微波技术与天线02367理论

合集下载

《微波技术与天线》课程标准word资料17页

《微波技术与天线》课程标准word资料17页

《微波技术与天线》课程教学标准目录一、课程名称二、适用专业三、必备基础知识四、课程的地位和作用五、主要教学内容描述六、重点和难点七、内容及要求模块一:电磁场理论基础1、教学内容2、教学要求3、教学手段及方法模块二:微波技术1、教学内容2、教学要求3、教学手段及方法模块三:天线技术1、教学内容2、教学要求3、教学手段及方法模块四:电波传播1、教学内容2、教学要求3、教学手段及方法八、说明1、建议使用教材和参考资料2、模块学时分配3、考核方法及手段4、注意事项5、其他说明一、课程名称:微波技术与天线二、适用专业:通信技术、通信网络与设备、移动通信技术、电子信息工程技术等通信工程系各专业。

三、必备基础知识1.应当学习的课程(1)高等数学知识(2)普通物理知识(3)电路分析基础(4)低频电子线路(5)高频电子线路(6)数字电子线路2.应当掌握的基本知识(1)微积分知识(2)矢量代数知识(3)极坐标与球坐标知识(4)场与场论知识(5)电磁波的相关知识(6)麦克方程组知识3.应当具有的技能(1)电路安装与调试技能(2)通信设备的使用技能(3)通信网络的安装与调试技能(4)电路的安装与调试技能四、课程的地位和作用1、课程的地位《微波技术与天线》是通信工程系通信技术、通信网络与设备、移动通信技术、电子信息工程技术等各专业的一门专业方向课程。

2、课程的作用《微波技术与天线》是通信技术专业的主要专业基础课之一,是现代通信工程技术人员必备的知识。

微波技术、天线技术与电波传播是无线通信系统的三个重要环节。

本课程的任务是理解麦克斯韦方程组,了解电磁波的形成、分类与极化;了解天线在无线通信系统中作用以及天线的分类;熟悉天线辐射的基本原理;熟悉发射天线与接收天线的主要特性参数;熟悉对称天线、折合天线、引向天线、电视发射天线、移动通信基站天线等线天线的结构、特点、工作原理与安装调试方法;熟悉螺旋天线、对数周期天线等宽频带天线的结构、特点、工作原理与安装调试方法;熟悉天线阵的原理、分类以及辐射特性;熟悉缝隙天线与微带天线的结构、主要特点、辐射原理与方向特性;熟悉喇叭天线、抛物面天线、卡塞格伦天线等面天线的结构、主要特点、辐射原理与方向特性;熟悉各种天线的安装、调试与测试技术;熟悉地波传播、天波传播与视距传播等电波传播知识;熟悉均匀传输线、波导、微波集成传输线、微波网络与微波元器件等微波技术知识。

微波技术与天线复习知识要点

微波技术与天线复习知识要点

《微波技术与天线》复习知识要点绪论●微波的定义: 微波就是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。

●微波的频率范围:300MHz~3000GHz ,其对应波长范围就是1m~0、1mm●微波的特点(要结合实际应用) :似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压与输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。

两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Zin(z)- Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态( 要会判断 )1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压与电流振幅不变▪电压与电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:就是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。

▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源与传输线就是匹配的,这种电源称之为匹配电源。

此时,信号源端无反射。

▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。

共轭匹配的目的就就是使负载得到最大功率。

●传输线的阻抗匹配(λ/4阻抗变换)(P15与P17)●阻抗圆图的应用(*与实验结合)史密斯圆图就是用来分析传输线匹配问题的有效方法。

1.反射系数圆图:Γ(z)=|Γ1|ej(Φ1-2βz)= |Γ1|ejΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz就是z处反射系数的幅角。

