2017年海南省中考数学仿真试卷(一)含答案解析
中考模拟】2017年海南省中考数学仿真试卷(一)含答案解析
中考模拟】2017年海南省中考数学仿真试卷(一)含答案解析2017年海南省中考数学仿真试卷(一)一、选择题(共14小题,每小题3分,满分42分)1.(3分)|-3|的值是()。
A.3B.-3C.0D.无法确定2.(3分)当x=1时,代数式4-3x的值是()。
A.1B.2C.3D.43.(3分)下列计算正确的是()。
A.(2a)²=4a²B.a⁶÷a³=a³C.a³•a²=a⁵D.3a²+2a³=5a⁶4.(3分)为了方便市民出行,提倡低碳交通,近几年某市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达辆,用科学记数法表示是()。
A.0.75×10⁵B.7.5×10⁴C.7.5×10⁵D.75×10³5.(3分)一组数据:2,5,4,3,2的中位数是()。
A.4B.3.2C.3D.26.(3分)化简。
A.1B.-1C.8D.-87.(3分)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()。
A.B.C.D.8.(3分)若反比例函数y=k/x的图象经过点(2,-1),则这个函数的图象一定经过点()。
A.(-2,-1)B.(-1,2)C.(-2,-1/2)D.(1/2,-2)9.(3分)已知边长为a的正方形的面积为8,则下列说法中,错误的是()。
A.a是无理数B.a是方程x²-8=0的解C.a是8的算术平方根D.3<a<410.(3分)如图,CA⊥BE于A,AD∥BC,若∠1=54°,则∠C等于()。
A.30°B.36°C.45°D.54°11.(3分)在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,AB=4,则D到BC的距离是()。
A.3B.4C.5D.612.(3分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()。
2017年海南省中考数学试卷[解析版]
海南省2017年初中毕业生学业考试数学科试题(考试时间:100分钟满分:120分)一、选择题(本大题共14小题,每小题3分,共42分)1.(2017海南)2017的相反数是()A.﹣2017 B.2017 C.﹣ D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(2017海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(2017海南)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(2017海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(2017海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(2017海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.C.【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(2017海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2017海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(2017海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(2017海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(2017海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(2017海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC 的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CA B=25°,∴∠BOC=2∠CAB=50°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(2017海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(2017海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,进过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(2017海南)不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化1得,x>﹣.故本题的解集为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(2017海南)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.(2017海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(2017海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,=.∴MN最大故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(2017海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(2017海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(2017海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(2017海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(2017海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道基础题目.24.(2017海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值;②当△CNQ 与△PBM 相似时有=或=两种情况,利用P 点坐标,可分别表示出线段的长,可得到关于P 点坐标的方程,可求得P 点坐标.【解答】解:(1)∵抛物线y=ax 2+bx+3经过点A (1,0)和点B (5,0),∴,解得,∴该抛物线对应的函数解析式为y=x 2﹣x+3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P (t , t 2﹣t+3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N ,∴M (t ,0),N (t , t+3),∴PN=t+3﹣(t 2﹣t+3)=﹣(t ﹣)2+联立直线CD 与抛物线解析式可得,解得或,∴C (0,3),D (7,),分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE=t ,DF=7﹣t ,∴S △PCD =S △PCN +S △PDN =PNCE+PNDF=PN= [﹣(t ﹣)2+]=﹣(t ﹣)2+,∴当t=时,△PCD 的面积有最大值,最大值为; ②存在.∵∠CQN=∠PMB=90°,∴当△CNQ 与△PBM 相似时,有=或=两种情况,∵CQ ⊥PM ,垂足为Q ,∴Q (t ,3),且C (0,3),N (t , t+3),∴CQ=t ,NQ=t+3﹣3=t ,∴=,∵P (t , t 2﹣t+3),M (t ,0),B (5,0),∴BM=5﹣t ,PM=0﹣(t 2﹣t+3)=﹣t 2+t ﹣3,当=时,则PM=BM ,即﹣t 2+t ﹣3=(5﹣t ),解得t=2或t=5(舍去),此时P (2,);当=时,则BM=PM ,即5﹣t=(﹣t 2+t ﹣3),解得t=或t=5(舍去),此时P (,﹣);综上可知存在满足条件的点P ,其坐标为(2,)或(,﹣). 【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P 点坐标表示出△PCD 的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
海南海口市秀英区2017年中考数学模拟试卷含答案
2017年九年级数学中考模拟试卷一、选择题:1.如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A.﹣500元B.﹣237元C.237元D.500元2.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09³105B.27.809³103C.2.780 9³103D.2.780 9³1043.下列各式计算正确的是()A.2a2+3a2=5a4B.(﹣2ab)3=﹣6ab3C.(3a+b)(3a﹣b)=9a2﹣b2D.a3•(﹣2a)=﹣2a34.由图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A.极差是6B.众数是7C.中位数是8D.平均数是106.如图,在下列四个几何体中,它的三视图(主视图、左视图、俯视图)不完全相同的是( )A.①② B.②③ C.①④ D.②④7.将函数y=-3x图象沿y轴向上平移2个单位长度后,所得图象对应函数关系式为( )A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)8.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A. B. C.1 D.二、填空题:9.已知2x+1的平方根是±5,则5x+4的立方根是__________.10.若m2﹣n2=6,且m﹣n=2,则m+n= .11.若+有意义,则(﹣2)a= .12.如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于度.13.如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为.14.如图,在平行四边形ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有对.15.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32,对于这组数据,众数是,中位数是,极差是.16.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为.三、计算题:17.计算:.18.解不等式组:四、解答题:19.正比例函数y=x的图象与反比例函数的图象有一个交点的纵坐标是2.(1)当x=-3是,求反比例函数的值;(2)-3<x<-1时,求反比例函数的取值范围.20.2016年3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B所在扇形的圆心角的度数是;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?21.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.y甲= ,y乙= ;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的1.5倍,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?22.据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A处行驶到B处的时间为4秒.问此车是否超过了该路段16米/秒的限制速度?(参考数据:≈1.4,≈1.7)23.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.⑴求证:AD平分∠BAC;24.某玩具经销商用1.6万元购进了一批玩具,上市后一周全部售完.该经销商又用3.4万元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该经销商两次共购进这种玩具多少套?(2)若第一批玩具销售完后总利润率为25%,购进的第二批玩具仍以第一批的相同售价出售,则第二批玩具全部售完后,这二批玩具经销商共可获利多少元?五、综合题:25.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求A D的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.26.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究:已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.参考答案1.B2.D3.C4.A5.B6.C7.A8.D9.答案为:4;10.答案为:3.11.答案为:1.12.答案为:30.13.答案为:0.75.14.答案为:4.15.答案为:29,29,4.16.答案为:(﹣,).17.解:原式==18.略19.20.解:(1)105÷35%=300(人).故答案为:300;(2)n=300³30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)72°;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是0.15.21.解:(1)由题意得,y甲=10x+40;y乙=10x+20;(2)由题意得,W=(10﹣x)(10x+40)+(20﹣x)(10x+20)=﹣20x2+240x+800,由题意得,10x+40≥1.5(10x+20)解得x≤2,W=﹣20x2+240x+800=﹣20(x﹣6)2+1520,∵a=﹣20<0,∴当x<6时,y随x增大而增大,∴当x=2时,W的值最大.答:当x定为2元时,才能使小明每周销售甲、乙两种商品获得的总利润最大.22.由题意得,在Rt△BCD中,∵∠B DC=90°,∠BCD=45°,CD=100米,∴B D=CD=100米.在Rt△ACD中,∵∠ADC=90°,∠ACD=60°,CD=100米,∴A D=CD²tan∠ACD=100(米).∴AB=AD-BD=100-100≈70(米).∴此车的速度为(米/秒).∵17.5>16,∴此车超过了该路段16米/秒的限制速度.23.解:(1)连接OD,∵BC是⊙O的切线,∴OD⊥BC ∴∠ODB=90°又∵∠C=90°∴AC∥OD ∴∠CAD=∠ADO又∵OA=OD ∴∠OAD=∠ADO ∴∠CAD=∠OAD[来源:学*科网]∴ AD平分∠BAC(2)在Rt△ACD中 AD=10 连接DE,∵AE为⊙O的直径∴∠ADE=90°∴∠ADE=∠C∵∠CAD=∠OAD∴△ACD∽△ADE∴AE=12.5. ∴⊙O的半径是6.25.24.25.解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).26.解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM 中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=³60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=³60°=30°,又∵BD=4,∴BE=³4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF 的长为或.第11 页共11 页。
