高考第一轮复习之方法指导——《数列求和的方法》
数列的求和-高考数学一轮复习(新高考专用)
第43讲 数列的求和【基础知识回顾】 1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1); ③1+3+5+…+(2n -1)=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 3、常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).1、数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100【答案】 D【解析】 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100. 2、数列{}n a 的前n 项和为n S ,若()11n a n n =+,则5S 等于( )A .1B .56 C .16D .130【答案】:B 【解析】:因为()11111n a n n n n ==-++,所以5111111111151122334455666S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选B . 3、设11111++++2612(1)S n n =++,则S =( )A .211n n ++ B .21n n - C .1n n+ D .21n n ++ 【答案】:A 【解析】:由11111++++2612(1)S n n =++,得11111++++122334(1)S n n =+⨯⨯⨯+,111111112111++++222334111n S n n n n +=+-==+++----,故选:A.4、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________.【答案】 2 022【解析】 a n =1n (n +1)=1n -1n +1,∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.5、已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,则S 100=________.【答案】:5000【解析】:由题意得S 100=a 1+a 2+…+a 99+a 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100)=(0+2+4+…+98)+(2+4+6+…+100)=5000.6、 在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于________. 【答案】:2n【解析】:因为数列{a n }为等比数列,则a n =2q n -1,又数列{a n +1}也是等比数列,则3,2q +1,2q 2+1成等比数列,(2q +1)2=3×(2q 2+1),即q 2-2q +1=0q =1,即a n =2,所以S n =2n .考向一 公式法例1、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S .若210a =,540S =,则5a =________,n S 的最大值为________. 【答案】4 42【解析】∵数列{}n a 是等差数列,∵540S =,∴()1535524022a a a ⨯+⨯==,38a ∴=, 又210a ∴=,2d ∴=-,2(2)10(2)(2)142n a a n d n n ∴=+-⨯=+-⨯-=-,514254a ∴=-⨯=,()122(12142)(262)13169(13)13()22224n n n a a n n n n S n n n n n ++--====-=-+=--+, ∴当6n =或7时,n S 有最大值42. 故答案为:(1)4;(2)42.变式1、(2019镇江期末) 设S n 是等比数列{a n }的前n 项的和,若a 6a 3=-12,则S 6S 3=________.【答案】 12【解析】设等比数列{a n }的公比为q ,则q 3=a 6a 3=-12.易得S 6=S 3(1+q 3),所以S 6S 3=1+q 3=1-12=12.变式2、(2019苏锡常镇调研)已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128S S = . 【答案】.37【解析】设等比数列{}n a 的公比为q ,因为622a a =,所以2422a q a =,故24=q .由于1≠q ,故.372121)(1)(1111)1(1)1(23243481281121812=--=--=--=----=q q q q qq a q q a S S 方法总结:若一个数列为等差数列或者等比数列则运用求和公式:①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式(Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.考向二 利用“分组求和法”求和例2、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】(1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+= ① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a == ,212b q b ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+ 121n n =-+ 所以数列{}n c 的前n 项和121nn S n =-+.变式1、求和S n =1+⎣⎡⎦⎤1+12+⎣⎡⎦⎤1+12+14+…+⎣⎡⎦⎤1+12+14+…+12n -1.【解析】 原式中通项为a n =⎣⎡⎦⎤1+12+14+ (12)-1=1-⎝⎛⎭⎫12n1-12=2⎝⎛⎭⎫1-12n ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…⎝⎛⎭⎫1-12n =2⎣⎢⎡⎦⎥⎤n -12⎝⎛⎭⎫1-12n1-12 =12n -1+2n -2. 变式2、 已知等差数列{a n }的前n 项和为S n ,且关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解析】(1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3.又S 2=2a 1+d ,所以a 1=d , 易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.变式3、(2021·广东高三专题练习)设数列{a n }满足a n +1=123n a +,a 1=4. (1)求证{a n ﹣3}是等比数列,并求a n ; (2)求数列{a n }的前n 项和T n . 【答案】(1)证明见解析,11()33n n a -=+;(2)31(1)323n n -+.【解析】(1)数列{a n }满足a n +1=123n a +,所以113(3)3n n a a +-=-, 故13133n n a a +-=-, 所以数列{a n }是以13431a -=-=为首项,13为公比的等比数列. 所以1131()3n n a --=⋅,则1*1()3,3n n a n N -=+∈. (2)因为11()33n n a -=+,所以011111()()()(333)333n n T -=++++++⋯+=11(1)33113n n -+-=31(1)323n n -+. 方法总结:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求前n 项和的数列求和.考向三 裂项相消法求和例3、(2021·四川成都市·高三二模(文))已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n ∈N .则使得20T 的值为( )A .1939B .3839C .2041D .4041【答案】C 【解析】当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-;而12111a =⨯-=也符合21n a n =-,∴21n a n =-,*n N ∈.又11111()22121n n a a n n +=--+, ∴11111111(1...)(1)2335212122121n nT n n n n =⨯-+-++-=⨯-=-+++,所以202020220141T ==⨯+,故选:C.变式1、(2021·全国高三专题练习)已知在数列{}n a 中,14,0.=>n a a 前n 项和为n S ,若1,2)-+=∈≥n n n a S S n N n .(1)求数列{}n a 的通项公式; (2)若数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:132020n T <<【解析】(1)在数列{}n a 中,1(2)n n n a S S n -=-≥①∴1n n n a S S -=且0n a >,∴①式÷②11n n S S -= (2)n ≥, ∴数列{}nS 1142S a ===为首项,公差为1的等差数列,2(1)1n S n n =+-=+ ∴2(1)n S n =+当2n ≥时,221(1)21n n n a S S n n n -=-=+-=+;当1n =时,14a =,不满足上式,∴数列{}n a 的通项公式为4,121,2n n a n n =⎧=⎨+≥⎩.