微波技术与天线

微波技术与天线

微波技术与天线1. 引言微波技术是一种高频电磁波技术,其波长在1mm到1m之间。

微波技术在通信、雷达、卫星通信和无线电频谱等领域有着广泛的应用。

而天线是将电磁波转换为电信号或者将电信号转换为电磁波的设备。

本文将介绍微波技术与天线的基本原理和应用。

2. 微波技术的基本原理微波技术是利用微波电磁波来传输和处理信息的技术。

微波电磁波具有较高的频率和较短的波长,能够提供更高的频宽和更大的信息容量。

微波技术的基本原理包括以下几个方面:2.1 微波的特性微波电磁波是一种高频率的电磁波,其频率范围为300MHz到300GHz,相应的波长范围为1mm到1m。

微波的特性包括强迫共振、反射、透射、衍射、折射和干涉等。

2.2 微波传输技术微波传输技术是将微波信号通过天线发射和接收的过程。

在微波传输中,需要考虑信号的衰减、传输损耗、干扰等因素。

2.3 微波放大器微波放大器是用来放大微波信号的设备,常见的微波放大器有二极管放大器、管式放大器和固态放大器等。

2.4 微波滤波器微波滤波器是用来对微波信号进行滤波的设备,常见的微波滤波器有带通滤波器、带阻滤波器和低通滤波器等。

2.5 微波集成电路微波集成电路是将多个微波器件集成在一个芯片上的技术,它可以提高系统的集成度和性能。

3. 天线的基本原理天线是将电磁波转换为电信号或者将电信号转换为电磁波的设备。

天线的基本原理包括以下几个方面:3.1 天线的类型常见的天线类型包括单极天线、双极天线、定向天线、全向天线和宽带天线等。

3.2 天线的工作原理天线的工作原理是将电流转换为电磁波或者将电磁波转换为电流。

天线的工作原理涉及到电磁场理论和天线的电路模型。

3.3 天线的增益与方向性天线的增益是指天线在某一方向上辐射或接收的电磁波功率与同样功率电源的参考天线(标准天线)相比的比值。

天线的方向性是指天线在特定方向上的辐射或接收性能。

3.4 天线的设计与优化天线的设计与优化是指根据特定应用的需求,选择适当的天线类型、形状、材料和尺寸,并进行相应的电磁仿真和优化。

微波技术与天线

微波技术与天线

知识梳理绪论微波、天线与电波传播是无线电技术的一个重要组成部分,它们三者研究的对象和目的有所不同。

微波主要研究如何引导电磁波在微波传输系统中的有效传输,它的特点是希望电磁波按一定要求沿微波传输系统无辐射的传输,对传输系统而言辐射是一种能量的损耗。

天线的任务则是将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波,因此天线有两个基本作用:一个是有效地辐射或接收电磁波,另一个是把无线电波能量转换为导行波能量。

电波传播则是分析和研究电波在空间的传播方式和特点。

微波、天线与电波传输播三者的共同基础是电磁场理论,三者都是电磁场在不同边值条件下的应用。

第一章均匀传输线理论微波传输线是用以传输微波信息和能量的各种形式的传输系统的总称, 它的作用是引导电磁波沿一定方向传输, 因此又称为导波系统, 其所导引的电磁波被称为导行波。

一般将截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统称为规则导波系统, 又称为均匀传输线。

把导行波传播的方向称为纵向, 垂直于导波传播的方向称为横向。

无纵向电磁场分量的电磁波称为横电磁波,即TEM波。

另外, 传输线本身的不连续性可以构成各种形式的微波无源元器件, 这些元器件和均匀传输线、有源元器件及天线一起构成微波系统。

1.1均匀无耗传输线的输入阻抗定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗两个特性:(1)λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Zin(z)=Zin(z+λ/2);(2)λ/4变换性:Zin(z)-Zin(z+λ/4)=Z021.2均匀无耗传输线的三种传输状态(1) 行波状态:无反射的传输状态,匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相;(2) 纯驻波状态:全反射状态,负载阻抗分为短路、开路、纯电抗状态;(3)行驻波状态:传输线上任意点输入阻抗为复数。

1.3传输线的三类匹配状态(1)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。

自考 微波技术与天线02367 整理(科创学院)

自考 微波技术与天线02367 整理(科创学院)

第 1 章 电 磁 场 与 电 磁 波 的 基 本 原 理电 磁 场 的 基 本 方 程一、电磁场中的基本场矢量电磁场中的基本场矢量有四个:电场强度E,电位移矢量D,磁感应强度B 和磁场强度H 。

