【易错题】高三数学上期中模拟试题含答案(3)
高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案
一、选择题
1.设 , 满足 ,向量 , ,则满足 的实数 的最小值为()
A. B. C. D.
【答案】B
【解析】
【分析】
先根据平面向量垂直的坐标表示,得 ,根据约束条件画出可行域,再利用 的几何意义求最值,只需求出直线 过可行域内的点C时,从而得到 的最小值即可.
【详解】
解:不等式组表示的平面区域如图所示:因为 , ,
6.已知 、 满足约束条件 ,若 ,则实数 的最小值为()
A. B. C. D.
【答案】C
【解析】
【分析】
作出不等式组所表示的可行域,利用目标函数的几何意义求出 的最小值,进而可得出实数 的最小值.
【详解】
作出不等式组 所表示的可行域如下图所示,
表示原点到可行域内的点 的距离的平方,
原点到直线 的距离的平方最小, .
10.已知实数 , 满足 ,且 ,则 的最小值为().
A. B. C. D.
【答案】B
【解析】
【分析】
令 ,用 表示出 ,根据题意知 ,利用 的代换后根据基本不等式即可得 的最小值.
【详解】
,
令 ,解得 ,则 , ,
当且仅当 ,即 ,即
即 时取等号.
故选:B.
【点睛】
本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.
【详解】
当 时,即当 时,则有 ,该不等式恒成立,合乎题意;
当 时,则 ,解得 .
综上所述,实数 的取值范围是 .
故选:D.
【点睛】
本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.
【易错题】高三数学上期中试题附答案(2)
【易错题】高三数学上期中试题附答案(2)一、选择题1.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形2.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x x =;④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④3.下列函数中,y 的最小值为4的是( )A .4y x x=+B .222y x =+C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 4.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .16 5.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .366.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4B .4C .14± D .147.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞8.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B 相距6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km9.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++10.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-111.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<12.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.14.在无穷等比数列{}n a 中,123,1a a ==,则()1321lim n n a a a -→∞++⋯+=______.15.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩ 若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________16.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.17.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n-=-,则935784a ab b b b +++的值为_______. 18.点D 在ABC V 的边AC 上,且3CD AD =,2BD =,3sin23ABC ∠=,则3AB BC +的最大值为______.19.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知,,a b c 成等比数列,且22a c ac bc -=-,则sin cb B的值为________. 20.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = ________.三、解答题21.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD .其中AB =3百米,AD =5百米,且△BCD 是以D 为直角顶点的等腰直角三角形.拟修建两条小路AC ,BD (路的宽度忽略不计),设∠BAD=θ,θ∈(2π,π).(1)当cos θ=5AC 的长度; (2)当草坪ABCD 的面积最大时,求此时小路BD 的长度. 22.在ABC V 中,5cos 13A =-,3cos 5B =.(1)求sin C 的值;(2)设5BC =,求ABC V 的面积.23.已知,,a b c 分别是ABC △的角,,A B C 所对的边,且222,4c a b ab =+-=. (1)求角C ;(2)若22sin sin sin (2sin 2sin )B A C A C -=-,求ABC △的面积.24.ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos cos a C c A a +=. (1)求证:A B =; (2)若6A π=,ABC V 的面积为3,求ABC V 的周长.25.已知向量()1sin 2A =,m 与()3sin 3cos A A =+,n 共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC=2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状. 26.在ΔABC 中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin sin sin A C B A C +=-.(1)求B 的大小;(2)设BAC ∠的平分线AD 交BC 于,23,1D AD BD ==,求sin BAC ∠的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B 【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.2.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.3.