(2)由(1)知4,121,2n n a n n =⎧=⎨+≥⎩,,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,∴当1n =时,114520n T ==⨯, ∴当1n =时,120n T =,满足132020n T ≤<,∴12233411111n n n T a a a a a a a a +=++++1111455779(21)(2n =++++⨯⨯⨯+111111111111()()()()45257792123202523n n n ⎡⎤=+⨯-+-++-=+⨯-⎢⎥⨯+++⎣⎦ 312046n =-+ ∴在n T 中,1n ≥,n ∈+N ,∴4610n +≥,∴114610n ≤+,∴1104610n >-≥-+,∴131320204620n ≤-<+.所以132020n T << 变式2、(2021·辽宁高三二模)已知数列{}n a 的前n 项和为n S ,且满足()*2n n a S n n =+∈N .(1)求证:数列{}1n a +是等比数列;(2)记()()2221log 1log 1n n n c a a +=+⋅+,求证:数列{}n c 的前n 项和34n T <.【解析】解:(1)因为2n n a S n =+①, 所以()11212n n a S n n --=+-≥② 由①-②得,121n n a a -=+.两边同时加1得()1112221n n n a a a --+=+=+,所以1121n n a a -+=+,故数列{}1n a +是公比为2的等比数列. (2)令1n =,1121a S =+,则11a =. 由()11112n n a a -+=+⋅,得21nn a =-.因为()()()22211111log 1log 1222n n n c a a n n n n +⎛⎫===- ⎪+⋅+++⎝⎭,所以11111111121324112n T n n n n ⎛⎫=-+-+⋅⋅⋅+-+- ⎪-++⎝⎭11113111221242224n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭. 因为*11,02224n N n n ∈+>++,所以3113422244n n ⎛⎫-+< ⎪++⎝⎭所以1111311312212422244n n n n n T ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭. 方法总结:常见题型有(1)数列的通项公式形如a n =1n n +k 时,可转化为a n =1k ⎝ ⎛⎭⎪⎫1n -1n +k ,此类数列适合使用裂项相消法求和. (2)数列的通项公式形如a n =1n +k +n时,可转化为a n =1k(n +k -n ),此类数列适合使用裂项相消法求和.考向四 错位相减法求和例4、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N*=+∈,且12a =.(1)求数列{}n a 的通项公式;(2)设()12n an n b a =-,求数列{}n b 的前n 项和n T .【解析】(1)因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==, 所以2n a n =(2)由(1),(1)2=(21)4n ann n b a n =--, 所以 12314+34+54++(21)4n n T n =⨯⨯⨯-231414+34++(23)4(21)4n n n T n n +=⨯⨯-+-…两式相减得:23134+2(4+4++4)(21)4n n n T n +-=⨯--…,2+114434+2(21)414n n n T n +--=⨯---,化简得120(65)4+99n n n T +-= 变式1、(2020·全国高三专题练习(文))已知数列{}n a 是等差数列,其前n 项和为n S ,且22a =,5S 为10和20的等差中项;数列{}n b 为等比数列,且319b b -=,4218b b -=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n M . 【解析】(1)设等差数列{}n a 的公差为d ,因为22a =,5S 为10和20的等差中项,所以112541020522a d a d +=⎧⎪⎨⨯++=⎪⎩,解得111a d =⎧⎨=⎩,所以n a n =. 设等比数列{}n b 的公比为q ,因为319b b -=,4218b b -=,所以2121(1)9(1)18b q b q q ⎧-=⎨-=⎩,解得132b q =⎧⎨=⎩, 所以132n n b -=⋅.(2)由(1)可知132n n n a b n -⋅=⋅,所以213(122322)n n M n -=+⨯+⨯++⋅,令21122322n n P n -=+⨯+⨯++⋅ ①, 则232222322n n P n =+⨯+⨯++⋅ ②,-①②可得2112122222(1)2112nn nn n n P n n n ---=++++-⋅=-⋅=---,所以(1)21nn P n =-+,所以3(1)23n n M n =-+.变式2、(2020·湖北高三期中)在等差数列{}n a 中,已知{}35,n a a =的前六项和636S =.(1)求数列{}n a 的通项公式n a ;(2)若___________(填①或②或③中的一个),求数列{}n b 的前n 项和n T .在①12n n n b a a +=,②(1)nn n b a =-⋅,③2na n nb a =⋅,这三个条件中任选一个补充在第(2)问中,并对其求解.注:如果选择多个条件分别解答,按第一个解答计分. 【解析】(1)由题意,等差数列{}n a 中35a =且636S =,可得112561536a d a d +=⎧⎨+=⎩,解得12,1d a ==,所以1(1)221n a n n =+-⨯=-.(2)选条件①:211(2n 1)(21)2121nb n n n ==--+-+,111111111335212121n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭, 选条件②:由21n a n =-,可得(1)(2n 1)nn b =--,当n 为偶数时,(13)(57)[(23)(21)]22n nT n n n =-++-+++--+-=⨯=; 当n 为奇数时,1n -为偶数,(1)(21)n T n n n =---=-,(1)n n T n =-,选条件③:由21n a n =-,可得212(21)2n a n n n b a n -=⋅=-⋅, 所以135********(21)2n n T n -=⨯+⨯+⨯++-⨯,35721214123252(23)2(21)2n n n T n n -+=⨯+⨯+⨯++-⨯+-⨯,两式相减,可得:()13521213122222(21)2n n n T n -+-=⨯++++--⨯()222181222(21)214n n n -+-=+⋅--⨯-,所以2110(65)299n n n T +-=+⋅. 方法总结:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.。
高考第一轮复习之方法指导——《数列求和的方法》
高考第一轮复习之方法指导——《数列求和的方法》数列求和是高中数学中非常重要的一个概念,也是高考中经常会涉及到的内容。
下面给出一些数列求和的方法指导,希望对高考复习有所帮助。
1.等差数列求和:等差数列是高中数学中最基本的数列之一,求和方法也是最为简单的。
对于一个等差数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公差是d,则数列的和可以通过如下公式计算:S_n=(n/2)(a_1+a_n)其中,S_n表示数列的和,n表示数列的项数,a_n表示数列的最后一项。
2.等比数列求和:等比数列也是高中数学中常见的数列类型,求和方法相对于等差数列要稍复杂一些。
对于一个等比数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公比是q,则数列的和可以通过如下公式计算:S_n=(a_1(q^n-1))/(q-1)其中,S_n表示数列的和,n表示数列的项数,q表示数列的公比。
3.等差数列前n项和:如果需要计算等差数列的前n项的和,可以通过使用等差数列求和公式快速计算。
首先,计算数列的首项a_1和最后一项a_n,然后带入求和公式即可。
4.等差数列项数:如果需要计算等差数列的项数n,可以通过反推求解。
首先,计算数列的首项a_1和最后一项a_n,然后使用如下公式:n=(a_n-a_1)/d+1其中,n表示等差数列的项数,a_n表示最后一项,a_1表示首项,d表示公差。
5.等差数列的和等于0:如果一个等差数列的和等于0,可以应用等差数列的性质进行求解。
首先,计算数列的首项a_1和公差d,然后使用等差数列求和公式解方程:n/2(a_1+a_n)=0可得等差数列的项数n。
6.等差数列差数求和:如果需要计算等差数列的差数的和,可以使用差数求和公式进行计算。
该公式是等差数列求和公式的一个变形。
首先,计算差数的和:S_d=(n/2)(a_2-a_1)其中,S_d表示差数的和,n表示数列的项数,a_1表示首项,a_2表示第二项。
2020届高考数学一轮复习通用版讲义数列求和