(一) 电场强度E 场中某点的电场强度E 定义为单位正电荷在该点所受的力,即 : 电场强度E 的单位为伏/米(V/m)。

(二) 电位移矢量D如果电解质中存在电场,则电介质中分子将被极化,极化的程度用极化强度P 来表示。

此时电介质中的电场必须用电位移矢量D 来描写。

它定义为 : 在SI 单位制中,D 的单位为库仑/米2(C/m2)。

对于线性媒质中某点的电极化强度P 正比于该点的电场强度E 。

在各向同性媒质中某点的P 和E 方向相同,即 : 故 ,式中ε=ε0(1+χe)称为介质的介电常数,而εr=1+χe 称为介质的相对介电常数。

(三) 磁感应强度B磁感应强度B 是描写磁场性质的基本物理量。

它表示运动电荷在磁场中某点受洛仑兹力的大小。

磁感应强度B 定义为: (四) 磁场强度H如果磁介质中有磁场,则磁介质被磁化。

描写磁介质磁化的程度用磁化强度M 来表 示。

此时磁介质中的磁场必须引入磁场强度H 来描写,它定义为: M 和H 的单位为安培/米 (A/m)。

在各向同性媒质中M 和H 方向相同。

即有: 故 B=μ0(H+M)=μ0(1+χm)H=μ0μrH=μH 。

式中χm 称为媒质的磁极化率,它是一个没有量纲的纯数。

μ=μ0(1+χm)称为媒质的磁导率。

μr=1+χm 称为相对磁导率。

二、全电流定律式中Jc 和Jd 分别为传导电流密度和位移电流密度,ic 和id 分别为传导电流和位移电流。

三、电磁感应定律感应电场沿着任意的封闭曲线的积分应等于感应电势,用数学式子表示即为 :由此得出一个结论:随时间变化的磁场会产生电场,而且磁通量的时间变化率愈大,则感应电动势愈大、电场愈强;反之则愈弱。

同时,穿过一个曲面S 的磁通量为:F E q =0D E P ε=+0e P x Eε=0000(1)e e r D E x E x E E E εεεεεε=+=+==F qv B=⨯0B H M μ=-m M Hχ=()()D e c l e d l Sc Sd H dl i i i dt H dl J J dS dD J dS dtφ===+=+=+⎰⎰⎰⎰ ml d e E dL dtφ==-⎰ m S l SB dS d E dL B dS dt φ==-⎰⎰⎰四、高斯定律 在普通物理中讨论了静电场的高斯定律,即: 式中V 是封闭曲面S 所包围的体积,∑q 为封闭曲面S 所包围的自由电荷电量的代数和,ρ为S 曲面所包围的自由电荷的体密度。

《微波技术与天线》课件

《微波技术与天线》课件
《微波技术与天线》PPT 课件
这个PPT课件将为您介绍微波技术与天线的基本概念和应用,从微波技术的 发展历程,到微波器件、微波天线、微波信号传输、微波测量技术、微波辐 射安全等多个方面进行深入讲解。
一、微波技术概述
微波技术的发展历程,基本特征以及在通信领域的应用。
二、微波器件
微波器件的分类
介绍不同类型的微波器件,如微波管、半导 体器件和微波集成电路。
微波天线的设计 与制造
提供设计和制造微 波天线的关键步骤 和技术。
四、微波信号传输
1 微波信号的特点
2 微波信号的传输方式
介绍微波信号的特点,如频率和传输距离。
讲述微波信号的不同传输方式,如无线和 光纤传输。
3 微波信号的功率损耗ຫໍສະໝຸດ 4 微波信号的干扰与抗干扰方法
解释微波信号传输中的功率损耗问题及其 影响。
半导体器件
讲述半导体器件在微波技术中的重要性和功 能。
微波管
深入解释微波管的工作原理和应用。
微波集成电路
介绍微波集成电路的设计和制造过程。
三、微波天线
微波天线的基本 原理
解释微波天线的工 作原理和其在通信 中的作用。
微波天线的分类
介绍不同类型的微 波天线,如方向性 天线和宽带天线。
微波天线的参数
讲述微波天线的常 见参数和它们的意 义。
提供微波信号干扰及其抗干扰方法的详细 信息。
五、微波测量技术
微波测量的基本 原理
介绍微波测量的基 本原理和常见应用。
微波频率计的工 作原理
解释微波频率计的 工作原理以及它在 微波测量中的作用。
微波功率计的工 作原理
深入讲解微波功率 计的工作原理和它 在微波测量中的应 用。

微波技术与讲义天线第三版绪论

微波技术与讲义天线第三版绪论
■有线通信

第0章 绪论
有线通信特点
●优点:抗干扰性好,节省费用、使用方便
●缺点:损耗大,不使用转发放大器的通信 距离是由指数规律决定的!
第0章 绪论
■无线通信
◇无线通信框图
第0章 绪论
◇无线通信损耗
r 其中 f 为无线电波频率, 为接收距离
第0章 绪论
无线通信特点
第0章 绪论
三、微波技术及特点
■微波频率范围
波长:1m~0.1mm
频率:300M~3000GHz
第0章 绪论
■微波波段划分
比如:微波炉的频率为2.45GHz左右, 属于LS波段
第0章 绪论
第0章 绪论
四、微波特点
1、波长短,易于实现窄波束定向辐射 ——微波遥感、雷达成像、卫星通信基础
例:抛物面天线的发射电磁波波束角:
140 D /
4、《天线》上、下册 [美] John D.Kraus著 章文勋译 电子工业出版社
第0章 绪论
课程学时安排(48学时)
章节
绪论 第1章 均匀传输线理论 第2章 规则金属波导 第3章 微波网络 第4章 微波元件
学时 章节
1 9 第5章 天线基础 7 第6章 线天线 6 第7章 面天线 6 第8章 天线测量
• 能源应用 高功率微波武器HPM、微波炉等
第0章 绪论
第0章 绪论
第0章 绪论
第0章 绪论
第0章 绪论
第0章 绪论
第0章 绪论
THANKS
1~0.1km 0.3~3MHz 2.7MHz
100~10m 3~30MHz 27MHz
10~1m 30~300MHz 270MHz
1~0.1m 0.3~3GHz 2700MHz