2017年海南省中考数学试卷 数学
2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.2017的相反数是()A.﹣2017 B.2017 C.﹣ D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.C.【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n ,则n 的值为( ) A .5B .6C .7D .8【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:∵2000000=2×106, ∴n=6. 故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.若分式的值为0,则x 的值为( ) A .﹣1 B .0C .1D .±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.【解答】解:∵分式的值为0,∴x 2﹣1=0,x ﹣1≠0, 解得:x=﹣1. 故选:A .【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,进过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k×2=2,k最大=4×4=16,最小=1∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化1得,x>﹣.故本题的解集为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN.最大=故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道基础题目.24.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有=或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,=S△PCN+S△PDN=PNCE+PNDF=PN= [﹣(t﹣)2+]=﹣(t ∴S△PCD﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有=或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当=时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P ,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P 点坐标表示出△PCD 的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
海南省中考数学试卷含答案
2017 年海南省中考数学试卷一、选择题(本大题共14 小题,每题 3 分,共 42 分)1.(3分) 2017 的相反数是()A.﹣ 2017 B.2017C.﹣D.2.(3分)已知 a=﹣2,则代数式 a+1 的值为()A.﹣ 3 B.﹣2 C.﹣ 1 D.13.(3 分)以下运算正确的选项是()A.a3+a2=a5 B.a3÷ a2=a C.a3?a2=a6 D.( a3)2=a94.(3 分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱5.( 3 分)如图,直线C.圆台D.圆锥a∥b,c⊥ a,则 c 与 b 订交所形成的∠ 1 的度数为()A.45°B.60°C.90°D.120°6.( 3 分)如图,在平面直角坐标系中,△ABC位于第二象限,点 A 的坐标是(﹣2,3),先把△ ABC向右平移 4 个单位长度获取△ A1B1C1,再作与△ A1B1C1对于 x轴对称的△ A2 2 2,则点A 的对应点2的坐标是()B C AA.(﹣ 3,2)B.(2,﹣ 3)C.(1,﹣ 2)D.(﹣ 1,2)7.(3 分)海南省是中国领土面积(含海疆)第一大省,此中海疆面积约为2000000平方公里,数据2000000 用科学记数法表示为2×10n,则 n 的值为()A.5B.6C.7D.88.(3 分)若分式的值为0,则x的值为()A.﹣ 1 B.0C.1D.± 19.(3 分)今年 3 月 12 日,某学校展开植树活动,某植树小组20 名同学的年纪状况以下表:年纪(岁)1213141516人数14357则这 20 名同学年纪的众数和中位数分别是()A.15,14B.15,15C.16, 14D.16, 1510.( 3 分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向 2 的概率为()A.B.C.D.11.( 3 分)如图,在菱形A BCD中, AC=8,BD=6,则△ ABC的周长是()A.14 B.16 C.18D.2012.( 3 分)如图,点A、B、C 在⊙ O 上, AC∥OB,∠ BAO=25°,则∠ BOC的度数为()A.25°B.50°C.60°D.80°13.( 3 分)已知△ ABC的三边长分别为4、4、6,在△ ABC所在平面内画一条直线,将△ ABC切割成两个三角形,使此中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.614.(3 分)如图,△ ABC的三个极点分别为A(1,2),B( 4,2),C(4,4).若反比率函数 y=在第一象限内的图象与△ABC有交点,则 k 的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16D.8≤k≤16二、填空题(本大题共 4 小题,每题 4 分,共 16 分)15.( 4 分)不等式 2x+1>0 的解集是.16.(4 分)在平面直角坐标系中,已知一次函数 y=x﹣1 的图象经过 P1(x1,y1)、P2( x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“ =)”ABCD 17.( 4 分)如图,在矩形ABCD中, AB=3,AD=5,点E 在DC上,将矩形F 处,那么cos∠ EFC的值是.沿 AE 折叠,点 D 恰巧落在BC边上的点18.(4 分)如图,AB 是⊙ O 的弦,AB=5,点 C 是⊙ O 上的一个动点,且∠ ACB=45°,若点 M 、 N 分别是 AB、AC 的中点,则 MN 长的最大值是.三、解答题(本大题共62 分)19.( 10 分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣( x+1)( x﹣ 1)20.(8 分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5 辆甲种车和 2 辆乙种车一次共可运土64 立方米,3 辆甲种车和 1 辆乙种车一次共可运土 36 立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8 分)某校展开“我最喜欢的一项体育活动”检查,要求每名学生必选且只好选一项,现随机抽查了 m 名学生,并将其结果绘制成以下不完好的条形图和扇形图.请联合以上信息解答以下问题:( 1) m=;( 2)请补全上边的条形统计图;( 3)在图 2 中,“乒乓球”所对应扇形的圆心角的度数为;( 4)已知该校共有1200 名学生,请你预计该校约有名学生最喜欢足球活动.22.( 8 分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家供给的方案是:水坝加高 2 米(即 CD=2米),背水坡 DE 的坡度 i=1:1(即DB:EB=1:1),以下图,已知AE=4米,∠ EAC=130°,求水坝本来的高度BC.(参照数据: sin50 ≈°, cos50°≈, tan50 °≈)23.( 12 分)如图,四边形 ABCD是边长为 1 的正方形,点 E 在 AD 边上运动,且不与点 A 和点 D 重合,连结 CE,过点 C 作 CF⊥CE交 AB 的延伸线于点 F,EF交 BC于点 G.(1)求证:△ CDE≌△ CBF;(2)当 DE= 时,求 CG的长;(3)连结 AG,在点 E 运动过程中,四边形 CEAG可否为平行四边形?若能,求出此时 DE的长;若不可以,说明原因.24.( 16 分)抛物线 y=ax2+bx+3 经过点 A(1,0)和点 B(5, 0).(1)求该抛物线所对应的函数分析式;(2)该抛物线与直线 y= x+3 订交于 C、D 两点,点 P 是抛物线上的动点且位于x 轴下方,直线 PM∥y 轴,分别与 x 轴和直线 CD交于点 M、N.①连结 PC、PD,如图 1,在点 P 运动过程中,△ PCD的面积能否存在最大值?若存在,求出这个最大值;若不存在,说明原因;②连结 PB,过点 C 作 CQ⊥ PM,垂足为点 Q,如图 2,能否存在点 P,使得△ CNQ 与△ PBM 相像?若存在,求出知足条件的点P 的坐标;若不存在,说明原因.2017 年海南省中考数学试卷参照答案与试题分析一、选择题(本大题共14 小题,每题 3 分,共42 分)1.(3 分)(2017?黔南州)2017 的相反数是()A.﹣ 2017 B.2017C.﹣D.【剖析】依据相反数特征:若a. b 互为相反数,则 a+b=0 即可解题.【解答】解:∵ 2017+(﹣ 2017)=0,∴2017 的相反数是(﹣2017),应选 A.【评论】本题考察了相反数之和为 0 的特征,娴熟掌握相反数特征是解题的重点.2.(3 分)(2017?海南)已知a=﹣2,则代数式a+1 的值为()A.﹣ 3 B.﹣2 C.﹣ 1 D.1【剖析】把 a 的值代入原式计算即可获取结果.【解答】解:当 a=﹣2 时,原式 =﹣ 2+1=﹣ 1,应选 C【评论】本题考察了代数式求值,娴熟掌握运算法例是解本题的重点.3.(3 分)(2017?海南)以下运算正确的选项是()3+a2 5.3÷ a2.3 2 6 .(3)2 9A.a =a B a=a C a ?a =a D a=a【剖析】依据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解: A、a3与 a2不是同类项,不可以归并,故 A 不切合题意;B、同底数幂的除法底数不变指数相减,故 B 切合题意;C、同底数幂的乘法底数不变指数相加,故 C 不切合题意;D、幂的乘方底数不变指数相乘,故 D 不切合题意;应选: B.【评论】本题考察了同底数幂的除法,熟记法例并依据法例计算是解题重点.4.(3 分)(2017?海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【剖析】依据主视图、左视图、俯视图是分别从物体正面、左面和上边看,所获取的图形,再依据几何体的特色即可得出答案.【解答】解:依据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.应选: D.【评论】本题考察了由三视图判断几何体,重点是对三视图能娴熟掌握和灵巧运用,表现了对空间想象能力的考察.5.(3 分)(2017?海南)如图,直线a∥b,c⊥a,则 c 与 b 订交所形成的∠ 1 的度数为()A.45°B.60°C.90°D.120°【剖析】依据垂线的定义可得∠2=90°,再依据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵ c⊥a,∴∠ 2=90°,∵a∥ b,∴∠ 2=∠ 1=90°.应选: C.【评论】本题考察了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的重点.6.(3 分)(2017?海南)如图,在平面直角坐标系中,△ ABC位于第二象限,点 A 的坐标是(﹣ 2,3),先把△ ABC向右平移 4 个单位长度获取△ A1B1C1,再作与△ A1B1C1对于 x 轴对称的△ A2B2C2,则点 A 的对应点 A2的坐标是()A.(﹣ 3,2)B.(2,﹣ 3)C.(1,﹣ 2)D.(﹣ 1,2)【剖析】第一利用平移的性质获取△A1B1C1,从而利用对于 x 轴对称点的性质得到△ A2B2C2,即可得出答案.【解答】解:以下图:点 A 的对应点 A2的坐标是:( 2,﹣ 3).应选: B.【评论】本题主要考察了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(3 分)(2017?海南)海南省是中国领土面积(含海疆)第一大省,此中海疆面积约为 2000000 平方公里,数据2000000 用科学记数法表示为2×10n,则 n 的值为()A.5B.6C.7D.8【剖析】科学记数法的表示形式为 a× 10n的形式,此中 1≤| a| < 10,n 为整数.确立 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值≥ 1 时,n 是非负数;当原数的绝对值< 1 时,n 是负数.【解答】解:∵ 2000000=2× 106,∴n=6.应选: B.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤| a| <10,n 为整数,表示时重点要正确确立 a 的值以及 n 的值.8.(3 分)(2017?海南)若分式的值为0,则x 的值为()A.﹣ 1 B.0C.1D.