线性代数笔记
线性代数笔记
线性代数序章线性代数基础知识1.单位矩阵:对角线上均为1,其余元素都是0的n 阶方阵,记作I在矩阵多项式f(A) 中单位阵I 对应代数多项式 f(x) 中的 1,纯量阵kI 对应常数k 2.零矩阵:元素全为0的矩阵,记作O3.矩阵的p 阶子式:设},min{n m L =,指以)(L p a a pp ≤-11的p 个元素为主对角线构成的,含2p 个元素的p 阶方阵的行列式第一篇线性空间第一章向量和向量组1.1 线性组合1.向量组和矩阵的对应关系:一个向量组A 对应一个矩阵的列(或行)向量组A’2.线性表示:如果存在一组数{}i x 使向量∑==ni ii i ax b 1,那么称b 能被向量组A (或记{}i a )线性表示;也就是线性方程组Ax=b 有解(这也是求坐标表示的方法)3.等价:如果向量组B’中的任何向量b 都能被组A’线性表示,反之亦成立,称组B’和组A’等价; 也就是矩阵方程AX=B 和BX -1=A 都有解,即)()(B r A r = 行向量组等价与矩阵等价的关系:(1)向量组的等价(不要求两个组同向量数)和矩阵的等价(要求两个阵同型)是不同的概念 (2)当两个同型矩阵A ,B 的列向量组等价,A 与B 等价此时:方程Ax=0和Bx=0同解,r(A)=r(B)(3)当矩阵A 与B 等价,经行/列变换得到B ,则A 与B 的行/列向量组等价1.2 线性相关性和秩1.线性相关:对于向量n a a a ,...,,21,如果存在不全为零的实数n k k k ,...,,21使得01=∑=ni ii ak ,那么这些向量线性相关,也就是方程Ak=0有非零解线性无关:对于向量n a a a ,...,,21,如果当且仅当n k k k ,...,,21全为零时,才有01=∑=ni ii ak ,那么这些向量线性无关,也就是方程Ak=0只有零解2.判定方法:如果向量组A 对应的矩阵的秩<向量数,则组A 线性相关; 如果向量组A 对应的矩阵的秩 = 向量数,则组A 线性无关;3.向量组的秩定义:向量组A 中线性无关向量的最大个数,记为r ,A 中任意r+1个向量都线性相关4.向量组与矩阵的秩:矩阵的秩 = 行向量组的秩 = 列向量组的秩1.3 基、维数和坐标1.基:如果向量空间V 中任一向量都可被V 中一线性无关向量组A 线性表示,称组A 为V 的一个基 基变换:设A,B 为V 的两组基,记B A P 1-=为过渡矩阵,则A P B T=2.维数:基中的向量数r (也是基的秩)称为向量空间V 的维数,称V 为r 维向量空间3.坐标:如果向量空间V 中一向量∑==ni ii i ax b 1,且{}i a 是V 的基,则称{}i x 为b 在基A 中的坐标证明向量组A 是空间V 的基,就是要写出V 中任一向量{}i b 在基A 中的坐标表达式坐标变换:设A,B 为V 的两组基,对应坐标为x,y ,记B A P 1-=为过渡矩阵,则x P y 1-=1.4 范数、投影和正交性1.向量的范数:x x xx T ni i==∑=12,n 为向量维数2.广义的向量夹角:ba ba b a T = ,cos ;b 在a 上的投影:a a a b a p T T =3.向量的正交性:两个向量x,y 的点积(或y x T)为零,则两向量正交;零向量没有长度,和所有向量都正交正交和线性相关性:如果一组向量互正交,则它们线性无关4.规范正交基:两两正交的单位基向量组向量的坐标:设q 为规范正交基,若向量∑==n i i i q x b 1,则坐标b q x T i i =或写作b Q x T =5. 基向量的规范正交化:第二章向量空间2.1 向量空间和子空间1.向量空间:对加法和数乘封闭,包含所有n 维实向量的非空集合,记作nR 公理化定义:设V 是一非空集合,R 为实数域; Part1:运算的封闭性若对于任意两个元素V ∈βα,,总有唯一的元素V ∈γ 与之对应,称γ 为βα ,的和;若对于实数λ与任一元素V ∈α,总有唯一的元素V ∈δ与之对应,称δ 为λα,的积;Part2:运算的法则 八条运算律分别为:(1)加法交换律(2)加法结合律(3)加法元为0 (4)元素的负元素唯一 (5)乘法元为1 (6)乘法交换律(7)数乘结合律(8)乘法结合律若和与积运算具备封闭性且满足八条运算律,即称V 为实向量空间,V 中元素称为向量。
05高数——线性代数知识点速记
线性代数1、行列式称符号1112112n nn n nn D a a a a a a ⋯= 为n 阶行列式,ij a 称为行列式的第i 行第j 列元素。
1)n 阶行列式的计算余子式:行列式中元素ij a 的余子式是将行列式中ij a 所在的行与列划去,剩下的元素按原顺序排成的低一阶行列式,叫做元素ij a 的余子式,记作ij M 。
代数余子式:行列式中元素ij a 的代数余子式为()1i j ij M +-,可记作ij A ,即()1i j ij i j M A +-=。
定理:n 阶行列式111212122212n n n n nn a a a a a a D a a a =的值等于它的任意一行(列)的各元素与其对应代数余子式的乘积的和,即1122i i i i in in D a A a A a A =+++ ()1,2,,i n = 或1122j j j j nj nj D a A a A a A =+++ ()1,2,,j n = ;特别地,11122112212212122a a a a a a a a D ==-;1112133212223313233a a a a a a a a a D =112233122331132132132231112332122133a a a a a a a a a a a a a a a a a a =++---推论:n 阶行列式 D 的某一行(列)的各元素与另一行(列)对应的代数余子式的乘积之和等于零。
高 数线性代数知识点速记即11220i j i j in jn a A a A a A +++= 或11220i j i j ni nj a A a A a A +++= (),1,2,,i j i j n ≠= ;2)行列式的主要性质①行列式与它的转置行列式相等。
②对换行列式的任意两行(列),行列式仅改变符号。
③行列式的任一行(列)的所有元素同乘以数k ,等于该行列式乘以数k 。
线性代数-考研笔记
第一章行列式性质1 行列式与它的转置行列式相等。
性质2互换行列式的两行(列),行列式变号。
推论如果行列式的两行(列)完全相同,则此行列式等于零。
性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。
第行(或者列)乘以,记作(或)。
推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。
第行(或者列)提出公因子,记作(或)。
性质4行列式中如果两行(列)元素成比例,此行列式等于零。
性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和:=性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。
引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即或推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。
范德蒙德行列式克拉默法则①如果线性方程组①的系数行列式不等于零,即,那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素用方程组右端的常数项代替后所得到的阶行列式,即定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。
定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。
定理5 如果齐次线性方程组的系数行列式定理如果,则它的系数行列式必为零第二章矩阵级其运算定义1 由个数排成的行列的数表,称为行列矩阵;以数为元的矩阵可简记作或矩阵也记作。
行数和列数都等于的矩阵称为阶矩阵或阶方阵。
阶矩阵也记作。
特殊定义:两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。
(完整版)线性代数笔记
等行变换,则得到的是 。
对于第二类的可先转化为第一类的 ,即由
两边转置得
按上例的方法求出 进而求出 X
二.初等变换的性质
定理 2.5.1 设线性方程组的增广矩阵 经有限次的初等行变换化为 ,则以 与
为增广矩阵的方程组同解。 定理 2.5.2 任何矩阵都可以经有限次初等行变换化成行最简形式,经有限次初等变换 (包括行及列)化成等价标准形。且其标准形由原矩阵惟一确定,而与所做的初等变换无
3、矩阵的乘法 设 A=(aij)m×n,B=(bjk)n×l,则 A*B=C=(cik)m×l 其中 C=Σaijbjk(j=1,n) 注意;两个矩阵相乘必须第一个矩阵的列数等于第二个矩阵的行数;矩阵乘法不满足交换 律,即 AB 不一定等于 BA;矩阵乘法有零因子,即 A≠0(零矩阵),B≠0(零矩阵),但 有可能 A*B=0(零矩阵) 矩阵的乘法适合以下法则: (1)结合律:(AB)C=A(BC) (2)分配律(A+B)C=AC+BC
hing at a time and All things in their being are good for somethin
此处 0 表示与 A 同型的零矩阵,即 A=(aij)m×n ,0=0m×n (4)矩阵 A=(aij)m×n,规定-A=(-aij)m×n,(称之为 A 的负矩阵),则有 A+(-A)=(A)+A=0
如果 n 个未知数,n 个方程的线性方程组的系数行列式 D≠0,则方程组
定理 1.4.3 如果 n 个未知数 n 个方程的齐次方程组的系数行列式 D≠0,则该方程组只有零 解,没有非零解。 推论 如果齐次方程组有非零解,则必有系数行列式 D=0。
第二章 矩阵
一、矩阵的运算
宋浩线性代数笔记