第四节数列求和一、基础知识批注——理解深一点1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2. 推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝⎛⎭⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )答案:(1)√ (2)√ (3)× (4)√ (二)选一选1.已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=( ) A .41 B .48 C .49D .56解析:选C 设S n =An 2+Bn ,由题知⎩⎪⎨⎪⎧S 3=9A +3B =9,S 5=25A +5B =25,解得A =1,B =0,∴S 7=49.2.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( )A .2 016B .2 017C .2 018D .2 019解析:选D 因为a n =1n (n +1)=1n -1n +1,所以S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0192 020,所以n =2 019.3.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n解析:选C 由题意得a n =1+2n -1, 所以S n =n +1-2n1-2=n +2n -1.(三)填一填4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________.解析:S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.答案:95.已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n >5,则{a n }的前10项和S 10=________.解析:S 10=5×9+12×5×4×(-2)+5×1+12×5×4×2=50.答案:50方法一 分组转化法求和[典例] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. [解] (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .又a 1=1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.[解题技法]1.分组转化求和的通法数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和.2.分组转化法求和的常见类型[题组训练]1.已知数列{a n }的通项公式是a n =2n -⎝⎛⎭⎫12n,则其前20项和为( )A .379+1220B .399+1220C .419+1220D .439+1220解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+a 3+…+a 20=2(1+2+3+…+20)-⎝⎛⎭⎫12+122+123+…+1220=420-⎝⎛⎭⎫1-1220=419+1220. 2.(2019·资阳诊断)已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n,n 是偶数,则数列{a n }的前20项和为( )A .1 121B .1 122C .1 123D .1 124解析:选C 由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×92×2=1 123.选C.方法二 裂项相消法求和 考法(一) 形如a n =1n (n +k )型[典例] (2019·南宁摸底联考)已知等差数列{a n }满足a 3=7,a 5+a 7=26. (1)求等差数列{a n }的通项公式; (2)设c n =1a n a n +1,n ∈N *,求数列{c n }的前n 项和T n . [解] (1)设等差数列的公差为d ,则由题意可得⎩⎪⎨⎪⎧ a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1. (2)因为c n =1a n a n +1=1(2n +1)(2n +3), 所以c n =12⎝⎛⎭⎫12n +1-12n +3,所以T n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3=12⎝⎛⎭⎫13-12n +3=n 6n +9. 考法(二) 形如a n =1n +k +n型[典例] 已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 019=( )A. 2 018-1B. 2 019-1C. 2 020-1D. 2 020+1[解析] 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12. ∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 019=a 1+a 2+a 3+…+a 2 019=(2-1)+(3-2)+(4-3)+…+( 2 019-2 018)+( 2 020- 2 019)= 2 020-1. [答案] C[解题技法]1.用裂项法求和的裂项原则及消项规律哪些项,避免遗漏.2.常见的拆项公式 (1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n ;(4)2n (2n -1)(2n +1-1)=12n -1-12n +1-1.分式差分最常见,指数根式来镶嵌; 取长补短巧改变,裂项求和公式算.[题组训练]1.(口诀第1、4句)在等差数列{a n }中,a 3+a 5+a 7=6,a 11=8,则数列⎩⎨⎧⎭⎬⎫1a n +3·a n +4的前n 项和为( )A.n +1n +2B.nn +2C.n n +1D.2n n +1解析:选C 因为a 3+a 5+a 7=6, 所以3a 5=6,a 5=2,又a 11=8, 所以等差数列{a n }的公差d =a 11-a 511-5=1, 所以a n =a 5+(n -5)d =n -3, 所以1a n +3·a n +4=1n (n +1)=1n -1n +1,因此数列⎩⎨⎧⎭⎬⎫1a n +3·a n +4的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,故选C.2.(口诀第2、4句)各项均为正数的等比数列{a n }中,a 1=8,且2a 1,a 3,3a 2成等差数列. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =1n log 2a n,求{b n }的前n 项和S n .解:(1)设等比数列{a n }的公比为q (q >0). ∵2a 1,a 3,3a 2成等差数列,∴2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q , ∴2q 2-3q -2=0,解得q =2或q =-12(舍去),∴a n =8×2n -1=2n +2.(2)由(1)可得b n =1n log 22n +2=1n (n +2)=12⎝⎛⎭⎫1n -1n +2, ∴S n =b 1+b 2+b 3+…+b n=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2 =34-2n +32(n +1)(n +2). 方法三 错位相减法求和[典例] (2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .[解] (1)设{a n }的公比为q ,由题意知:a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2, 所以a n =2n . (2)由题意知, S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b na n,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+1-⎝⎛⎭⎫12n -1-2n +12n +1=52-2n +52n +1, 所以T n =5-2n +52n.[变透练清]1.(变结论)若本例中a n ,b n 不变,求数列{a n b n }的前n 项和T n . 解:由本例解析知a n =2n ,b n =2n +1, 故T n =3×21+5×22+7×23+…+(2n +1)×2n , 2T n =3×22+5×23+7×24+…+(2n +1)×2n +1,上述两式相减,得,-T n =3×2+2×22+2×23+…+2×2n -(2n +1)2n +1=6+8(1-2n -1)1-2-(2n +1)2n +1=(1-2n )2n +1-2得T n =(2n -1)×2n +1+2.2.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.因为q>0,解得q=2,所以b n=2n.由b3=a4-2a1,可得3d-a1=8.①由S11=11b4,可得a1+5d=16.