微波技术与天线

微波技术与天线

微波技术与天线微波技术与天线引言:微波技术是一种在20世纪发展起来的射频技术,它在通信、雷达、无线电频谱分析、医疗影像等领域有着广泛的应用。

而天线作为微波技术中的重要组成部分,起到了传输和接收信号的重要作用。

本文将重点探讨微波技术与天线的关系,以及它们在现代科技领域中的应用。

第一章:微波技术概述微波是一种电磁波,其频率范围在300兆赫兹(GHz)到300吉赫兹(GHz)之间,波长在1mm到1m之间。

由于微波的较高频率和较短波长,它具有许多特殊的性质,如方向性强、传输损耗小等。

这使得微波在通信和雷达系统中具有重要的地位。

微波技术是一种基于微波的射频技术。

它包含了一系列与微波信号相关的技术和设备,如微波电路、微波器件、微波源等。

微波技术的发展得益于材料科学和射频电子学的进步,随着计算机技术的发展,微波技术的应用也愈发广泛。

第二章:天线的基本原理天线是一种能够将电磁波转换为电流或将电流转换为电磁波的设备。

它一般由导电材料制成,通过合适的设计和布局,可以实现对特定频率范围的电磁波的传输和接收。

天线的基本原理是根据电流的加速度产生电磁波,并利用电磁波与传输介质之间的相互作用实现信号的传输或接收。

天线的特性与设计密切相关,包括天线的增益、方向性、极化等。

增益是指天线能够将电磁波能量聚焦在某一方向上的能力,方向性是指天线辐射或接收电磁波的主要方向,极化是指电磁波的电场矢量振动方向。

合理的天线设计能够提高通信系统的性能,如增强信号的强度和可靠性。

第三章:微波技术与天线的应用微波技术与天线在通信、雷达、无线电频谱分析、医疗影像等领域的应用越来越重要。

在通信系统中,微波技术与天线广泛应用于无线通信系统中。

它可以实现长距离、高速率的信号传输。

微波通信系统主要包括微波天线、微波发射器和微波接收器。

微波天线作为传输和接收信号的关键设备,承担着重要的角色。

合理选择和设计微波天线可以提高通信系统的性能,如增加系统的传输距离、提高通信速率等。

微波技术与天线

微波技术与天线

微波技术与天线Company number:【0089WT-8898YT-W8CCB-BUUT-202108】课程名称:微波技术与天线课程代码:02367(理论)第一部分课程性质与目标一、课程性质与特点《微波技术与天线》是电子与信息工程专业、通信技术专业的一门专业基础课。

该课程研究的基本内容是电磁场的基础理论、导行电磁波和导模概念、各个导行波场的求解方法、传输线的基本理论和计算方法、微波网络基础与器件、天线的基本概念、基本理论及天线的基本结构并且与现代通信紧密相关的新技术。

二、课程目标与基本要求通过本课程的学习,可以使学生掌握微波与天线的基本概念、基本理论和基本分析方法。

并在此基础上,学会利用所学知识去解决微波与天线领域的工程实际问题,为今后从事微波与天线研究和工程设计工作打下良好的基础。

三、与本专业其他课程的关系本课程的前导课程是高等数学、电路分析基础、数学物理方法、电磁场理论。

是无线通信技术的基础课程。

第二部分考核内容与考核目标第一章场论与静态电磁场一、学习目地与要求本章主要研究静态电磁场的基本规律和分析方法。

通过本章的学习,使学生能够理解电荷与电流密度的概念,理解并掌握电流连续性方程;理解并掌握静电场和恒定磁场的基础—库仑定律和安培力定律,牢固建立静电场和恒定磁场的概念,并能根据不同电荷分布和电流分布的相关电磁场强度计算表达式,计算一些典型电荷分布和电流分布的电场强度和磁感应强;牢固掌握静电场和恒定磁场的基本方程,深刻理解静电场和恒定磁场的基本性质;深刻理解电位和磁位的物理意义,掌握电位与电场强度、磁位与磁感应强度的关系;了解电介质极化和磁介质磁化的物理过程。

二、考核知识点与考核目标(一)场论(一般)识记:矢量运算中的相关规则及矢量恒等式理解:标量场与矢量场的概念、标量场的等值面和矢量场的矢量线、矢量场的散度与旋度、标量场的梯度。