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值; 选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).4.A解析:A 【解析】 【分析】作出可行域,变形目标函数并平移直线3y x =,结合图象,可得最值. 【详解】作出x 、y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩所对应的可行域(如图ABC V ),变形目标函数可得3y x z =-,平移直线3y x =可知, 当直线经过点(2,2)A 时,截距z -取得最大值, 此时目标函数z 取得最小值3224⨯-=. 故选:A.【点睛】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.5.C解析:C 【解析】∵f (S n )=f (a n )+f (a n +1)-1=f[a n (a n +1)]∵函数f (x )是定义域在(0,+∞)上的单调函数,数列{a n }各项为正数∴S n =a n (a n +1)①当n=1时,可得a 1=1;当n≥2时,S n-1=a n-1(a n-1+1)②,①-②可得a n = a n (a n +1)-a n-1(a n-1+1)∴(a n +a n-1)(a n -a n-1-1)=0∵a n >0,∴a n -a n-1-1=0即a n -a n-1=1∴数列{a n }为等差数列,a 1=1,d=1;∴a n =1+(n-1)×1=n 即a n =n 所以故选C6.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A . 【点睛】本题考查了等比中项的求法,属于基础题.7.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >,所以()2142224448x y x y x y y x ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.8.D解析:D 【解析】 【分析】先判断三角形DAB 为直角三角形,求出BD ,然后推出CBD ∠为直角,可得CD ,进一步可得cos BDF ∠,最后在三角形EDB 中用余弦定理可得BF . 【详解】取AB 的中点E ,连DE ,设飞机飞行了15分钟到达F 点,连BF ,如图所示:则BF 即为所求.因为E 为AB 的中点,且120AB km =,所以60AE km =, 又60DAE ∠=o ,60AD km =,所以三角形DAE 为等边三角形,所以60DE km =,60ADE ∠=o ,在等腰三角形EDB 中,120DEB ∠=o ,所以30EDB EBD ∠=∠=o , 所以90ADB ∠=o ,由勾股定理得2BD 22221206010800AB AD =-=-=, 所以3BD km =,因为9030CBE ∠=+o o 120=o ,30EBD ∠=o ,所以CBD ∠90=o , 所以222108006013240CD BD BC =+=+⨯=km ,所以6033cos BD BDC CD ∠===, 因为1360904DF km =⨯=, 所以在三角形BDF 中,2222232cos (603)90260390BF BD DF BD DF BDF =+-⋅⋅∠=+-⨯g 10800=,所以603BF =km .故一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有603km . 故选D . 【点睛】本题考查了利用余弦定理解斜三角形,属于中档题.9.A解析:A 【解析】 【分析】 【详解】试题分析:在数列{}n a 中,11ln 1n n a a n +⎛⎫-=+⎪⎝⎭112211()()()n n n n n a a a a a a a a ---∴=-+-+⋅⋅⋅⋅⋅⋅+-+12lnln ln 2121n n n n -=++⋅⋅⋅⋅⋅⋅++-- 12ln()2121n n n n -=⋅⋅⋅⋅⋅⋅⋅⋅+-- ln 2n =+ 故选A. 10.D解析:D 【解析】 【分析】利用等差数列的通项公式,以及等比中项公式和前n 项和公式,准确运算,即可求解. 【详解】由题意,可得等差数列{}n a 的通项公式为11(1)(2)2(1)n a a n a n =+-⨯-=--, 所以112141,22,412S a S a S a ==-=-,因为1S ,2S ,4S 成等比数列,可得2111(22)(412)a a a -=-,解得11a =-.故选:D . 【点睛】本题主要考查了等差数列通项公式,以及等比中项公式与求和公式的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.11.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.12.D解析:D 【解析】 【分析】根据等差数列的性质前n 项和的性质进行求解即可. 【详解】因为等差数列{}n a 和{}n b ,所以2201111715111122a a a a b b b b +==+,又211121S a =,211121T b =,故令21n =有2121721214921324S T ⨯+==+,即1111211492124a b =,所以111114924a b = 故选:D. 【点睛】本题主要考查等差数列的等和性质:若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+ 与等差数列{}n a 前n 项和n S 的性质*21(21),()n n S n a n N -=-∈二、填空题13.14【解析】【分析】等差数列的前n 项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n 项和有最大值可知再由知且又所以当时n 的最小值为14故答案为14【点睛】本题考查使的n 的最小值的求法是中档解析:14 【解析】 【分析】等差数列的前n 项和有最大值,可知0d <,由871a a <-,知1130a a +>,1150a a +<,1140a a +<,所以130S >,140S <,150S <,即可得出结论.【详解】由等差数列的前n 项和有最大值,可知0d <, 再由871a a <-,知70a >,80a <,且780a a +<, 又711320a a a =+>,811520a a a =+<,781140a a a a +=+<, 所以130S >,140S <,150S <, 当<0n S 时n 的最小值为14, 故答案为14. 【点睛】本题考查使0n S <的n 的最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.14.【解析】【分析】利用无穷等比数列的求和公式即可得出【详解】解:根据等比数列的性质数列是首项为公比为的等比数列又因为公比所以故答案为:【点睛】本题考查了无穷等比数列的求和公式考查了推理能力与计算能力属解析:2【解析】 【分析】利用无穷等比数列的求和公式即可得出. 【详解】解:根据等比数列的性质,数列1321,,,n a a a -⋯是首项为1a ,公比为2q 的等比数列。
【易错题】高三数学上期中试题含答案
