人教版八年级数学下册知识点总结归纳

合集下载

人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总第十六章二次根式。

1. 二次根式的概念。

- 形如√(a)(a≥slant0)的式子叫做二次根式。

其中“√()”称为二次根号,a叫做被开方数。

- 注意:被开方数a必须是非负数,否则√(a)无意义。

例如√(-2)就不是二次根式。

2. 二次根式的性质。

- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。

- (√(a))^2=a(a≥slant0)。

例如(√(5))^2 = 5。

- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。

如√(3^2) = 3,√((-3)^2)=| - 3|=3。

3. 二次根式的乘除。

- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。

例如√(2)×√(3)=√(2×3)=√(6)。

- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。

如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。

4. 二次根式的加减。

- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。

例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。

- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。

例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。

第十七章勾股定理。

1. 勾股定理。

- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。

- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。

2. 勾股定理的逆定理。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总

八年级下册第十六章:二次根式(1))0a ≥号,a 叫做被开方数.2,即:2可以省略 .(2) 二次根式有意义的条件:被开方数为非负数,即:被开方数大于或等于0.在实数范围内有意义的条件为: . 由20x -≥,可以得出:2x ≥.20x ≥,x 属于任意实数.在实数范围内有意义的条件:30x ≥,0x ⇒≥.在实数范围内有意义的条件:10121202x x x x x -≥≤⎧⎧⇒⇒-<≤⎨⎨+>>-⎩⎩. (分析:分子、分母都要有意义,分式有意义:分母不为0)(3) 负数没有平方根也没有算术平方根,0的平方根是0,0的算术平方根是0.(4) 正数的立方根是正数,负数的立方根是负数,0的立方根是0.(5) 一个正数有两个平方根,互为相反数. 一个正数有一个算术平方根方根,且为正根. (6) 二次根式的双重非负性:0a ≥0≥.21a =-,则a 的取值范围是: .根据二次根式的双重非负性,()2120a -≥,则210a -≥,所以:12a ≥. (7)()20a a=≥.例如:21.5=;(22224520=⨯=⨯=.提示:2=2倍根号5”.(8()()()0000a a a a a a >⎧⎪===⎨⎪-<⎩.4==5== .11=-=;14==;π==-;110==. (9)代数式:用基本运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接起来的式子叫做代数式.例如:3,x ,x y +)0x ≥,ab -,()0st t≠,3x 都是代数式.(10)二次根式的乘法法则:一般地,=()0,0a b ≥≥,=.=; 3=== ;2612==⨯=;33===;14===== ;⑥((32-=⨯-=-=-=-=-;====;(11=()0,0a b ≥>,=()0,0a b ≥>利用它可以进行二次根式的化简 .====;=====;==; 53=== ;⑤===;(12)最简二次根式:最简二次根式是指满足下列两个条件的二次根式①被开方数不含分母;②被开方数中不含开的尽方的因数或因式..(13)化简最简二次根式的一般方法:①将被开方数中能开得尽方的因数或因式进行开方.====.②化去根号下的分母,即:分母有理化.====;=====;====;==.(14)二次根式的加减:一般地,二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并.注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并.例:==;==;==;-==;同类二次根式:根指数相同、化简后被开方数相同的二次根式;=.注:合并被开方数相同的二次根式与合并同类项类似,将它们的“系数”相加减,最简结果,不能合并.(15)二次根式的混合运算:①二次根式的混合运算顺序与实数的运算顺序一样,先乘方,再乘除,后加减,有括号先算括号里面的,同级运算从左往右依次计算; ②在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用 .例: ① ⎛÷ ⎝解原式(=÷(2=+2==②)23-解原式22223⎡⎤--=-⎢⎥⎣⎦()5329=---229=-+9=注:运算结果是根式的,应表示为最简二次根式 .(16 解:2150126=+ ; 令:12a =,6b =;61212.25224b a a ≈+=+≈第十七章:勾股定理(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222a b c =+ . 