± 1【剖析】直接利用分式的值为零则分子为零,分母不等于零,从而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得: x=﹣ 1.应选: A.【评论】本题主要考察了分式的值为零,正确掌握有关定义是解题重点.9.(3 分)(2017?海南)今年 3 月 12 日,某学校展开植树活动,某植树小组20名同学的年纪状况以下表:年纪(岁)12 13 141516人数14357则这 20 名同学年纪的众数和中位数分别是()A.15,14 B.15,15 C.16, 14 D.16, 15中【剖析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;位数是排序后位于中间地点的数,或中间两数的均匀数.【解答】解:∵ 12 岁有 1 人, 13 岁有 4 人,14 岁有 3 人,15 岁有 5 人, 16 岁有7人,∴出现次数最多的数据是 16,∴同学年纪的众数为 16 岁;∵一共有 20 名同学,∴所以此中位数应是第 10 和第 11 名同学的年纪的均匀数,∴中位数为( 15+15)÷ 2=15,故中位数为15.应选 D.【评论】本题考察了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(最中间两个数的均匀数),叫做这组数据的中位数.10.( 3 分)(2017?海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向 2 的概率为()A.B.C.D.【剖析】第一依据题意列出表格,而后由表格即可求得全部等可能的结果与都指向 2 的状况数,既而求得答案.【解答】解:列表以下:1234 1(1,1)(2,1)(3,1)(4,1)2(,)(,)(,)(,)12223242 3(,)(,)(,)(,)13233343 4(,)(,)(,)(,)14243444∵共有 16 种等可能的结果,两个转盘的指针都指向 2 的只有 1 种结果,∴两个转盘的指针都指向 2 的概率为,应选: D.【评论】本题考察了树状图法与列表法求概率.用到的知识点为:概率 =所讨状况数与总状况数之比.11.( 3 分)(2017?海南)如图,在菱形ABCD 中, AC=8, BD=6,则△ ABC 的周长是()A.14 B.16 C.18D.20【剖析】利用菱形的性质联合勾股定理得出AB 的长,从而得出答案.【解答】解:∵在菱形 ABCD中, AC=8, BD=6,∴AB=BC,∠ AOB=90°, AO=4,BO=3,∴BC=AB==5,∴△ ABC的周长 =AB+BC+AC=5+5+8=18.应选: C.【评论】本题主要考察了菱形的性质、勾股定理,正确掌握菱形的性质,由勾股定理求出 AB 是解题重点.12.( 3 分)(2017?海南)如图,点A、B、C 在⊙ O 上, AC∥OB,∠ BAO=25°,则∠ BOC的度数为()A.25°B.50°C.60°D.80°【剖析】先依据 OA=OB,∠ BAO=25°得出∠ B=25°,再由平行线的性质得出∠B=∠CAB=25°,依据圆周角定理即可得出结论.【解答】解:∵ OA=OB,∠BAO=25°,∴∠ B=25°.∵ AC∥OB,∴∠ B=∠ CAB=25°,∴∠ BOC=2∠ CAB=50°.(同弧所对的圆心角等于圆周角的 2倍)应选 B.【评论】本题考察的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答本题的重点.13.( 3 分)( 2017?海南)已知△ ABC的三边长分别为4、4、6,在△ ABC所在平面内画一条直线,将△ ABC切割成两个三角形,使此中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6【剖析】依据等腰三角形的性质,利用 4 作为腰或底边得出切合题意的图形即可.【解答】解:以下图:当 AC=CD,AB=BG,AF=CF,AE=BE时,都能获取切合题意的等腰三角形.应选 B.【评论】本题主要考察了等腰三角形的判断以及应用设计与作图等知识,正确利用图形分类议论得出是解题重点.14.(3 分)(2017?海南)如图,△ABC的三个极点分别为A(1,2),B(4,2),C(4,4).若反比率函数 y= 在第一象限内的图象与△ ABC有交点,则 k 的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16D.8≤k≤16【剖析】因为△ ABC是直角三角形,所以当反比率函数y=经过点 A 时 k 最小,经过点 C 时 k 最大,据此可得出结论.【解答】解:∵△ ABC是直角三角形,∴当反比率函数y=经过点A时k最小,经过点C时k最大,∴k 最小 =1×2=2, k 最大 =4× 4=16,∴2≤ k≤16.应选 C.【评论】本题考察的是反比率函数的性质,熟知反比率函数图象上点的坐标特色是解答本题的重点.二、填空题(本大题共 4 小题,每题 4 分,共 16 分)15.( 4 分)(2017?海南)不等式 2x+1>0 的解集是 x>﹣.【剖析】利用不等式的基天性质,将不等式两边同时减去 1 再除以 2,不等号的方向不变;即可获取不等式的解集.【解答】解:原不等式移项得,2x>﹣ 1,系数化为 1,得,x>﹣.故答案为 x>﹣.【评论】本题考察认识简单不等式的能力,解答这种题学生常常在解题时不注意移项要改变符号这一点而犯错.解不等式要依照不等式的基天性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.( 4 分)(2017?海南)在平面直角坐标系中,已知一次函数y=x﹣1 的图象经过P(,)、(,)两点,若x1<x2,则y1<(填“>”,“<”或“ )”1 x1 y1P2x2 y2y2=【剖析】依据 k=1 联合一次函数的性质即可得出y=x﹣1 为单一递加函数,再根据 x1<x2即可得出 y1<y2,本题得解.【解答】解:∵一次函数 y=x﹣1 中 k=1,∴ y 随 x 值的增大而增大.∵ x1<x2,∴ y1<y2.故答案为:<.【评论】本题考察了一次函数的性质,娴熟掌握“k>0,y 随 x 的增大而增大,函数从左到右上涨.”是解题的重点.17.( 4 分)(2017?海南)如图,在矩形 ABCD中, AB=3,AD=5,点 E 在 DC 上,将矩形 ABCD沿 AE折叠,点 D 恰巧落在 BC边上的点 F 处,那么 cos∠ EFC 的值是.【剖析】依据翻折变换的性质获取∠AFE=∠ D=90°,AF=AD=5,依据矩形的性质获取∠ EFC=∠BAF,依据余弦的观点计算即可.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠ EFC+∠ AFB=90°,∵∠ B=90°,∴∠ BAF+∠AFB=90°,∴∠ EFC=∠ BAF,cos∠BAF= =,∴cos∠ EFC= ,故答案为:.【评论】本题考察的是翻折变换的性质、余弦的观点,掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,地点变化,对应边和对应角相等是解题的重点.18.( 4 分)(2017?海南)如图, AB 是⊙ O 的弦, AB=5,点 C 是⊙ O 上的一个动点,且∠ ACB=45°,若点 M、N 分别是 AB、AC的中点,则 MN 长的最大值是.【剖析】依据中位线定理获取 MN 的长最大时, BC最大,当 BC最大时是直径,从而求得直径后就能够求得最大值.【解答】解:如图,∵点 M , N 分别是 AB, AC的中点,∴ MN=BC,∴当 BC获得最大值时, MN 就获得最大值,当 BC是直径时, BC最大,连结 BO 并延伸交⊙ O 于点 C′,连结 AC′,∵BC′是⊙ O 的直径,∴∠ BAC′=90.°∵∠ACB=45°,AB=5,∴∠AC′B=45,°∴BC′===5,∴MN 最大=故答案为:..【评论】本题考察了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的重点是认识当什么时候 MN 的值最大,难度不大.三、解答题(本大题共62 分)19.( 10 分)( 2017?海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣( x+1)( x﹣ 1)【剖析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法例计算即可获取结果;(2)原式利用完好平方公式,平方差公式,以及单项式乘以多项式法例计算即可获取结果.【解答】解:(1)原式 =4﹣3﹣4× =4﹣ 3﹣ 2=﹣1;(2)原式 =x2 +2x+1+x2﹣2x﹣ x2+1=x2+2.【评论】本题考察了整式的混淆运算,以及实数的运算,娴熟掌握运算法例是解本题的重点.20.(8 分)( 2017?海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知 5 辆甲种车和 2 辆乙种车一次共可运土64 立方米,3 辆甲种车和 1辆乙种车一次共可运土36 立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【剖析】设甲种车辆一次运土 x 立方米,乙种车辆一次运土 y 立方米,依据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x 立方米,乙种车辆一次运土y 立方米,由题意得,,解得:.答:甲种车辆一次运土8 立方米,乙种车辆一次运土12 立方米.【评论】本题考察了二元一次方程组的应用,属于基础题,认真审题,依据题意的等量关系得出方程是解答本题的重点.21.(8 分)( 2017?海南)某校展开“我最喜欢的一项体育活动”检查,要求每名学生必选且只好选一项,现随机抽查了 m 名学生,并将其结果绘制成以下不完好的条形图和扇形图.请联合以上信息解答以下问题:(1) m= 150 ;(2)请补全上边的条形统计图;( 3)在图 2 中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200 名学生,请你预计该校约有240 名学生最喜欢足球活动.【剖析】(1)依据图中信息列式计算即可;(2)求得“足球“的人数 =150× 20%=30人,补全上边的条形统计图即可;(3) 360°×乒乓球”所占的百分比即可获取结论;(4)依据题意计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数 =150×20%=30人,补全上边的条形统计图以下图;( 3)在图 2 中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4) 1200× 20%=240人,答:预计该校约有240 名学生最喜欢足球活动.故答案为: 150,36°,240.【评论】本题考察了条形统计图,察看条形统计图、扇形统计图获取有效信息是解题重点.22.( 8 分)(2017?海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家供给的方案是:水坝加高 2 米(即 CD=2米),背水坡 DE 的坡度 i=1:1(即 DB:EB=1:1),以下图,已知 AE=4米,∠ EAC=130°,求水坝本来的高度 BC.(参照数据: sin50 ≈°, cos50°≈, tan50 °≈)【剖析】设 BC=x米,用 x 表示出 AB 的长,利用坡度的定义获取BD=BE,从而列出 x 的方程,求出 x 的值即可.【解答】解:设 BC=x米,在 Rt△ABC中,∠ CAB=180°﹣∠ EAC=50°,AB=≈==x,在 Rt△EBD中,∵ i=DB:EB=1:1,∴ BD=BE,∴ CD+BC=AE+AB,即 2+x=4+ x,解得 x=12,即 BC=12,答:水坝本来的高度为 12 米.【评论】本题考察认识直角三角形的应用,解答本题的重点是理解坡度、坡比的含义,结构直角三角形,利用三角函数表示有关线段的长度,难度一般.23.(12 分)(2017?海南)如图,四边形ABCD是边长为1 的正方形,点E 在AD 边上运动,且不与点 A 和点 D 重合,连结 CE,过点 C 作 CF⊥CE交 AB 的延伸线于点 F,EF交 BC于点 G.(1)求证:△ CDE≌△ CBF;(2)当 DE= 时,求 CG的长;(3)连结 AG,在点 E 运动过程中,四边形 CEAG可否为平行四边形?若能,求出此时 DE的长;若不可以,说明原因.【剖析】(1)先判断出∠ CBF=90°,从而判断出∠ 1=∠3,即可得出结论;(2)先求出 AF, AE,再判断出△ GBF∽△ EAF,可求出 BG,即可得出结论;(3)假定是平行四边形,先判断出 DE=BG,从而判断出△ GBF 和△ ECF是等腰直角三角形,即可得出∠ GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形 ABCD中, DC=BC,∠ D=∠ABC=∠ DCB=90°,∴∠ CBF=180°﹣∠ ABC=90°,∠ 1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ ECF=90°,∴∠ 3+∠ 2=∠ECF=90°,∴∠ 1=∠ 3,在△ CDE和△ CBF中,,∴△ CDE≌△ CBF,(2)在正方形ABCD中,AD∥BC,∴△ GBF∽△ EAF,∴,由( 1)知,△ CDE≌△ CBF,∴BF=DE= ,∵正方形的边长为1,∴ AF=AB+BF= ,AE=AD﹣DE= ,∴,∴BG= ,∴CG=BC﹣BG= ;( 3)不可以,原因:若四边形CEAG是平行四边形,则一定知足AE∥ CG, AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由( 1)知,△ CDE≌△ CBF,∴DE=BF,CE=CF,∴△ GBF和△ ECF是等腰直角三角形,∴∠ GFB=45°,∠ CFE=45°,∴∠ CFA=∠GFB+∠CFE=90°,此时点 F 与点 B 重合,点 D 与点 E 重合,与题目条件不符,∴点 E 在运动过程中,四边形CEAG不可以是平行四边形.【评论】本题是四边形综合题,主要考察了正方形的性质,全等三角形的判断和性质,相像三角形的判断和性质,平行四边形的性质,等腰直角三角形的判断,解( 1)的重点是判断∠ 1=∠ 3,解( 2)的重点是判断出△ GBF∽△ EAF,解( 3)的重点是判断出∠ CFA=90°,是一道常考题.24.( 16 分)( 2017?海南)抛物线 y=ax2+bx+3 经过点 A( 1, 0)和点 B( 5, 0).(1)求该抛物线所对应的函数分析式;(2)该抛物线与直线 y= x+3 订交于 C、D 两点,点 P 是抛物线上的动点且位于x 轴下方,直线 PM∥y 轴,分别与 x 轴和直线 CD交于点 M、N.