【易错题】高三数学上期中试题含答案一、选择题1.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20472.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S3.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40374.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30°,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .3323B .5323C .7323D .83235.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =,33c =,30B =︒,则AB 边上的中线的长为( )A .372 B .34 C .32或372D .34或3726.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .7107.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<8.若a ,b ,c ,d∈R,则下列说法正确的是( )A .若a >b ,c >d ,则ac >bdB .若a >b ,c >d ,则a+c >b+dC .若a >b >0,c >d >0,则c da b> D .若a >b ,c >d ,则a ﹣c >b ﹣d9.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9B .27C .54D .8110.如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =( ) A .14B .21C .28D .3511.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-112.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin 23sin 0b A a B +=,3b c =,则ca的值为( )A .1B 3C 5D 7 二、填空题13.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.14.在无穷等比数列{}n a 中,123,1a a ==,则()1321lim n n a a a -→∞++⋯+=______. 15.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______ 16.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________.17.定义11222n n n a a a H n-+++=L 为数列{}n a 的均值,已知数列{}n b 的均值12n n H +=,记数列{}n b kn -的前n 项和是n S ,若5n S S ≤对于任意的正整数n 恒成立,则实数k 的取值范围是________. 18.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.19.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________.20.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.三、解答题21.已知函数()cos f x x x =-. (1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围. 22.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知()3cos cos 0a b C c B ++=. (1)求cos C 的值;(2)若c =ABC ∆,求+a b 的值; 23.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S .24.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且b =(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值.25.已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且112a b ==,338a b ==.(1)求数列{}n a 和{}n b 的通项公式; (2)记n n b c a =,求数列{}n c 的前n 项和n S .26.已知函数()[)22,1,x x af x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.2.D解析:D 【解析】 【分析】将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.【详解】由已知,得()11n n n S nS ++<, 所以11n n S S n n +<+, 所以()()()()1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,所以等差数列{}n a 为递增数列.又870a a +<,即871a a <-, 所以80a >,70a <,即数列{}n a 前7项均小于0,第8项大于零, 所以n S 的最小值为7S , 故选D. 【点睛】本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.3.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.4.B解析:B 【解析】 【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即sin 45HB =︒,20HB =.∴sin 20sin 60103OH HB HBO =∠=︒=,103534623v ==(米/秒). 故选B . 【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.5.C解析:C 【解析】 【分析】由已知利用余弦定理可得29180a a -+=,解得a 值,由已知可求中线12BD c =,在BCD V 中,由余弦定理即可计算AB 边上中线的长. 【详解】解:3,33,30b c B ===o Q ,∴由余弦定理2222cos b a c ac B =+-,可得23927233a a =+-⨯⨯⨯,整理可得:29180a a -+=,∴解得6a =或3.Q 如图,CD 为AB 边上的中线,则13322BD c ==,∴在BCD V 中,由余弦定理2222cos CD a BD a BD B =+-⋅⋅,可得:222333336()26CD =+-⨯⨯⨯,或222333333()23CD =+-⨯⨯⨯, ∴解得AB 边上的中线32CD =或372. 故选C .