勾股定理的证明方法:全世界共有370多种证明方法.其中赵爽正弦图、毕达哥拉斯证法、美国第20任总统詹姆斯加菲尔德的证法比较出名;勾股定理的变式:① 222c a b =+;②()()222a cbc b c b =-=+- ;③ ()()222b c a c a c a =-=+-;④c =⑤a =⑥b =(2)勾股定理逆定理:如果三角形三边长a ,b ,c 满足222a b c =+,那么这个三角形是直角三角形 .(3)定理:经过证明被确认正确的命题叫做定理 .(4)我们把题设、结论正好相反的两个命题叫做互逆命题;如果把其中一个叫做原命题,那么另一个叫做它的逆命题 .(例如:勾股定理与勾股定理逆定理) (5)常见的勾股数(勾股数是正整数):①3、4、5,222345⇒+= ; ②5、12、13,22251213⇒+=; ③6、8、10,2226810⇒+=; ④7、24、25,22272425⇒+=;注:只要三角形的三边长都是勾股数的k (k 为正整数)倍时,构成的三角形仍然是直角三角形.(6)蚂蚁吃食物最短路径问题:①如下图,是一个边长为2的正方体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程. (注:表面爬行)情况一: 情况二: 情况三:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为AB = 42 + 22 =20 =25AbacCBAAAB = 42 + 22 =20 =25AAB = 42 + 22 =20 =25②如下图,是一个长为2,宽为4,高为8的长方体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程. (注:表面爬行)情况一: 情况二: 情况三:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为10.③如下图,是一个底面半径为2,高为8的圆柱体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程.(注:表面爬行)情况一: 情况二:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为(7)如图:直角三角形的两直角边长分别为a 、b ,斜边为c .以两直角边为边长的正方形的面积等于以斜边为边长的正方形的面积.即:123S S S +=,或222a b c +=.AB =82+4π()2 =64+16π2 =44+π2AB =82+4π()2 =64+16π2 =44+π2A8AB = 62 + 82 =100 =10AB AB = 122 + 22 =148AAB = 62 + 82 =100 =10bac S 3S 2S 1(8)三角形面积的计算方法:海伦秦九韶公式(知道三角形的三边长可以直接求面积).2a b cP ++=(其中,,a b c 为三角形的三边长 );S =.例:在下列ABC ∆中,边长如图所示,计算其面积. 解:由海伦秦九韶公式得:6810122P ++==ABC S ∆∴==24==(9)如图,AB BC ⊥,3,4,12,13,AB BC CD AD ====求四边形ABCD 的面积. 解:(法一)连接AC在Rt ABC ∆中,根据勾股定理得:5AC ===22222251216913AC CD AD +=+===∴根据勾股定理得逆定理得:ACD ∆是直角三角形. AC CD ∴⊥,即:90ACD ∠=︒. ∴S 四边形ABC ACD S S ∆∆=+ 111134512362222AB BC AC CD =⋅+⋅=⨯⨯+⨯⨯=.解:(法二)连接AC在Rt ABC ∆中,根据勾股定理得:5AC ===在ACD ∆中,由海伦秦九韶公式得:51213152P ++==A C D S ∆∴=30== ∴S 四边形113034306303622ABC ACD S S AB BC ∆∆=+=⋅+=⨯⨯+=+=. 6108CBA341213DCBA第十八章:平行四边形(1)平行四边形:两组对边分别平行的四边形叫做平行四边形.平行四边形用“”表示,如平行四边形ABCD 记作“ABCD ”.即:若AB ∥CD ,AD ∥BC ,则四边形ABCD 是平行四边形. (2)平行四边形的性质:①平行四边形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC .AB =CD ,AD =BC .②平行四边形的两组对角相等.即:BAD BCD ∠=∠,ABC ADC ∠=∠.平行四边形的邻角互补.即:180BAD ABC ∠+∠=︒,180BCD ABC ∠+∠=︒. ③平行四边形的对角线互相平分.即:OA OC =,OB OD =.(3)平行四边形的两条对角线将平行四边形分成四个面积相等的三角形.即:14AOBBOCCODAODABCDSSSSS ====.4444ABCDAOBBOCCODAODSSS SS====.(4)两平行线间的距离处处相等. (5)平行四边形的面积:底⨯高.(6)平行四边形的判定:①两组对边分别相等的四边形是平行四边形. ②两组对角分别相等的四边形是平行四边形. ③对角线互相平分的四边形是平行四边形. ④一组对边平行且相等的四边形是平行四边形. ⑤两组对边分别平行的四边形叫做平行四边形. (7)三角形中位线定理:三角形的中位线平行且等于第三边的一半. 在ABC ∆中,点D 是AB 的中点,点E 是AC 的中点,所以DE 是ABC ∆的中位线.即:12DE BC =,DE ∥BC .(8)梯形中位线定理:梯形的中位线平行且等于上底与下底和的一半. 在梯形ABCD 中,点E 是AB 的中点,点F 是DC 的中点,所以EF 是梯形ABCD 的中位线.即:2AD BCEF +=,EF ∥AD ∥BC .(9)矩形:有一个角是直角的平行四边形叫做矩形. (10)矩形的性质:①矩形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②矩形的四个角都是直角.