②联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以{a n}的通项公式为a n=3n-2,{b n}的通项公式为b n=2n. (2)设数列{a2n b n}的前n项和为T n,由a2n=6n-2,有T n=4×2+10×22+16×23+…+(6n-2)×2n,2T n=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减,得-T n=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=12×(1-2n)1-2-4-(6n-2)×2n+1=-(3n-4)2n+2-16,得T n=(3n-4)2n+2+16.所以数列{a2n b n}的前n项和为(3n-4)2n+2+16.[解题技法]错位相减法求和的4个步骤[易误提醒](1)两式相减时最后一项因为没有对应项而忘记变号.(2)对相减后的和式的结构认识模糊,错把中间的n-1项和当作n项和.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比q=1和q≠1两种情况求解.[课时跟踪检测]A级——保大分专练1.数列{a n }的通项公式为a n =1n +n -1,若该数列的前k 项之和等于9,则k =( )A .80B .81C .79D .82解析:选B a n =1n +n -1=n -n -1,故S n =n ,令S k =k =9,解得k =81,故选B.2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12D .-15解析:选A a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+a 10=-1+4-7+10-13+16-19+22-25+28=5×3=15,故选A.3.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5C.3116D.158解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得9(1-q 3)1-q =1-q 61-q ,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝⎛⎭⎫1251-12=3116.4.在等差数列{a n }中,a 4=5,a 7=11.设b n =(-1)n ·a n ,则数列{b n }的前100项之和S 100=( )A .-200B .-100C .200D .100解析:选D 设数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 1+3d =5,a 1+6d =11⇒⎩⎪⎨⎪⎧a 1=-1,d =2⇒a n =2n -3⇒b n =(-1)n (2n -3)⇒S 100=(-a 1+a 2)+(-a 3+a 4)+…+(-a 99+a 100)=50×2=100,故选D.5.已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A .1 026B .1 025C .1 024D .1 023解析:选C ∵2n +12n =1+⎝⎛⎭⎫12n, ∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013, ∴整数m 的最小值为1 024.6.已知数列:112,214,318,…,⎝⎛⎭⎫n +12n ,…,则其前n 项和关于n 的表达式为________. 解析:设所求的前n 项和为S n ,则S n =(1+2+3+…+n )+⎝⎛⎭⎫12+14+…+12n =n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=n (n +1)2-12n +1. 答案:n (n +1)2-12n +1 7.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 因此∑k =1n 1S k =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2nn +1.答案:2nn +18.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=________. 解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ,① ∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,②由①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列, ∴S 2 018=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.答案:3·21 009-39.(2019·成都第一次诊断性检测)已知等差数列{a n }的前n 项和为S n ,a 2=3,S 4=16,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n . 解:(1)设数列{a n }的公差为d ,∵a 2=3,S 4=16,∴a 1+d =3,4a 1+6d =16,解得a 1=1,d =2.∴a n =2n -1.(2)由题意知,b n =1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1 =n 2n +1. 10.(2018·南昌摸底调研)已知数列{a n }的前n 项和S n =2n +1-2,记b n =a n S n (n ∈N *).(1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和T n .解:(1)∵S n =2n +1-2, ∴当n =1时,a 1=S 1=21+1-2=2; 当n ≥2时,a n =S n -S n -1=2n +1-2n =2n . 又a 1=2=21,∴a n =2n .(2)由(1)知,b n =a n S n =2·4n -2n +1, ∴T n =b 1+b 2+b 3+…+b n =2(41+42+43+…+4n )-(22+23+…+2n +1)=2×4(1-4n )1-4-4(1-2n )1-2=23·4n +1-2n +2+43. B 级——创高分自选 1.(2019·潍坊统一考试)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n . 解:(1)∵S n =2a n -λ,当n =1时,得a 1=λ,当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列, ∴a n =λ·2n -1. (2)∵λ=4,∴a n =4·2n -1=2n +1, ∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数, ∴T 2n =22+3+24+5+26+7+…+22n +2n +1 =(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2 =4n +1-43+n (n +2), ∴T 2n =4n +13+n 2+2n -43. 2.已知首项为2的数列{a n }的前n 项和为S n ,且S n +1=3S n -2S n -1(n ≥2,n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =n +1a n,求数列{b n }的前n 项和T n . 解:(1)因为S n +1=3S n -2S n -1(n ≥2), 所以S n +1-S n =2S n -2S n -1(n ≥2),即a n +1=2a n (n ≥2),所以a n +1=2n +1,则a n =2n ,当n =1时,也满足,故数列{a n }的通项公式为a n =2n .(2)因为b n =n +12n =(n +1)⎝⎛⎭⎫12n , 所以T n =2×12+3×⎝⎛⎭⎫122+4×⎝⎛⎭⎫123+…+(n +1)×⎝⎛⎭⎫12n ,① 12T n =2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+4×⎝⎛⎭⎫124+…+n ×⎝⎛⎭⎫12n +(n +1)×⎝⎛⎭⎫12n +1,② ①-②得12T n =2×12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =12+⎝⎛⎭⎫121+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-(n +1)⎝⎛⎭⎫12n +1=12+1-⎝⎛⎭⎫12n-(n+1)⎝⎛⎭⎫12n+1=32-n+32n+1.故数列{b n}的前n项和为T n=3-n+3 2n.。
数列求和课件-2025届高三数学一轮复习
(2)设 =
,数列{ }的前项和为 ,若 = ,求的值.
+
【解】 由(1)知, =
=
=
−
,
+
− +
−
+
所以 = − + − + ⋯ +
−
−
+
= −
=
.
+
×[− ]
−
−×
错位相减法求和的注意事项
(1)掌握解题的“3个步骤”
(2)注意解题的“3个关键”
①要善于识别题目类型,特别是等比数列的公比为负数的情形.
②在写出“ ”与“ ”的表达式时应特别注意将两式“错项对齐”以便下一
步准确写出“ − ”的表达式.
③在应用错位相减法求和时,若等比数列的公比为参数,应分公比 = 和
− = − = .故
2.在数列{ }中, =
2 023
_______.
解析:由题意得 =
所以 =
= .
−
+ −
+
,若数列{ }的前项和为
,则
= −
,
+
+
+ ⋯+ −
=
或可求和的数列组成的,则求和时可用分组求和法,分别求和后再相加减.
