人教版八年级上学期第十四章《一次函数》单元测试
人教版八年级数学上册第十四章一次函数单元测试题
第十四章一次函数单元检测题 (考试时间为120分钟,满分120分)姓名学号得分_____________一、填空题(每题3分,共30分)1、已知一个一次函数的图象过点(-1,3),则这个一次函数的解析式可以是__________________; (只需写出一个解析式即可,不必考虑所有情况).2、若点P 1(–1,4)和P 2(1,b )关于y 轴对称,则b = ;3、直线x y 312-=与x 轴交点的坐标是________;4、若一次函数y =mx -(m -2)过点(0,2),则m = ;5、函数y =x 的取值范围是 ;6、如果直线b ax y +=经过一、二、四象限,那么ab ____0 (“<”、“>”或“=”);7、下列三个函数y=-2x+1,y=-41x —3,y=(32-)x+2的共同点是___________________; 8、函数y = -x +3的图象与x 轴,y 轴围成的三角形面积为_________________;9、某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10立方米的,按每立方米n 元水费收费;用水超过10立方米的,超过部分加倍收费.某职工某月缴水费18n 元,则该职工这个月实际用水为___________;10、有边长为a 的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2、3、4…的等边三角形(如图).根据图形推断每个等边三角形卡片总数S 与边长n 的关系式 ;二、选择题(每题3分,共30分)11、函数y =x-2x+2的自变量x 的取值范围是( ) A.x ≥-2 B.x ≤-2 C..x >-2 D.x <-212、一根弹簧原长10cm ,它所挂的重量不超过10kg ,并且挂重1kg 就伸长1.5cm ,写出挂重后弹簧长度y (cm )与挂重x (kg )之间的函数关系式是( ) A.y =1.5(x +10)(0≤x ≤10) B.y =1.5x +10 (0≤x ) C.y =1.5x +10 (0≤x ≤10) D.y =1.5(x -10) (0≤x ≤10)13、无论m 为何实数,直线m x y 2+=与4+-=x y 的交点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限 14、某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图), 并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是 ( )A. B. C. D. 15、已知函数122y x =-+,当-1<x ≤1时,y 的取值范围是( ) A.5322y -<≤ B.3522y << C.3522y <≤ D.3522y ≤<16、某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟,那么他们从B 地返回学校用的时间是( ) A.45.2分钟 B.48分钟 C.46分钟 D.33分钟17、下列函数中,①y =πx ②y=2x-1 ③y=1/x ④y=2-3x ⑤y=x 2-1中,是正比例函数的有( ) A.4个 B.3个 C.2个 D.1个 18、函数31-=x y 中自变量的取值不可以是( ) A 、4 B 、3 C 、2 D 、119、将函数y=x+2的图象向上平移3个单位,这时函数的解析式为( ): A. y=x+5 B. y=3x+5 C. y=-3x+5 D. y=x-1 20、下列函数关系y 中,变量y 与x 成正比例函数关系的是( ) A.y=x 2 B.y=32x C.y=x-3 D.y=x5- 三、解答题:21、观察图,先填空,然后回答问题:(1)由上而下第n 行,白球有_______个;黑球有_______个.(2)若第n 行白球与黑球的总数记作y , 则请你用含n 的代数式表示y ,并指出其中n 的取值范围(10分)22、已知,直线y =2x +4与直线y =-2x -1.(1) 求两直线与y 轴交点A 、B 的坐标;(2) 求两直线交点C 的坐标; (3) 求△ABC 的面积(12分)23、 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y (元)可以看成他们携带的行李质量x (千克)的一次函数为561-=x y .画出这个函数的图象,并求旅客最多可以免费携带多少千克的行李。
初二 第14章 一次函数 单元测试含答案
八年级数学一次函数单元测试题(总分:100.0 考试时间:65分钟)班级_______________ 准考证号________________ 姓名___________ 得分_____ 一、判断题:本大题共3小题,从第1小题到第2小题每题3.0分小计6.0分;第3小题为4.0分;共计10.0分。
1、函数y=(m+6)x+(m-2), 当m=-6时是一次函数( )2、( )3、函数y=-(x+6)与y轴的交点是(0 , 6).( )二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。
4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。
单元训练第十四章_一次函数单元测试题(含答案)-
第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=12x-3二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30 220 x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,•x的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
第14章 一次函数全章水平测试(含答案)
第14章《一次函数》全章水平测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x的函数是( )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( )3.函数x y x y x y 21,3,2-=-==的共同特点是( ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m .2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是 .3.直线13+=x y 与x y 51-=的交点坐标为 .4.直线42+-=x y 与x 轴交点的坐标是 ,方程222-=+-x 的解是 .5.当m 满足 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为 .7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m .8.将x y 21=的图象向右平移2个单位后,得到的图象解析式是 . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.5.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,如图(1),图(2)中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B到海岸的距离与追赶时间之间的关系?⑵A,B哪个速度快?⑶15分内B能否追上A?⑷如果一直追下去,那么B能否追上A?⑸当A 逃到海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.y(元)x(吨)84.864O7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图10中的折线分别表示S1、S2与t之间的函数关系.⑴甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.参考答案一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x 的函数是( D )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( B )3.函数x y x y x y 21,3,2-=-==的共同特点是( D ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( A )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( C )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( A )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( D )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( B )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m =-5.2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是3+-=x y .(答案不唯一)3.直线13+=x y 与x y 51-=的交点坐标为 (0,1) .4.直线42+-=x y 与x 轴交点的坐标是(2,0),方程222-=+-x 的解是 x =2 .5.当m 满足 m >3 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为35.135.1+=+-=x y x y 或.7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m 1 .8.将x y 5.0=的图象向右平移2个单位后,得到的图象解析式是15.0-=x y . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.解略:⑴12-=x y ,⑵23=a2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.