①连结 PC、PD,如图 1,在点 P 运动过程中,△ PCD的面积能否存在最大值?若存在,求出这个最大值;若不存在,说明原因;②连结 PB,过点 C 作 CQ⊥ PM,垂足为点 Q,如图 2,能否存在点 P,使得△ CNQ 与△ PBM 相像?若存在,求出知足条件的点 P 的坐标;若不存在,说明原因.【剖析】(1)由 A、B 两点的坐标,利用待定系数法可求得抛物线分析式;(2)①可设出 P 点坐标,则可表示出 M、 N 的坐标,联立直线与抛物线分析式可求得 C、D 的坐标,过 C、D 作 PN 的垂线,可用 t 表示出△ PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM 相像时有别表示出线段的长,可获取对于【解答】解:或 = 两种状况,利用 P 点坐标,可分P 点坐标的方程,可求得P 点坐标.( 1)∵抛物线 y=ax2+bx+3 经过点 A(1,0)和点 B( 5, 0),∴,解得,∴该抛物线对应的函数分析式为y= x2﹣x+3;(2)①∵点 P 是抛物线上的动点且位于 x 轴下方,∴可设 P( t , t 2﹣ t+3)(1<t< 5),∵直线 PM∥ y 轴,分别与 x 轴和直线 CD交于点 M 、N,∴M(t, 0),N( t, t +3),∴PN= t+3﹣( t 2﹣ t+3)=﹣( t ﹣)2+联立直线 CD与抛物线分析式可得,解得或,∴C(0,3),D(7,),分别过 C、 D 作直线 PN 的直线,垂足分别为E、F,如图 1,则 CE=t, DF=7﹣ t,∴ S△PCD=S△PCN+S△PDN= PN?CE+ P N?DF= PN= [ ﹣(t﹣)2+] =﹣(t ﹣)2+,∴当 t=时,△ PCD的面积有最大值,最大值为;②存在.∵∠ CQN=∠PMB=90°,∴当△ CNQ与△ PBM 相像时,有或=两种状况,∵ CQ⊥PM,垂足为 Q,∴Q(t, 3),且 C(0, 3),N( t, t+3),∴CQ=t, NQ= t +3﹣3= t ,∴= ,∵ P( t, t 2﹣t+3),M(t ,0),B(5,0),∴ BM=5﹣t ,PM=0﹣(t2﹣t+3) =﹣t2+t﹣ 3,当时,则 PM=BM,即﹣t2+t ﹣3=(5﹣t ),解得t=2 或t=5(舍去),此时 P(2,);当=时,则BM=PM,即 5﹣t=(﹣t 2+ t ﹣3),解得 t=或t=5(舍去),此时 P(,﹣);综上可知存在知足条件的点P,其坐标为( 2,)或(,﹣).【评论】本题为二次函数的综合应用,波及待定系数法、函数图象的交点、二次函数的性质、相像三角形的判断和性质、方程思想及分类议论思想等知识.在(1)中注意待定系数法的应用,在( 2)①顶用 P 点坐标表示出△ PCD的面积是解题的重点,在(2)②中利用相像三角形的性质确立出相应线段的比是解题的重点.本题考察知识点许多,综合性较强,难度较大.。
2017年海南省中考数学试卷及答案
2017年海南省中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)2017的相反数是()A.﹣2017 B.2017 C.﹣ D.2.(3分)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.13.(3分)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a94.(3分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.88.(3分)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±19.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,1510.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A .14B .16C .18D .2012.(3分)如图,点A 、B 、C 在⊙O 上,AC ∥OB ,∠BAO=25°,则∠BOC 的度数为( )A .25°B .50°C .60°D .80°13.(3分)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3B .4C .5D .614.(3分)如图,△ABC 的三个顶点分别为A (1,2),B (4,2),C (4,4).若反比例函数y=在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A .1≤k ≤4B .2≤k ≤8C .2≤k ≤16D .8≤k ≤16二、填空题(本大题共4小题,每小题4分,共16分) 15.(4分)不等式2x+1>0的解集是 .16.(4分)在平面直角坐标系中,已知一次函数y=x ﹣1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1 y 2(填“>”,“<”或“=”) 17.(4分)如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣ D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(3分)(2017•海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)(2017•海南)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(3分)(2017•海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(3分)(2017•海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(3分)(2017•海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(3分)(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n 的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(3分)(2017•海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(3分)(2017•海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)(2017•海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(3分)(2017•海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(3分)(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(3分)(2017•海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)(2017•海南)不等式2x+1>0的解集是 x >﹣ .【分析】利用不等式的基本性质,将不等式两边同时减去1再除以2,不等号的方向不变;即可得到不等式的解集. 【解答】解:原不等式移项得, 2x >﹣1, 系数化为1,得, x >﹣.故答案为x >﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(4分)(2017•海南)在平面直角坐标系中,已知一次函数y=x ﹣1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1 < y 2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x ﹣1为单调递增函数,再根据x 1<x 2即可得出y 1<y 2,此题得解. 【解答】解:∵一次函数y=x ﹣1中k=1, ∴y 随x 值的增大而增大. ∵x 1<x 2, ∴y 1<y 2. 故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y 随x 的增大而增大,函数从左到右上升.”是解题的关键.17.(4分)(2017•海南)如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻折变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻折变换的性质、余弦的概念,掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(4分)(2017•海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的长最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN=.最大故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(10分)(2017•海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2017•海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(8分)(2017•海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(8分)(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(12分)(2017•海南)如图,四边形ABCD是边长为1的正方形,点E在AD 边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道常考题.24.(16分)(2017•海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M (t ,0),N (t ,t+3),∴PN=t+3﹣(t 2﹣t+3)=﹣(t ﹣)2+联立直线CD 与抛物线解析式可得,解得或, ∴C (0,3),D (7,),分别过C 、D 作直线PN 的直线,垂足分别为E 、F ,如图1,则CE=t ,DF=7﹣t ,∴S △PCD =S △PCN +S △PDN =PN•CE +PN•DF=PN=[﹣(t ﹣)2+]=﹣(t ﹣)2+,∴当t=时,△PCD 的面积有最大值,最大值为; ②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2017年海南省中考数学试卷含答案
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
有影响.关于 x轴对称的两点的横坐标相等,纵坐标互为相反数;关于 y 轴对称的两点的
纵坐标相等,横坐标互为相反数;关于原点中心对称的两点的横坐标互为相反数,纵坐 标也互为相反数. 【考点】点的坐标变换 7.【答案】B
【解析】 2 000 000 2 106 ,即 n 6 ,故选 B.
【提示】略 【考点】科学记数法 8.【答案】A
()
A.1≤ k ≤ 4
B. 2 ≤ k ≤8
C. 2 ≤ k ≤16
D. 8≤ k ≤16
第Ⅱ卷(非选择题 共 78 分)
二、填空题(本大题共 4 小题,每小题 4 分,共 16 分.请把答案填在题中的横线上)
15.不等式 2x + 1> 0 的解集是
2017年海南省中考数学试卷和解析答案
2017年海南省中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(3分)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.13.(3分)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a94.(3分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱 B.圆柱 C.圆台 D.圆锥5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60° C.90° D.120°6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.88.(3分)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±19.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,1510.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A. B.C.D.11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.2012.(3分)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50° C.60° D.80°13.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.614.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)不等式2x+1>0的解集是.16.(4分)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”)17.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D 恰好落在BC边上的点F处,那么cos∠EFC的值是.18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N 分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D 重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(3分)(2017•海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)(2017•海南)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(3分)(2017•海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱 B.圆柱 C.