应用:应学会应用矢量分析这一重要数学工具去研究电磁场在空间的分布和变化规律。

微波技术与天线复习知识要点

微波技术与天线复习知识要点

《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。

微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。

两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数行波驻波行驻波|Γ|010<|Γ|<1ρ1∞1<ρ<∞Z1匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。

源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。

此时,信号源端无反射。

共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。

共轭匹配的目的就是使负载得到最大功率。

传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。

微波网络《微波技术与天线》技术方案

微波网络《微波技术与天线》技术方案
微波网络《微波技术与天 线》技术方案
• 引言 • 微波技术原理 • 天线技术基础 • 微波网络系统设计 • 案例分析与实践 • 总结与展望
01
引言
背景介绍
微波网络是现代通信网络的重要 组成部分,具有传输容量大、覆 盖范围广、传输质量稳定等优点。
随着通信技术的发展,微波网络 在广播电视、移动通信、卫星通
信等领域得到了广泛应用。
《微波技术与天线》是微波网络 的核心技术之一,涉及微波传输、 微波信号处理、天线设计等多个
方面。
技术方案概述
技术方案主要包括以下几个方面
1. 微波传输技术:研究微波信号 的传输特性、传输介质、传输系 统设计等,提高微波网络的传输 容量和覆盖范围。
2. 微波信号处理技术:研究微波 信号的调制解调、压缩编码、频 谱管理等,提高微波信号的处理 效率和传输质量。
向或全向覆盖。
功率放大器
配置功率放大器以提高信号传 输距离和可靠性。
调制解调器
选用适当的调制解调器,以适 应不同的数据传输速率和调制
方式。
系统优化与调试
信道优化
根据实际传输环境,对信道进行优化,提高 信号传输质量。
故障排查
定期对系统进行故障排查,确保系统稳定可 靠运行。
参数调整
根据实际传输效果,对系统参数进行调整, 以达到最佳传输效果。
升级和维护
根据技术发展情况,对系统进行升级和维护, 以保持系统的先进性和稳定性。
05
案例分析与实践
实际应用案例
案例一
某城市地铁通信系统
案例二
山区应急通信保障
案例三
大型运动会安保通信
案例四
偏远地区网络覆盖
技术方案实施
方案一

微波技术与天线复习知识要点资料讲解

微波技术与天线复习知识要点资料讲解

微波技术与天线复习知识要点资料讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。

微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。

两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数行波驻波行驻波|Γ|010<|Γ|<1ρ1∞1<ρ<∞Z1匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。

源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。

此时,信号源端无反射。

共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。

微波技术与天线2

微波技术与天线2

2 Z0 Zin ( z ) 4 ZL
微波技术与天线------传输线理论
传输线的工作参量
反射系数: 传输线上任一点反射波的电压和入射波的电压之比
Z L Z 0 j 2 z ( z ) e Z L Z0
微波技术与天线------传输线理论
传输线的工作参量
驻波比: 沿线合成波波腹点电压振幅与波节点电压振幅之比
微波技术与天线------传输线理论
同轴线
由电磁场理论分析得到:
2 C ln(b / a )
L ln(b / a ) 2
Zg
Eg
~
匹配器1
Z0
匹配器2
Zl
微波技术与天线------传输线理论
同轴线
微波技术与天线------传输线理论
同轴线
内、外半径分别为a和b, 填充介质的磁导率和介电常 数分别为μ和ε。同轴线是微波技术中最常见的TEM模传 输线, 分为硬、软两种结构。硬同轴线是以圆柱形铜棒作 内导体, 同心的铜管作外导体, 内、外导体间用介质支撑, 这种同轴线也称为同轴波导。软同轴线的内导体一般采用 多股铜丝, 外导体是铜丝网, 在内、外导体间用介质填充, 外导体网外有一层橡胶保护壳, 这种同轴线又称为同轴电 缆。
微波技术与天线------传输线理论
传输线的工作状态——驻波状态
特点: ①沿线各点电压、电流在时间和空间上相差均为π/2 ②输入阻抗表现为纯电抗特性 ③传输线在驻波状态下不能传输功率
微波技术与天线------传输线理论
传输线的工作状态——行驻波状态
当微波传输线终端接任意复数阻抗负载时, 由信号源 入射的电磁波功率一部分被终端负载吸收, 另一部分则 被反射, 因此传输线上既有行波又有驻波, 构成混合波 状态, 故称之为行驻波状态。