即:90BAD BCD ABC ADC ∠=∠=∠=∠=︒. ③矩形的对角线相等且互相平分.即:AC BD =,12OA OC AC ==,12OB OD BD ==.ODCB AED CBAFEDCBAODCBAA OB ∆,BOC ∆,COD ∆,AOD ∆都是等腰三角形. (11)矩形的面积:长⨯宽.即:S AB BC =⋅.(12)在直角三角形中,斜边上的中线等于斜边的一半.如:在Rt ABC ∆中,90ABC ∠=︒,BD 是斜边AC 的中线,则12BD AD DC AC ===.(13)矩形的判定:①对角线相等的平行四边形是矩形. ②有三个角是直角的四边形是矩形.③对角线相等且互相平分的四边形是矩形. ④有一个角是直角的平行四边形叫做矩形. (14)菱形:有一组邻边相等的平行四边形叫做菱形. (15)菱形的性质:①菱形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②菱形的四条边都相等.即:AB BC CD AD ===. ③菱形的对角线互相垂直平分,且每一条对角线平分一组对角.即:AC BD ⊥,12OA OC AC ==,12OB OD BD ==. 1122ABD CBD ADB CDB ABC ADC ∠=∠=∠=∠=∠=∠.1122BAC DAC BCA DCA BAD BCD ∠=∠=∠=∠=∠=∠.A OB ∆,BOC ∆,COD ∆,AOD ∆都是全等的三角形. 即:AOB ∆≌BOC ∆≌COD ∆≌AOD ∆AOB BOC COD AOD S S S S ====14S 菱形ABCD .(16)菱形的面积:两条对角线乘积的12.即:12S AC BD =⋅.(17)菱形的判定:①有一组邻边相等的平行四边形叫做菱形.②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形. ④对角线互相垂直平分的四边形是菱形.(18)正方形:有一组邻边相等且有一个角是直角的平行四边形是正方形.正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形;既是矩形又是菱形的四边形是正方形. (19)正方形的性质:①正方形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②正方形的四条边都相等.即:AB BC CD AD ===.正方形的四个角都是直角.即:90BAD BCD ABC ADC ∠=∠=∠=∠=︒ ③正方形的对角线相等且互相垂直平分,且每一条对角线平分一组对角.即: A C B D ⊥,AC BD =,12OA OC AC ==,12OB OD BD ==. DCBAODCB AODCB A114522ABD CBD ADB CDB ABC ADC ∠=∠=∠=∠=∠=∠=︒.114522BAC DAC BCA DCA BAD BCD ∠=∠=∠=∠=∠=∠=︒.A OB ∆,BOC ∆,COD ∆,AOD ∆都是全等的三角形. 即:AOB ∆≌BOC ∆≌COD ∆≌AOD ∆AOB BOC COD AOD S S S S ====14S 正方形ABCD .(20)正方形的面积:边长⨯边长或对角线乘积的一半.即:S AB BC =⋅或12S AC BD =⋅. (21)正方形的判定:①有一组邻边相等且有一个角是直角的平行四边形是正方形.②有一组邻边相等的矩形是正方形.③有一个角是直角的菱形是正方形.④对角线相等且互相垂直平分的四边形是菱形. ⑤对角线相等的菱形是正方形. ⑥对角线互相垂直的矩形是正方形.(22)平行四边形的中点四边形是平行四边形;菱形的中点四边形是矩形;矩形的中点四边形是菱形;正方形的中点四边形是正方形. (23)平行四边形不是轴对称图形;矩形是轴对称图形,有2条对称轴;菱形是轴对称图形,有2条对称轴;正方形是轴对称图形,有4条对称轴.第十九章:一次函数(1)常量与变量:在某一变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量.(2)函数:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说y 是x 的函数,x 是自变量. (3)函数值:函数值是指自变量在其取值范围内取某个值时,函数与之对应的唯一确定的值.如果当x a =时,y b =,那么b 叫做当自变量的值为a 时的函数值.(4)解析式:像23y x =-+这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式.(5)函数的图象:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. (6)描点法画函数图象的步骤:①列表; ②描点; ③连线;(7)判断分析函数图象的突破点:①明确两坐标轴所表示的意义;②明确图象上的点所表示的意义;③弄清图象上的转折点、最高(低)点所表示的意义;④弄清上升线和下降线所 表示的意义.(8)函数的表示方法:解析式法;列表法;图象法.例1:小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y 与时间x 之间的对应关系. 第(1)段:小明从家到食堂,相距0.6km ,用时8min . 第(2)段:小明在食堂用餐,用时()25817min -=. 第(3)段:小明从食堂到图书馆,食堂与图书馆相距()0.80.60.2km -=,用时()28253min -=.食堂与家相距()0.800.8km -=.第(4)段:小明在图书馆看书,用时()582830min -=. 第(5)段:小明从图书馆到家,用时()685810min -=,速度()0.8100.08/min v km =÷=.例2:画出函数21y x =+的图象.第三步:连线(9)正比例函数:一般地,形如()0y kx k =≠(k 是常数)的函数,叫做正比例函数,其/miny /中k 叫做比例系数或斜率.