【点睛】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.6.B解析:B 【解析】试题分析: 如下图:由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:56sin 45AB =o 103AB ∴=那么在Rt ADB ∆中,60ABD o ∠=,3sin 6010315AD AB ∴===o , 即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为310(米 /秒). 故选B .考点:解三角形在实际问题中的应用.7.B解析:B 【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.8.B解析:B 【解析】 【分析】利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】A 项,虽然41,12>->-,但是42->-不成立,所以不正确;B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;C 项,虽然320,210>>>>,但是3221>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.9.B解析:B 【解析】 【分析】根据题意,设等比数列{}n a 的公比为q ,由22a 为13a 和3a 的等差中项,可得21322a 3a a ⨯=+,利用等比数列的通项公式代入化简为2q 4q 30-+=,解得q ,又21a a 2-=,即()1a q 12-=,q 1≠,分析可得1a 、q 的值,可得数列{}n a 的通项公式,将n 4=代入计算可得答案. 【详解】解:根据题意,设等比数列{}n a 的公比为q ,若22a 为13a 和3a 的等差中项,则有21322a 3a a ⨯=+,变形可得21114a q 3a a q =+,即2q 4q 30-+=,解得q 1=或3;又21a a 2-=,即()1a q 12-=,则q 3=,1a 1=,则n 1n a 3-=,则有34a 327==;故选:B . 【点睛】本题考查等比数列的性质以及通项公式,关键是掌握等比数列通项公式的形式,属于基础题.10.C解析:C 【解析】试题分析:等差数列{}n a 中,34544123124a a a a a ++=⇒=∴=,则()()174127477272822a a a a a a a +⨯+++====L考点:等差数列的前n 项和11.D解析:D【解析】 【分析】利用等差数列的通项公式,以及等比中项公式和前n 项和公式,准确运算,即可求解. 【详解】由题意,可得等差数列{}n a 的通项公式为11(1)(2)2(1)n a a n a n =+-⨯-=--, 所以112141,22,412S a S a S a ==-=-,因为1S ,2S ,4S 成等比数列,可得2111(22)(412)a a a -=-,解得11a =-.故选:D . 【点睛】本题主要考查了等差数列通项公式,以及等比中项公式与求和公式的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.12.D解析:D 【解析】分析:由正弦定理可将sin2sin 0b A B =化简得cosA 2=-,由余弦定理可得222227a b c bccosA c =+-=,从而得解.详解:由正弦定理,sin2sin 0b A B +=,可得sin2sin 0sinB A B +=,即2sin sin 0sinB AcosA B = 由于:0sinBsinA ≠,所以cosA =:, 因为0<A <π,所以5πA 6=.又b =,由余弦定理可得22222222337a b c bccosA c c c c =+-=++=.即227a c =,所以c a =. 故选:D .点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.二、填空题13.(﹣∞【解析】【分析】由正实数xy 满足可求得x+y≥5由x2+2xy+y2﹣ax ﹣ay+1≥0恒成立可求得a≤x+y+恒成立利用对勾函数的性质即可求得实数a 的取值范围【详解】因为正实数xy 满足而4x解析:(﹣∞,265] 【解析】 【分析】由正实数x ,y 满足4454x y xy ++=,可求得x +y≥5,由x 2+2xy+y 2﹣ax ﹣ay+1≥0恒成立可求得a ≤x+y+1x y+恒成立,利用对勾函数的性质即可求得实数a 的取值范围. 【详解】因为正实数x ,y 满足4454x y xy ++=,而4xy ≤(x+y )2,代入原式得(x +y )2﹣4(x+y )﹣5≥0,解得x +y≥5或x +y≤﹣1(舍去), 由x 2+2xy+y 2﹣ax ﹣ay+1≥0可得a (x +y )≤(x+y )2+1, 即a ≤x+y+1x y+,令t=x +y ∈[5,+∞), 则问题转化为a ≤t+1t,因为函数y=t +1t在[5,+∞)递增, 所以y min =5+15=265, 所以a ≤265, 故答案为(﹣∞,265] 【点睛】本题考查基本不等式,考查对勾函数的单调性质,求得x +y≥5是关键,考查综合分析与运算的能力,属于中档题.14.【解析】【分析】利用无穷等比数列的求和公式即可得出【详解】解:根据等比数列的性质数列是首项为公比为的等比数列又因为公比所以故答案为:【点睛】本题考查了无穷等比数列的求和公式考查了推理能力与计算能力属【解析】 【分析】利用无穷等比数列的求和公式即可得出. 【详解】解:根据等比数列的性质,数列1321,,,n a a a -⋯是首项为1a ,公比为2q 的等比数列。
【易错题】高中必修五数学上期中试题含答案(4)
【易错题】高中必修五数学上期中试题含答案(4)一、选择题1.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭2.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-3.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20474.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .35.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .16.已知数列{}n a 的通项公式为()*21log N 2n n a n n +=∈+,设其前n 项和为n S ,则使5n S <-成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值317.已知数列{a n } 满足a 1=1,且111()(233n n n a a n -=+≥,且n ∈N*),则数列{a n }的通项公式为( )A .32nn a n =+B .23n nn a +=C .a n =n+2D .a n =( n+2)·3n8.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞9.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .610.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-11.