解略:⑴当m >-2、n 为任意数时,y 随x 的增大而增大;⑵当m ≠-2、n >3时,函数图象与y 轴的交点在x 轴下方;⑶当m ≠-2、n =3为何值时,函数图象经过原点; ⑷当m >-2、n <3时,图象经过第一、二、三象限.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.解:图略⑴方程062=+x 的解为3-=x; ⑵不等式62+x >0的解为3->x ;⑶当14-≤≤-x 时-1≤y ≤3.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.解:⑴62+-=x y ,图略⑵△ABC 的面积S 关于t 的函数表达式为tS 2133-=5.我国边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B 追赶,如图(1),图(2)中1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B 到海岸的距离与追赶时间之间的关系?⑵A ,B 哪个速度快?⑶15分内B 能否追上A ?⑷如果一直追下去,那么B 能否追上A ?⑸当A 逃到海岸12海里的公海时,B 将无法对其进行检查,照此速度,B 能否在A 逃入公海前将其拦截?解略:⑴射线1l 表示B 到海岸的距离与追赶时间之间的关系;⑵快艇B 的速度快;⑶15分内B 不能否追上A ;⑷如果一直追下去,那么B 能追上A ;⑸照此速度,B 能在A 逃入公海前将其拦截.6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y (元)是用水量x (吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.解略:⑴⎩⎨⎧>-≤=)4(6.16.1)4(2.1x x x xy⑵4吨以内(包括4吨),每吨1.2元 4吨以上,每吨1.6元⑶若某用户该月交水费12.8元,则他用了9吨水.7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km ),图10中的折线分别表示S 1、S 2与t 之间的函数关系.⑴甲、乙两地之间的距离为 8 km ,乙、丙两地之间的距离为 2 km ; ⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.解略:⑵第二组由甲地出发首次到达乙地及由乙地到 达丙地所用的时间分别是0.8h 和0.2h ; ⑶)18.0(8102<<-=t t S可以编辑的试卷(可以删除)。
八年级数学上册第十四章一次函数单元综合测试题试题
青云镇中心中学八年级数学上册第十四章一次函数单元综合测试题新人教版班级姓名等级一、选择〔每一小题3分,一共30分〕题号 1 2 3 4 5 6 7 8 9 10 答案1.以下函数,y随x增大而减小的是〔〕A.y=x B.y=x–1 C.y=x+1 D.y=–x+12.假设点A(2 , 4)在直线y=kx–2上,那么k=〔〕A.2 B.3 C.4 D.03.y=kx+b图象如图那么〔〕A.k>0 , b>0B.k>0 , b<0创作;朱本晓C.k<0 , b<0D.k<0 , b>04.直线y=(k–2)x+k不经过第三象限,那么k的取值范围是〔〕A.k≠2 B.k>2 C.0<k<2 D.0≤k<2 自变量x取值范围是〔〕5.函数y=3xA.x≥3 B.x>3 C.x≤3 D.x<36.y=kx+k的大致图象是〔〕A B CD7.函数y=kx+2,经过点(1 , 3),那么y=0时,x=〔〕A.–2 B.2 C.0创作;朱本晓D.±28.直线y=x+1与y=–2x–4交点在〔〕A.第一象限B.第二象限C.第三象限D.第四象限9.函数y=2x+1的图象经过〔〕A.(2 , 0) B.(0 , 1) C. (1 , 0)D.(12, 0)10.正确反映,龟兔赛跑的图象是〔〕A B CD二、填空〔每一小题3分,一共30分〕11.函数y=(k–3)x k -8是正比例函数,那么k=________.12.函数表示法有三种,分别是_________ , _________ , _________.创作;朱本晓创作;朱本晓 13.函数y=x -2自变量x 的取值范围是_________. 14.一次函数经过点(–1 , 2)且y 随x 增大而减小,请写出一个满足上述条件的函数关系式______________________________.15.y+2和x 成正比例,当x=2时,y=4且y 与x 的函数关系式是____________________________________.16.直线y=3x+b 与y 轴交点(0 ,–2),那么这条直线不经过第____象限.17.直线y=x –1和y=x+3的位置关系是_________,由此可知方程组y =x -1y =x +3⎧⎨⎩解的情况为__________________. 18.一次函数图象经过第二、三、四象限,那么它的解析式是_________〔只填一个〕.19.点A(a ,–2) , B(b ,–4)在直线y=–x+6上,那么a 、b 的大小关系是a____b.20.从A地向B地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,假设通话时间是七分钟〔t≥3且t是整数〕,那么付话费y 元与t分钟函数关系式是__________________.三、解答题〔21.22.每一小题8分;23题9分;24.25.26题每一小题12分〕21.函数y=(2m–2)x+m+1 〔此题8分〕〔1〕m为何值时,图象过原点.〔2〕y随x增大而增大,求m的取值范围.〔3〕函数图象与y轴交点在x轴上方,求m取值范围.〔4〕图象过二、一、四象限,求m的取值范围.22.一次函数图象经过点(3 , 5) , (–4,–9)两点. 〔此题8分〕〔1〕求一次函数解析式.创作;朱本晓〔2〕求图象和坐标轴的交点坐标.〔3〕求图象和坐标轴围成三角形面积.〔4〕点(a , 2)在图象上,求a的值.40cm. (此题9分)〔1〕写出底边长ycm与腰xcm的函数关系式.〔2〕写出自变量取值范围.〔3〕画出函数图象24.甲、乙两人分别骑自行车和摩托车从甲地到乙地 (此题12分) 〔1〕谁出发较早,早多长时间是?谁到达乙地早?早多长时间是创作;朱本晓〔2〕两人行驶速度分别是多少?〔3〕分别求出自行车和摩托车行驶过程的函数解析式?25.一农民带了假设干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数〔含备用零钱〕的关系如下图,结合图象答复以下问题:〔此题12分〕〔1〕农民自带的零钱是多少?〔2〕降价前他每千克土豆出售的价格是多少?〔3〕降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱〔含备用零钱〕是26元,问他一一共带了多少千克土豆?创作;朱本晓26.某地拔号入网有两种收费方式,A计时制3元/时;B全日制54元/月,另加通信费1.2元/时,问选择哪种上网方式钱? (此题12分)励志赠言经典语录精选句;挥动**,放飞梦想。
八年级数学上册 第14章《一次函数》同步学习检测(14.1-14.2)(后附完整答案)
新人教八年级(上)第14章《一次函数》同步学习检测(§14.1~14.2)(时间45分钟 满分100分)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是 .2.函数y =x 的取值范围是_______________.3.已知一次函数y =2x +4的图像经过点(m ,8),则m =________.4.若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________. 5.一次函数113y x =-+的图象与x 轴的交点坐标是_________,与y 轴的交点坐标是__________. 6.长方形相邻两边长分别为x 、y ,面积为30,则用含x •的式子表示y 为__________,则这个问题中,____________常量;____________是变量.7.为了加强公民的节水意识,某市制定了如下收费标准:每户每月的用水量不超过10t 时,水价为每吨1.2元;超过10t 时,超过部分按每吨1.8元收费.该市某户居民5月份用水x (t )(x >10),应交水费y 元,则y 与x 的关系式为_____________.8.函数y =x 的取值范围是_______________.9.如图所示,每个图案是由若干盆花组成的形如三角形的图案,每条边(•包括两个顶点)有n (n >1)盆花,每个图案花盆总个数为S ,按此规律,则S 与n •的函数关系式是_________.(第9题)10.为了直观地表示一周内某支股票价格随时间变化的情况,宜采用的函数表示方法是________________________.二、选择题(每题4分,共32分)11.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )A .沙漠B .体温C .时间D .骆驼12.长方形的周长为24cm ,其中一边为x (其中0>x ),面积为y 2cm ,则这样的长方形中y 与x 的关C 3H 8C 2H 6CH 4HH H HH HHHHHH HH HC C C C C H HHH C 系可以写为( )A .2x y = B .()212x y -= C .()x x y ⋅-=12 D .()x y -=12213.函数112++--=x x x y 的自变量x 的取值范围为 ( ) A .x≠1 B .x >-1 C .x≥-1 D .x≥-1且 x≠114.下列各图象中,y 不是x 函数的是 ( )15.小明一出校门先加速行驶,然后匀速行驶一段后,在距家门不远的地方开始减速,而最后停下,下面哪一副图可以近似地刻画出以上情况( )速度 速度 速度 速度时间 时间 时间 时间A .B .C .D . 16. 表格列出了一项实验的统计数据,表示皮球从高度d 落下时弹跳高度b 与下落高d 的关系,试问下面的哪个式子能表示这种 关系(单位cm )( )A .2d b = B .d b 2=C .25+=d bD .2d b =17.如图所示,OA 、BA 分别表示甲、乙两名学生运动的路程与时间的关系图象,图中S 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快 ( )A .2.5mB .2mC .1.5mD .1m18.水池有2个进水口,1个出水口,每个进水口进水量时间的关系如图甲所示,出水口水量与时间的关系如图乙所示.