例:①0.2y x =-; ②2xy =; ③22y x =; ④24y x =. 在上面式子中: ①②是正比例函数;③④不是正比例函数.(10)正比例函数()0y kx k =≠的图象性质:①正比例函数()0y kx k =≠的图象是一条经过原点的直线.②当0k >时,函数图象从左往右上升,y 随x 的增大而增大(增函数),函数图象经过第一、三象限.③当0k <时,函数图象从左往右下降,y 随x 的增大而减小(减函数),函数图象经过第二、四象限.④k 越大,直线越倾斜(越陡).⑤正比例函数()0y kx k =≠的图象经过点()0,0和()1,k .(11)一次函数:一般地,形如()0y kx b k =+≠(,k b 是常数)的函数,叫做一次函数.当0b =时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数. (12)一次函数()0y kx b k =+≠的图象性质: ①一次函数()0y kx b k =+≠的图象是一条直线.②当0k >时,函数图象从左往右上升,y 随x 的增大而增大(增函数). ③当0k <时,函数图象从左往右下降,y 随x 的增大而减小(减函数). ④当0b >时,函数图象交y 轴的正半轴. ⑤当0b =时,函数图象经过原点. ⑥当0b <时,函数图象交y 轴的负半轴.⑦k 越大,直线越倾斜(越陡).正比例函数和一次函数的图象都是直线,画函数图象时只需要找两个点,即两点作图法.(13)函数的平移:x :左+右-;y :上+下-.例:6y x =-向上平移5个单位长度得到:65y x =-+. 6y x =-向下平移3个单位长度得到:63y x =--.2y x =-向左平移3个单位长度得到:()2326y x x =-+=--.2y x =-向右平移2个单位长度得到:()2224y x x =--=-+.22y x =--向左平移2个单位,向下平移3个单位得到:()222329y x x =-+--=--. 32y x =-+向右平移2个单位,向上平移3个单位得到:()3223311y x x =--++=-+.(14)在一次函数()11110y k x b k =+≠和()22220y k x b k =+≠中:①当12k k =时,1y ∥2y . ②当121k k =-时,12y y ⊥.例:直线21y x =--与26y x =-+互相平行;直线21y x =--与162y x =+互相垂直. (15)直线与x 轴相交0y =;直线与y 轴相交0x =(16)待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.例:已知一次函数的图象过点()3,5和()4,9--,求这个一次函数的解析式.解:设这个一次函数的解析式为()0y kx b k =+≠.函数图象经过点()3,5和()4,9--∴3549k b k b +=⎧⎨-+=-⎩解得:21k b =⎧⎨=-⎩∴这个一次函数的解析式为21y x =-.(17)一次函数与方程、不等式:①一次函数与方程的关系:函数值y 为某一特定值时,求自变量x 的值. ②一次函数与不等式的关系:函数值y 为某一范围时,求自变量x 的取值范围.(18)两个一次函数图象相交时,它们有相同的横坐标,相同的纵坐标.例:求函数5y x =+与0.525y x =+的交点坐标. 解:50.525x x +=+ 20x =把20x =代入5y x =+中得20525y =+=.∴函数5y x =+与0.525y x =+的交点坐标为()20,25. (19)一次函数的实际应用:①方案选择问题 ②租车问题. 两个问题的考察实则是考察自变量的取值范围 例题:重点掌握人教版教材109页的第15题.第二十章:数据的分析(1)算术平均数:一般地,我们把n 个数12,,,n x x x ⋅⋅⋅,的和与n 的比值,叫做这n 个数的算术平均数,简称平均数,记作“__x ”.即__12nx x x x n++⋅⋅⋅+=.(2)加权平均数:一般地,若n 个数12,,,n x x x ⋅⋅⋅的权分别是12,,,n w w w ⋅⋅⋅,则__112212n nnx w x w x w x w w w ++⋅⋅⋅+=++⋅⋅⋅+叫做这n 个数的加权平均数.(3)在求n 个数的平均数时,如果1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次,(这里12k f f f n ++⋅⋅⋅+=),那么这n 个数的平均数为__1122k kx f x f x f x n++⋅⋅⋅+=.也叫做12,,,k x x x ⋅⋅⋅这k 个数的加权平均数,其中12,,,k f f f ⋅⋅⋅分别叫做12,,,k x x x ⋅⋅⋅的权.(4)中位数:将-组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则最中间两个数的平均数就是这组数据的中位数.(5)众数:把一组数据中出现次数最多的那个数据叫做这组数据的众数.注:一组数据的众数可能不止一个,也可能没有众数.(6)平均数、中位数、众数都刻画了数据的集中趋势,但它们各有特点.平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,因此在现实生活中较为常用.但它受极值(一组数据中与其余数据差异很大的数据)的影响较大.当一组数据中某些数据多次重复出时,众数往往是人们关心的一个量,众数不易受极端值的影响.中位数只需要很少的计算,它也不易受极端值的影响.(7)方差:设__x 是n 个数据12,,,n x x x ⋅⋅⋅的平均数,各个数据与平均数只差的平方的平均数,叫做这n 个数据的方差.用“2s ”表示,即:222______2121n s x x x x x x n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 方差越大,数据的波动越大,方差越小,数据的波动越小.(8)标准差:方差的算术平方根称为标准差.s =(9)极差:一组数据中的最大值与最小值的差称为极差.。