微波技术及天线

微波技术及天线

课程内容总结微波、天线与电波传播是无线电技术的重要组成局部,它们三者研究的对象和目的有所不同。

本课程主要讨论了均匀传输理论,规那么金属波导,微波集成传输线,微波网络根底,微波元器件,天线辐射与接收理论,电波传播概论,线天线,通天线级微波应用系统等内容,具体内容在下面作简要概括:一、均匀传输线理论微波传输线的三种类型:双导体传输线,波导,介质传输线1.1 均匀传输线方程及其解共有三个参量:1〕均匀传输线方程2) 传播常数γ3) 相速υp 与波长λ1.2传输线阻抗与状态参量1.输入阻抗对无耗均匀传输线, 线上各点电压U (z )、电流I (z )与终端电压U l 、终端电流I l 的关系如下:2.反射系数 定义传输线上任意一点z 处的反射波电压〔或电流〕与入射波电压〔或电流〕之比为电压〔或电流〕反射系数, 即:⎪⎪⎭⎪⎪⎬⎫==++)()_()()_(i u z I z I Γz U z U Γ 3.输入阻抗与反射系数的关系U(z)=U+(z)+U-(z)=A 1e j βz [1+Γ(z )]I(z)=I+(z)+I-(z) = ej βz [1-Γ(z )]⎪⎭⎪⎬⎫+=+=)sin(j )cos()()sin(j )cos()(011011z Z U z I z I z Z I z U z U ββββ4.行驻波状态当微波传输线终端接任意复数阻抗负载时, 由信号源入射的电磁波功率一局部被终端负载吸收, 另一局部那么被反射, 因此传输线上既有行波又有纯驻波, 构成混合波状态, 故称之为行驻波状态。

1.4 传输线的传输功率、效率和损耗1.5 阻抗匹配 分三种:负载阻抗匹配,源阻抗匹配,共轭阻抗匹配。

1.6 史密斯圆图及其应用传输线上任意一点的反射函数Γ(z)可表达为:()()()11in +-=z z z z z Γin 1.7 同轴线的特性阻抗 同轴线是一种典型的双导体传输系统, 它由内、外同轴的两导体柱构成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:微波技术与天线课程代码:02367(理论)第一部分课程性质与目标一、课程性质与特点《微波技术与天线》是电子与信息工程专业、通信技术专业的一门专业基础课。

该课程研究的基本内容是电磁场的基础理论、导行电磁波和导模概念、各个导行波场的求解方法、传输线的基本理论和计算方法、微波网络基础与器件、天线的基本概念、基本理论及天线的基本结构并且与现代通信紧密相关的新技术。

二、课程目标与基本要求通过本课程的学习,可以使学生掌握微波与天线的基本概念、基本理论和基本分析方法。

并在此基础上,学会利用所学知识去解决微波与天线领域的工程实际问题,为今后从事微波与天线研究和工程设计工作打下良好的基础。

三、与本专业其他课程的关系本课程的前导课程是高等数学、电路分析基础、数学物理方法、电磁场理论。

是无线通信技术的基础课程。

第二部分考核内容与考核目标第一章场论与静态电磁场一、学习目地与要求本章主要研究静态电磁场的基本规律和分析方法。

通过本章的学习,使学生能够理解电荷与电流密度的概念,理解并掌握电流连续性方程;理解并掌握静电场和恒定磁场的基础—库仑定律和安培力定律,牢固建立静电场和恒定磁场的概念,并能根据不同电荷分布和电流分布的相关电磁场强度计算表达式,计算一些典型电荷分布和电流分布的电场强度和磁感应强;牢固掌握静电场和恒定磁场的基本方程,深刻理解静电场和恒定磁场的基本性质;深刻理解电位和磁位的物理意义,掌握电位与电场强度、磁位与磁感应强度的关系;了解电介质极化和磁介质磁化的物理过程。

二、考核知识点与考核目标(一)场论(一般)识记:矢量运算中的相关规则及矢量恒等式理解:标量场与矢量场的概念、标量场的等值面和矢量场的矢量线、矢量场的散度与旋度、标量场的梯度。

应用:应学会应用矢量分析这一重要数学工具去研究电磁场在空间的分布和变化规律。

(二)静电场(次重点)识记:电荷与电荷密度、电场强度、均匀介质中的电场理解:、电场强度的相关计算公式、库仑定律应用:用静电场的基本方程高斯定律求解静电场、计算点电荷系统和一些连续分布电荷系统的电位(三)稳恒电流场(一般)识记:电流密度、欧姆定律、焦耳定律的微分形式理解:、电荷守恒定律、稳恒电流场的基本方程(四)恒定磁场(次重点)识记:磁感应强度、介质的磁化理解:稳恒磁场的基本方程、矢量磁位、磁介质中的安培定律应用:运用安培环路定律求解具有一定对称性分布的磁场、利用矢量磁位求解一些简单的磁场分布问题第二章电磁波原理一、学习目地与要求本章主要讨论了时变电磁场的普遍规律、电场和磁场在交替变化的过程中所形成的电磁波的相关特性,并重点讲述了均匀平面电磁波在无界空间的传播特性和在分界面上的反射和透射特性。