某天0点到6点,该水池的蓄水量与时间的关系如图丙所示.下面的论断中:①0点到1点,同时关闭两个进水口4点,同时打开两个进水口 ) A 19.(9分)如图,在靠墙(墙长为18m )的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m ,求鸡场的长y (m )与宽x (m )的函数关系式,并求自变量的取值范围. 20.(9分)下列是三种化合物的结构式及分子式,结构式分子式 (1)请按其规律,写出后一种化合物的分.子.式..(2)每一种化合物的分子式中H 的个数m 是否是C 的个数n 的函数?如果是,请写出关系式.丙 甲乙(第18题)21.(10分)如图,反映了小明从家到超市的时间与距离之间关系的一幅图. (1)图中反映了哪两个变量之间的关系?超市离家多远? (2)小明到达超市用了多少时间?小明往返花了多少时间? (3)小明离家出发后20分钟到30分钟内可以哪里?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少? 22.(10分)打市内电话都按时收费,并于200l 年3月21日起对收费办法作了调整,调整前的收费办法:以3分钟为计时单位(不足3分钟按3分钟计),每个计时单位收0.2元;调整后的收费办法:3分钟内(含3分钟)0.2元,以后每加1分钟加收0.1元.(1)根据调整后的收费办法,求电话费y (元)与通话时间t (分)之间的函数关系式(t >3时设t (分)表示正整数).①当t ≤3时,y = ; ②当t >3时(t (分)表示正整数),y = . (2)对(1),试画出0<t ≤6时函数的图象. (3)就0<t ≤6,求t一、填空题1.80,13 2.是 不是 3.ABC =∠BAD 5.60度 6.90 7.△,△BOD 9.110.此工具是根据三角形全等制作而成的.由O 是AA ',BB '的中点,可得AO A O '=,BO B O '=,又由于AOB ∠与A OB ''∠是对顶角,可知AOB A OB ''∠=∠,于是根据“SAS ”有AOB A OB ''△≌△,从而A B AB ''=,只要量出A B ''的长度,就可以知道工作的内径AB 是否符合标准 二、选择题11.A 12.D 13.C 14.A 15.B 16.D 17.A 18.C 三、解答题19.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形 20.略 21.略 22.由△ABF ≌△,DCE 可得到BAF CDE AFB DEC ABF DCE AB DC BF CE AF DE ∠=∠∠=∠∠=∠===,,,,,;A F E D A CB D B FC =∥,,∥,△AEC ≌△DFB 等 23.略 24.(1)证明Rt △CDE ≌Rt △AFB ;(2)DF ∥BE 且DF=BE(§11.3)一、填空题1.这个角的平分线上 2.1.5cm 3.30° 4.8 5.MN ⊥PQ 6.三条角平分线 7.6cm 8.到角的两边的距离相等 9.(1)=(2)= 10.135 二、选择题11. D 12. B 13.D 14.D 15.B 16.C 17.D 18.A 三、解答题19.50° 20.画两个角的角平分线的交点P 21.略 22.提示:过点D 做DM ⊥BC 23.①略;②锐角三角形 24.提示:过P 作三边AB 、AC 、BC 的垂线段PD 、PE 、PF(§12.1~12.2)一、填空题1.轴对称图形,5 2.答案不唯一如:“美、善、口、工、士”等 3.4 4.互相重合,轴对称图形,对称轴,成轴 5.1021∶ 6.(2,1),(-2,-1) 7.(2,-3) 8.(-2,1.5)、(-2,-1.5)、(2,-1.5) 9.60° 10.)(),,(3-1.3-1-N M二、选择题11.B 12.B 13.C 14.B 15.B 16.C 17.C 18.B 三、解答题19.对称轴为MN ,2,6,70==︒=z y x 20.不是,答案不唯一 21.略 22.图略,画法:(1)画出∠CAB 的角平分线AE ;(2)连结MN ,作MN 的垂直平分线与AE 交于P ;(3)由点P 即为所求 23.(1)m=1,n=-1,点A 、B 关于x 轴对称;(2)m=-1,n=1,点A 、B 关于y 轴对称. 24.答案不唯一:如(1)都是轴对称图形;阴影部分面积等于4个小正方形面积之和;(2)答案不唯一.(§12.3)一、填空题1.35 2.15 3.80° 4.36° 5.② 6.7或11 7.36 8.线段中垂线 9.)0,41(,5 10.5或4二、选择题11.B 12.D 13.D 14.D 15.B 16.D 17.D 18.C 三、解答题19.⊿ABC ,⊿ADB ,⊿ADC ,∠B=36° 20.EF=8㎝ 21.(1)利用角平分线性质得PC=PD ,所以∠PCD=∠PDC (2)成立 22.略 23.略 24.15°(§13.1~13.2)一、填空题1.14.14 0.1414 2.< 3.4 4.-3,13,3 5.±5 6.-1.5 7.3m 8.-6,-0.008 9.4 10.2,3或-3 二、选择题11.C 12.D 13.B 14.A 15.D 16.C 17.C 18.C 三、解答题19.⑴15 ⑵-0.02 ⑶72±⑷ -0.1 ⑸ 0.7 ⑹ 9 20. ⑴0.01 0.1 1 10 100;⑵被开方数小数点向左(或右)移动三位,它的立方根的小数点向左(或右)移动一位;⑶ ① 14.42 0.144221. ⑴ -2 ⑵ 0.4 ⑶25-⑷ 9 22.(1)x=-3;(2)x=1 2324.±10(§13.3)一、填空题1.5,54 3.34或34 4.2 2-+ 5.一一对应 6.0 、1、 -1 7.< 8.9.3+3 10.6二、选择题11.C 12.D 13.A 14.B 15.C 16.D 17.C18.B 三、解答题19.整数{30-;分数:220.3 1.7327⎧⎫-⎨⎬⎩⎭,,;正分22300100017⎫⎬⎭,, 20.C,(D 21.(1)-(2)1 22.(1)65x =±;(2)0x = 23.325-24.2期中复习一、填空题1.23±,0.6 2.0和1,1±和0 3.2 4.30度5.12x6.Z 7.3 8. 1.4π- 9.1 10.(2,0)二、选择题11.A 12.D 13.D 14.B 15.B 16.B 三、解答题17.略 18.(1(2)52 19.(1)2;(2)- 20.1.58 21.450米22.36度,72度,72度 23.略 24.略 25.略 26.略 27. 28.(1)可行;(2)可行;(3)构造三角形全等,可以.期中测试一、填空题1.千分位 2.0或6- 3.3 41 5.42,3±-6.15 7.90度 8.AB 、BC 9.B E∠=∠(答案不唯一) 10.65 二、选择题11.D 12.D 13.D 14.B 15.C 16.B 三、解答题17.(1)1-(21 18.略 19.能 20.(1)略;(2)DE=DC 21.0.8cm 22.略23.32cm24.略 25.(1)111n n -+;(2)①20072008,②1n n +;(3)10034016 26.略 27.(1)211n +=+;(2)10OA =;(3)554 28.(1)45度;(2)会;(3)2BAC DAE ∠=∠.(§14.1~14.2)一、填空题1.3y x =- 2.25x ≥3.2 4.1,2- 5.(3,0)(0,1) 6.y=30x ,30;x 、y 7.y=1.8x-6 8.2x ≥9.S=3n -3 10.图象法;二、选择题11.C 12.C 13.D 14.C 15.C 16.D 17.C 18.C 三、解答题19.y= —2x+35(0<x <9.5) 20.C 4H 10 m=2n+2 21.(1)距离;时间,900m (2)20分,45分;(3)在商场;(4)45米/分,60米/分 22.(1)①0.2②0.1t-0.1;(2)图象略;(3)当0<t<3时,y=0.2,当4<t ≤5时,y=0.4(§14.3)一、填空题1.4x =- 2.22y x =-+,1<,1> 3.24y x =-+,243y x =- 4.(20),,(04), 5.(13)--,,1-,3-,221x y x y -=⎧⎨-=⎩,6.6 7.1x =-,1x <- 8.3- 9.平行,没有,无解10.103m <≤二、选择题11.C 12.A 13.D 14.A 15.A 16.A 17.B 18.C三、解答题19.(1)当173x =时,0y =;(2)当5x =时,2y =-;(3)当7x =时,4y =20.(1)当95x =时,0y =;(2)当95x <时,0y <;(3)略 21.图略,解为523.2x y ⎧=⎪⎪⎨⎪=⎪⎩, 22.142.a b =⎧⎨=⎩,23.(1)每月行驶路程小于1500千米,租国营公司的车合算;(2)每月行驶路程等于1500千米,租两家车的费用相同;(3)由图象可知租个体车主的车合算 24.(1)41k -<<;(2)直线26x y -=与y 轴的交点为(03)-,,直线31x y +=与y 轴的交点为103⎛⎫⎪⎝⎭,,它们的交点为(41)-,,112043233S ⎛⎫=⨯⨯+=⎪⎝⎭△ (§15.1~15.2)一、填空题1.2009 2.2242a b ab -+、12a - 3.18 4.214a - 5.16610⨯ 6.()ab a b a a 2222+=+ 7.1 8.32231638a b a b -- 9.2、3、1 10.6 二、选择题11.D 12.A 13.B 14.C 15.B 16.C 17.D 18.D 三、解答题19.(1)9a 2—b 2;(2)1002001 20.10x 21.22427a b +,19 22.x =3 23.2ab ac bc c --+24.能,35551113243=;4441114256=;3331115125=.因为256243>>,所以111111256243125>>.所以444555333435>>.(§15.3)一、填空题1.67)(,m a a - 2.36n ,41052⨯ 3.xy x y 44323-+- 4.323b a 5.21n n +6.20085,a x 7.m =-3 8.1 9.92 10.1cm二、选择题11.C 12.A 13.C 14.D 15.C 16.A 17.C 18.D 三、解答题19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)yx -221;(2)小亮不能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)不相等期末复习一、填空题1.2,2±- 2.