八年级下册数学书的知识点

八年级下册数学书的知识点

八年级下册数学书的知识点包括以下内容:
一、代数运算
1. 有理数的加减乘除运算及其性质
2. 一元一次方程和不等式的解法
3. 平方根、绝对值、分式、分式方程等的运算及应用
二、几何基础
1. 直角三角形及斜角三角形的性质
2. 平面图形的面积和周长的计算
3. 空间几何图形的面积和体积的计算
三、概率统计
1. 随机事件的概念和基本性质
2. 频率和概率的关系
3. 抽样调查和数据处理的方法
四、函数基础
1. 函数的概念和基本性质
2. 一次函数、二次函数的图像和性质
3. 反比例函数和指数函数的概念和应用
五、图形的变换
1. 平移、旋转、对称和放缩的概念和性质
2. 直线对称、中心对称和轴对称的应用
3. 图形变换对坐标的影响和应用
以上是八年级下册数学书的主要知识点,每个知识点都包含着多个子知识点,需要同学们认真理解和掌握。

同时,巩固前一年的数学基础也是十分重要的,只有掌握好基础才能更好地学习新
知识。

数学是一门需要不断练习和思考的学科,同学们需要勤奋用心,不断提高自己的数学能力。

人教版八年级数学下册知识点总结

人教版八年级数学下册知识点总结

二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2;注意使用)0a ()a (a 2≥=.3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4.二次根式的乘法法则:)0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (ba ba >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1))0b ,0a (bab a >≥=;(2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式:a a 与,b a b a +-与,b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.勾股定理1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是2图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.222a b c +=方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab ∆∆=+=⋅+梯形,化简得证:222a b c +=3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在∠=︒,则c=,CABC∆中,90b=,a=②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a,b,c满足222+=,那么这个三角形是直角三角形,其中c为斜边a b c①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b+与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222+<,时,以a,b,c为三边的a b c三角形是钝角三角形;若222+>,时,以a,b,c为三边的三角形是锐角三角形;a b c②定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,ca b c满足222+=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边a c b③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222+=中,a,b,c为正整数时,a b c称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。