圆台 D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(3分)(2017•海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60° C.90° D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(3分)(2017•海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(3分)(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(3分)(2017•海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(3分)(2017•海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A. B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)(2017•海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(3分)(2017•海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50° C.60° D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(3分)(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(3分)(2017•海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)(2017•海南)不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将不等式两边同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化为1,得,x>﹣.故答案为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(4分)(2017•海南)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.(4分)(2017•海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻折变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻折变换的性质、余弦的概念,掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(4分)(2017•海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的长最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN最大=.故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(10分)(2017•海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2017•海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(8分)(2017•海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(8分)(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(12分)(2017•海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道常考题.24.(16分)(2017•海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
(完整word版)2017年海南省中考数学试卷(解析版)
2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.2017的相反数是( )A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3a2=a6 D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.C.【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)1213141516人数 1 4 3 5 7则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( )A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,进过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化1得,x>﹣.故本题的解集为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<"或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN最大=.故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球"所占的百分比即可得到结论;(4)根据题意计算计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,(完整word版)2017年海南省中考数学试卷(解析版) ∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道基础题目.24.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有=或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t, t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t, t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN=PNCE+PNDF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有=或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t, t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t, t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当=时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
海南省中考数学试卷(解析版)
海南省2017年初中毕业生学业考试数学科试题(考试时间:100分钟满分:120分)一、选择题(本大题共14小题,每小题3分,共42分)1.(2017海南)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.[【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(2017海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(2017海南)下列运算正确的是())A.a3+a2=a5 B.a3÷a2=a C.a3a2=a6D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(2017海南)如图是一个几何体的三视图,则这个几何体是()$A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(2017海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()。
2017年海南省中考数学试卷(解析版)
2017年海南省中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)2017的相反数是()A.﹣2017B.2017C.﹣D.2.(3分)已知a=﹣2,则代数式a+1的值为()A.﹣3B.﹣2C.﹣1D.13.(3分)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3•a2=a6D.(a3)2=a9 4.(3分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5B.6C.7D.88.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±19.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14B.15,15C.16,14D.16,1510.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14B.16C.18D.2012.(3分)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°13.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.614.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)不等式2x+1>0的解集是.16.(4分)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”)17.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE 折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A 和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选:A.2.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选:C.3.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.4.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.5.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.6.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.7.【解答】解:∵2000000=2×106,∴n=6.故选:B.8.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.9.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选:D.10.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.11.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.12.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选:B.13.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.14.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:C.二、填空题(本大题共4小题,每小题4分,共16分)15.【解答】解:原不等式移项得,2x>﹣1,系数化为1,得,x>﹣.故答案为x>﹣.16.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.17.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.18.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN最大=.故答案为:.三、解答题(本大题共62分)19.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.20.【解答】解:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.21.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.22.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.23.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CF A=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.24.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,﹣);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,﹣)或(,﹣).。
《@经典文档》2017年海南省中考数学试题(含答案)
18.如图 8, AB 是 O 的弦, AB 5 ,点 C 是 O 上的一个动点,且 ACB 450 。若点
M 、 N 分别是 AB、 AC 的中点,则 MN 长的最大值是 ___________.
三。解答题(本大题满分 62 分)
19。计算:( 1) 16 3
4
2 1 ;( 2)
x
2
1
xx 2
x 1 x 1.
A. -3
B. -2
3。下列运算正确的是(
)
3
2
5
A. a a a
3
2
B. a a a
C.
1
2017
)
C. -1
32
6
C. a a a
D. 1 2017
D. 1
32
9
D. a
a
4。下图是一个几何体的三视图,则这个几何体是(
)
A. 三棱柱
B. 圆柱
C. 圆台
5.如图 1,直线,则与相交所形成的的度数为(
第一象限内的图象与 ABC 有交点,则 k 的取值范围是(
)
A. 1 k 4
B. 2 k 8
C. 2 k 16
二。填空题(本大题满分 16 分,每小题 4 分)
D. 8 k 16
15.不等式 2 x 1 0 的解集是 _____________.