2025年高考数学一轮复习-6.4-数列求和【课件】
送分试题;(2)当递推公式为 an+1=f(n)an 时,把原递推公式先转化为 =f(n),再利用累乘法
(逐商相乘法)求解。第(2)问的实质是数列的求和问题,常用的方法为错位相减法和裂项
相消法。
【变式训练】
则数列
1
+ +1
2 - 2 = 2 - 2 (n≥2),
(1)已知各项都为正数的数列{an}中,a1=1,a2= 3,+1
②当 n≥2 时,Tn=2+2×2 +2×2 +…+2×2
2
3
n
1, = 1,
2, ≥ 2。
22 (1−2 −1 ) (1+2−1)
-[1+3+5+…+(2n-1)]=2+2×
=
2
1−2
2n+2-n2-6,又 T1=1 也满足 Tn=2n+2-n2-6,所以 Tn=2n+2-n2-6。
=
1−2
-n·2n+1=2n+1-2-n·2n+1=(1-n)2n+1-2。所
易错题
4.(不能准确分组致误)已知数列{an}的通项公式为 an=(-1)n(2n-2),则数列{an}的前 n 项和
1 − , 为奇数,
Sn=
, 为偶数
。
解析 Sn=2×[0+1-2+3-4+…+(-1) (n-1)]=
1
+…+f
−1
+f(1)(n
an=2(n+1)
则数列
的通项公式为
2025高考数学一轮复习-6.4-数列求和【课件】
易错易混 4.在数列{an}中,已知 an=n+11n+3(n∈N*),则{an}的前 n 项和 Sn=
_____12__56_-__n_+1__2_-__n_+1__3_ ______. 【解析】 ∵an=n+11n+3=12n+1 1-n+1 3, ∴Sn=1212-14+13-15+14-16+15-17+…+n+1 1-n+1 3 =1212+13-n+1 2-n+1 3 =1256-n+1 2-n+1 3.
第六章 数列
第四节 数列求和
课前双基巩固
——整合知识 夯实基础
『知识聚焦』 1.公式法 (1)等差数列{an}的前 n 项和 Sn=na12+an=na1+nn-2 1d. 推导方法:倒序相加法.
na1,q=1, (2)等比数列{an}的前 n 项和 Sn=a111--qqn,q≠1. 推导方法:乘公比, 错位相减法 .
6.若{log2an}是首项为 1,公差为 2 的等差数列,则数列{nan}的前 n 项和为 _S_n_=__2_+__6_n_9-__2__·4_n_.
【解析】 由题意可得 log2an=1+2(n-1)=2n-1, ∴an=22n-1=2·4n-1,∴nan=2n·4n-1, ∴数列{nan}的前 n 项和 Sn=2(1×40+2×41+3×42+…+n×4n-1), ∴12Sn=1×40+2×41+3×42+…+n×4n-1, ∴2Sn=1×41+2×42+3×43+…+n×4n,
课堂考点突破
——精析考题 提升能力
考点一 分组转化求和 【例 1】 已知数列{an}满足 a1=1,an+an-1=2n(n≥2,n∈N*). (1)记 bn=a2n,求数列{bn}的通项公式; (2)求数列{an}的前 n 项和 Sn.
2025届高考数学一轮总复习第六章数列第四节数列求和
41 + 2 ×
= 32,
1 = 5,
S4=32,T3=16,得
解得
所以
= 2.
(1 -6) + 2(1 + ) + (1 + 2-6) = 16,
an=a1+(n-1)d=2n+3.
(2)证明 由(1)可得
[5+(2+3)]
Sn=
=n2+4n.
2
当 n 为奇数时,Tn=a1-6+2a2+a3-6+2a4+a5-6+2a6+…+an-2-6+2an-1+an-6
×…× ×a2= × ×…× ×1=n-1.
-2
2
1
-2 -3
显然 a1=0 满足,∴an=n-1(n∈N*).
(2)由(1)可知 an=n-1(n∈N*),
+1
1
1 1
1 2
1 3
1
∴an+1=n,∴ =n· ,∴Tn=1×
+2×
+3×
+…+n· ,
2
2
2
2
2
2
1
1 2
1 3
1
2
2
+(
1
2
2
−
1
2 )+…+
3
1
1
1
2 - 2 =1-81
8 9
=
80
.
81
=
1
2
−
1
(+1)
2,
增素能 精准突破
2023年高考数学一轮复习讲义——数列求和
§6.5 数列求和 考试要求 1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法. 知识梳理数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和.(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.4.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( √ ) (3)求S n =a +2a 2+3a 3+…+na n 时,只要把上式等号两边同时乘a 即可根据错位相减法求得.( × )(4)求数列⎩⎨⎧⎭⎬⎫12n +2n +3的前n 项和可用分组转化法求和.( √ ) 教材改编题1.数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100答案 D解析 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.2.等差数列{a n }中,已知公差d =12,且a 1+a 3+…+a 99=50,则a 2+a 4+…+a 100等于( ) A .50B .75C .100D .125 答案 B解析 a 2+a 4+…+a 100=(a 1+d )+(a 3+d )+…+(a 99+d )=(a 1+a 3+…+a 99)+50d=50+25=75.3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________. 答案 2 022解析 a n =1n (n +1)=1n -1n +1, ∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.题型一 分组求和与并项求和例1 (2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .解 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列.∴⎩⎪⎨⎪⎧ a 6=a 1+5d =6,(a 1+d )2=a 1(a 1+3d ),d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.延伸探究 在本例(2)中,如何求数列{b n }的前n 项和T n ?解 由本例(2)知b n =2n +(-1)n n .当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. 所以T n =⎩⎨⎧ 2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.教师备选(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列,设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8, 解得⎩⎪⎨⎪⎧ a 1=32,q =12(舍)或⎩⎪⎨⎪⎧a 1=2,q =2, 所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1;b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7],则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31],则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63],则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100],则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.思维升华 (1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.跟踪训练1 (2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1,所以a n =2n -1,S n =n (1+2n -1)2=n 2. (2)结合(1)知b n =(-1)n n 2,当n 为偶数时,T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)]=1+2+3+…+n =n (n +1)2. 当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2. 题型二 错位相减法求和例2 (10分)(2021·全国乙卷)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n 3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式; [切入点:设基本量q ](2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. [关键点:b n =n ·⎝⎛⎭⎫13n ]教师备选(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.解 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n=1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n 3, ∴S n =1-(1+3n )(-2)n 9,n ∈N *. 思维升华 (1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.②应用等比数列求和公式必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1.跟踪训练2 (2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9, 解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列, 所以a n =-94×⎝⎛⎭⎫34n -1=-3n +14n . (2)因为3b n +(n -4)a n =0,所以b n =(n -4)×⎝⎛⎭⎫34n .所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3.所以-3≤λ≤1.题型三 裂项相消法求和例3 (2022·咸宁模拟)设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *. (1)求数列{a n }的通项公式; (2)若b n =1a n -1,求数列{b n }的前n 项和S n . 解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *, 所以a n +1+a n -2a n +1a n =4, 即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列,所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列,所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+ 12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 教师备选设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34. (1)解 因为2S n =3a n -1,所以2S 1=2a 1=3a 1-1,即a 1=1.