2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。

3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。

4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。

5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。

一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。

根据人教版八年级数学下册指数的知识点汇总

根据人教版八年级数学下册指数的知识点汇总

根据人教版八年级数学下册指数的知识点
汇总
本文档旨在对人教版八年级数学下册涉及的指数知识点进行汇总和总结,帮助学生更好地理解和掌握这一部分内容。

1. 指数的定义和性质
- 指数的概念:指数是表示乘方的简化写法,由底数和指数两部分组成。

- 指数的性质:指数运算有乘法、除法、幂运算、零指数和负指数等特点。

2. 指数运算
- 指数运算法则:包括相同底数相乘、相同底数相除、幂的乘方、幂的除法、零指数、负指数等。

3. 带有指数的数学表达式
- 带有指数的数:包括实数、规范科学计数法等。

4. 对数与指数的关系
- 对数的概念:对数是指数运算的逆运算,用来求解指数方程。

- 对数的性质:对数运算有乘法、除法、幂运算等特点。

5. 对数运算
- 对数运算法则:包括换底公式、对数运算与指数运算的关系等。

6. 实际问题中的指数运算
- 实际问题的建模和转化:通过列式、折线图、指数函数图像
等方式将实际问题转化为指数运算问题。

以上是八年级数学下册涉及的指数知识点的汇总和总结。

通过
研究和掌握这些知识点,同学们将能够更好地应用指数运算解决实
际问题,并提升数学应用能力。

请注意此文档所提供的内容仅供参考,具体内容以教材为准。

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。

2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。

3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。

4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。

5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。

6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。

知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

2) 注意每一步运算的算理。

3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。

2.二次根式的加减运算:先化简,再运算。

3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。

2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例题:1.下列各式中一定是二次根式的是()。

A。

$-3$;B。

$x$;C。

$x^2+1$;D。

$x-1$2.$x$取何值时,下列各式在实数范围内有意义。

1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。

初二数学下册知识点人教版

初二数学下册知识点人教版

初二数学下册知识点人教版一、有理数的运算初二数学下册的第一个章节是有理数的运算。

有理数分为正有理数、负有理数和零,包括整数、分数、小数等。

有理数进行加、减、乘、除运算时,有一些基本的规律需要掌握。

例如:1.同号两数相加,异号两数相减;2.负数与正数相乘结果为负数,同号两数相乘结果为正数;3.除法的规律为“乘倒数”。

需要注意的是,运算时要进行数学推导,属于数学的精髓之一。

二、图形的认识初二数学下册的第二个章节是图形的认识。

这一章节主要介绍了平面几何和立体几何两部分内容。

1.平面几何中,需要掌握解题方法和步骤,如平移、旋转、对称等操作。

平面几何中的图形有:点、线、面的基本概念、直线、角、三角形、四边形、圆等。

需要掌握图形性质、判定定理和证明方法。

2.立体几何中,需要认识各种几何体的性质和分类方法。

例如,球体、棱锥、棱柱等,需要掌握计算它们的面积和体积的方法。

三、统计与概率初二数学下册的第三个章节是统计与概率。

这一章节侧重于对各种数据进行统计和分析,同时介绍了概率的基本知识,包括概率的定义、计算公式等。

1.在统计方面,需要掌握数据的收集、整理、展示和分析方法。

例如,频数表和频数直方图的制作方法、比较数据的方法、数据的变化趋势等。

2.在概率方面,要掌握基本概念和计算方法。

例如,“肯定事件”和“不可能事件”等概念,掌握计算概率的方法,如加法原理和乘法原理等。

四、函数初二数学下册的第四个章节是函数。

函数是数学中一个非常重要的概念,是数学中的基础。

1.需要掌握函数的定义、图象、性质和分类等内容,同时也要学习函数的运算、逆函数及它的性质和计算方法等。

2.对于图象的绘制和解析,需要掌握函数的参数、函数的变化趋势,通过散点图等方法来进行分析和研究。

五、线性关系初二数学下册的第五个章节是线性关系。

线性关系是又函数的一种,是对直线上的变化趋势的分析。

1.需要掌握直线的方程和一次函数的定义及性质,并且要掌握一次函数与几何直线之间的关系。

全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。

其中,a被称为被开方数。

最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。

如果两个二次根式的被开方数相同,那么它们就是同类二次根式。

二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。

二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。

应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。

勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。

勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。

直角三角形还有一些其他的性质,需要我们认真研究和掌握。

1.直角三角形的两个锐角互余,即∠A+∠B=90°。

2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。

4.三角形面积公式为AB•CD=AC•BC。

5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。

6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。

7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。

8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。

9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。

10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。

新人教版八年级下册数学知识点归纳

新人教版八年级下册数学知识点归纳

新人教版八年级下册数学学问点归纳二次根式【学问回忆】1.二次根式:式子a 〔a ≥0〕叫做二次根式。

2.最简二次根式:必需同时满意以下条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。

4.二次根式的性质:〔1〕〔a 〕2=a 〔a ≥0〕; 〔2〕 5.二次根式的运算:〔1〕因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.〔2〕二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. 〔3〕二次根式的乘除法:二次根式相乘〔除〕,将被开方数相乘〔除〕,所得的积〔商〕仍作积〔商〕的被开方数并将运算结果化为最简二次根式.a 〔a >0〕==a a 2a -〔a <0〕0 〔a =0〕;ab =a ·b 〔a≥0,b≥0〕;b ba a=〔b≥0,a>0〕. 〔4〕有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的安排律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是〔 〕 A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例5、数a ,b ,假设2()a b -=b -a ,那么 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简及计算 例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把〔a -b 〕-1a -b 化成最简二次根式例4、先化简,再求值:11()ba b b a a b ++++,其中51+,51-.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值 〔1〕、根式变形法当0,0a b >>时,①假如a b >>a b <<例1、比较的大小。

人教版初二数学下册知识点

人教版初二数学下册知识点

人教版初二数学下册知识点人教版初二数学下册知识点概述一、实数1. 实数的概念:实数包括有理数和无理数,是有理数的扩展。

2. 算术平方根:了解算术平方根的定义,掌握开平方的方法。

3. 立方根:理解立方根的定义,能够计算一个数的立方根。

4. 无理数:认识无理数,了解无理数与有理数的区别。

5. 实数的运算:掌握实数的加、减、乘、除运算规则。

二、代数式1. 代数式的基本概念:理解代数式的定义,区分单项式和多项式。

2. 单项式与多项式:掌握单项式的系数、次数,多项式的项数、次数。

3. 同类项与合并同类项:理解同类项的概念,学会合并同类项。

4. 代数式的加减运算:掌握代数式加减的运算法则。

5. 代数式的乘除运算:理解并掌握单项式与多项式相乘的方法。

三、方程与不等式1. 一元一次方程:复习一元一次方程的解法,理解方程的解和解方程的概念。

2. 一元一次不等式:学习一元一次不等式的解法,掌握不等式的解集表示。

3. 一元一次方程与不等式的综合应用:能够将方程和不等式应用于实际问题中。

4. 二元一次方程组:学习二元一次方程组的解法,包括代入法和消元法。

5. 一元二次方程:了解一元二次方程的基本概念,掌握求解方法,如直接开平方法、配方法、公式法和因式分解法。

四、几何1. 平行线的性质:理解平行线的性质,掌握同位角、内错角、同旁内角的概念。

2. 三角形的基础知识:学习三角形的分类,包括等边三角形、等腰三角形和直角三角形。

3. 三角形的内角和:掌握三角形内角和定理。

4. 特殊三角形的性质:学习等腰三角形和等边三角形的性质。

5. 平行四边形:了解平行四边形的性质和判定条件。

6. 圆的基本性质:学习圆的基本性质,包括圆心、半径、直径、弦、弧等概念。

7. 圆周角:理解圆周角定理,包括同弧圆周角相等、直径所对圆周角是直角等。

8. 圆的面积和周长:掌握圆的面积和周长的计算公式。

五、统计与概率1. 统计的基本概念:了解数据的收集、整理、描述和分析过程。

人教版八年级下册数学知识点总结

人教版八年级下册数学知识点总结

人教版八年级下册数学知识点总结(一)勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。

,那么这个三角形是直角三角形。

3.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理) 第十九章四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