(2,1) 3.2 4.对称5.无数,直径所在的直线 6.y=-3x7.±2 8.x >-2 9.60 10.4或-203 二、选择题11.D 12.C 13.D 14.B 15.B 16.A 三、解答题17.1 18.- 19.29 20.72-21.(1)2(4)(4)m m m +-;(2)()()()x y a b a b -+- 22.(1)52-;(2)-5 23.略 24.(1)3y x =-+;(2)6 25.(1) 1.832y x =+26.略 27.(1(21 28.略期末测试一、填空题1.(1,2) 2.3326,61x y x x -+- 3.23(2)x x y - 4.6- 5.12± 6.三 7.68.111n n n n n n ++=++ 9.1 10.11n x +-二、选择题11.D 12.C 13.D 14.D 15.A 16.C 三、解答题17.(1)3523-+a a (2)xy 20- (3)ab 18.(1))2(222b ab a a +-;(2)))()((22y x y x y x -++;(3)2)32(y x + 19.73-20.①23;②21 21.略 22.ab π 23.78 24.(1) 1.5 4.5y x =+;(2)21cm 25.略 26.略 27.(1)34k =;(2)9184s x =+(-8<x <0);(3)P (139,28-) 28.(1)l1;(2)B的速度快;(3)15分钟不能追上A;(4)B一定能追上A;(5)B能在A逃入公海前追上。
八年级数学第十四章一次函数单元测试
八年级 数学 第十四章一次函数 单元测试班级:____________姓名:____________座号:____________评分:____________一、填空题:(每空3分,共42分)1.已知函数:①y=0.2x+6;②y=-x-7;③y=4-2x ;④(1y x =;⑤y=4x ;⑥y=-(2-x),其中,y 的值随x 的增大而增大的函数是_____________;y 的值随x 的增大而减小的函数是________________;图像经过原点的函数是_____________.(只填序号) 2. 在数学25+-=x y 中,K = ,b=3.函数y=x -2自变量x 的取值范围是_________. 4.在432-=x y 中,当y=-6时,x = 5. 若点P(a ,b)在第二象限内,则直线y =ax +b 不经过第_______限6.某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表由上表得y 与x 之间的关系式是 .7.已知直线y x a =-与2y x b =+的交点为(5,-8),则方程组020x y a x y b --=⎧⎨-+=⎩的解是____________.8.若直线y=kx+b 平行直线y=5x+3,且过点(2,-1),则k=______ ,b=______ . 9.已知y+2和x 成正比例,当x=2时,y=4,则y 与x 的函数关系式是_________________. 10.已知正比例函数y =(m -1)25m x -的图象在第二、四象限,则m的值为_________, 二、选择题:(每题3分,共18分) 11.函数y=2x+1的图象经过( ) A .(2 , 0)B .(0 , 1)C. (1 , 0)D .(12, 0) 12.下列各曲线中不能表示y 是x 的函数是( )。
13.已知一次函数y=kx+b 的图象如图所示,则k 、b 的符号是( )(A)k>0,b>0 (B)k>0,b<0 (C)k<0,b>0 (D)k<0,b<014. 如图,直线与y 轴的交点是(0,-3),则当x<0时,( ) A. y<0 B. y<-3 C. y>0 D. y>-315.已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 、y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较16.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧 时间t(时)的函数关系的图象是( )三、解答题: 17.(本题10分)一次函数y=kx+4的图象经过点(-3,-2),则 (1)求这个函数表达式;(3)判断(-5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是________________.18.(本题10分)下图中,1l 反映了某公司产品的销售 收入与销售量的关系,2l 反映了该公司产品的销售成本 与销售量的关系,根据图中信息求出:①直线1l 对应的函数表达式是 ; ②直线2l 对应的函数表达式是 。
八年级数学上册第十四章一次函数单元测试题
八年级上学期第十四章《一次函数》单元测试题班级_____________座号____________姓名_____________成绩_________ __ 一.精心选一选(本大题共8道小题;每题4分;共32分)1、下列各图给出了变量x 与y 之间的函数是: ( )2、下列函数中;y 是x 的正比例函数的是: ( )A 、y=2x-1B 、y=3x C 、y=2x 2 D 、y=-2x+1 3、已知一次函数的图象与直线y= -x+1平行;且过点(8;2);那么此一次函数的解析式为: ( )A 、y=2x-14B 、y=-x-6C 、y=-x+10D 、y=4x4、点A (1x ;1y )和点B (2x ;2y )在同一直线y kx b =+上;且0k <.若12x x >;则1y ;2y 的关系是: ( )A 、12y y >B 、12y y <C 、12y y =D 、无法确定.5、若函数y=kx +b 的图象如图所示;那么当y>0时;x 的取值范围是:( )A 、 x>1B 、 x>2C 、 x<1D 、 x<26、一次函数y=kx+b 满足kb>0且y随x的增大而减小;则此函数的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限7、一次函数y=ax+b ;若a+b=1;则它的图象必经过点( )A 、(-1;-1)B 、(-1; 1)C 、(1; -1)D 、(1; 1)8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间;水库水位由106米升至135米;高峡平湖初现人间;假设水库水位匀速上升;那么下列图象中;能正确反映这10天水位h (米)随时间t (天)变化的是: ( ) x y o A x y o B x yo D x y o C 第5题二.耐心填一填(本大题5小题;每小题4分;共20分)9、在函数21-=x y 中;自变量x 的取值范围是 。
第十四章_一次函数单元测试题
xy-4o2 4 51 30 t(月)C(件)第十四章一次函数单元测试题一.选择题(每小题3分,共30分)1.如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快 ( )A.2.5米B.2米C.1.5米D.1米2.在下列函数中,与y=x-2图像完全相同的函数是( )A. B. C. D.3.关于函数21y x=-+,下列结论正确的是()A.图象经过点(-2,1)B.图象经过第一、二、三象限C.当12x>时,0y< D.图象可由2y x=-的图象向下平移1个单位长度得到4.过点A(0,-2),且与直线5y x=平行的直线是()A.52y x=+ B. 52y x=-+ C.52y x=- D. 52y x=--5.如右图,直线y kx b=+与x轴交于点(-4,0),则0y>时,x的取值范围是()A.4x>- B. 0x> C.4x<- D. 0x<6.已知圆柱体的侧面积为80πcm2,若圆柱底面半径为r(cm),高线长为h(cm),则h关于r的函数的图象大致是( )7. 如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有().A.1个B.2个C.3个D.4个8.幸福村办工厂今年前五个月生产某种产品的总量C(件)关于时间t(月)的函数图象,如图,则该厂对这种商品来说().A.1月至3月每月生产总量不变,4、5两月停止生产;B.1月至3月每月生产总量逐月增加,4、5两月停止生产;C.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少;D.1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月持平.B C A P 9.要从y=34x 的图像得到直线y=324-x ,就要把直线y=34x ( ) A.向上平移32个单位 B.向下平移32个单位 C.向上平移2个单位 D.向下平移2个单位 10.若直线2y x k =-+(k 为正整数)与坐标轴围成的三角形内的整点(含边界)有100个,则k 等于( )A. 9 B. 16 C. 18 D. 22二.填空题:(每小题3分,共18分)11.函数y=112x x +-- 的自变量x 取值范围是_____________. 12.把等腰三角形的一个底角的度数y 表示成顶角度数x 函数解析式是_____, 自变量x 的取值范围是____.13.当x =2时,函数y =kx -2和y =2x +k 的值相等,则k = .14.出租车收费按路程计算,2km 内(包括2km)收费3元,超过2km ,每增加1km 加收1元,则路程x ≥2km 时,车费y (元)与x 之间的函数关系为_____________________.15.若直线y=x-k 与 y=3x-1的交点在第三象限,则k 的取值范围是_______________.16. 如图,先观察图形,然后填空:(1)当x 时,1y >0;(2)当x 时,2y <0;(3)当x 时,1y >0且2y >0.三、解答题(共72分)17.(8分)已知:如图,在R t △ABC 中,∠C=90°,AC=6,BC=8,点P 在BC 上运动,设PC=x ,若用y 表示△APB 的面积, (1)求y 与x 的函数关系式,并求自变量x 的取值范围;(2)画出此函数图象.18.(6分) 已知y-m 与x+n 成正比例,m,n 是常数,(1)试说明:y 是x 的一次函数.