•⚗线性代数•.⚗ P1 二阶三阶行列式..⚗ 02:48 二阶行列式划线计算.⚗ 15:00 三阶行列式划线计算.⚗ 22:29 N阶行列式预备知识.⚗ 24:21 名场面:宋浩点名田莎莎等.⚗ P2 n阶行列式..⚗ 00:55 N阶行列式计算.⚗ 20:50 下三角行列式.⚗ 23:14 上三角行列式.⚗ 24:40 对角线行列式.⚗ 25:30 副对角线行列式.⚗ 31:00 三角行列式总结.⚗ 31:09 行列式三种定义.⚗ P3 行列式的性质..⚗ 00:25 性质一转置.⚗ 11:48 性质二两行互换.⚗ 20:38 性质三两行相同.⚗ 23:10 性质四行公因子k.⚗ 28:05 性质五两行成比例.⚗ 34:20 性质六和分解.⚗ 43:36 性质七行叠加.⚗ 51:12 行列式值计算通用法.⚗ P4 行列式按行展开..⚗ 04:36 余子式.⚗ 07:42 代数余子式.⚗ 09:38 降阶:行列式按某一行/列展开.⚗ 16:50 异乘变零定理.⚗ 27:17 拉普拉斯定理.⚗ 30:17 拉普拉斯展开定理.⚗ 38:30 同阶行列式相乘.⚗ P5 行列式的计算(一)..⚗ 14:33 纯数字行列式计算.⚗ 21:50 已知行列式求余子式之和.⚗ 30:06 对角线为x,其余为a的行列式计算技巧.⚗ P6 行列式的计算(二)..⚗ 00:00 行列式计算基础思路.⚗ 01:05 三叉形行列式.⚗ 17:42 范德蒙德行列式.⚗ 40:42 反对称行列式.⚗ 43:12 对称行列式.⚗ P7 克莱姆法则..⚗ 00:05 解方程组.⚗ 09:11 解齐次线性方程组.⚗ P8 矩阵概念..⚗ 22:20 矩阵和行列式比较.⚗ P9 矩阵运算(一)..⚗ 00:00 名场面:宋浩免费赠送自制知识卡片.⚗ 02:50 矩阵加减法.⚗ 07:53 矩阵数乘运算.⚗ 13:58 矩阵乘法.⚗ P10 矩阵运算(二)..⚗ 00:00 矩阵幂运算.⚗ 23:49 矩阵转置.⚗ P11 特殊矩阵.⚗ P12 逆矩阵(一)..⚗ 03:04 方阵的行列式.⚗ 12:54 方阵的行列式的性质.⚗ 24:28 伴随矩阵.⚗ P13 逆矩阵(二)..⚗ 10:58 方阵可逆条件.⚗ 21:16 求逆矩阵方法.⚗ 47:33 解矩阵方程常见错误总结.⚗ 54:42 逆矩阵性质.⚗ 66:58 伴随矩阵`A^*`小专题.⚗ P14 分块矩阵..⚗ 00:00 分块要求.⚗ 04:34 标准形.⚗ 09:34 分块矩阵加法.⚗ 10:39 分块矩阵数乘.⚗ 11:12 分块矩阵乘法.⚗ 20:25 分块矩阵转置.⚗ 23:23 拉普拉斯展开定理在分块矩阵中的应用例题.⚗ 39:08 分块矩阵的逆.⚗ P15 初等变换(一)..⚗ 00:00 三种初等变换.⚗ 11:18 初等变换和行列式变换的对比.⚗ 24:50 矩阵化标准型.⚗ 29:45 矩阵等价.⚗ P16 初等变换(二)..⚗ 00:00 初等方阵.⚗ 09:15 初等方阵的行列式和逆矩阵.⚗ 14:56 初等方阵与矩阵做乘法.⚗ 44:13 初等方阵用处.⚗ P17 初等变换(三)..⚗ 00:00 初等变换法求逆矩阵.⚗ 13:51 解题过程总结.⚗ P18 矩阵的秩(一)..⚗ 00:00 k阶子式.⚗ 02:10 矩阵的秩.⚗ P19 矩阵的秩(二)..⚗ 00:00 矩阵的秩.⚗ 07:35 求矩阵的秩.⚗ 14:23 阶梯形矩阵.⚗ 32:09 行简化阶梯形矩阵.⚗ 41:15 求秩方法.⚗ 53:11 秩的性质.⚗ 58:49 广告:宋浩打油诗.⚗ P20 向量的定义..⚗ 10:11 向量定义.⚗ P21 向量间的线性关系(一)..⚗ 00:00 线性关系.⚗ 19:41 向量组的等价.⚗ P22 向量间的线性关系(二)..⚗ 00:00 线性相关与无关.⚗ 16:37 扩大后向量组与原向量组.⚗ 25:40 接长后向量组与原向量组.⚗ 37:20 行列式判断相关.⚗ P23 线性相关线性无关..⚗ 00:00 定理一.⚗ 04:32 定理二.⚗ 13:57 定理三:替换.⚗ 13:57 定理四.⚗ 21:22 推论.⚗ P24 向量组的秩(一)..⚗ 00:00 极大线性无关组.⚗ 08:04 极大线性无关组性质.⚗ 12:45 向量组的秩.⚗ P25 向量组的秩(二)..⚗ 00:00 行秩与列秩.⚗ 07:06 定理.⚗ 11:12 极大线性无关组的求法.⚗ P26 线性方程组..⚗ 00:00 二元一次方程与初等变换.⚗ P27 线性方程组有解判定..⚗ 00:00 有解判定.⚗ P28 齐次方程组的解..⚗ 00:00 齐次方程组.⚗ P29 方程组解的结构(一)..⚗ 00:00 齐次方程组解的结构.⚗ 06:54 基础解系.⚗ 08:56 齐次方程基础解系求法.⚗ 45:26 定理.⚗ P30 方程组解的结构(二)..⚗ 00:00 导出组.⚗ 04:27 非齐次方程组解的结构.⚗ P32 矩阵的特征值与特征向量(一)..⚗ 00:00 矩阵的特征值与特征向量.⚗ 08:35 求特征值.⚗ P33 矩阵的特征值与特征向量(二)..⚗ 00:00 求特征值(计算含参行列式)思路.⚗ 19:40 完整例题求特征值和特征向量.⚗ 43:12 N阶三角形矩阵的特征值.⚗ P34 特征值与特征向量的性质..⚗ 00:00 基本性质.⚗ 47:49 其他性质.⚗ P35 相似矩阵和矩阵可对角化的条件..⚗ 00:00 相似矩阵.⚗ 07:58 相似矩阵的性质.⚗ 22:06 与对角形矩阵相似(对角化)的条件.⚗ 61:47 利用相似矩阵简单求矩阵的高次幂.⚗ P36 实对称矩阵的对角化(一)..⚗ 00:00 实对称矩阵的对角化.⚗ 02:00 内积.⚗ 21:09 向量的长度/范数/模.⚗ P37 实对称矩阵的对角化(二)..⚗ 00:00 模的性质.⚗ 04:16 柯西-施瓦茨不等式.⚗ 08:13 三角不等式.⚗ 09:55 正交/垂直.⚗ 25:10 施密特正交化.⚗ P38 实对称矩阵的对角化(三)..⚗ 00:00 正交矩阵.⚗ 21:38 实对称矩阵的对角化.⚗ 28:48 正交相似.⚗ 31:24 定理.⚗ 32:34 汇总.⚗ P39 二次型定义..⚗ 00:00 判断二次型.⚗ 03:08 n元二次型.⚗ 04:09 二次型的矩阵表达.⚗ 21:30 标准型.⚗ 24:40 线性替换.⚗ 35:38 合同.⚗ 49:00 矩阵间关系总结.⚗ P40 二次型化标准型(配方法)..⚗ 00:00 二次型化标准型的三种方法.⚗ 02:33 配方法.⚗ P41 二次型化标准型(初等变换法和正交替换法)..⚗ 00:00 初等变换法.⚗ 22:00 规范形.⚗ 31:06 正交替换.⚗ End 感谢宋老师~.⚗ Appendix 浩浩卡片☄P1 二阶三阶行列式⌚02:48 二阶行列式划线计算•行列式一定是方的⌚15:00 三阶行列式划线计算•主对角线:╲•副对角线:╲⌚22:29 N阶行列式预备知识•排列:1,2,……,n组成的一个有序数组叫n级排列,中间不能缺数•如3级排列:123,132,213,231,312,321•逆序:大数排在小数前面•逆序数:逆序的总数•奇/偶排列:逆序数为奇/偶•标准排列:123……N•对换:交换排列中的两个数•做一次对换,排列奇偶性改变⌚24:21 名场面:宋浩点名田莎莎等☄P2 n阶行列式⌚00:55 N阶行列式计算•按行展开:•行标取标准排列•列标取排列的所有可能,从不同行不同列取出n个元素相乘•共有N!项•每一项的符号由列标排列的奇偶性决定,偶正奇负⌚20:50 下三角行列式•右上方三角形区域元素全部为0•下三角行列式= 主对角线元素相乘⌚23:14 上三角行列式•左下方三角形区域元素全部为0•上三角行列式= 主对角线元素相乘⌚24:40 对角线行列式•只有主对角线上有数⌚25:30 副对角线行列式•副对角线行列式=(-1)^(n(n-1)/2) * 副对角线元素相乘⌚31:00 三角行列式总结⌚31:09 行列式三种定义• 1.按行展开,符号由列标排列决定• 2.按列展开,符号由行标排列决定• 3.胡乱展开,符号由行标排列逆序数和列标排列逆序数之和决定(-1)^(N(i1,i2,……,iN)+N(j1,j2,……,jN)), i:行标,j:列标☄P3 行列式的性质•行列式对行成立的性质对列也成立⌚00:25 性质一转置•转置:把行按列写•行列式转置后值不变•行列式转置的转置等于本身•行列式两行互换,值变号⌚20:38 性质三两行相同•行列式两行相同,等于0⌚23:10 性质四行公因子k•行列式某行都乘以k,等于用k乘以这个行列式。
线性代数_笔记
自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
MIT公开课线性代数笔记
矩阵的逆
定义:矩阵A的 逆矩阵是矩阵B, 使得AB=BA=I
性质:矩阵A的逆 矩阵是唯一的,且 A的逆矩阵也是方 阵
计算方法:使用高 斯-约旦消元法、 克莱姆法则等方法 计算矩阵的逆
应用:求解线性方 程组、求矩阵的秩、 求矩阵的逆等
矩阵的行列式
定义:矩阵的行列 式是一个数值,表 示矩阵的体积或面 积
子空间
定义:向量空间中的子集,满足加法和数乘运算 性质:子空间中的向量线性组合仍然是子空间中的向量 例子:二维平面上的直线、三维空间中的平面 应用:线性方程组的解空间、矩阵的秩和零空间
正交向量组
定义:一组线性无关的向量,且向量之间的内积为零 性质:正交向量组是线性无关的,且向量之间的内积为零 应用:正交向量组可以用来求解线性方程组,以及进行矩阵分解 例子:二维平面上的单位向量组(1,0)和(0,1)是正交向量组
计算方法:通过行 列式的计算公式进 行计算
性质:矩阵的行列 式与矩阵的转置行 列式相等
应用:矩阵的行列式 在求解线性方程组、 特征值和特征向量等 方面有广泛应用
线性变换与矩阵
线性变换的定义
线性变换是一种特 殊的函数,它满足 线性性质
线性变换可以将一 个向量映射到另一 个向量
线性变换可以用矩 阵来表示,矩阵的 每一行代表一个基 向量的变换
性、相似性等
矩阵的相似性
定义:两个矩 阵A和B相似, 如果存在一个 可逆矩阵P,使
得B=P^(1)AP
性质:相似矩 阵具有相同的 特征值和特征
向量
应用:相似矩 阵可以用来简 化矩阵的运算
和求解
例子:对角矩阵 和单位矩阵是相 似的,因为它们 的特征值和特征 向量都是相同的。
矩阵的相似对角化
线性代数知识点全归纳