通过本章的学习,要求学生们必须牢固掌握麦克斯韦方程组的积分形式、微分形式,深刻理解其物理意义;必须正确理解和使用边界条件、深刻理解坡印廷矢量的物理意义并能用其分析计算电磁能量的传输情况;掌握电磁场的波动方程以及理解矢量位和标量位的概念和满足的相应方程;深刻理解和掌握均匀平面电磁波在无界理想介质中的传播特性,理解描述传播特性的参量的物理意义;掌握三种极化方式的产生条件;熟练掌握平面电磁波对理想导体和理想介质垂直入射时的分析方法和过程;理解平面电磁波向理想导体界面的斜入射。

二、考核知识点与考核目标(一)时变电磁场(重点)识记:正弦电磁场的复数表示法、坡印廷定理、波动方程、唯一性定理理解:麦克斯韦方程、时变场的边界条件、坡印廷矢量应用:从麦氏方程出发,结合边界条件求解相关问题。

(二)平面电磁波(重点)识记:沿任意方向传播的平面波理解:理想介质中的均匀平面波、波的极化应用:计算在自由空间传播的均匀平面波的电场强度或磁场强度;计算描述均匀平面波传播特性的参量(如波矢量、波阻抗等);计算坡印廷矢量(三)平面电磁波的反射与折射(次重点)识记:垂直极化波、平行极化波、理解:垂直极化波入射、平行极化波入射、全透射与全反射(四)平面电磁波向理想导体界面的斜入射(一般)识记:垂直极化波斜入射、平行极化波斜入射第三章 导行电磁波一、 学习目地与要求本章主要讨论电磁波在导波系统中的传输问题。

通过本章的学习,要求同学们必须掌握求解波导中场的重要方法—纵向场分析法,该方法中所涉及到的有关物理量,如传播常数、截止波数的物理意义必须深刻理解,计算公式必须牢固掌握;牢固掌握波沿规则波导传输的一般特性;熟知波沿不同形状的波导传输的相关特性,如矩形波导、圆形波导等,重点掌握矩形波导中的主要传输模式—10TE 模;必须了解同轴线中的传输模式,并能通过恰当选择尺寸的情况下,保证TEM 波的传输;了解波导激励与耦合的方式。

二、考核知识点与考核目标(一)规则波导的分析方法和一般特性(重点)识记:波导中的波型—TE ,TM 和TEM 波、波的速度—相速度,群速度、波导波长、波阻抗理解:不同模式的传输条件、截止现象和截止波长应用:能用纵向场法求解波导中电磁波的场解、应用相关公式求出波导中描述波传输特性的相关参量。

(二)金属矩形波导的场解(重点)理解:矩形波导中不同波型的场解、矩形波导中的传输特性、波导的功率容量应用:计算不同模式的截止波长、能确定波导中能传输或截止的模式、熟悉单模传输条件、能绘出10TE 模式的场结构,壁电流分布、计算10TE 模式的相关传输参量(三)圆柱形波导(次重点)识记:圆波导中不同波型的场解理解:圆波导中的三个主要波型及其应用(四)同轴传输线(次重点)识记:、同轴线中的高模及尺寸选择理解:同轴线中的TEM 波(五)波导的激励与耦合(一般)识记:波导激励的方式及激励装置第四章 微波传输线的基本理论一、 学习目地与要求本章以双导线为例用路的分析方法主要讨论了微波传输线上的传输特性和电压电流的分布规律,同时推出了一种重要的计算工具—阻抗圆图,并将这一计算工具应用于工程实际中,如阻抗匹配技术。

通过本章的学习,要求同学们必须深刻理解微波传输线的分布参数概念,了解传输线方程及其解以及传输线的工作特性参数;必须掌握传输线的三种不同工作状态的条件和特点;必须掌握用阻抗圆图来解决传输线应用中的计算问题;了解不同阻抗匹配器的匹配方法,学会在阻抗匹配时用阻抗圆图来进行计算;了解微波集成电路的主要组成部分—微带线二、考核知识点与考核目标(一)微波传输线的分析(次重点)识记:分布参数概念、传输线方程及其一般解理解:传输线方程的定解(已知终端电压和电流)、传输线的工作参数,如特性阻抗、反射系数、输入阻抗、传播常数、相速及波长。