(2)如果x=3时,y=5;x=2时,y=2,求当x=-3时,y 的值.19. (6分)已知点(3,3)在函数6y ax =-的图象上,(1)求a 的值;(2)求此图象上到x 轴距离为6的点的坐标.20.(8分) 已知点M 坐标为(-5,0),点N 在第三象限坐标为(x,y)且x+y=-6,设面积为S. (1)求S 关于x 的函数表达式;(2)求x 的取值范围;(3)当S=10时,求N 点坐标.21. (8分)为调动销售人员的积极性,A 、B 两公司均采取:“总收入=基本工资+奖金”的支付方式,其中A 公司每月2 000元基本工资,另加销售额的2%作为奖金;B 公司每月1 600元基本工资,另加销售额的4%作为奖金.已知A 、B 公司两位销售员小李、小张1~6月份的销售额如下表:(1)请问小李与小张2月份的总收入各是多少?(2)小李1~6月的销售额1y 与月份x 的函数关系式是1040012001+=x y ,小张1~6月的销售额2y 是月份x 的一次函数,请求出2y 与x 函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的总收入高于小李?22. (8分)机动车出发前油箱内有油42升,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q (升)与行驶时间t (时)之间的函数关系如图所示,根据图回答问题:(1)机动车行驶___________小时后加油;(2)加油前油箱余油量Q 与行驶时间t 之间的函数关系式是_______,中途加油_____升;(3)如果加油站距目的地还有230千米,车速为40千米/时,要达到目的地,油箱中的油是否够用?请说明理由?月份 销售额 销售额(单位:元)1月 2月 3月 4月 5月 6月 小李(A 公司) 11600 12800 14000 15200 16400 17600 小张(B 公司) 7400 9200 11000 12800 14600 1640023. (10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件.已知生产一件A 种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A 、B 两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A 、B 两种产品获总利润是y (元),其中一种的生产件数是x ,试写出y 与x 之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?24.(8分)平面直角坐标系中,点A 的坐标是(2,0),点P 在直线y =-x +m 上,且AP =OP =2.求m 的值.25.(10分)如图,动点P 从A 开始在线段AO 上以每秒2个单位的速度向原点O 运动,直线EF 从x 轴开始以每秒1个长度单位的速度向上平行移动(即EF//x 轴),并分别与y 轴、线段AB 交于E 、F 两点,连结PF 、PB ,设动点P 与直线EF 同时出发,并且运动时间为t 秒。
八年级数学上册第十四章一次函数一次函数单元测试卷试题
八年级数学上册 第十四章 一次函数 一次函数单元测试卷 人教新课标版本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
3.假设函数y = -2x m +2+n -5是正比例函数,那么m 的值是 ,n 的值是________. 4.一次函数2y x =-+的图象与x 轴的交点坐标是_________,与y 轴的交点坐标是__________. 5、在函数y=51x -中,自变量x 的取值范围是____________。
6、函数y=2x -中,自变量x 的取值范围是____________。
7.假设直线y =kx +b 平行于直线y =5x +3,且与y 轴相交于点〔0,2〕,那么k =______,b =______. 8、直线421-=x y 向下平移2个单位得到_________________ 9.直线4+=x y 与x 轴,y 轴围成一个三角形,那么这个三角形面积为 . 10.如以下图,直线y=kx+b 交坐标轴于A 、B 两点,那么不等式kx+b>0的解集是_________ 11.根据以下图所示的程序计算函数值,假设输入的x 值为21-,那么输出的结果为 .12.如图,函数y=ax+b 和y=kx 的图象交于点P ,那么根据图象可得关于x ,y 的二元一次方程组,.y ax b y kx =+⎧⎨=⎩的解是________.二、选择题〔每一小题4分,一共20分〕 13、以下函数中,一次函数是〔 〕 A .B.C.8y x =D.11y x =+ 14、以下图中表示y 是x 函数的图象是〔 〕15、汽车由驶往相距300千米的,当它的平均速度是100千米/时,下面哪个图形表示汽车距的路程s〔千米〕与行驶时间是t 〔小时〕的函数关系?〔 〕〔A 〕 〔B 〕 〔C 〕 〔D 〕16、函数y=kx 〔k ≠0〕中,y 随x 的增大而增大,那么一次函数y=kx-k 的图象经过〔 〕 A .一,二,三象限 B .一,二,四象限 C .一,三,四象限 D .二,三,四象限17、一次函数y 1=kx+b 与y 2=x+a 的图象如图测所示,那么以下结论: ①k<0;②a>0; ③当x<3时,y 1<y 2中,正确的个数是〔 〕A .0个B .1个C .2个D .3个3003Ot 〔小时〕s 〔千米〕3003Ot 〔小时〕 s 〔千米〕3003 Ot 〔小时〕s 〔千米〕3003Ot 〔小时〕s 〔千米〕三、解答题〔一共70分〕〔8分〕18、一次函数图象经过(3,4)和(-1,-8)两点,求此一次函数的解析式;〔10分〕19、y 与x 成正比,且当1x =时,4y =-.〔1〕求y 与x 之间的函数关系式;〔2〕假设点〔a ,2〕在这个函数图象上,求a .〔10分〕 20、、函数(21)y m x m =-+〔1〕假设此函数是正比例函数,求m 的值;〔2〕假设这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.〔12分〕21、某汽车的油缸盛油10升,汽车平均耗油量为0.1 L/km〔1〕写出油缸中的剩油量y 〔升〕与汽车行驶路程x 〔千米〕之间的函数关系式; (2) 求出自变量的取值范围; 〔3〕画出(1)中的函数图象。
八年级数学第14章一次函数单元试卷
八年级数学第一学期第十四章《一次函数》单元测试题班级_________姓名____________学号__________成绩________________一、选择题(每小题3分;共30分)1、若正比例函数的图像经过点(-1;2);则这个图像必经过点( ) A .(1;2)B .(-1;-2)C .(2;-1)D .(1;-2)2、下列函数中;y 是x 的一次函数的是( )1(1)3 (2)y 34x (3)y (4)2y 3 4 (5)xy 3 (6)2x 5y 0.6 2y x x ==+==-=+=3、一次函数32-=x y 的大致图像为 ( )4、如图;直线b kx y +=与x 轴交于点(-4 ; 0);则y > 0时;x 的取值范 围是 ( )A.x >-4B.x >0C.x <-4D.x <0 5、已知21y x =-+;若-3≤y <2;则x 的取值范围是 ( ) A .3<x ≤7B .3≤x <7C .-12<x ≤2D .-12≤x <2 6、一次函数y =ax +b 的图像如图所示;则下面结论中正确的是( )A .a <0;b <0B .a <0;b >0C .a >0;b >0D .a >0;b <07、如图;直线(0)y kx b k =+<与x 轴交于点(30),;关于x 的不等式 0kx b +>的解集是( )A .3x <B .3x >C .0x >D .0x <8、某天小明骑自行车上学;途中因自行车发生故障;修车耽误了一段时间后继续骑行;按时赶到了学校.右图描述了他上学的情景;下列说法中错误..的是( ) oyxo y x yxooyxxyA B C DA .修车时间为15分钟B .自行车发生故障时离家距离为1000米C .学校离家的距离为2000米D .到达学校时共用时间20分钟 9、已知正比例函数y=(2m-1)x 的图像上两点A(x 1;y 1);B(x 2;y 2);当x 1<x 2时;有y 1>y 2;那么m 的取值范围是 ( ) A. m<21 B. m>21C. m<2D. m>0 10、若直线y=3x-1与y=x-k 的交点在第四象限;则k 的取值范围是( ). A .k<13 B. 13<k<1 C. k>1 D. k>1或k<13二、填空题(每小题4分;共24分)11、若正比例函数y=kx 的图象经过点(2;-5);则k=________________。
八年级数学《一次函数》单元测试
第十四章一次函数整章水平测试一、选择题(每题3分,共30分)1,已知一次函数的图象经过点(0,3)和(-2,0),那么直线必经过点()A.(4,6)B.(-4,-3)C.(6,9)D.(-6,6)2. 某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务,收割亩数与天数之间的函数关系如图所示,那么乙参与收割的天数是().A 6天B 5天C 4天D 3天3,若要把直线y=32x-2的图象变为直线y=32(x+4)的图象,则下列平移方法正确的是()A.向上平移8个单位B. 向下平移8个单位C.向上平移6个单位D. 向下平移6个单位4,已知一次函数的图像是一条直线,该直线经过(0,0),(2,-a),(a,-8)三点,且函数值随自变量x值的增大而减小,则此函数的解析式是()A.y=2xB. y=-xC. y=-2xD. y=x5,已知一次函数y kx k=-,若y随着x的增大而减小,则该函数的图象经过()(A)第一、二、三象限(B)第一、二、四象限(C)第二、三、四象限(D)第一、三、四象限6,已知一次函数y kx b =+的图象经过点(25)A ,和点B,点B是一次函数21y x =-的图象与y 轴的交点,则这个一次函数的解析式是 .7,已知11y x =-+,221y x =--,当2x >-时,12y y >;当2x <-时,12y y <,则直线11y x =-+和直线221y x =--的交点是( ).(A )(-2,3) (B )(-2,-5) (C )(3,-2) (D )(-5,-2)8,函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )(A ). (B ). (C ). (D ).9,已知一次函数y =(m +2)x +(1-m ),若y 随x 的增大而减小,且该函数的图像与x 轴的交点在原点的右侧,则m 的取值范围是( )A.m >-2B.m <1C.