线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2.代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4.设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6.对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7.证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2.对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1.一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=; 1. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;2. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;3. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m nn n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nm n mm m m rnr r n n n n nnn n r C C C C C CrC nC ;③、利用特征值和相似对角化: 4. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=5. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;6. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 7. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;8. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置) 11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L11b a =;1222111[,][,]b a b a b b b =-g L L L 121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心;必然事件随便用,选择先试不可能。
大一线性代数知识点笔记
大一线性代数知识点笔记一、向量与矩阵1. 向量向量是有大小和方向的量,通常用箭头表示。
在线性代数中,向量可以表示为一个有序的数组。
向量的加法和数乘运算可通过对应元素的相加和相乘来完成。
2. 向量的内积向量的内积也称为点积,表示为两个向量的数量积。
内积的计算方法是将对应元素相乘再求和。
内积可以用于计算向量的长度、夹角以及投影等。
3. 矩阵矩阵是由数个元素排列成的矩形阵列。
矩阵的加法和数乘运算与向量类似,对应元素相加和相乘。
矩阵的乘法是将矩阵的行与列进行对应元素的乘积再求和。
4. 矩阵的特殊类型- 零矩阵:所有元素均为零的矩阵。
- 单位矩阵:对角线上的元素为1,其余元素为零的矩阵。
- 对称矩阵:矩阵的转置等于它本身的矩阵。
- 反对称矩阵:矩阵的转置等于它的相反数的矩阵。
二、线性方程组1. 线性方程组基本概念线性方程组由多个线性方程组成,其中的未知数之间的关系是线性的。
每个方程对应平面或空间中的一条直线、平面或超平面。
2. 线性方程组的求解- 列主元消元法:通过行变换将线性方程组转化为简化行阶梯形,进而求解。
- Cramer定理:使用行列式的方法求解线性方程组。
- 矩阵的逆:若矩阵存在逆矩阵,则可以通过矩阵的逆求解线性方程组。
三、向量空间与线性映射1. 向量空间向量空间是由满足一定条件的向量组成的集合。
向量空间中的向量支持加法和数乘运算,并满足一定的公理。
2. 子空间子空间是向量空间的一个子集,它本身也是一个向量空间,满足向量加法和数乘的封闭性。
3. 线性映射线性映射是一种将一个向量空间的向量映射到另一个向量空间的操作。
线性映射要求对向量的加法和数乘运算保持线性性质。
四、特征值与特征向量1. 特征值与特征向量的定义对于一个n阶方阵A,如果存在一个非零向量X和一个数λ,使得AX=λX成立,则称λ为矩阵A的特征值,X为对应于特征值λ的特征向量。
2. 特征值与特征向量的计算- 特征值可以通过求解矩阵的特征方程来得到。
线性代数笔记
1、1二阶行列式和三阶行列式1、定义 由四个数排成二行二列(横排称行、竖排称列)的数表22211211a a a a)5(42221121121122211a a a a a a a a 行列式,并记作)所确定的二阶称为数表(表达式-即.2112221122211211a a a a a a a a D -==2、定义记(6)式称为数表(5)所确定的三阶行列式.2、2全排列及其逆序数1、定义:把n 个不同的元素排成一列,叫做这n 个元素的全排列(或排列). n 个不同的元素的所有排列的种数,通常用Pn 表示.2、我们规定各元素之间有一个标准次序, n 个不同的自然数,规定由小到大为标准次序.3、定义:在一个排列中()n s t i i i i i 21,若数s t i i >则称这两个数组成一个逆序.4、定义:一个排列中所有逆序的总数称为此排列的逆序数.5、排列的奇偶性:逆序数为奇数的排列称为奇排列;逆序数为偶数的排列称为偶排列。
6、计算排列逆序数的方法方法1)分别计算出排在n ,n ,,,121- 前面比它大的数码之和即分别算出n ,n ,,,121- 这n 个元素的逆序数,这个元素的逆序数的总和即为所求排列的逆序数.方法2)分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,这每个元素的逆序数之总和即为所求排列的逆序数. 例:分别用两种方法求排列16352487的逆序数.333231232221131211)5(339a a a a a a a a a 列的数表行个数排成设有,312213332112322311322113312312332211)6(a a a a a a a a a a a a a a a a a a ---++=333231232221131211a a a a a a a a a1、3 n 阶行列式1、定义:nnn n nn np p p ta a a a a a a a a D a a an n n n212222111211212.)1(21=-∑记作的代数和个元素的乘积取自不同行不同列的阶行列式等于所有个数组成的由2为这个排列的逆序数.的一个排列,,,,为自然数其中t n p p p n 21213、说明:1、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需要而定义的;2、n 阶行列式是n !项的代数和;3、n 阶行列式的每项都是位于不同行、不同列n 个元素的乘积;4、一阶行列式a a =不要与绝对值记号相混淆;5、nnp p p a a a 2121的符号为().1t-4、1、4 对换1、定义:在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换.将相邻两个元素对调,叫做相邻对换.2、定理 一个排列中的任意两个元素对换,排列改变奇偶性. 推论 奇排列调成标准排列的对换次数为奇数,偶排列调成标准排列的对换次数为偶数.3、定理 n 阶行列式也可定义为()np p p tn a aaD 21211∑-=其中t 为行标排列np p p 21的逆序数.4、定理 n 阶行列式也可定义为()nn q p qp q p t a a a D 22111∑-=其中nn q q q ,p p p 2121是两个n 级排列,t 为行标排列逆序数与列标排列逆序数的和.).det(ij a 简记作的元素.称为行列式数)det(ij ij a a ()()nnn np p p p p p p p p t nnn n n na a a a a a a a a a a a D 212121212122221112111∑-==1、5 行列式的性质性质1 行列式与它的转置行列式相等.[说明:行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立.]性质2 互换行列式的两行(列),行列式变号.推论如果行列式有两行(列)完全相同,则此行列式为零.性质3 行列式的某一行(列)中所有的元素都乘以同一数,等于用数乘此行列式.推论行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.性质4行列式中如果有两行(列)元素成比例,则此行列式为零.性质5若行列式的某一列(行)的元素都是两数之和.性质6把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.例计算n阶行列式abbbbabbbbabbbbaD=1、6 行列式按行和列展开1、余子式与代数余子式:在n阶行列式中,把元素ija所在的第i行和第j列划去后,留下来的n-1阶行列式叫做元素ija的余子式,记作.ijM(),记ijjiijMA+-=1叫做元素ija的代数余子式.2、引理 一个n 阶行列式,如果其中第i 行所有元素除ija 外都为零,那末这行列式等于ija 与它的代数余子式的乘积,即ijijA a D =.3、定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即in in i i i i A a A a A a D +++= 2211()n i ,,2,1 =4、范德蒙德(Vandermonde)行列式∏≥>≥----==1112112222121).