人教版八年级下册数学知识点总结(二)数据的分析1.加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。

每章节都包括基本概念、计算方法和应用场景等内容。

阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。

初中八年级下册数学知识点

初中八年级下册数学知识点

初中八年级下册数学知识点
1. 勾股定理:勾股定理是一个基本的几何定理,用于描述直角三角形中三条边的关系。

在八年级下册,学生将学习如何使用勾股定理解决实际问题。

2. 二次根式:二次根式是数学中的一种表达式,表示一个数的平方根。

学生需要掌握二次根式的性质、运算规则以及与实数的关系。

3. 一元二次方程:一元二次方程是包含一个未知数的二次方程。

学生需要掌握一元二次方程的解法、应用以及与现实生活的关系。

4. 平面直角坐标系:平面直角坐标系是一个基本的数学工具,用于描述平面上的点的位置。

学生需要掌握如何使用坐标系表示点的位置,以及如何通过坐标系解决实际问题。

5. 一次函数与反比例函数:一次函数和反比例函数是两种基本的函数形式。

学生需要掌握它们的性质、图像以及在实际生活中的应用。

6. 数据的收集与整理:学生需要掌握如何收集和整理数据,以及如何使用图表来表示数据。

这将帮助他们更好地理解和分析现实生活中的问题。

以上是初中八年级下册数学的主要知识点。

在学习过程中,学生需要注重理解和应用,通过大量的练习来巩固所学知识。

人教版八年级下册数学知识点总结归纳

人教版八年级下册数学知识点总结归纳

人教版八年级下册数学知识点总结归纳八班级下册数学重点学问点1一次函数学问点(一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。

当b=0时,一次函数y=kx,又叫做正比例函数。

(二)一次函数的图像及性质1.在一次函数上的任意一点P(x,y),都满意等式:y=kx+b。

2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

3.正比例函数的图像总是过原点。

4.k,b与函数图像所在象限的关系:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。

当k0,b0时,直线通过一、二、三象限;当k0,b0时,直线通过一、三、四象限;当k0,b0时,直线通过一、二、四象限;当k0,b0时,直线通过二、三、四象限;当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

2分解因式一、公式:1、ma+mb+mc=m(a+b+c);2、a2-b2=(a+b)(a-b);3、a22ab+b2=(ab)2。

二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

1、把几个整式的积化成一个多项式的形式,是乘法运算。

2、把一个多项式化成几个整式的积的形式,是因式分解。

3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法.2、运用公式法。

人教版八年级数学下册知识点归纳总结

人教版八年级数学下册知识点归纳总结

人教版八年级数学下册知识点归纳总结温馨提示:文档内容仅供参考以下是人教版八年级数学下册的知识点归纳总结:一、函数1.函数的概念和表示方法;2.函数的性质:奇偶性、单调性、周期性;3.函数的图像及其特征:零点、最值、拐点、对称轴、渐近线;4.一次函数、二次函数、指数函数、对数函数、三角函数等基本函数的图像及其性质;5.函数的运算:加减、乘除、复合运算等。

二、立体几何1.空间几何图形的基本概念:点、线、面、角、平行、垂直、相交等;2.空间几何图形的投影及其性质;3.空间几何图形的计算:体积、表面积、侧面积等;4.立体几何图形的相似性及其应用;5.空间几何图形的位置关系:平面与平面的位置关系、直线与平面的位置关系、直线与直线的位置关系等。

三、数据的处理1.统计图表的制作与分析:条形图、折线图、饼图、散点图等;2.统计分析中的基本概念:频率、频率分布、平均数、中位数、众数、极差等;3.统计分析中的常见应用:正态分布、抽样等;4.概率的基本概念:样本空间、事件、概率等;5.概率的计算方法:古典概型、几何概型、条件概率等;6.概率的应用:排列组合问题、随机事件的分布等。

四、三角形1.三角形的基本概念:角度、边长、高、中线、中位线、角平分线等;2.三角形的相似性及其应用;3.三角形的面积公式及其应用;4.三角形的角度关系:内角和、外角和、同旁内角等;5.三角形的角度平分线定理、海伦公式等。

五、数系和代数式1.有理数的概念及其运算;2.实数的概念及其运算;3.代数式的概念及其基本性质;4.代数式的加减、乘除、合并同类项、提公因数等运算;5.解一元一次方程、一元二次方程及其应用;6.解一元一次不等式及其应用。