-2<m <-1D.m <-2 10,已知y -2与x 成正比例,且x =2时,y =4,若点(m ,2m +7),在这个函数的图象上,则m 的值是( )A.-2B.2C.-5D.5 二、填空题(每题30分,共30分)11,直线y 1=k 1x +b 1和直线y 2=k 2x +b 2相交于y 轴上同一点的条件是___;这两直线平行的条件是___.12,在函数1-=x y 中,自变量x 的取值范围是_________________.13,直线y =-32x -2与坐标轴围成的图形的面积是___.14,一次函数23y x =+与23y x =-图象的位置关系为___________.即二者_____交点(“有”或“没有”),由此可知方程组2323y x y x =+⎧⎨=-⎩的解的情况是______________.15,一次函数的图象过点(1,2),且y 随x 的增大而增大, 则这个函数解析式是___.16,过点(0,2)且与直线y =-x 平行的直线是____.17,等腰三角形的周长为30cm ,它的腰长为y cm 与底长x cm 的函数关系式是___.18,放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?” 小丽思考了一会儿说:“我来考考你.图⑴、图⑵分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?” 小明思考后回答:“你难不倒我,你现在加工了 千克.”三、解答题(共40分)19,已知一次函数y kx b =+,当4x =-时,y 的值为9,当2x =时,y 的值为-3.(1)求这个函数的解析式;(2)在直角坐标系中画出这个函数的图象.20,已知,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.21,某块试验田里的农作物每天的需水量y(千克)与生长时间x(天)•之间的关系如折线图所示,•这些农作物在第10•天、•第30•天的需水量分别为2000千克、3 000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x≤40和x≥40时y与x之间的关系式;(2)如果这些农作物每天的需水量大于或等于4 000千克时要进行人工灌溉,•那么应从第几天开始进行人工灌溉?22,如图6,L 1、L 2 分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2 000h,照明效果一样.(1)根据图象分别求出L 1、L 2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等? (3)小亮房间计划照明2 500h,他买了一个白炽灯和 一个节能灯, 请你帮他设计最省钱的用灯方法(直 接给出答案,不必写出解答过程).四、拓广探索23.(此题在去年21-26合订本6页上)如图( l )是某公共汽车线路收支差额y(票价总收人减去运营成本)与乘客量 x 的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏. 根据这两种意见,可以把图( l )分别改画成图( 2 )和图( 3 ) , ( l ) 说明图( 1 )中点 A 和点 B 的实际意义:( 2 )你认为图( 2 )和图( 3 )两个图象中,反映乘客意见的是 ,反映公交公司意见的是 .l 2x(h)y(元)20172261500200050010002500Ol 1图6( 3 )如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图(4)中画出符合这种办法的 y 与 x 的大致函数关系图象。
第十四章《一次函数》单元测试题
第十四章《一次函数》单元测试卷八 年 级 数 学 组一、选择题(每小题3分,共30分)1、下列不是一次函数的是( )(A) y=+x (B) y=21(x -1) (C) y=πx-1 (D) y=x +π2 2、一次函数y=m x+n 与正比例函数y=mn x (m 、n 是常数,且mn ≠0)图象是( )3、一次函数y=4x, y=-7x, y=x 54-的共同特点是( ) (A) 图象位于同样的象限 (B) y 随x 增大而减小 (C) y 随x 增大而增大 (D) 图象都过原点 4、下列各点一定在函数y=3x+1的图象上的是( )(A) (-2,3) (B) (3,-2) (C) (1,4) (D) (4,2)5、已知一次函数y=(m+2)x+(1-m)中,y 随x 的增大而减小,且其图象与y 轴的交点在x 轴上方,则m 的取值范围是( )A .m>-2B .m<1C .-2<m<1D .m<-2 6、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象应该是( )(A) (B) (C ) (D ) 7、函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致( )学校_____________ 班级________________ 姓名________________ 学号______________………密…………………封…………………装…………………订…………………线…………8、如图所示的直线l 1与l 2的交点坐标可以看作方程组( )的解。
A .⎩⎨⎧-=-=-121y x y xB .⎩⎨⎧=--=-121y x y xC .⎩⎨⎧=-=-123y x y xD .⎩⎨⎧-=--=-123y x y x9、甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图所示, 根据图中提供的信息,有下列说法:①他们都行驶了18千米; ②甲在途中停留了0.5小时; ③乙比甲晚出发了0.5小时 ④相遇后,甲的速度小于乙的速度; ⑤甲、乙两人同时到达目的地。
人教版八年级数学归类整理的的一次函数单元测试题(含答案)
1第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 知识点:求自变量的取值范围1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ...D .知识点:由一次函数的特点来求字母的取值5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-1211.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_______知识点:函数图像的意义2.下面哪个点在函数y=12x+1的图象上( )A .(2,1)B .(-2,1)C .(2,0)D .(-2,0)15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.知识点:判断是否为一次函数或正比例函数3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+1 知识点:k.、b 定位4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3知识点:确定一次函数的表达式7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-110.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.知识点:函数图象的理解8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题3分,共30分)知识点:双直线的观察图象14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.知识点:一次函数(或正比例函数)的增减性16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)知识点:一次函数与坐标轴围成三角形的面积问题19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 三、认真解答,一定要细心哟!(共60分)知识点:确定一次函数的表达式21.(14分)根据下列条件,确定函数关系式:1(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?知识点:双函数经济型应用题的解决方案问题25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多? 答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.16 16.<;< 17.58x y =-⎧⎨=-⎩ 18.0;7 19.±6 20.y=x+2;421.①y=169x ;②y=15x+75 22.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t ≤3时,y=2.4;当t>3时,y=t-0.6. ②2.4元;6.4元25.①y=50x+45(80-x )=5x+3600.∵两种型号的时装共用A 种布料[1.1x+0.•6(80-x )]米, 共用B 种布料[0.4x+0.9(80-x )]米, ∴ 解之得40≤x ≤44, 而x 为整数,∴x=40,41,42,43,44,∴y 与x 的函数关系式是y=5x+3600(x=40,41,42,43,44); ②∵y 随x 的增大而增大, ∴当x=44时,y 最大=3820,即生产M 型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
八年级数学上册 第14章《一次函数》同步学习检测(14.3)(后附完整答案)