(111j i n j i n nn n nn n x x x x x x x x x x x D()n i ,,2,1 =5、推论 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即.,02211j i A a A a A a jn in j i j i ≠=+++6、⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij nk kj ki 当当δ⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij n k jk ik 当当δ1、7克拉默法则1、非齐次与齐次线性方程组的概念:设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111,,,,21不全为零若常数项n b b b 则称此方程组为非齐次线性方程组此时称方程组为齐次线性方程组.2、克拉默法则:如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a22112222212111212111的系数行列式不等,,,,21全为零若常数项n b b b ⎩⎨⎧≠==.,0,1j i j i ij当,当其中δ于零,即nnn n n na a a a a a a a a D 212222111211=0≠那么线性方程组(1)有解,并且解是唯一的,解可以表为.,,,,232211D D x D Dx D D x D D x n n ====其中D j 是把系数行列式D 中第j 列的元素用方程组右端的常数项代替后所得到的n 阶行列式,即nn j n nj n n nj j j a a b a a a a b a a D1,1,111,111,111+-+-=3、定理1 如果线性方程组(1)的系数行列式D ≠0则(1)一定有解,且解是唯一的 .4、定理2 如果线性方程组(1)无解或有两个不同的解,则它的系数行列式必为零.5、齐次线性方程组的相关定理()2000221122221211212111⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n nn n n n n n n x a x a x a x a x a x a x a x a x a1)定理:如果齐次线性方程组(2)的系数行列式D ≠0则齐次线性方程组(2)没有非零解.2)定理:如果齐次线性方程组(2)有非零解,则它系数行列式D=0。
大学线性代数知识点总结
大学线性代数知识点总结1. 向量与空间- 向量的定义与表示- 向量的加法与数乘- 向量的内积与外积- 向量的模、方向与单位向量- 向量空间的定义与性质- 基、维数与坐标表示- 子空间及其性质- 线性相关与线性无关的概念2. 矩阵- 矩阵的定义与表示- 矩阵的加法、数乘与转置- 矩阵的乘法规则- 矩阵的逆- 行列式的概念与性质- 行列式的计算方法- 秩的概念与求解- 矩阵的分块3. 线性方程组- 线性方程组的表示- 高斯消元法- 行列式法- 逆矩阵解法- 克拉默法则- 线性方程组的解的结构- 齐次与非齐次线性方程组 - 线性方程组的解空间4. 特征值与特征向量- 特征值与特征向量的定义 - 特征值与特征向量的计算 - 矩阵的对角化- 矩阵的Jordan标准形- 特征值与特征向量的应用5. 内积空间- 内积空间的定义- 正交与正交性- 正交基与正交矩阵- 格拉姆-施密特正交化过程 - 最小二乘法- 正交投影与正交补6. 线性变换- 线性变换的定义与性质- 线性变换的矩阵表示- 线性变换的核与像- 线性变换的不变子空间- 线性变换的复合与逆变换 - 线性变换的分类7. 广义逆矩阵- 广义逆矩阵的概念- 广义逆矩阵的计算方法- 广义逆矩阵的性质与应用8. 谱理论- 谱定理- 谱半径与谱半径估计- 谱聚类9. 线性代数在其他领域的应用- 计算机图形学- 数据分析与机器学习- 量子力学- 结构工程- 电路分析结语线性代数是数学的一个重要分支,它在科学、工程、经济等多个领域都有着广泛的应用。
掌握线性代数的基本概念、理论和方法是解决实际问题的关键。
本文总结了线性代数的核心知识点,旨在为学习和应用线性代数提供参考和指导。
线性代数(经管类)笔记
第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数得到下列式子:称为一个二阶行列式,其运算规则为2.三阶行列式由9个数得到下列式子:称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式设有三阶行列式对任何一个元素,我们划去它所在的第i行及第j列,剩下的元素按原先次序组成一个二阶行列式,称它为元素的余子式,记成例如,,再记,称为元素的代数余子式.例如,,那么,三阶行列式定义为我们把它称为按第一列的展开式,经常简写成4.n阶行列式一阶行列式n阶行列式其中为元素的代数余子式.5.特殊行列式上三角行列式下三角行列式对角行列式(二)行列式的性质性质1 行列式和它的转置行列式相等,即性质2用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3互换行列式的任意两行(列),行列式的值改变符号.推论1如果行列式中有某两行(列)相同,则此行列式的值等于零.推论 2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4行列式可以按行(列)拆开.性质 5 把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即或前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2 n阶行列式的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即或(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:例1 计算行列式解:观察到第二列第四行的元素为0,而且第二列第一行的元素是,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.例2 计算行列式解:方法1这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子,再将后三行都减去第一行:方法 2 观察到这个行列式每一行元素中有多个b,我们采用“加边法”来计算,即是构造一个与有相同值的五阶行列式:这样得到一个“箭形”行列式,如果,则原行列式的值为零,故不妨假设,即,把后四列的倍加到第一列上,可以把第一列的(-1)化为零.例3 三阶范德蒙德行列式(四)克拉默法则定理1(克拉默法则)设含有n个方程的n元线性方程组为如果其系数行列式,则方程组必有唯一解:其中是把D中第j列换成常数项后得到的行列式.把这个法则应用于齐次线性方程组,则有定理2 设有含n个方程的n元齐次线性方程组如果其系数行列式,则该方程组只有零解:换句话说,若齐次线性方程组有非零解,则必有,在教材第二章中,将要证明,n个方程的n元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.例4当取何值时,齐次线性方程组只有零解?解:方程组的系数行列式由于故当且且时,方程组只有零解.第二章矩阵(一)矩阵的定义1.矩阵的概念由个数排成的一个m行n列的数表称为一个m行n列矩阵或矩阵当时,称为n阶矩阵或n阶方阵元素全为零的矩阵称为零矩阵,用或O表示2.3个常用的特殊方阵:①n阶对角矩阵是指形如的矩阵②n阶单位方阵是指形如的矩阵③n阶三角矩阵是指形如的矩阵3.矩阵与行列式的差异矩阵仅是一个数表,而n阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“”与矩阵记号“”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵,,若,,则说A与B是同型矩阵.若A与B同型,且对应元素相等,即,则称矩阵A与B相等,记为因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设,是两个同型矩阵则规定注意:只有A与B为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算设,k为任一个数,则规定故数k与矩阵A的乘积就是A中所有元素都乘以k,要注意数k与行列式D的乘积,只是用k乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有普通数的乘法所具有的运算律.4.乘法运算设,,则规定其中由此定义可知,只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,而且矩阵AB的行数为A的行数,AB的列数为B的列数,而矩阵AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.故矩阵乘法与普通数的乘法有所不同,一般地:①不满足交换律,即②在时,不能推出或,因而也不满足消去律.特别,若矩阵A与B满足,则称A与B可交换,此时A与B必为同阶方阵.矩阵乘法满足结合律,分配律及与数乘的结合律.5.方阵的乘幂与多项式方阵设A为n阶方阵,则规定特别又若,则规定称为A的方阵多项式,它也是一个n阶方阵6.矩阵的转置设A为一个矩阵,把A中行与列互换,得到一个矩阵,称为A 的转置矩阵,记为,转置运算满足以下运算律:,,,由转置运算给出对称矩阵,反对称矩阵的定义设A为一个n阶方阵,若A满足,则称A为对称矩阵,若A满足,则称A为反对称矩阵.7.方阵的行列式矩阵与行列式是两个完全不同的概念,但对于n阶方阵,有方阵的行列式的概念.设为一个n阶方阵,则由A中元素构成一个n阶行列式,称为方阵A的行列式,记为方阵的行列式具有下列性质:设A,B为n阶方阵,k为数,则①;②③(三)方阵的逆矩阵1.可逆矩阵的概念与性质设A为一个n阶方阵,若存在另一个n阶方阵B,使满足,则把B称为A的逆矩阵,且说A为一个可逆矩阵,意指A是一个可以存在逆矩阵的矩阵,把A的逆矩阵B记为,从而A与首先必可交换,且乘积为单位方阵E.逆矩阵具有以下性质:设A,B为同阶可逆矩阵,为常数,则①是可逆矩阵,且;②AB是可逆矩阵,且;③kA是可逆矩阵,且④是可逆矩阵,且⑤可逆矩阵可从矩阵等式的同侧消去,即设P为可逆矩阵,则2.伴随矩阵设为一个n阶方阵,为A的行列式中元素的代数余子式,则矩阵称为A的伴随矩阵,记为(务必注意中元素排列的特点)伴随矩阵必满足(n为A的阶数)3.n阶阵可逆的条件与逆矩阵的求法定理:n阶方阵A可逆,且推论:设A,B均为n阶方阵,且满足,则A,B都可逆,且,例1 设(1)求A的伴随矩阵(2)a,b,c,d满足什么条件时,A可逆?此时求解:(1)对二阶方阵A,求的口诀为“主交换,次变号”即(2)由,故当时,即,A为可逆矩阵此时(四)分块矩阵1.