当n ≥2时,2S n -1=3a n -1-1,则2S n -2S n -1=2a n =3a n -3a n -1,整理得a n a n -1=3, 则数列{a n }是以1为首项,3为公比的等比数列,故a n =1×3n -1=3n -1.(2)证明 由(1)得b n =3n(3n -1+1)(3n +1)=32×⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 所以T n =32×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫130+1-131+1+⎝ ⎛⎭⎪⎫131+1-132+1+⎝ ⎛⎭⎪⎫132+1-133+1+…+⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 即T n =32×⎝ ⎛⎭⎪⎫12-13n +1=34-323n +1, 所以T n <34, 又因为T n 为递增数列,所以T n ≥T 1=34-38=38, 所以38≤T n <34. 思维升华 利用裂项相消法求和的注意事项(1)抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项裂项后,有时需要调整前面的系数,如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1, 1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. 跟踪训练3 (2022·河北衡水中学模拟)已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n = n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)记b n =2n +1a 2n ,求数列{b n }的前n 项和S n . (1)证明 当n ≥2时,(n -1)a n =n (a n -1+2n -2),将上式两边都除以n (n -1),得a n n =a n -1+2n -2n -1, 即a n n -a n -1n -1=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=4为首项,2为公差的等差数列. (2)解 由(1)得a n n=4+2(n -1)=2n +2, 即a n =2n (n +1),所以b n =2n +1a 2n =14⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2, 所以S n =14⎩⎨⎧ ⎝⎛⎭⎫1-122+⎝⎛⎭⎫122-132+⎭⎪⎬⎪⎫…+⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2 =14⎣⎢⎡⎦⎥⎤1-1(n +1)2=n 2+2n 4(n +1)2. 课时精练1.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1)=21-22n +11-4+n (1+2n -1)2 =22n +13+n 2-23. 易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000,故T n ≥1 000,解得n ≥6,n ∈N *.2.(2020·全国Ⅲ改编)设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5,a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1.(2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,① 2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1=6+2×22×(1-2n -1)1-2-(2n +1)·2n +1 =(1-2n )·2n +1-2,即S n =(2n -1)·2n +1+2.3.(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n . 又a 1=2,也满足上式,故a n =2n .(2)由(1)可知,b n =log 2a n =n ,1b n b n +1=1n (n +1)=1n -1n +1, T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1,故T n =n n +1.4.(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q ,因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12, 因为数列{a n }是正项等比数列,所以q =2.所以a n =a 4·q n -4=2n .(2)方法一 (分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1),①若n 为偶数,T n =-3+5-7+9-…-(2n -1)+(2n +1)=(-3+5)+(-7+9)+…+[-(2n -1)+(2n +1)]=2×n 2=n ; ②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-(2n +1)=-n -2,当n =1时,T 1=-3适合上式,综上得T n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -2,n 为奇数 (或T n =(n +1)(-1)n -1,n ∈N *).方法二 (错位相减法)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1), T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n ·(2n +1), 所以-T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n +1(2n +1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n ]-(-1)n +1(2n +1)=-3+2×1-(-1)n -12+(-1)n (2n +1) =-3+1-(-1)n -1+(-1)n (2n +1)=-2+(2n +2)(-1)n ,所以T n =(n +1)(-1)n -1,n ∈N *.5.(2022·重庆调研)在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n ,在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2n a n a ⋅这三个条件中任选一个补充在第(2)问中,并对其求解.解 (1)由题意知⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36, 解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .(2)选条件①.b n =42n ·2(n +1)=1n (n +1), 则S n =11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 选条件②.∵a n =2n ,b n =(-1)n a n =(-1)n ·2n , ∴S n =-2+4-6+8-…+(-1)n ·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ] =n 2×2=n ; 当n 为奇数时,n -1为偶数, S n =n -1-2n =-n -1. ∴S n =⎩⎪⎨⎪⎧ n ,n 为偶数,-n -1,n 为奇数. 选条件③.∵a n =2n ,b n =2n a n a ⋅,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ·4n ,① 4S n =2×42+4×43+6×44+…+2(n -1)·4n +2n ·4n +1,② ①-②得 -3S n =2×41+2×42+2×43+…+2×4n -2n ·4n +1=4(1-4n )1-4×2-2n ·4n +1 =8(1-4n )-3-2n ·4n +1, ∴S n =89(1-4n )+2n 3·4n +1.。
2019北师大版高考第一轮复习——数列的求和方法(理)(讲义)
高考第一轮复习——数列的求和方法一、学习目标:1. 熟练地掌握等差数列、等比数列的求和公式及其应用。
2. 体会并掌握用倒序相加、错位相减、裂项、并项等数学方法求数列的前n 项的和。
二、重点、难点:重点:等差数列、等比数列求和,非等差、等比数列求和。
难点:数列求和的应用。
三、考点分析:在新课标高考中重点考查等差数列、等比数列求和及采用倒序相加、错位相减、裂项等数学方法求非等差、等比数列的和。
考查的题型有选择题、填空题、综合题的某一问等,难度小,易得分。
1. 求等差、等比数列的前n 项和。
若由已知条件可以判断一个数列是等差或等比数列,或可以转化为等差数列、等比数列的,则可用等差、等比数列的求和公式求数列的前n 项和等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn2. 对于非等差、等比数列的求和,可采用下面的方法:(1)倒序相加:将一个数列倒过来排列(反序),当它与原数列相加时,若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加的方法求和。
(2)错位相减:这是推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{}n n a b ⋅(其中数列{}n a 是等差数列,数列{}n b 是等比数列)的前n 项和。
(3)裂项法:求数列{}n a 的前n 项和时,若能将n a 拆分为:1n n n a b b +=- 则111nin i ab b +==-∑,常见的裂项公式有:(i )数列{}n a 是公差为d 的等差数列,则12121231111()(1)k k ka a a k d a a a a a a -=-⨯⨯⨯-⨯⨯⨯⨯⨯⨯1111[](1)(2)2(1)(1)(2)n n nn n n n =-+++++(ii1a b =--。
高三数学一轮复习数列求和的方法总结课件 (共19张PPT)
2 23
3 24
n2n1
n 2n1
由-得
1 2
Sn
1 2
1 22
1 23
1 2n
n 2n1
5
1 2 Sn
1 [1 ( 1 ) n ]
2
2
1 1
n 2 n1
2
得:
Sn
2
2n 2n
6
例、求1, 数 3, 5列 , 7, , 2n1 2 4 816 2n
的前 n项.和 解 S n : 1 2 2 3 2 2 5 3 2 7 4 2 n 2 n 1
1 (1 1 1 1 1 1 )
4 223
n n1
1 (1 1 ) n 4 n 1 4(n 1)
14
五、分组求和法 如果一个数列的通项公式可写成 cn=an+bn的形式,而数列{an},{bn}是 等差数列或等比数列或可转化为能 够求和的数列,可采用分组求和法.
