“1”of Cout and logic“0”of S8, respectively.Because we placed the ERCPL buffers at the outputs of this adder, there are six pipeline stages in this chip,and the output signals are in the same phase with1.Therefore,the measurement results verified that the add operation of ERCPL CLA is correct.Low Power Energy Recovery Complementary Pass-Transistor Logic503Fig.14.Output waveforms.Above:φ1.Below:S8=logic“0”.5.ConclusionIn this paper,we proposed ERCPL for energy recovery logics.ERCPL facilitates efficient energy recovery and low power consumption using the bootstrapping tech-nique to obtain efficient energy utilization and reduce the nonadiabatic energy loss dissipated in NERL.In the inverter-chain case,simulation results show that logic families we proposed have higher energy efficiency than NERL.NERL dissipates 67.2%of the conventional CMOS power,and ERCPL dissipates only51.7%.In the CLA case,NERL saves71%of the conventional CMOS power,and ERCPL saves up to80%.We also designed an8-bit carry look-ahead adder with ERCPL using TSMC0.35µm1P4M CMOS technology.The operation of this CLA was experimentally verified.AcknowledgmentsThis work was supported by National Science Council(NSC)of Taiwan,R.O.C. (NSC94-2220-E-005-001and NSC94-2220-E-005-004),and the authors would like to thank National Chip Implementation Center(CIC)of Taiwan for technical support. References1.W.Athas,L.Svensson,J.G.Koller,N.Tzartzanis and E.Y.-C.Chou,Low-powerdigital systems based on adiabatic-switching principles,IEEE Trans.VLSI Systems 2(1994)398–407.504R.C.Chang,P.-C.Hung&H.-L.Lin2.J.Lim,D.G.Kim and S.I.Chae,nMOS reversible energy recovery logic for ultra-low-energy applications,IEEE J.Solid-State Circuits35(2000)865–875.3. A.G.Dickinson and J.S.Denker,Adiabatic dynamic logic,IEEE J.Solid-StateCircuits30(1995)311–355.4.Y.Moon and D.K.Jeong,An efficient charge recovery logic,IEEE J.Solid-StateCircuits31(1996)514–522.5. C.-K.Lo and P.C.-H.Chan,An adiabatic differential logic for low-power digitalsystems,IEEE Trans.Circuits Syst.II46(1999)1245–1250.6.V.G.Oklobdzija and D.Maksimovic,Pass-transistor adiabatic logic using singlepower-clock supply,IEEE Trans.Circuit Syst.II44(1997)842–846.7. F.Liu and u,Pass-transistor adiabatic logic with NMOS pull-down configu-ration,IEE Electron.Lett.34(1998)739–741.8. D.Maksimovic,V.G.Oklobdzija,B.Nikolic and K.W.Current,Clocked CMOSadiabatic logic with integrated single-phase power-clock supply,IEEE Trans.VLSI Syst.8(2000)460–463.9. A.Kramer,J.S.Denker,S.C.Avery,A.G.Dickinson and T.R.Wik,Adiabaticcomputing with the2N-2N2D logic family,Proc.IEEE Symp.VLSI Circuits Dig.Tech.Papers(1994),pp.25–26.10. D.Suvakovic and C.Salama,Two phase non-overlapping clock adiabatic differ-ential cascode voltage switch logic(ADCVSL),ISSCC Dig.Tech.Papers(2000), pp.364–365.11.M.C.Knapp,P.J.Kindlmann and M.C.Papaefthymiou,Implementing and evaluat-ing adiabatic arithmetic units,Proc.IEEE Custom Integrated Circuits Conf.(1999), pp.115–118.12.W.K.De and J.D.Meindl,Complementary adiabatic and fully adiabatic MOS logicfamilies for gigascale integration,Proc.Int.Solid-State Circuits Conf.(1996),pp.298–299.13.J.S.Denker,A review of adiabatic computing,IEEE Symp.Low Power Electron.Dig.Tech.Papers(1994),pp.94–97.14.N.Tzartzanis and W.Athas,Clock-powered CMOS:A hybrid adiabatic logic stylefor power-efficient computing,20th Anniversary Conference on Advanced Research in VLSI(IEEE Computer Society,1999),pp.137–151.15. C.Kim,S.-M.Yoo and S.-M.Kang,Low-power adiabatic computing with NMOSenergy recovery logic,IEE Electron.Lett.36(2000)1349–1350.。