分块矩阵的概念与运算对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A的列分块方式与右矩阵B的行分块方式一致,然后把子块当作元素来看待,相乘时A的各子块分别左乘B的对应的子块.2.准对角矩阵的逆矩阵形如的分块矩阵称为准对角矩阵,其中均为方阵空白处都是零块.若都是可逆矩阵,则这个准对角矩阵也可逆,并且五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A的某两行(列);(2)用一个非零数k乘A的某一行(列);(3)把A中某一行(列)的k倍加到另一行(列)上.注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“”连接前后矩阵.初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2.初等方阵由单位方阵E经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为,和,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A为任一个矩阵,当在A的左边乘一个初等方阵的乘积相当于对A作同类型的初等行变换;在A的右边乘一个初等方阵的乘积相当于对A作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A经过若干次初等变换变为B,则称A与B等价,记为对任一个矩阵A,必与分块矩阵等价,称这个分块矩阵为A 的等价标准形.即对任一个矩阵A,必存在n阶可逆矩阵P及n阶可逆矩阵Q,使得5.用初等行变换求可逆矩阵的逆矩阵设A为任一个n阶可逆矩阵,构造矩阵(A,E)然后注意:这里的初等变换必须是初等行变换.例2 求的逆矩阵解:则例3 求解矩阵方程解:令,则矩阵方程为,这里A即为例2中矩阵,是可逆的,在矩阵方程两边左乘,得也能用初等行变换法,不用求出,而直接求则(六)矩阵的秩1.秩的定义设A为矩阵,把A中非零子式的最高阶数称为A的秩,记为秩或零矩阵的秩为0,因而,对n阶方阵A,若秩,称A为满秩矩阵,否则称为降秩矩阵.2.秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A,只要用初等行变换把A化成阶梯形矩阵T,则秩(A)=秩(T)=T中非零行的行数.3.与满秩矩阵等价的条件n阶方阵A满秩A可逆,即存在B,使A非奇异,即A的等价标准形为EA可以表示为有限个初等方阵的乘积齐次线性方程组只有零解对任意非零列向量b,非齐次线性方程组有唯一解A的行(列)向量组线性无关A的行(列)向量组为的一个基任意n维行(列)向量均可以表示为A的行(列)向量组的线性组合,且表示法唯一.A的特征值均不为零为正定矩阵.(七)线性方程组的消元法.对任一个线性方程组可以表示成矩阵形式,其中为系数矩阵,为常数列矩阵,为未知元列矩阵.从而线性方程组与增广矩阵一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.例4解线性方程组解:把线性方程组的增广矩阵化成简化阶梯形矩阵:得到同解线性方程组即或取为自由未知量,可知方程组有无穷多解,上式就是所给方程组的一般解.例4解线性方程组解:把线性方程组的增广矩阵化成简化阶梯形矩阵:得到同解线性方程组即或取为自由未知量,可知方程组有无穷多解,上式就是所给方程组的一般解.2.向量的线性组合设是一组n维向量,是一组常数,则称为的一个线性组合,常数称为组合系数.若一个向量可以表示成则称是的线性组合,或称可用线性表出.3.矩阵的行、列向量组设A为一个矩阵,若把A按列分块,可得一个m维列向量组称之为A的列向量组.若把A按行分块,可得一个n维行向量组称之为A的行向量组.4.线性表示的判断及表出系数的求法.向量能用线性表出的充要条件是线性方程组有解,且每一个解就是一个组合系数.例1 问能否表示成,,的线性组合?解:设线性方程组为对方程组的增广矩阵作初等行变换:则方程组有唯一解所以可以唯一地表示成的线性组合,且(二)向量组的线性相关与线性无关1.线性相关性概念设是m个n维向量,如果存在m个不全为零的数,使得,则称向量组线性相关,称为相关系数.否则,称向量线性无关.由定义可知,线性无关就是指向量等式当且仅当时成立.特别单个向量线性相关;单个向量线性无关2.求相关系数的方法设为m个n维列向量,则线性相关m元齐次线性方程组有非零解,且每一个非零解就是一个相关系数矩阵的秩小于m例2 设向量组,试讨论其线性相关性.解:考虑方程组其系数矩阵于是,秩,所以向量组线性相关,与方程组同解的方程组为令,得一个非零解为则3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4无关组的接长向量组必无关.3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4无关组的接长向量组必无关.例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:解:把所有的行向量都转置成列向量,构造一个矩阵,再用初等行变换把它化成简化阶梯形矩阵易见B的秩为4,A的秩为4,从而秩,而且B中主元位于第一、二、三、五列,那么相应地为向量组的一个极大无关组,而且(四)向量空间1.向量空间及其子空间的定义定义1 n维实列向量全体(或实行向量全体)构成的集合称为实n维向量空间,记作定义2 设V是n维向量构成的非空集合,若V对于向量的线性运算封闭,则称集合V是的子空间,也称为向量空间.2.向量空间的基与维数设V为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V的一个基,把向量组的秩称为向量空间的维数.显然,n维向量空间的维数为n,且中任意n个线性无关的向量都是的一个基.3.向量在某个基下的坐标设是向量空间V的一个基,则V中任一个向量都可以用唯一地线性表出,由r个表出系数组成的r维列向量称为向量在此基下的坐标.例4证明:构成的一个基,并求出在此基下的坐标.解:考虑由这三个3维向量组成的三阶行列式所以线性无关,它们构成的基,令由得唯一解,则所求在此基下的坐标为第四章线性方程组(一)线性方程组关于解的结论定理1 设为n元非齐次线性方程组,则它有解的充要条件是定理2当n元非齐次线性方程组有解时,即时,那么(1)有唯一解;(2)有无穷多解.定理3 n元齐次线性方程组有非零解的充要条件是推论1设A为n阶方阵,则n元齐次线性方程组有非零解推论2 设A为矩阵,且,则n元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程组的解.考虑由齐次线性方程组的解的全体所组成的向量集合显然V是非空的,因为V中有零向量,即零解,而且容易证明V对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V成为n维列向量空间的一个子空间,我们称V为方程组的解空间(三)齐次线性方程组的基础解系与通解把n元齐次线性方程组的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n元齐次线性方程组有非零解时,即时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为求基础解系与通解的方法是:对方程组先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.例1 求的通解解:对系数矩阵A,作初等行变换化成简化阶梯形矩阵:,有非零解,取为自由未知量,可得一般解为写成向量形式,令,为任意常数,则通解为可见,为方程组的一个基础解系.(四)非齐次线性方程组1.非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设为一个n元非齐次线性方程组,为它的导出组,则它们的解之间有以下性质:性质1 如果是的解,则是的解性质2如果是的解,是的解,则是的解由这两个性质,可以得到的解的结构定理:定理设A是矩阵,且,则方程组的通解为其中为的任一个解(称为特解),为导出组的一个基础解系.2.求非齐次线性方程组的通解的方法对非齐次线性方程组,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例2当参数a,b为何值时,线性方程组有唯一解?有无穷多解?无解?在有无穷多解时,求出通解.解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:_当时,,有唯一解;当时,,,无解;当时,,有无穷多解.此时,方程组的一般解为令为任意常数,故一般解为向量形式,得方程组通解为第五章特征值与特征向量(一)特征值与特征向量1.实方阵的特征值与特征向量的定义与求法设A为一个n阶实方阵,若存在一个数及一个非零n维列向量,使得,则称为A的一个特征值,称是A的属于这个特征值的一个特征向量.特征值必是特征多项式的根,而相应特征向量必是齐次线性方程组的非零解,反之也对.例1 设,求A的特征值和特征向量.解:A的特征方程为则为A的两个特征值.对,求解,即得方程组的一个基础解系为,则为A的属于的一个特征向量.对,同理可求出的一个基础解系为则为A的属于的一个特征向量2.特征值和特征向量的性质性质1设是n阶方阵的全体特征值,则必有这里为矩阵A的n个对角元之和,称为A的迹.性质2 设已知为A的特征值,为相应特征向量,即,那么对任意多项式必有,特别性质3 n阶方阵A的属于不同特征值的特征向量必线性无关.(二)方阵的相似变换1.矩阵相似的定义与相似矩阵的基本性质设A和B是两个n阶方阵,如果存在某个n阶可逆矩阵P,使得,则称A和B是相似的,记为A~B.相似矩阵必有相同的特征多项式,因而必有相同的特征值,相同的迹和相同的行列式,但反之不一定.2.方阵相似对角化若n阶方阵A能相似于一个n阶对角矩阵,则说方阵A是可以相似对角化的,有以下基本定理:定理n阶方阵A可相似对角化A有n个线性无关的特征向量.推论当n阶方阵A有n个互不相同的特征值时,A必能相似对角化.3.方阵相似对角化的方法设A为n阶实方阵,若它能相似对角化,即A有n个线性无关的特征向量,不妨设它们属于的特征值依次为(这里可以有重复的)则令为一个n阶可逆矩阵,必有称这个对角矩阵为A的相似标准形.例2 设,求A的相似标准形解:A的特征方程为则为A的特征值.可求出属于的线性无关特征向量为,属于二重特征值的线性无关特征向量为于是为A的三个特征无关特征向量,A可相似对角化令为可逆矩阵.使得,为A的相似标准形解:A的特征方程为则为A的特征值.可求出属于的线性无关特征向量为,属于二重特征值的线性无关特征向量为于是为A的三个特征无关特征向量,A可相似对角化令为可逆矩阵.使得,为A的相似标准形(三)向量内积和正交矩阵1.向量内积的定义和基本性质下面我们在n维向量空间中讨论设为两个n维列向量,把实数,称为向量与的内积向量的内积具有对称性、线性性与正定性.2.向量的长度n维列向量的长度为实数。