15
例、已知等比数{列 an}的前n项和为Sn, a4 2a3, S2 6. (1)求数列{an}的通项公式. (2)数列{bn}满足:bn an log2 an,求数列 {bn}的前n项和Tn. 解:设数 {an列 }的首项 a1,公 为比q(q为 0) 则 a1q32a1q2
.
.
.
.
.②
①
-②
:1 2
Sn
1 2
2 22
+
2 23
+
2 24
+
+
2 2n
2n 1 2 n1
11+ 1 + 1 + 2 2 22 23
+
1 2 n1
一轮复习数列专题一数列求和的一般方法
(3)、 a n
1 1 1 1 1 1 1 1 [ ] n(n 1)(n 2) 2 n(n 1) (n 1)(n 2) n n p p n n p 1 n 1 n
2、根式形式,如: (1) a n
n 1 n
dront
数列求和的一般方法 第四类:分类求和法(当一类数列,既不是等差数列,也不是等比数列,若将这类数
列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.) 例 3:已知数列 a 1 a 2 a 3 a n 的和.
2 3 n
通项是分式, 具体方法是: 将数列恒等变形为连续两项或相隔若干项之差的形式, 进行消项) 常见的裂项相消的式子: 1、乘积形式,如: (1)、 a n
1 1 1 n(n 1) n n 1
(2)、 an
1 1 1 1 ( ) (2n 1)(2n 1) 2 2n 1 2n 1
an 1 , 求数列 bn 的 S n S n 1
作业 3:设正项数列 an 前 n 项和 S n ,且满足 S n 式(2)设 bn
1 2 an 1 ,(1) 求数列 an 的通项公 4
1 ,求数列 bn 的前 n 项和 Tn . an an 1
巧记是魂,应用是宝;要想得分,两者都好. 5
方法总结: ,使用裂项相消法,要注意正项、负项相消时,消去的是哪些项;应该注意到, 由于数列 an 中每一项 an 均裂成一正一负两项,所以互为相反数的项合并为 0 后,所剩 正数项与负数项的项数必是一样多,且抵消后,并不一定只剩下第一项和最后一项,也有可 能前面剩两项,后面也剩两项;注意发现消去的规律掌握剩余的项;裂开之后要注意调整系 数.
高三数学一轮复习备考数列的求和说课
高三数学一轮复习备考数列的求和说课高三数学一轮复习备考中,数列的求和是一个重要的考点。
在本文中,我将对数列的求和进行深入解析,包括常见的等差数列和等比数列的求和公式,以及一些应用题的解题方法。
首先,让我们来回顾一下数列的概念。
数列是由一系列按照一定规律排列的数所组成的集合。
数列的每一项称为数列的项,用ai表示,其中i表示项的位置。
数列中的规律可以用一个通项公式来表示。
对于等差数列来说,通项公式为an=a1+(n-1)d,其中a1为首项,d为公差;而对于等比数列来说,通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。
接下来,我们来看一下等差数列的求和公式。
对于等差数列来说,其求和公式是非常有用的。
设等差数列的首项为a1,公差为d,前n项和为Sn。
那么等差数列的求和公式可以表示为Sn=n/2*(a1+an),其中an表示等差数列的第n项。
在使用等差数列的求和公式时,需要明确几个关键的概念。
首先,当n为奇数时,a1和an为等差数列中间的一项;当n为偶数时,a1和an分别为等差数列的相邻两项,此时中间没有项。
其次,等差数列的前n项和与等差数列的倒序前n项和相等。
例如,对于等差数列1,3,5,7,9来说,其首项为1,公差为2。
我们可以使用等差数列的求和公式来计算前3项的和。
根据公式,n=3,所以Sn=3/2*(1+5)=9。
除了等差数列外,我们还有等比数列的求和公式。
对于等比数列来说,其求和公式也是非常重要的。
设等比数列的首项为a1,公比为r,前n项和为Sn。
等比数列的求和公式可以表示为Sn=a1*(1-r^n)/(1-r),其中r不等于1。
在使用等比数列的求和公式时,需要注意一些特殊情况。
当公比|r|小于1时,等比数列的前n项和随着n的增加而趋近于一个常数,即Sn的极限存在;当公比|r|大于1时,等比数列的前n项和随着n的增加呈无穷趋近于正无穷或负无穷;当公比|r|等于1时,等比数列不存在有限的前n项和,但存在极限。
高考数学一轮复习数列求和
解:(1)因为 an=2n,所以 a1=2,a2=4, 当 n=1 时,由题设可得 a1b1=2-21-1, 即 2b1=12,所以 b1=14; 当 n=2 时,由题设可得 a2b1+a1b2=22-22-1, 即 1+2b2=2,所以 b2=12. 当 n≥2 时,由题设可得 2nb1+2n-1b2+…+22bn-1+2bn=2n-n2-1, ①
a1+6d=9, [解] (1)设公差为 d,由 S4=18,a7=9,即4a1+4×42-1d=18,
解得ad1==13,, 所以 an=a1+(n-1)d=n+2.