16.在平面直角坐标系中,已知一次函数 y x 1 的图象经过 P1 x1, y1 、 P2 x2 , y2 两点。
C. 60 °
D. 80 °
13.已知 ABC 的三边长分别为 4、4、6,在 ABC 所在平面内画一条直线,将
成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画(
2017年海南省中考数学试卷(解析版)-(27558)
海南省2017年初中毕业生学业考试数学科试题(考试时间:100分钟满分:120分)一、选择题(本大题共14小题,每小题3分,共42分)1.(2017海南)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(2017海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(2017海南)下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3a2=a6 D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B 符合题意;C、同底数幂的乘法底数不变指数相加,故C 不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(2017海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱 B.圆柱C.圆台 D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(2017海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(2017海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A. C.【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(2017海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2017海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(2017海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:()A.15,14 B.15,15 C.16,14 D.16,15 【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小(或到大从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(2017海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(2017海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(2017海南)如图,点A、B、C在⊙O 上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CA B=25°,∴∠BOC=2∠CAB=50°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(2017海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(2017海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC 有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,进过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(2017海南)不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化1得,x>﹣.故本题的解集为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(2017海南)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.(2017海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.【解答】解:由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.【点评】本题考查的是翻转变换的性质、余弦的概念,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(2017海南)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【分析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN最大=.故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(2017海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(2017海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(2017海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(2017海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(2017海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道基础题目.24.(2017海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N 的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有=或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN=PNCE+PNDF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ 与△PBM 相似时,有=或=两种情况,∵CQ ⊥PM ,垂足为Q ,∴Q (t ,3),且C (0,3),N (t , t+3),∴CQ=t ,NQ=t+3﹣3=t ,∴=,∵P (t , t 2﹣t+3),M (t ,0),B (5,0),∴BM=5﹣t ,PM=0﹣(t 2﹣t+3)=﹣t 2+t ﹣3,当=时,则PM=BM ,即﹣t 2+t ﹣3=(5﹣t ),解得t=2或t=5(舍去),此时P (2,);当=时,则BM=PM ,即5﹣t=(﹣t 2+t ﹣3),解得t=或t=5(舍去),此时P (,﹣);--WORD 格式--专业资料--可编辑----- 综上可知存在满足条件的点P ,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P 点坐标表示出△PCD 的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2017年海南省中考数学试卷和答案解析
请结合以上信息解答下列问题: (1) m ;
B. 2 B. a a a
3 2
C. 1 C. a
3
(
上
--------------------Leabharlann a a26
D. ( a ) a
3 2
9
4.下图是一个几何体的三视图,则这个几何体是
(
A.
1 2
B.
1 4
C.
1 8
( )
D.
1 16
11. 如图 , 在菱形 ABCD 中 , AC 8 , BD 6 , 则 △ABC 的周长为 A.三棱柱 B.圆柱 C.圆台 D.圆锥 5.如图,直线 a∥b , c⊥a ,则 c 与 b 相交所形成的∠ 1 的度数为 ( A. 45 B. 60 C. 90 D. 120 6.如图,在平面直角坐标系中, △ABC 位于第二象限,点 A 的坐标是 (2 , 3) ,先把 △ABC 向右平移 4 个单位长度得 到 △A1 B1C1 , 再 作 与 △A1 B1 C1 关于 x 轴对称的 △A2 B2 C , ( ) 2则点 A 的对应点 A2 的坐标是 A. (3 , 2) C. (1, 2) B. (2 , 3) D. (1, 2) 数学试卷 第 1 页(共 6 页) )
y2 (填“ > ”“ < ”或“ ”).
17. 如图 , 在矩形 ABCD 中 , AB 3 , AD 5 , 点 E 在 DC 上 . 将矩形 ABCD 沿 AE 折 叠,点 D 恰好落在 BC 边上的点 F 处,那么 cosEFC 的值是 .
21.(本小题满分 8 分) 18.如图, AB 是
n
在
海南省 2017 年初中毕业生学业水平考试
海南省临高县2017年中考数学模拟试卷含答案
)
A第 1 页 共 11 页
8. 下列运算中,错误的个数为
()
A.1
B.2
C.3
D.4
9. 下列函数表达式中, y 不是 x 的反比例函数的是 ( )
10. 如图 , △ ABC为等腰直角三角形 , ∠ ACB=90° , 将△ ABC绕点 A 逆时针旋转 75° , 得到△ AB′C′,过点 B′作 B′
D⊥ CA,交 CA的延长线于点 D, 若 AC=6,则 AD的长为(
)
A.2
B.3
C.2
D.3
11. 下列说法错误的是(
)
A. 必然事件的概率为 1 B. 数据 1、 2、 2、 3 的平均数是 2 C. 数据 5、 2、﹣ 3、 0 的极差是 8 D. 如果某种游戏活动的中奖率为 40%,那么参加这种活动
25. 如图 1,已知抛物线 y=﹣ x2+bx+c 与 x 轴交于 A(﹣ 1,0), B 两点,(点 A 在点 B 的左侧),与直线 AC交于 点 C( 2,3),直线 AC与抛物线的对称轴 l 相交于点 D,连接 BD. ( 1)求抛物线的函数表达式,并求出点 D 的坐标; ( 2)如图 2,若点 M、N 同时从点 D 出发,均以每秒 1 个单位长度的速度分别沿 DA、DB运动,连接 MN,将△ DMN 沿 MN翻折,得到△ D′ MN,判断四边形 DMD′ N的形状,并说明理由,当运动时间 t 为何值时,点 D′恰好落在 x 轴上? ( 3)在平面内,是否存在点 P(异于 A 点),使得以 P、B、D 为顶点的三角形与△ ABD相似(全等除外)?若存 在,请直接写出点 P 的坐标,若不存在,请说明理由.
第 5 页 共 11 页
24. 如图 , 在△ ABC中 ,AB=AC,AD⊥ BC于点 D,BC=12cm,AD=8cm.点 P从点 B 出发 , 在线段 BC上以每秒 3cm的速度向 点 C匀速运动 , 与此同时 , 垂直于 AD的直线 m从底边 BC出发 , 以每秒 2cm 的速度沿 DA方向匀速平移 , 分别交 AB,AC,AD 于 E,F,H, 当点 P 到达点 C 时, 点 P 与直线 m同时停止运动 , 设运动时间为 t 秒( t >0). ( 1)连接 DE、 DF,当 t 为何值时,四边形 AEDF为菱形? ( 2)连接 PE、 PF, 在整个运动过程中,△ PEF的面积是否存在最大值?若存在,试求当△ PEF的面积最大时 , 线 段 BP的长. ( 3)是否存在某一时刻 t, 使点 F 在线段 EP的中垂线上?若存在 , 请求出此时刻 t 的值; 若不存在, 请说明理由.