《线性代数》知识点-归纳整理-大学线代基础知识
《线性代数》知识点-归纳整理-大学线代基础知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 ............................................................................................................................................. - 3 -02、主对角线 ................................................................................................................................................................. - 3 -03、转置行列式 ............................................................................................................................................................. - 3 -04、行列式的性质 ......................................................................................................................................................... - 4 -05、计算行列式 ............................................................................................................................................................. - 4 -06、矩阵中未写出的元素 ............................................................................................................................................. - 5 -07、几类特殊的方阵 ..................................................................................................................................................... - 5 -08、矩阵的运算规则 ..................................................................................................................................................... - 5 -09、矩阵多项式 ............................................................................................................................................................. - 7 -10、对称矩阵 ................................................................................................................................................................. - 7 -11、矩阵的分块 ............................................................................................................................................................. - 8 -12、矩阵的初等变换 ..................................................................................................................................................... - 8 -13、矩阵等价 ................................................................................................................................................................. - 8 -14、初等矩阵 ................................................................................................................................................................. - 8 -15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 8 -16、逆矩阵 ..................................................................................................................................................................... - 9 -17、充分性与必要性的证明题 ................................................................................................................................... - 10 -18、伴随矩阵 ............................................................................................................................................................... - 10 -19、矩阵的标准形: ................................................................................................................................................... - 11 -20、矩阵的秩: ........................................................................................................................................................... - 11 -21、矩阵的秩的一些定理、推论 ............................................................................................................................... - 11 -22、线性方程组概念 ................................................................................................................................................... - 11 -23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 11 -24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 13 -25、线性方程组的向量形式 ....................................................................................................................................... - 13 -26、线性相关与线性无关的概念 ......................................................................................................................... - 13 -27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 14 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 14 -29、线性表示与线性组合的概念 ......................................................................................................................... - 14 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 14 -31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 14 -32、最大线性无关组与向量组的秩 ........................................................................................................................... - 14 -33、线性方程组解的结构 ........................................................................................................................................... - 14 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。