(第12题) (第13题)新人教八年级(上)第14章《一次函数》同步学习检测(§14.3)(时间45分钟 满分100分)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.一次函数y =3x +12的图象如图所示,由此可知,方程3x +12=0的解为 .2.一次函数图象如图所示,则它的解析式为 ,当x 时,y >0,当x 时,y <0. 3.二元一次方程组242312x y x y +=⎧⎨-=⎩,的解即为函数 与函数 的图象交点的坐标.4.一次函数y =-2x +4与x 轴的交点坐标为 ,与y 轴的交点坐标是 .5.一次函数y =x -2与y =2x -1的图象交点的坐标为 ,即x = ,y = 是方程组的解. 6.当x =2时,函数y =kx -2与y =2x +k 的值相等,则k = .7.已知一次函数y =kx +b 的图象如图3所示,由图象可知,方程kx +b =0的解为 ,不等式kx +b >0的解集为 . 8.直线132y x =--与直线y =3x +b 都经过y 轴上同一点,则b 的值是 . 9.一次函数y =2x +3与y =2x -3的图象的位置关系是 ,即 交点(填“有”或“没有”),由此可知230230x y x y -+=⎧⎨--=⎩,的解的情况是 .10.一次函数y =(3m -1)x -m 中,y 随x 的增大而减小,且其图象不经过第一象限,则m 的取值范围是 .二、选择题(每题3分,共24分)11.以方程x +y =5的解为坐标的所有点组成的图形是直线( )A .y =x -5B .y =x +5C .y =5-xD .y =-x -512.如图4所示,直线y =kx +b 与x 轴交于点(-4,0),则y >0时,x 的取值范围是( ) A .x >-4B .x >0C .x <-4D .x <013.已知一次函数y =kx +b 的图象如图5所示,当x <0时,y 的取值范围是( ) A .y >0B .y <0C .-2<y <0D .y <-214.已知直线y =-x +3a 和直线y =x +a 的交点坐标为(m ,8),则m 的值为( )A.4 B.8 C.16 D.2415.已知一元一次方程3x-6=0的解为x=2,那么一次函数y=3x-6的函数值为0时,自变量x 的取值为()A.2 B.-3 C.3 D.-216.已知一元一次方程2x-5=7,则直线y=2x-12与x轴的交点坐标为()A.(6,0)B.(-6,0)C.(0,6)D.(0,-6)17.已知二元一次方程x+y=3与3x-y=5有一组相同的解,那么一次函数y=3-x与y=3x-5在直角坐标系内的交点坐标为()A.(1,2)B.(2,1)C.(-1,2)D.(-2,1)18.如果一次函数y=3x+6与y=2x-4的交点坐标为(a,b),则x ay b=⎧⎨=⎩,是下面哪个方程组的解()A.3624y xx y-=⎧⎨-=-⎩B.360240x yx y++=⎧⎨--=⎩C.36240x yx y-=-⎧⎨--=⎩D.3624x yx y-=⎧⎨-=⎩三、解答题(共46分)19.(7分)当自变量x的取值满足什么条件时,函数y=3x-17的值满足下列条件?(1)y=0;(2)y=-2;(3)y=4.20.(7分)已知:一次函数y=5x-9,请回答下列问题:(1)x取什么值时,函数值y等于0?(2)x取什么值时,函数值y始终小于0?(3)想一想,这些与一元一次方程5x-9=0,一元一次不等式5x-9<0有什么关系?21.(7分)用作图象的方法解下列方程组364.y xx y=-⎧⎨+=⎩,22.(7分)已知:直线5x+by=1,3x+y=1,ax+5y=4,2x-3y=8相交于一点,试求a,b的值.23.(9分)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订租车合同,设汽车每月行驶x(千米),应付给个体车主的费用是y1(元),应付给出租车公司的费用是y2(元),y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内,租国营公司的车合算?(2)每月行驶的路程为多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租用哪家的车合算?24.(9分)已知:直线x-2y=-k+6和x+3y=4k+1,若它们的交点在第四象限内.(1)求k 的取值范围.(2)若k 为非负整数,求直线x -2y =-k +6和x +3y =4k +1分别与y 轴的交点,及它们的交点所围成的三角形的面积.参考答案(§11.1~11.2)一、填空题1.80,13 2.是 不是 3.全等三角形,≌ 4.AC =BD ,AB =BA ,∠C =∠D ,∠CAB =∠DBA ,∠ABC =∠BAD 5.60度 6.90 7.ADF BCE △≌△,得F E ∠=∠. 8.∠AOC =∠BOD ,OC =OD ,△BOD 9.1,有两边及其夹角对应相等的两个三角形全等10.此工具是根据三角形全等制作而成的.由O 是AA ',BB '的中点,可得AO A O '=,BO B O '=,又由于AOB ∠与A OB ''∠是对顶角,可知AOB A OB ''∠=∠,于是根据“SAS ”有AOB A OB ''△≌△,从而A B AB ''=,只要量出A B ''的长度,就可以知道工作的内径AB 是否符合标准 二、选择题11.A 12.D 13.C 14.A 15.B 16.D 17.A 18.C 三、解答题19.(1)和(10),(2)和(12),(4)和(8),(5)和(9)是全等图形 20.略 21.略 22.由△ABF ≌△,DCE 可得到BAF CDE AFB DEC ABF DCE AB DC BF CE AF DE ∠=∠∠=∠∠=∠===,,,,,;A F E D A CB D B FC =∥,,∥,△AEC ≌△DFB 等 23.略 24.(1)证明Rt △CDE ≌Rt △AFB ;(2)DF ∥BE 且DF=BE(§11.3)一、填空题1.这个角的平分线上 2.1.5cm 3.30° 4.8 5.MN ⊥PQ 6.三条角平分线 7.6cm 8.到角的两边的距离相等 9.(1)=(2)= 10.135 二、选择题11. D 12. B 13.D 14.D 15.B 16.C 17.D 18.A 三、解答题19.50° 20.画两个角的角平分线的交点P 21.略 22.提示:过点D 做DM ⊥BC 23.①略;②锐角三角形 24.提示:过P 作三边AB 、AC 、BC 的垂线段PD 、PE 、PF(§12.1~12.2)一、填空题1.轴对称图形,5 2.答案不唯一如:“美、善、口、工、士”等 3.4 4.互相重合,轴对称图形,对称轴,成轴 5.1021∶ 6.(2,1),(-2,-1) 7.(2,-3) 8.(-2,1.5)、(-2,-1.5)、(2,-1.5) 9.60° 10.)(),,(3-1.3-1-N M二、选择题11.B 12.B 13.C 14.B 15.B 16.C 17.C 18.B 三、解答题19.对称轴为MN ,2,6,70==︒=z y x 20.不是,答案不唯一 21.略 22.图略,画法:(1)画出∠CAB 的角平分线AE ;(2)连结MN ,作MN 的垂直平分线与AE 交于P ;(3)由点P 即为所求 23.(1)m=1,n=-1,点A 、B 关于x 轴对称;(2)m=-1,n=1,点A 、B 关于y 轴对称. 24.答案不唯一:如(1)都是轴对称图形;阴影部分面积等于4个小正方形面积之和;(2)答案不唯一.(§12.3)一、填空题1.35 2.15 3.80° 4.36° 5.② 6.7或11 7.36 8.线段中垂线 9.)0,41(,5 10.5或4二、选择题11.B 12.D 13.D 14.D 15.B 16.D 17.D 18.C 三、解答题19.⊿ABC ,⊿ADB ,⊿ADC ,∠B=36° 20.EF=8㎝ 21.(1)利用角平分线性质得PC=PD ,所以∠PCD=∠PDC (2)成立 22.略 23.略 24.15°(§13.1~13.2)一、填空题1.14.14 0.1414 2.< 3.4 4.-3,13,3 5.±5 6.-1.5 7.3m 8.-6,-0.008 9.4 10.2,3或-3二、选择题11.C 12.D 13.B 14.A 15.D 16.C 17.C 18.C 三、解答题19.⑴15 ⑵-0.02 ⑶72±⑷ -0.1 ⑸ 0.7 ⑹ 9 20. ⑴0.01 0.1 1 10 100;⑵被开方数小数点向左(或右)移动三位,它的立方根的小数点向左(或右)移动一位;⑶ ① 14.42 0.144221. ⑴ -2 ⑵ 0.4 ⑶25-⑷ 9 22.(1)x=-3;(2)x=1 2324.±10(§13.3)一、填空题1.5,54 3.34或344.22-+5.一一对应6.0 、1、-17.<8.9.3+310.6二、选择题11.C 12.D 13.A 14.B 15.C 16.D 17.C18.B三、解答题19.整数{30-;分数:220.3 1.7327⎧⎫-⎨⎬⎩⎭,,;正分22300100017⎫⎬⎭,,20.C,(D21.(1)-(2)122.(1)65x=±;(2)0x= 23.325-24.2期中复习一、填空题1.23±,0.6 2.0和1,1±和0 3.2 4.30度5.12x6.Z 7.3 8.1.4π-9.1 10.(2,0)二、选择题11.A 12.D 13.D 14.B 15.B 16.B三、解答题17.略18.(1(2)5219.(1)2;(2)2-20.1.58 21.450米22.36度,72度,72度23.略24.略25.略26.略27.28.(1)可行;(2)可行;(3)构造三角形全等,可以.期中测试一、填空题1.千分位2.0或6-3.3 415.42,3±-6.15 7.90度8.AB、BC 9.B E∠=∠(答案不唯一)10.65二、选择题11.D 12.D 13.D 14.B 15.C 16.B三、解答题17.(1)1-(21 18.略 19.能 20.(1)略;(2)DE=DC 21.0.8cm 22.略23.32cm24.略 25.(1)111n n -+;(2)①20072008,②1n n +;(3)10034016 26.略 27.(1)211n +=+;(2)10OA =;(3)554 28.(1)45度;(2)会;(3)2BAC DAE ∠=∠.(§14.1~14.2)一、填空题1.3y x =- 2.25x ≥3.2 4.1,2- 5.(3,0)(0,1) 6.y=30x ,30;x 、y 7.y=1.8x-6 8.2x ≥9.S=3n -3 10.图象法;二、选择题11.C 12.C 13.D 14.C 15.C 16.D 17.C 18.C 三、解答题19.y= —2x+35(0<x <9.5) 20.C 4H 10 m=2n+2 21.(1)距离;时间,900m (2)20分,45分;(3)在商场;(4)45米/分,60米/分 22.