2017年海南省中考数学试卷
2017年海南省中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(3分)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.13.(3分)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a94.(3分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x 轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.88.(3分)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±19.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,1510.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.2012.(3分)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°13.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.614.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)不等式2x+1>0的解集是.16.(4分)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”)17.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD 沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF 交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(3分)(2017•海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)(2017•海南)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(3分)(2017•海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(3分)(2017•海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(3分)(2017•海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(3分)(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n 的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(3分)(2017•海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(3分)(2017•海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)(2017•海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(3分)(2017•海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(3分)(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(3分)(2017•海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)(2017•海南)不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将不等式两边同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化为1,得,x>﹣.故答案为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(4分)(2017•海南)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.(4分)(2017•海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻折变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5, ∴∠EFC +∠AFB=90°, ∵∠B=90°,∴∠BAF +∠AFB=90°, ∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=, 故答案为:.【点评】本题考查的是翻折变换的性质、余弦的概念,掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(4分)(2017•海南)如图,AB 是⊙O 的弦,AB=5,点C 是⊙O 上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、AC 的中点,则MN 长的最大值是.【分析】根据中位线定理得到MN 的长最大时,BC 最大,当BC 最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M ,N 分别是AB ,AC 的中点, ∴MN=BC ,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,=.∴MN最大故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(10分)(2017•海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2017•海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(8分)(2017•海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(8分)(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(12分)(2017•海南)如图,四边形ABCD是边长为1的正方形,点E在AD 边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道常考题.24.(16分)(2017•海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t ∴S△PCD﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2017年海南省中考数学试卷
2017年海南省中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)2017的相反数是()A.﹣2017 B.2017 C.﹣D.2.(3分)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.13.(3分)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a94.(3分)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥5.(3分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°6.(3分)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x 轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)7.(3分)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.88.(3分)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±19.(3分)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,1510.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.11.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.2012.(3分)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°13.(3分)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.614.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)不等式2x+1>0的解集是.16.(4分)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”)17.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD 沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.18.(4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共62分)19.(10分)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)20.(8分)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.21.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.22.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF 交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.24.(16分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.2017年海南省中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2017•黔南州)2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(3分)(2017•海南)已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣2时,原式=﹣2+1=﹣1,故选C【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)(2017•海南)下列运算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3•a2=a6 D.(a3)2=a9【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:A、a3与a2不是同类项,不能合并,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(3分)(2017•海南)如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱C.圆台D.圆锥【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.【解答】解:根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选:D.【点评】此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.5.(3分)(2017•海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45°B.60°C.90°D.120°【分析】根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.【解答】解:∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选:C.【点评】本题考查了平行线的性质,垂线的定义,熟记两直线平行,同位角相等是解题的关键.6.(3分)(2017•海南)如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【解答】解:如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.【点评】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.7.(3分)(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n 的值为()A.5 B.6 C.7 D.8【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:∵2000000=2×106,∴n=6.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•海南)若分式的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.9.(3分)(2017•海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.【解答】解:∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(3分)(2017•海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.【解答】解:列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)(2017•海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB==5,∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.12.(3分)(2017•海南)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【分析】先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论.【解答】解:∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.(同弧所对的圆心角等于圆周角的2倍)故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(3分)(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.14.(3分)(2017•海南)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.二、填空题(本大题共4小题,每小题4分,共16分)15.(4分)(2017•海南)不等式2x+1>0的解集是x>﹣.【分析】利用不等式的基本性质,将不等式两边同时减去1再除以2,不等号的方向不变;即可得到不等式的解集.【解答】解:原不等式移项得,2x>﹣1,系数化为1,得,x>﹣.故答案为x>﹣.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(4分)(2017•海南)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,熟练掌握“k>0,y随x的增大而增大,函数从左到右上升.”是解题的关键.17.(4分)(2017•海南)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【分析】根据翻折变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.【解答】解:由翻折变换的性质可知,∠AFE=∠D=90°,AF=AD=5, ∴∠EFC +∠AFB=90°, ∵∠B=90°,∴∠BAF +∠AFB=90°, ∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=, 故答案为:.【点评】本题考查的是翻折变换的性质、余弦的概念,掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.18.(4分)(2017•海南)如图,AB 是⊙O 的弦,AB=5,点C 是⊙O 上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、AC 的中点,则MN 长的最大值是.【分析】根据中位线定理得到MN 的长最大时,BC 最大,当BC 最大时是直径,从而求得直径后就可以求得最大值.【解答】解:如图,∵点M ,N 分别是AB ,AC 的中点, ∴MN=BC ,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,=.∴MN最大故答案为:.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共62分)19.(10分)(2017•海南)计算;(1)﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【分析】(1)原式利用算术平方根定义,绝对值的代数意义,负整数指数幂法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=4﹣3﹣4×=4﹣3﹣2=﹣1;(2)原式=x2+2x+1+x2﹣2x﹣x2+1=x2+2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2017•海南)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【分析】设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.【解答】解:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得:.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.【点评】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.21.(8分)(2017•海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.【点评】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.22.(8分)(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.(12分)(2017•海南)如图,四边形ABCD是边长为1的正方形,点E在AD 边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△CBF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定,解(1)的关键是判定∠1=∠3,解(2)的关键是判断出△GBF∽△EAF,解(3)的关键是判断出∠CFA=90°,是一道常考题.24.(16分)(2017•海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;②当△CNQ与△PBM相似时有或=两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t ∴S△PCD﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或=两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴=,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,);当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标表示出△PCD的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