线性代数笔记
线性代数笔记Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】线性代数笔记第一章行列式1.3.1行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。
性质1 转置的行列式与原行列式相等。
即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。
推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。
推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。
可以证明:任意一个奇数阶反对称行列式必为零。
性质3行列式的两行(列)互换,行列式的值改变符号。
以二阶为例推论3 若行列式某两行(列),完全相同,则行列式的值为零。
性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。
性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和,注意性质中是指某一行(列)而不是每一行。
性质6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。
范德蒙德行列式例10 范德蒙行列式…….=(x2-x1)(x3-x1)(x3-x2)克莱姆法则定理1.4.1 对于n阶行列式定理如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解:定理如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解。
推论如果齐次方程组有非零解,则必有系数行列式D=0。
第二章矩阵一、矩阵的运算1、矩阵的加法设A=(a ij)m×n ,B=(b ij)m×n,则A+B=(a ij+b ij)m×n矩阵的加法适合下列运算规则:(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+0=0+A=A此处0表示与A同型的零矩阵,即A=(a ij)m×n,0=0m×n(4)矩阵A=(a ij)m×n,规定-A=(-a ij)m×n,(称之为A的负矩阵),则有A+(-A)=(-A)+A=02、矩阵的数乘设A=(a ij)m×n,K为数,则KA=(Ka ij)m×n矩阵的数乘适合下列运算规则:(1)K(A+B)=KA+KB(2)(K+L)A=KA+LA(3)(KL)A=K(LA)(4)1*A=A(5)0*A=0(左端的零是指数0,而右端的“0”表示一个与A行数列数相同的零矩阵。
线性代数复习笔记
线性代数复习笔记首先, 要先搞明白整本书的学习脉络及重点:第一章先介绍了线性方程组及矩阵的一些基本概念, 从线性方程组的消元法引出矩阵的初等变换;1.掌握线性方程组的消元法(书p.4例1)2.利用矩阵的初等变换解线性方程, 会将矩阵化成行最简形矩阵。
(书p.15例1 p.16例2)(一定是简答题)第二章从分析二阶矩阵和三阶矩阵所确定的行列式结构出发, 得出n阶矩阵所确定的n阶行列式, 并导出求解一类特殊线性方程组的克拉姆法则;1.计算二, 三阶行列式(p.25课后习题1)2.排列的逆序数(p.26例1)3灵活运用行列式的性质计算行列式的值(p37习题5: 可做一半的题目)4.会求行列式的每个元的代数余子式及各行各列的展开式(p.46习题1)5.掌握克拉默法则中定理1, 定理2的内容, 会解方程(p50.习题1和习题2)第三章则讨论了矩阵运算、逆矩阵、分块矩阵、初等矩阵、矩阵的秩等的概念;1.矩阵的加法和数乘运算比较简单, 重点要会矩阵的乘法(p.56例5和例6)2.特殊矩阵的关键运算方法。
3.转置矩阵的性质, 对称矩阵和反称矩阵的概念(p.66例4, 习题4)(会出推理题)(p.69习题1,3,4,7)4.矩阵的伴随矩阵(p.69习题8)5.知道逆矩阵的定义, 重点掌握方阵可逆的充分必要条件(p.71例2, 例3)6.利用逆矩阵求解线性方程(p.72例6)7.综合运用(p.73例8 p.75习题7, 9)8. 利用初等变换求矩阵的逆矩阵(p89.例1)9.利用初等变换解矩阵方程(p.90例2)10利用初等变换求矩阵的秩(p.95例4 p.96习题4和习题7)第四章利用矩阵秩的概念和及性质讨论线性方程有解的条件, 随后又讨论了向量组的线性相关性, 最后再综合利用前面的知识, 讨论线性方程组解的结构。
1.线性方程组有解的条件中掌握定理1, 看书102页倒数3,4段的文字, 即是解齐次方程组和非齐次方程组的过程(p.102例1 p.103例2)2.向量的线性运算较简单(p.109习题5)3.掌握判定向量线性相关和无关的方法。
线性代数总结笔记
对于非齐次线性方程组
a11x1 a1n xn b1 a x a x b nn n n n1 1
*1
Di D
(1)若 D aij 0 则 *1 有唯一解, xi
, Di 为 D 的第 i 列换为常数列;
6th
(2)若 *1 无解或有无穷多解,则 D 0 ; 注: D 0 仅是 *1 有无穷多解或无解的必要条件而非充分条件; 对于齐次方程组
a11 a12 a1n
例 1 计算上三角行列式 Dn
0
a22 a2 n ann
Dn 1
j 1
n
j1 j2 jn
a11a22 ann
注:同样地
n a11 0 aii * ann i1
类似地
* an1
1
a1n 0
0 an1
【分析】数学归纳法 递推公式 解: D2 a2 a1 ,
1 D3 a1 a
2 1
1 a2 a2
2
1 1 a3 a1 a3
2
0 a2 a2 a1 a3 a3 a1
1 a2
1 a3
1 0
0 a2 a2 a1 a3 a3 a1
1 a2 a1
1 a3 a1
注:1)在降阶时运用展开定理,降阶之前应先用性质将某一行(列)只剩一个非零元素; 2) a j1 Ai1 a j 2 Ai 2 a jn Ain
a11 a12 a13 a21 a22 a23 a21 a22 a23 a11A11 a12 A12 a13 A13 则 a a a a A a A a A 0 21 22 23 21 21 22 22 23 23 a31 a32 a33 a31 a32 a33
线性代数-学习笔记
请问矩阵中行(列)互换位置要加一个负号吗
矩阵和行列式是不同的,矩阵的行列互移矩阵不变.而行列式的话,每变一次就要加一次负号. 所以非零一阶矩阵的伴随矩阵只能是单位矩阵[1]
区别如下:
1. 矩阵是一个表格,行数和列数可以不一样;而行列式是一个数,且行数必须等于列数。
只有方阵才可以定义它的行列式,而对于长方阵不能定义它的行列式。
2. 两个矩阵相等是指对应元素都相等;两个行列式相等不要求对应元素都相等,甚至阶数也可以不一样,只要运算代数和的结果一样就行了。
3.两矩阵相加是将各对应元素相加;两行列式相加,是将运算结果相加,在特殊情况下(比如有行或列相同),只能将一行(或列)的元素相加,其余元素照写。
4.数乘矩阵是指该数乘以矩阵的每一个元素;而数乘行列式,只能用此数乘行列式的某一行或列,提公因数也如此。
5.矩阵经初等变换,其秩不变;行列式经初等变换,其值可能改变:换法变换要变号,倍法变换差倍数;消法变换不改变。
行列变换的用法要看具体情况
求行最简形,梯矩阵,解线性方程组,极大无关组时只能用行变换
求等价标准形,矩阵的秩可行列变换混用, 矩阵的秩不变, 仍与原矩阵等价
A=
x 1 1
1 x 1
1 1 x 第1行减去第3行*x,第2行减去第3行,交换第1和第3行
1 1 x
0 x-1 1-x
0 1-x 1-x^2 第3行加上第2行
1 1 x
0 x-1 1-x
0 0 2-x-x^2
那么在x=1时,R(A)=1
x= -2时,R(A)=2
若x不等于1和-2时,则R(A)=3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数笔记第一章行列式 (1)第二章矩阵 (2)第三章向量空间 (3)第四章线性方程组 (5)第五章特征值与特征向量 (5)第一章行列式1.3.1 行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。
性质1 转置的行列式与原行列式相等。
即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。
推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。
推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。
可以证明:任意一个奇数阶反对称行列式必为零。
性质3行列式的两行(列)互换,行列式的值改变符号。
以二阶为例推论3 若行列式某两行(列),完全相同,则行列式的值为零。
性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。