应用:应用相关公式计算传输线上的电压和电流、反射系数、输入阻抗(二)均匀无耗传输线的工作状态(重点)理解:形成行波状态、驻波状态、行驻波状态的条件和特点应用:求出不同工作状态下的电压、电流、输入阻抗、驻波比,并能绘制出相关图形。

(三)阻抗圆图(重点)应用:在传输线问题的相关运算中使用阻抗圆图来进行计算。

(四)传输线的阻抗匹配(重点)应用:会采用不同的阻抗匹配器进行传输线的阻抗匹配(五)微带传输线(一般)识记:对称微带和不对称微带的演变过程及结构、它们中所传输的波型第五章微波网络与元器件一、学习目地与要求本章主要讨论了微波等效电路的方法,这就是将本质上是场的问题转化为电路问题来处理的重要方法,这对处理横截面形状不均匀物体时极为有用,如微波元器件的分析和处理。

通过本章的学习,要求同学们必须掌握如何将波导等效为双线传输线、不均匀体等效为网络,必须深刻理解模式电压和模式电流的意义;必须深刻理解网络参量的物理意义,并学会用任意网络参量去描述一个具体的微波电路。

对于二端口网络的级联其重点放在A参量,其余参量中的S参量是微波网络所乐于采用的重要参量;微波网络理论的主要应用场合就是对各种微波元器件的分析和处理,对于各种不同的元器件,必须了解其功能及结构,熟知其工作原理及应用场合。

二、考核知识点与考核目标(一)微波网络的等效(重点)理解:模式电压和模式电流的概念、模式矢量函数的归一化条件、归一化模式电压和归一化模式电流的概念。

应用:根据相关条件求对应模式的模式电压和模式电流(二)双端口网络的阻抗矩阵、导纳矩阵及A矩阵(A重点,Z、Y次重点)识记: 阻抗矩阵、导纳矩阵的特点及性质理解:A参量的特点及性质以及不同电路的A矩阵应用:用A矩阵解决二端口网络的级联问题(三)双端口网络的散射矩阵(重点)理解:散射参量的物理意义、散射参量的性质应用:求解具体电路的S参量(四)多端口网络的散射矩阵(一般)识记:多口网络的特点及性质(五)微波元件(一般)识记:各元件的功能及工作原理第六章天线基本原理一、学习目地与要求本章主要讨论了天线产生辐射场的基本原理和各种不同天线的辐射性能。

通过本章的学习,要求同学们必须掌握基本振子的辐射性能;必须深刻理解为了增加辐射电阻,提高天线的辐射能力所采用的振子天线的工作原理;必须了解为了获得较强的方向性和其它特性所采用的天线阵列的性能;必须熟知发射天线和接收天线的电参数;简单了解各种线天线和面天线的辐射性能和应用场合。

二、考核知识点与考核目标(一)基本振子的辐射(重点)理解:电流的场解、电基本振子场解、电偶极子的近区场、电偶极子的远区场、磁基本振子。

应用:分析和计算天线的辐射场、辐射方向性、半功率宽度、零功率宽度和副瓣电平以及辐射电阻。

(二)振子天线(重点)理解:对称振子的场解、对称振子的方向性,辐射电阻,输入阻抗、发射天线的参数、天线的极化和天线的频带宽度应用:对称振子天线的辐射与电长度之间的关系,重点掌握半波振子天线的方向图(三)天线阵(次重点)理解: 直线阵列天线的方向图、波瓣宽度、旁瓣电平等的分析与计算(四)接收天线(一般)识记:接收天线的电参数(五)常用线天线(一般)识记:各种常用线天线的工作原理(六)面天线(一般)识记:抛物面天线和双反射面天线的工作原理说明:该项需编纲教师全面考量该课程内容,并对各章节都给出相应的知识层次(重点、次重点、一般),在知识层次下对各知识点提出相应的能力层次要求(识记、理解、应用)。

在分配知识层次和能力层次过程中,应注意以下问题:1、知识层次包括“重点、次重点、一般”三个层次,此三层次在命题中的固定比重分别为:65% ,25%,10%。

要求编纲教师在分配知识层次时,除考虑知识点本身的重要性外,兼顾各层次在命题中的比例要求。

避免出现某一层次知识点过少,不能满足命题中比例要求的情况。

2、①能力层次包括“识记、理解、应用”三个层次,此三层次在命题中无固定比重要求,需编纲教师结合本课程的具体考核要求给出比例(在“有关说明与实施要求”中给出比例),并在分配知识点能力层次时结合命题比例,做到大纲与试卷要求统一。

②大纲中知识点的能力层次分配应全面涵盖三个能力层次,尽量不要缺少,但各章节不是必须全有三个层次的知识点,应根据各章实际情况具体安排。

相关文档
最新文档