以上是人教版八年级数学下册的主要知识点,希望对您有所帮助。

初中数学各章节知识点总结(人教版)八下

初中数学各章节知识点总结(人教版)八下

八年级数学(下)知识点人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五章内容。

第十六章、分式知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。

其中A叫做分式的分子,B叫做分式的分母。

2.分式有意义的条件:分母不等于03.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).分式和分数有着许多相似点。

人教版八年级下册数学知识点归纳

人教版八年级下册数学知识点归纳

人教版八年级下册数学知识点归纳1. 反比例函数:一般地,函数y =xk(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数值的范围也是一切非零实数。

2. 反比例函数图象及其性质:反比例函数的图像是双曲线。

双曲线既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和 y=-x 。

对称中心是:原点反比例函数 )0(≠=k xky k 的符号K > 0K < 0图像yOxyOx性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k>0时,双曲线在第一、三象限。

在每个象限内,y 随x 的增大而减小。

①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k<0时,双曲线在第二、四象限。

在每个象限内,y 随x 的增大而增大。

3. |k|的几何意义:表示反比例函数图像上的某一点,向两条坐标轴所作的垂线与x 轴、y 轴围成的矩形的面积。

如图:S 四边形OAPB = |k|4、反比例函数解析式的确定----待定系数法。

由于在反比例函数xky =中,只有一个待定系数k ,因此只需要一对x 、y 的对应值或图像上的一个点的坐标,即可求出k 的值,从而确定函数解析式。

xy 01 2y = — k xy=xy=-x第十八章 勾股定理18.1 勾股定理1.勾股定理:直角三角形的两条直角边长的平方和等于斜边长的平方。

( 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2 ) 2. 定理:经过证明被确认正确的命题。

3. 勾股定理的证明方法:方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

4.利用勾股定理,可以作出2、3、5、7、13、17 ……18.2 勾股定理的逆定理1. 勾股定理逆定理:如果三角形三边长a 、b 、c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册知识点归纳总结第十六章 分式1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C ) 3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则: 分式乘方要把分子、分母分别乘方。

,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减。

混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,nna a 1=- ()0≠a 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:nm nmaa a +=⋅; (4)同底数的幂的除法:nm nmaa a -=÷( a ≠0);(2)幂的乘方:mn nm a a =)(; (5)商的乘方:n nn ba b a =)(();(b ≠0)(3)积的乘方:nn n b a ab =)(;7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时方程两边同乘以最简公分母时,最简公分母可能为0,这样就产生了增根,解分式方程一定要验根。

解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根;(5)写解。

增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v 顺水=v 静水+v 水. v 逆水=v 静水-v 水.8.科学记数法:把一个数表示成na 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法. 用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)第十七章 反比例函数1.定义:形如y =x k (k 为常数,k≠0)的函数称为反比例函数。

其他形式xy=k 1-=kx y xk y 1=2.图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x 和 y=-x 。

对称中心是:原点3.性质:当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小; 当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大。

4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

5.反比例函数双曲线,待定只需一个点,正k 落在一三限,x 增大y 在减,图象上面任意点,矩形面积都不变,对称轴是角分线x 、y 的顺序可交换。

bcad c d b a d c b a bd ac d c b a =⋅=÷=⋅;nnnb a b a =)(CB C A B A ⋅⋅=CB CA B A ÷÷=1、反比例函数的概念:一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质反比例函数 )0(≠=k xky k 的符号k>0 k<0图像yO xyO x性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k>0时,函数图像的两个分支分别 在第一、三象限。

在每个象限内,y 随x 的增大而减小。

①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k<0时,函数图像的两个分支分别 在第二、四象限。

在每个象限内,y 随x 的增大而增大。

4、反比例函数解析式的确定:确定及诶是的方法仍是待定系数法。

由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

5、反比例函数中反比例系数的几何意义:如下图,过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙。

k S k xy xky ==∴=,, 。

第十八章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。

,那么这个三角形是直角三角形。

3.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)ACBD4.直角三角形的性质(1)、直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90° (2)、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°可表示如下:⇒BC=21AB ∠C=90° (3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点5、常用关系式:由三角形面积公式可得:AB ∙CD=AC ∙BC6、直角三角形的判定1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

7、命题、定理、证明1、命题的概念:判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

2、命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

3、公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

4、定理:用推理的方法判断为正确的命题叫做定理。

5、证明:判断一个命题的正确性的推理过程叫做证明。

6、命题证明的一般步骤:(1)根据题意,画出图形。

(2)根据题设、结论、结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

8、三角形中的中位线:连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

9、数学口诀.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

第十九章 四边形平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定1.两组对边分别相等的四边形是平行四边形 2.对角线互相平分的四边形是平行四边形; 3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

AC=BD矩形判定定理:1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。

正方形既是矩形,又是菱形。

正方形判定定理: 1.邻边相等的矩形是正方形。

2.有一个角是直角的菱形是正方形。

梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

相关文档
最新文档