(1)①0.2②0.1t-0.1;(2)图象略;(3)当0<t<3时,y=0.2,当4<t ≤5时,y=0.4(§14.3)一、填空题1.4x =- 2.22y x =-+,1<,1> 3.24y x =-+,243y x =- 4.(20),,(04), 5.(13)--,,1-,3-,221x y x y -=⎧⎨-=⎩,6.6 7.1x =-,1x <- 8.3- 9.平行,没有,无解10.103m <≤二、选择题11.C 12.A 13.D 14.A 15.A 16.A 17.B 18.C 三、解答题19.(1)当173x =时,0y =;(2)当5x =时,2y =-;(3)当7x =时,4y =20.(1)当95x =时,0y =;(2)当95x <时,0y <;(3)略 21.图略,解为523.2x y ⎧=⎪⎪⎨⎪=⎪⎩,22.142.a b =⎧⎨=⎩, 23.(1)每月行驶路程小于1500千米,租国营公司的车合算;(2)每月行驶路程等于1500千米,租两家车的费用相同;(3)由图象可知租个体车主的车合算 24.(1)41k -<<;(2)直线26x y -=与y 轴的交点为(03)-,,直线31x y +=与y 轴的交点为103⎛⎫⎪⎝⎭,,它们的交点为(41)-,,112043233S ⎛⎫=⨯⨯+=⎪⎝⎭△ (§15.1~15.2)一、填空题1.2009 2.2242a b ab -+、12a - 3.18 4.214a - 5.16610⨯ 6.()ab a b a a 2222+=+ 7.18.32231638a b a b -- 9.2、3、1 10.6 二、选择题11.D 12.A 13.B 14.C 15.B 16.C 17.D 18.D 三、解答题19.(1)9a 2—b 2;(2)1002001 20.10x 21.22427a b +,19 22.x =3 23.2ab ac bc c --+24.能,35551113243=;4441114256=;3331115125=.因为256243>>,所以111111256243125>>.所以444555333435>>.(§15.3)一、填空题1.67)(,m a a - 2.36n ,41052⨯ 3.xy x y 44323-+- 4.323b a 5.21n n +6.20085,a x 7.m =-3 8.1 9.92 10.1cm二、选择题11.C 12.A 13.C 14.D 15.C 16.A 17.C 18.D 三、解答题19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)yx -221;(2)小亮不能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)不相等期末复习一、填空题1.2,2±- 2.(2,1) 3.2 4.对称5.无数,直径所在的直线 6.y=-3x7.±2 8.x >-2 9.60 10.4或-203 二、选择题11.D 12.C 13.D 14.B 15.B 16.A 三、解答题17.1 18.- 19.29 20.72-21.(1)2(4)(4)m m m +-;(2)()()()x y a b a b -+- 22.(1)52-;(2)-5 23.略 24.(1)3y x =-+;(2)6 25.(1) 1.832y x =+26.略 27.(1(21 28.略期末测试一、填空题1.(1,2) 2.3326,61x y x x -+- 3.23(2)x x y - 4.6- 5.12± 6.三 7.68.111n n n n n n ++=++ 9.1 10.11n x +-二、选择题11.D 12.C 13.D 14.D 15.A 16.C 三、解答题17.(1)3523-+a a (2)xy 20- (3)ab 18.(1))2(222b ab a a +-;(2)))()((22y x y x y x -++;(3)2)32(y x + 19.73-20.①23;②21 21.略 22.ab π 23.78 24.(1) 1.5 4.5y x =+;(2)21cm 25.略 26.略 27.(1)34k =;(2)9184s x =+(-8<x <0);(3)P (139,28-) 28.(1)l 1;(2)B 的速度快;(3)15分钟不能追上A ;(4)B 一定能追上A ;(5)B 能在A 逃入公海前追上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.精心选一选(本大题共8道小题,每题4分,共32分)
1、下列各图给出了变量x 与y 之间的函数是: ( )
2、下列函数中,y 是x
的正比例函数的是: ( )
A 、y=2x-1
B 、
y=
3
x C 、y=2x 2
D
、y=-2x+1
3、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为: ( ) A 、y=2x-14 B 、y=-x-6 C 、y=-x+10 D 、y=4x
4、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是: ( ) A 、12y y > B 、12y y < C 、12y y = D 、无法确定.
5、若函数y=kx +b 的图象如图所示,那么当y>0时,x 的取值范围是:( )
A 、 x>1
B 、 x>2
C 、 x<1
D 、 x<2
6、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图 象不经过( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限 7、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( )
A 、(-1,-1)
B 、(-1, 1)
C 、(1, -1)
D 、(1, 1)
8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是: ( )
八年级上学期第十四章《一次函数》单元测试 A B D 第5题
二.耐心填一填(本大题5小题,每小题4分,共20分) 9、在函数
2
1-=
x y 中,自变量x 的取值范围是 。
10、请你写出一个图象经过点(0,2),且y 随x 的增大而减小的一次函数解析式 。
11、已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30
220x y x y --=⎧⎨
-+=⎩
的解是
_____ ___。
12、如右图:一次函数y kx b =+的图象经过A 、B 两点,则
△AOC 的面积为___________。
13、某商店出售货物时,要在进价的基础上增加一定的利润,下表
体现了其数量x (个)与售价y (元)的对应关系,根据表中提
三、解答题(本大题5小题,每小题7分,共35分) 14、已知y+2与x-1成正比例,且x=3时y=4。
(1) 求y 与x 之间的函数关系式; (2) 当y=1时,求x 的值。
15、右图是某汽车行驶的路程S(km)与时间t(分钟) 的函数关系图。
观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟内的平均速度是 ; (2)汽车在中途停了多长时间? ; (3)当16≤t ≤30时,求S 与t 的函数关系式。
16
、已知,函数()1321y k x k =-+-,试回答: (1)k 为何值时,图象交x 轴于点(
3
4
,0)? (2)k 为何值时,y 随x 增大而增大?
17、蜡烛点燃后缩短长度y (cm )与燃烧时间x (分钟)之间的关系为()0y kx k =≠,已
知长为21cm 的蜡烛燃烧6分钟后,蜡烛缩短了3.6cm ,求:
(1)y与x之间的函数解析式;
(2)此蜡烛几分钟燃烧完。
18、已知一次函数y=kx+b的图象如图1所示。
(1)写出点A、B的坐标,并求出k、b 的值;
(2)在所给的平面直角坐标系内画出函数y=bx+k的图象。
四、解答题(本大题3小题,每小题9分,共27分)
19、小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,
于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:
(1)小文走了多远才返回家拿书?
(2)求线段AB所在直线的函数解析式;
x 分钟时,求小文与家的距离。
(3)当8
20、一次函数y=kx+b的自变量的取值范围是-3 ≤x≤6,相应函数值的取值范围是
-5≤y≤-2,求这个一次函数的解析式。
21、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用
电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的函数图像是一条折线(如图所示),根据图像解答下列问题:
(1)分别写出0≤x≤100和x≥100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
五、解答题(本大题3小题,每小题12分,共36分)
22、已知:一个正比例函数和一个一次函数的图像交于点P(-2、2)且一次函数的图像与
y轴的交点Q的纵坐标为4。
(1)求这两个函数的解析式;
(2)在同一坐标系中,分别画出这两个函数的图像;
(3)求△PQO的面积。
23、甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,
乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠。
某班级需购球拍4付,乒乓球若干盒(不少于4盒)。
(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款为
y乙(元),分别写出在这两家商店购买的付款数与乒乓球盒数x之间的函数关系式;
(2)就乒乓球盒数讨论去哪家商店买合算。
24、如图,直线L :22
1
+-
=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点 C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。
(1)求A 、B 两点的坐标;
(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式; (3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标。