(2)由 an=log2(bn+1),即 log2(bn+1)=n+2,所以 bn+1=2n+2,即
bn=2n+2-1,所以bn2bnn+1=2n+2-12n2n+3-1=142n+12-1-2n+13-1,所以
[典例] (2023·石家庄二中模拟)已知公差不为 0 的等差数列{an}中,
a2=3 且 a1,a2,a5 成等比数列.
(1)求数列{an}的通项公式; (2)求数列{3nan}的前 n 项和 Tn.
[解题微点] (1)根据等差数列的通项公式和等比中项可求出结果;
切入点 (2)根据错位相减法可求出结果
2n-1b1+2n-2b2+…+2bn-1=2n-1-n-2 1-1,此式两边同乘以 2,得 2nb1+2n-1b2+…+22bn-1=2n-n-1, ②
由①-②得 2bn=n2,即 bn=n4. 又由上可知,b1=14也适合上式, 故数列{bn}的通项公式为 bn=n4(n∈N *).
(2)由(1)知,cn=16×nn-n+112n =16×n2+n+11-2nn,则 c1+c2+…+cn =16×222-21+233-222+…+n2+n+11-2nn =16×n2+n+11-2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的方法
数列是高中数学的重点内容之一,而数列求和又是数列的重要内容,是历年高考考察的重点。
在这里笔者对数列求和的一些常用的方法举例进行了分析、小结,以期达到熟练求和的效果。
1、公式法:
如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求. ①等差数列求和公式:()
()1112
2
n n n a a n n S na d +-=
=+
②等比数列求和公式:()()()11111111n n n na q S a q a a q q q
q ⎧=⎪
=-⎨-=≠⎪
--⎩
针对训练1、已知等差数列{}n a 的通项公式为32n a n =-,求它的前n 项和公式. 针对训练2、求等比数列111
,,,248 的前8项的和.
2、倒序相加法:
类似于等差数列的前n 项和的公式的推导方法。
如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式
相加,就得到一个常数列的和。
这一种求和的方法称为倒序相加法. 例1、 已知函数()222
x
x
f x =
+
(1)证明:()()11f x f x +-=; (2)求12
8
91010
10
10f f f f ⎛⎫⎛⎫⎛⎫⎛⎫
++++
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
的值. 解:(1)先利用指数的相关性质对函数化简,后证明左边=右边
(2)利用第(1)小题已经证明的结论可知,
19285
5110
1010
1010
10f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫
+=+==+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
1
28910101010S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令
9
82110
101010S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++
⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
则
两式相加得:
1
929910
10S f f ⎛⎫⎛⎫⎛⎫=⨯+=
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
所以92
S =
.
小结:解题时,认真分析对某些前后具有对称性的数列,可以运用倒序相加
法求和.
针对训练3、求值:2
2
2
2
2
2
2
2
2
2
2
2
1
2
3
10
110
29
38
101
S =
+
+
++
++++
3、错位相减法:
类似于等比数列的前n 项和的公式的推导方法。
若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法.
若n n n a b c =∙,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令
1122
11n n n
n
n S b c b c b
c b c -
-=++++
则n qS = 1223
1n n n n
b c b c b
c
b c
-+++++ 两式相减并整理即得
例2、(2008年全国Ⅰ第19题第(2)小题,满分6分) 已知 12n n a n -=∙,求数列{a n }的前n 项和S n . 解:0
1
2
1
1222(1)2
2
n n n S n n --=+++-+ ①
121
21222(1)22n n
n S n n -=+++-+ ②
②—①得
011
21222
221n n n
n
n S n n -=---=-+
小结:错位相减法的求解步骤:①在等式两边同时乘以等比数列{}n c 的公比
q
;②将两个等式相减;③利用等比数列的前n 项和的公式求和.
针对训练4、求和:()2
3
230,1n
n S x x x nx
x x =++++≠≠
4、裂项相消法:
把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。
适用于类似1n n c
a a +⎧
⎫
⎨
⎬⎩⎭
(其中{}n a 是各项不为零的等差数列,c 为常数)的数列、部分无理数列等。
用裂项相消法求和,需要掌握一些常
见的裂项方法:
(1)
()
1111n n k k n n k ⎛⎫
=
- ⎪
++⎝⎭,特别地当1k =时,()11111
n n n n =-++
(2)
(
)
11n k n k
n k n
=
+-
++
,特别地当1k =时
111n n n n
=+-
++
例3、数列{}n a 的通项公式为1(1)
n a n n =+,求它的前n 项和n S
解:1231n n n S a a a a a -=+++++ ()(
)
1111112
23
34
1
1
n
n n n =
+
+
+
++⨯⨯⨯
-+
=111111
11112233411n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝
⎭⎝⎭⎝⎭⎝⎭⎝⎭
111
1
n n n =-
=
++
小结:裂项相消法求和的关键是数列的通项可以分解成两项的差,且这两项
是同一数列的相邻两项,即这两项的结构应一致,并且消项时前后所剩的项数相同.
针对训练5、求数列
1111,
,
,,
,122332
1
n n ++
++
+ 的前n 项和n S .
5、拆项分组求和法:
有一类数列,它既不是等差数列,也不是等比数列.若将这类数列适当拆开,可分为几个等差、等比数列或常见的数列,然后分别求和,再将其合并即可. 例4、求和:()()()()123235435635235n n S n ----=-⨯+-⨯+-⨯++-⨯ 解:()()()()123235435635235n n S n ----=-⨯+-⨯+-⨯++-⨯
()()1
2
3
246235
5
5
5
n
n ----=++++-++++
()2
111553113114515
n
n n n n n ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=+-⨯=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-
小结:这是求和的常用方法,按照一定规律将数列分成等差(比)数列或常见的数列,使问题得到顺利求解.
针对训练6、求和:()()()()23123n n S a a a a n =-+-+-++- 6、并项求和法:
针对一些特殊的数列,将其某些项合并在一起就具有某种特殊的性质,因此,在求数列的前n 项和时,可将这些项放在一起先求和. 例5、已知数列{}n a 的前n 项和()
1
1234561n n S n
+=-+-+-++-∙ ,求100S .
解:()()()()()1001234569910015050S =-+-+-++-=-⨯=-
小结:并项求和法的关键是寻找哪些项合并在一起就具有某种特殊的性质,一旦找到问题就可以顺利的解决. 针对训练7、在数列{}n a 中,114
a =-
,()1
112n n a n a -=-
≥,求2010S .
(本题所给数列具有周期性,在此简单的介绍数列的周期性)。