海南海口市秀英区2017年中考数学模拟试卷有答案
2017年九年级数学中考模拟试卷一、选择题:1.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和C.﹣2和﹣D.0和02.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2bB.3a+1=2b+6C.3ac=2bc+5D.a=3.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )A.的 B.中 C.国 D.梦4.某小组7位学生的中考体育测试成绩(满分60分)依次为57,60,59,57,60,58,60,则这组数据的众数与中位数分别是()A.60,59 B.60,57 C.59,60 D.60,585.若3×9m×27m=321,则m的值为()A.3B.4C.5D.66.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( )A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字7.下列等式成立的是()8.下列运算正确的是( )A. B. C. D.9.一个圆柱的侧面展开图是一个面积为10的矩形,这个圆柱的高为L与这个圆柱的底面半径r之间的函数关系为()A.正比例函数B.反比例函数C.一次函数D.二次函数10.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )A.35° B.40° C.50° D.65°11.下列事件中,不是必然事件的是()A.对顶角相等B.内错角相等C.三角形内角和等于180°D.等腰梯形是轴对称图形12.有四个命题,其中正确的命题是( )①经过三点一定可以作一个圆;②任意一个三角形有且只有一外接圆;③三角形的外心到三角形的三个顶点的距离相等;④在圆中,平分弦的直径一定垂直于这条弦A.①②③④B.①②③C.②③④D.②③13.如图,已知a∥b,三角形直角顶点在直线a上,已知∠1=25°18/27//,则∠2度数是()A.25°18/27//B.640 41/33//C.74°4133//D.64°41/43//14.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1B.2C.3D.4二、填空题:15.分解因式:a3﹣25a= .16.某玩具店今年3月份售出某种玩具2500个,5月份售出该玩具3600个,每月平均增长率为.17.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.18.如图,在矩形ABCD中,AB=6,BC=8,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD于点F,则PE+PF= .三、计算题:19.计算:﹣0.52+20.解不等式组:,并把解集在数轴上表示出来.四、解答题:21.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年海南省中考数学仿真试卷(一)一、选择题(共14小题,每小题3分,满分42分)1.(3分)﹣3的绝对值是()A.B.﹣ C.3 D.﹣32.(3分)当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.43.(3分)下列计算正确的是()A.(2a)2=2a2B.a6÷a3=a3C.a3•a2=a6 D.3a2+2a3=5a54.(3分)为了方便市民出行,提倡低碳交通,近几年某市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达75000辆,用科学记数法表示75000是()A.0.75×105B.7.5×104C.7.5×105D.75×1035.(3分)一组数据:2,5,4,3,2的中位数是()A.4 B.3.2 C.3 D.26.(3分)化简+的结果是()A.1 B.﹣1 C.8 D.﹣87.(3分)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.8.(3分)若反比例函数y=的图象经过点(),则这个函数的图象一定经过点()A.(2,﹣1)B.(﹣,2)C.(﹣2,﹣1)D.(,2)9.(3分)已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的解C.a是8的算术平方根 D.3<a<410.(3分)如图,CA⊥BE于A,AD∥BC,若∠1=54°,则∠C等于()A.30°B.36°C.45°D.54°11.(3分)在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,AB=4,则D到BC的距离是()A.3 B.4 C.5 D.612.(3分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A.B.C.D.13.(3分)如图,以AB为直径的⊙O,与BC切于点B,AC与⊙O交于点D,E 是⊙O上的一点,若∠E=40°,则∠C等于()A.30°B.35°C.40°D.50°14.(3分)如图,在矩形ABCD中,AB=4,BC=8,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.5 D.5.5二、填空题(共4小题,每小题4分,满分16分)15.(4分)因式分解:m2﹣4n2=.16.(4分)方程﹣=0的解是.17.(4分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.18.(4分)菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为.三、解答题(共6小题,满分62分)19.(10分)(1)计算:×+|﹣6|×(﹣1)3﹣(﹣)﹣2;(2)解不等式组:.20.(8分)某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)21.(8分)在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图(图1,图2).请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为;(4)若全校有2000名学生,则“其他”部分的学生人数为.22.(8分)如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)23.(14分)如图①,A D为等腰直角△ABC的高,点A和点C分别在正方形DEFG 的边DG和DE上,连接BG、AE.(1)求证:BG=AE;(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)①求证:BG⊥GE;②设DG与AB交于点M,若AG=6,AE=8,求DM的长.24.(14分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.2017年海南省中考数学仿真试卷(一)参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)﹣3的绝对值是()A.B.﹣ C.3 D.﹣3【解答】解:|﹣3|=3,故选:C.2.(3分)当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.4【解答】解:当x=1时,原式=4﹣3=1,故选:A.3.(3分)下列计算正确的是()A.(2a)2=2a2B.a6÷a3=a3C.a3•a2=a6D.3a2+2a3=5a5【解答】解:A、(2a)2=4a2,故本选项错误.B、a6÷a3=a3,故本选项正确.C、a3•a2=a5,故本选项错误.D、3a2与2a3,不能合并同类项故本选项错误.故选:B.4.(3分)为了方便市民出行,提倡低碳交通,近几年某市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达75000辆,用科学记数法表示75000是()A.0.75×105B.7.5×104C.7.5×105D.75×103【解答】解:用科学记数法表示75000是7.5×104,故选:B.5.(3分)一组数据:2,5,4,3,2的中位数是()A.4 B.3.2 C.3 D.2【解答】解:将数据由小到大排列2,2,3,4,5,中位数是3,故选:C.6.(3分)化简+的结果是()A.1 B.﹣1 C.8 D.﹣8【解答】解:原式=﹣==1,故选:A.7.(3分)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【解答】解:从左面看易得第一层有4个正方形,第二层最左边有一个正方形.故选:A.8.(3分)若反比例函数y=的图象经过点(),则这个函数的图象一定经过点()A.(2,﹣1)B.(﹣,2)C.(﹣2,﹣1)D.(,2)【解答】解:∵反比例函数y=的图象经过点(),∴k=(﹣)×3=﹣2,A、∵2×(﹣1)=﹣2,∴此点在反比例函数的图象上,故本选项正确;B、∵(﹣)×2=﹣1≠﹣2,∴此点不在反比例函数的图象上,故本选项错误;C、∵(﹣2)×(﹣1)=2≠﹣2,∴此点不在反比例函数的图象上,故本选项错误;D、∵()×2=1≠﹣2,∴此点不在反比例函数的图象上,故本选项错误.故选:A.9.(3分)已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的解C.a是8的算术平方根 D.3<a<4【解答】解:∵边长为a的正方形的面积为8,∴a==2,∴A,C,D都正确,故选:B.10.(3分)如图,CA⊥BE于A,AD∥BC,若∠1=54°,则∠C等于()A.30°B.36°C.45°D.54°【解答】解:∵AD∥BC,∠1=54°,∴∠B=∠1=54°.∵CA⊥BE于A,∴∠BAC=90°,∴∠C=90°﹣∠B=90°﹣54°=36°.故选:B.11.(3分)在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,AB=4,则D到BC的距离是()A.3 B.4 C.5 D.6【解答】解:过D作DE⊥BC,∵BD是∠ABC的平分线,∠A=90°,∴AD=DE=3,∴D到BC的距离是3,故选:A.12.(3分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A.B.C.D.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于5的有4种情况,∴两次摸出的小球的标号之和等于5的概率是:.故选:C.13.(3分)如图,以AB为直径的⊙O,与BC切于点B,AC与⊙O交于点D,E 是⊙O上的一点,若∠E=40°,则∠C等于()A.30°B.35°C.40°D.50°【解答】解:连接BD,如图,∵BC为切线,AB为直径,∴AB⊥BC,∴∠ABC=90°,∵AB为直径,∴∠ADB=90°,∵∠ABD=∠E=40°,∴∠BAD=90°﹣40°=50°,∴∠C=90°﹣∠BAC=40°.故选:C.14.(3分)如图,在矩形ABCD中,AB=4,BC=8,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.5 D.5.5【解答】解:∵四边形ABCD是矩形,∴CD=AB=4,AD=BC=8,∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=8﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=42+(8﹣x)2,解得:x=5,即CE的长为5.故选:C.二、填空题(共4小题,每小题4分,满分16分)15.(4分)因式分解:m2﹣4n2=(m+2n)(m﹣2n).【解答】解:m2﹣4n2,=m2﹣(2n)2,=(m+2n)(m﹣2n).16.(4分)方程﹣=0的解是x=6.【解答】解:去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根.故答案为:x=6.17.(4分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为2.【解答】解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故答案为:2.18.(4分)菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为(3,﹣1).【解答】解:∵连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(6,0),点A的纵坐标是1,∴OC=6,BD=AD=1,∴OD=3,∴点B的坐标为:(3,﹣1).故答案为:(3,﹣1).三、解答题(共6小题,满分62分)19.(10分)(1)计算:×+|﹣6|×(﹣1)3﹣(﹣)﹣2;(2)解不等式组:.【解答】解:(1)原式=+6×(﹣1)﹣9=6﹣6﹣9=﹣9;(2)解①得x>2,解②得x<3,所以不等式组的解集为2<x<3.20.(8分)某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.求商场销售A,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)【解答】解:设A型号计算器的销售价格是x元,B型号计算器的销售价格是y 元,根据题意得:,解得:.答:A型号计算器的销售价格是42元,B型号计算器的销售价格是56元.21.(8分)在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图(图1,图2).请你根据图中提供的信息,解答以下问题:(1)该班共有50名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为115.2°;(4)若全校有2000名学生,则“其他”部分的学生人数为400.【解答】解:(1)学生数=15÷30%=50人;故答案为:50;(2)最喜欢足球的人数50×18%=9,喜欢其他的人数有50﹣15﹣9﹣16=10人;条形图如下:(3)“乒乓球”部分所对应的圆心角度数为:360°×=115.2°;故答案为:115.2°;(4)“其他”部分的学生人数:2000×=400名,故答案为:400.22.(8分)如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)【解答】解:(1)过点A作AM⊥EF于点M,过点C作CN⊥EF于点N,设CN=x,在Rt△ECN中,∵∠ECN=45°,∴EN=CN=x,∴EM=x+0.7﹣1.7=x﹣1,∵BD=5,∴AM=BF=5+x,在Rt△AEM中,∵∠EAM=30°∴=,∴x﹣1=(x+5),解得:x=4+3,即DF=(4+3)(米);(2)由(1)得:EF=x+0.7=4++0.7≈4+3×1.7+0.7≈9.8≈10(米).答:旗杆的高度约为10米.23.(14分)如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG 的边DG和DE上,连接BG、AE.(1)求证:BG=AE;(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)①求证:BG⊥GE;②设DG与AB交于点M,若AG=6,AE=8,求DM的长.【解答】(1)证明:如图①,∵AD为等腰直角△ABC的高,∴AD=BD,∵四边形DEFG为正方形,∴∠GDE=90°,DG=DE,在△BDG和△ADE中,∴△BDG≌△ADE,∴BG=AE;(2)①证明:如图②,∵四边形DEFG为正方形,∴△DEG为等腰直角三角形,∴∠1=∠2=45°,由(1)得△BDG≌△ADE,∴∠3=∠2=45°,∴∠1+∠3=45°+45°=90°,即∠BGE=90°,∴BG⊥GE;②解:∵AG=6,则AE=8,即GE=14,∴DG=GE=7,∵△BDG≌△ADE,∴BG=AE=8,在Rt△BGA中,AB==10,∵△ABD为等腰直角三角形,∴∠4=45°,BD=AB=5,∴∠3=∠4,而∠BDM=∠GDB,∴△DBM∽△DGB,∴BD:DG=DM:BD,即5:7=DM:5,∴DM=,24.(14分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.【解答】方法一:解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴M(1,﹣4).(2)如图1,连接BC、BM、CM,作MD⊥x轴于D,∵S △BCM =S 梯形OCMD +S △BMD ﹣S △BOC=•(3+4)•1+•2×4﹣•3•3=+﹣=3S △ABC =•AB•OC=•4•3=6, ∴S △BCM :S △ABC =3:6=1:2.(3)存在,理由如下:①如图2,当Q 在x 轴下方时,作QE ⊥x 轴于E ,∵四边形ACQP 为平行四边形, ∴PQ 平行且相等AC , ∴△PEQ ≌△AOC , ∴EQ=OC=3, ∴﹣3=x 2﹣2x ﹣3,解得 x=2或x=0(与C 点重合,舍去), ∴Q (2,﹣3).②如图3,当Q 在x 轴上方时,作QF ⊥x 轴于F ,∵四边形ACPQ 为平行四边形, ∴QP 平行且相等AC , ∴△PFQ ≌△AOC , ∴FQ=OC=3, ∴3=x 2﹣2x ﹣3,解得 x=1+或x=1﹣,∴Q (1+,3)或(1﹣,3).综上所述,Q 点为(2,﹣3)或(1+,3)或(1﹣,3)方法二: (1)略.(2)连接BC 、BM 、CM ,作MD ⊥x 轴于D ,交BC 于H , ∵B (3,0),C (0,﹣3), ∴l BC :y=x ﹣3,当x=1时,y=﹣2,∴H (1,﹣2)∴S △BCM =(3﹣0)(﹣2+4)=3,∵S △ABC =AB ×OC=×3×4=6, ∴S △BCM :S △ABC =3:6=1:2,(3)∵PQ∥AC,∴当PQ=AC时,A、P、Q、C为顶点的四边形为平行四边形,即|Q Y|=|C Y|,设Q(t,t2﹣2t﹣3),∴|t2﹣2t﹣3|=3,①t2﹣2t﹣3=3,解得:t1=1+,t2=1﹣,②t2﹣2t﹣3=﹣3,解得:t1=0(舍),t2=2,综上所述,Q点为(2,﹣3)或(1+,3)或(1﹣,3).。