性质 5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和,注意性质中是指某一行(列)而不是每一行。
性质6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。
范德蒙德行列式例10 范德蒙行列式…….=(x2-x1)(x3-x1)(x3-x2)1.4 克莱姆法则定理1.4.1 对于n阶行列式定理1.4.2 如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解:定理1.4.3 如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解。
推论如果齐次方程组有非零解,则必有系数行列式D=0。
第二章矩阵一、矩阵的运算1、矩阵的加法设A=(a ij)m×n,B=(b ij)m×n,则A+B=(a ij+b ij)m×n矩阵的加法适合下列运算规则:(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+0=0+A=A此处0表示与A同型的零矩阵,即A=(a ij)m×n,0=0m×n(4)矩阵A=(a ij)m×n,规定-A=(-a ij)m×n,(称之为A的负矩阵),则有A+(-A)=(-A)+A=02、矩阵的数乘设A=(a ij)m×n,K为数,则KA=(Ka ij)m×n矩阵的数乘适合下列运算规则:(1)K(A+B)=KA+KB(2)(K+L)A=KA+LA(3)(KL)A=K(LA)(4)1*A=A(5)0*A=0(左端的零是指数0,而右端的“0”表示一个与A行数列数相同的零矩阵。
)3、矩阵的乘法设A=(a ij)m×n,B=(b jk)n×l,则A*B=C=(c ik)m×l其中C=Σa ij b jk(j=1,n)注意;两个矩阵相乘必须第一个矩阵的列数等于第二个矩阵的行数;矩阵乘法不满足交换律,即AB不一定等于BA;矩阵乘法有零因子,即A≠0(零矩阵),B≠0(零矩阵),但有可能A*B=0(零矩阵)矩阵的乘法适合以下法则:(1)结合律:(AB)C=A(BC)(2)分配律(A+B)C=AC+BCC(A+B)=CA+CB(3)k(AB)=(kA)B=A(kB),此处k是一个数。
由于矩阵乘法的结合律,故对于方阵A来说,A的方幂是有意义的,即A k=A*A…A共k个A 相乘,从而有(1)A k A l=A k+l(2)(A k)l=A kl(3)I n A=AI n=A4、矩阵的转置将矩阵A的行变成列,列变成行得到的矩阵称为A的转置矩阵,记作A T或A/注意A是m×n矩阵,则A T为n×m矩阵矩阵的转置适合下列运算法则:(1)(A T)T=A(2)(A+B)T=A T+B T(3)(kA)T=kA T(4)(AB)T=B T A T5、方阵的逆矩阵设A,B为同阶可逆矩阵。
常数k≠0。
则1.可逆,且。
AA-1=A-1A=E2.AB可逆,。
3.也可逆,且。
(A-1)k=(A k)-14.kA也可逆,且。
(注:K不能为0)5.消去律设P是与A,B同阶的可逆矩阵,若PA=PB,则A=B。
若a≠0,ab=ac则b=c。
6.设A是n阶可逆方阵。
定义,并定义。
则有,其中k,l是任意整数。
7.设A 是 n阶可逆方阵,则。
2.3.1 逆矩阵的定义定义2.3.1 设A是一个n阶方阵。
若存在一个n阶方阵B使得。
则称A是可逆矩阵,也称非奇异阵。
并称。
若这样的B不存在,则称A不可逆。
定理2.3.1可逆矩阵A的逆矩阵是惟一的。
定理2.3.2 n阶方阵A可逆的充分必要条件是,且当时,。
推论设A,B均为n阶方阵,并且满足AB=E,则A,B都可逆,且。
2.4.1 分块矩阵的概念对于行数列数较高的矩阵A,为运算方便,经常采用分块法处理。
即可以用若干条横线和竖线将其分成若干个小矩阵。
每个小矩阵称为A的子块,以子块为元素的形式上的矩阵称为分块矩阵。
2.4.3 几个特殊的分快矩阵的运算(1)准对角矩阵方阵的特殊分块矩阵形如的分块矩阵称为分块对角阵或准对角阵,其中,均为方阵。
(2)两个准对角(分块对角)矩阵的乘积则(3)准对角矩阵的逆矩阵若均为可逆阵。
可逆,且。
(4)准上(下)三角矩阵的行列式。
可以证明※(1)用初等行变换方法求逆矩阵时,不能同时用初等列变换!(2)在求矩阵的秩时,可以只用初等行变换,但也允许用初等列变换,而且不必化成简化行阶梯形矩阵定义2.5.1(线性方程组的初等变换)称下列三种变换为线性方程组的初等变换。
(1)两个方程互换位置;(2)用一个非零的数乘某一个方程;(3)把一个方程的倍数加到另一个方程上。
显然,线性方程组经初等变换后所得的新方程组与原方程组同解。
事实上,上述解线性方程组的过程,只要对该方程组的增广矩阵做相应的行变换即可。
二、矩阵初等变换的定义定义2.5.2 分别称下列三种变换为矩阵的第一、第二、第三种行(列)初等变(1)对调矩阵中任意两行(列)的位置;(2)用一非零常数乘矩阵的某一行(列);(3)将矩阵的某一行(列)乘以数k后加到另一行(列)上去。
把行初等变换和列初等变换统称为初等变换。
定义2.5.3如果一个矩阵A经过有限次的初等变换变成矩阵B,则称A与B等价,记为A~B。
等价具有反身性即对任意矩阵A,有A与A等价;对称性若A与B等价,则B与A等价传递性若A与B等价,B与C等价,则A与C等价。
三、矩阵的行最简形式和等价标准形简单地说,就是经过行初等变换可以把矩阵化成阶梯型,进而化成行最简形,而经过初等变换(包括行和列的)可以把矩阵化成等价标准形。
阶梯形矩阵的定义:满足(1)全零行(若有)都在矩阵非零行的下方;(2)各非零行中从左边数起的第一个非零元(称为主元)的列指标j随着行指标的增加而单调地严格增加的矩阵称为阶梯形矩阵。
(每个阶梯只有一行)行最简形式以称满足(1)它是阶梯形;(2)各行的第一个非零元都是1;(3)第一个非零元所在列的其它元素均为零的矩阵为行最简形式。
若允许再作初等列变换可继续得这最后的式子就是A的等价标准形。
一般,任何一个矩阵的等价标准形都是分块对角阵,也可能为或。
2.5.2 初等方阵定义2.5.4 对单位阵施行一次初等变换所得到的矩阵称为初等方阵。
以三阶方阵为例第一种:第二种:第三种:显然,初等阵都是非奇异阵。
2.5.3 用初等变换法求逆矩阵因为任意非奇异阵只经行初等变换就可化成单位阵,即则这表明,当对A作初等行变换将A变成单位矩阵E时,若对单位矩阵做完全相同的初等变换则单位矩阵E将变成。
于是有求逆矩阵的初等变换法:写出分块矩阵作初等行变换,当A化成单位阵时,E就化成为。
2.5.4 用初等变换法求解矩阵方程一元一次方程的标准形 ax=b(a≠0)矩阵方程的三种标准形AX=B XA=B(3)AXB=C则解法:对第一类作分块矩阵对A作初等行变换,当A变成单位阵时,由于B做的是同样的初等行变换,则得到的是。
对于第二类的可先转化为第一类的,即由两边转置得按上例的方法求出进而求出X二.初等变换的性质定理2.5.1 设线性方程组的增广矩阵经有限次的初等行变换化为,则以与为增广矩阵的方程组同解。
定理2.5.2任何矩阵都可以经有限次初等行变换化成行最简形式,经有限次初等变换(包括行及列)化成等价标准形。
且其标准形由原矩阵惟一确定,而与所做的初等变换无关。
定理2.5.3设A是一个m×n阶的矩阵,则(1)对A做一次初等行变换,就相当于用一个与这个初等变换相应的m阶初等矩阵左乘A;(2)对A做一次初等列变换,就相当于用一个与这个初等变换相应的n阶初等矩阵右乘A;推论1 方阵经初等变换其奇异性不变。
定理2.5.4对于任意的m×n阶矩阵A,总存在m阶可逆矩阵P和n阶可逆矩阵Q,使得推论2 n阶可逆阵(非奇异阵)必等价于单位阵。
因为否则,其等价标准形不可逆。
定理2.5.5 n阶方阵A可逆的充分必要条件是A能表示成若干个初等阵的乘积。
证充分性是显然的。
下面证必要性。
“”已知A为n阶可逆阵,则A与等价,故存在有限个n阶初等阵,即,亦即A能表示成有限个初等矩阵的乘积。
必要性得证。
推论3任意可逆阵A(非奇异阵)只经过有限次的初等行(列)变换就能化成单位阵。
对n阶方阵A,初等变换不改变其奇异性。
定义2.6.1 矩阵A的最高阶非零子式的阶数称为该矩阵的秩。
记为r(A),有时也记为秩(A)。
事实上,如果A有一个r阶子式不等于零,而所有r+1阶子式都等于零,则r(A)第三章向量空间一、n维向量线性运算的定义和性质;定义:设是一组n维向量构成的向量组。
如果存在一组不全为零的数使得则称向量组线性相关。
否则,称向量组线性无关。
向量线性运算的性质:向量的运算满足下列8条运算律:设α,β,γ都是n维向量,k,l是数,则(1)α+β=β+α;(加法交换律)(2)(α+β)+γ=α+(β+γ);(加法结合律)(3)α+0=α;(4)α+(-α)=0(5)1×α=α(6)K(α+β)=kα+kβ;(数乘分配律)(7)(k+l)α=kα+lα;(数乘分配律)(8)(kl)α=k(lα);(数乘向量结合律)二、n维向量组的线性相关性1.向量组的线性相关性的定义和关于线性相关的几个定理;(1)m个n维向量线性相关的充分必要条件是至少存在某个是其余向量的线性组合.线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.(2)如果向量组线性无关,而线性相关,则β可由线性表示,且表示法唯一.(3)线性相关的向量组再增加向量所得的新向量组必线性相关.(部分相关,则整体相关;或整体无关,则部分无关)(4)若向量组线性无关,则接长向量组必线性无关.2.判断向量组的线性相关性的方法(1)一个向量α线性相关;(2)含有零向量的向量组必线性相关;(3)向量个数=向量维数时,n维向量组线性相关;(4)向量个数 >向量维数时, 向量组必线性相关;(5)若向量组的一个部分组线性相关,则向量组必线性相关;(6)若向量组线性无关,则其接长向量组必线性无关;(7)向量组线性无关向量组的秩=所含向量的个数,向量组线性相关向量组的秩<所含向量的个数;(8)向量组线性相关(无关)的充分必要条件是齐次方程组有(没有)非零解.※向量组的秩一个向量组α1,α2,…αm的部分组αi1,αi2,…,αir满足如下条件:(1)αi1,αi2,…,αir线性无关(2)该向量组任意一个向量添加到这个部分组后得到的向量组线性相关则称αi1,αi2,…,αir为向量组α1,α2,…αm的极大线性无关部分组。