已知正项数列{}n a 中,*12(1)()2n n n a a a n N ++++=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =12.已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y 的最小值为1,则a=A .B .C .1D .2二、填空题13.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,tan tan 2tan b B b A c B +=-,且8a =,73b c +=,则ABC V 的面积为______.14.已知数列{}n a 的前n 项和为n S ,且221n S n n n N *=++∈,,求n a =.__________.15.已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数x 使()0f x >,则实数p 的取值范围是__________.16.如图所示,在平面四边形ABCD 中,2AB =,3BC =,AB AD ⊥,AC CD ⊥,3AD AC =,则AC =__________.17.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.18.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.19.已知数列{}n a 的通项1n n a n+=+15项的和等于_______.20.在锐角ΔABC 中,内角,,A B C 的对边分别为,,a b c ,已知24,sin 4sin 6sin sin a b a A b B a B C +=+=,则ABC n 的面积取最小值时有2c =__________.三、解答题21.在ABC V 中,5cos 13A =-,3cos 5B =. (1)求sinC 的值;(2)设5BC =,求ABC V 的面积.22.已知ABC ∆中,角,,A B C 的对边分别为,,,2cos (cos cos )0.a b c C a C c A b ++=, (1)求角C 的大小;(2)若2,23,b c ==,求ABC ∆的面积. 23.数列{}n a 中,11a =,121n n a a n +=++. (1)求{}n a 的通项公式; (2)设141n n b a =-,求出数列{}n b 的前n 项和.24.已知等比数列{}n a 的公比1q >,且满足:23428a a a ++=,且32a +是24,a a 的等差中项.(1)求数列{}n a 的通项公式; (2)若1122log ,n n n n n b a a S b b b ==+++L ,求使1·262n nS n ++>成立的正整数n 的最小值.25.在等比数列{}n b 中,公比为()01q q <<,13511111,,,,,,50322082b b b ∈⎧⎫⎨⎬⎩⎭. (1)求数列{}n b 的通项公式;(2)设()31n n c n b =-,求数列{}n c 的前n 项和n T .26.设数列{}n a 满足12a = ,12nn n a a +-= ;数列{}n b 的前n 项和为n S ,且2132n S n n =-()(1)求数列{}n a 和{}n b 的通项公式;(2)若n n n c a b = ,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .2.C解析:C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,Q 数列{}n a 是等比数列,则11a =,故412λ+=,解得2λ=-, 故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础.3.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.4.D解析:D 【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.5.A解析:A 【解析】 【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=, 2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,22(2)5592x x -++≥=-Q , 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+,32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.6.A解析:A 【解析】 【分析】利用对数运算,求得n S ,由此解不等式5n S <-,求得n 的最小值. 【详解】 ∵()*21log N 2n n a n n +=∈+, ∴12322223log log log 3142n n S a a a a n n =++++⋯+=++⋯++222312log log 3422n n n +⎛⎫=⨯⨯⋯⨯= ⎪++⎝⎭, 又因为21215log 6232232n S n n <-=⇒<⇒>+,故使5n S <-成立的正整数n 有最小值:63. 故选:A. 【点睛】本小题主要考查对数运算和数列求和,属于基础题.7.B解析:B 【解析】试题分析:由题可知,将111()(233n n n a a n -=+≥,两边同时除以,得出,运用累加法,解得,整理得23n nn a +=; 考点:累加法求数列通项公式8.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】由题,因为211x y+=,0x >,0y >,所以()214422242448x y x yx y x y y x y x ⎛⎫++=+++≥+⋅=+=⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.9.B解析:B 【解析】 【分析】 【详解】由z =x +3y 得y =-13x +3z,先作出0{x y x ≥≤的图象,如图所示,因为目标函数z =x +3y 的最大值为8,所以x +3y =8与直线y =x 的交点为C ,解得C (2,2),代入直线2x +y +k =0,得k =-6.10.C解析:C 【解析】很明显等比数列的公比1q ≠,由题意可得:()231113S a q q =++=,①且:()21322a a a +=+,即()211122a q a a q +=+,②①②联立可得:113a q =⎧⎨=⎩或1913a q =⎧⎪⎨=⎪⎩,综上可得:公比q =3或13. 本题选择C 选项.11.B解析:B 【解析】 【分析】 ()()1122n n n n n a +-=-1a 1a n a 的表达式,可得出数列{}n a 的通项公式. 【详解】 (1)(1),(2)22n n n n n a n n +-=-=≥ 11a = ,所以2,(1),n n a n n a n =≥= ,选B.【点睛】给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 应用关系式11,1{,2n n n S n a S S n -==-≥时,一定要注意分1,2n n =≥两种情况,在求出结果后,看看这两种情况能否整合在一起.12.B解析:B【解析】【分析】【详解】画出不等式组表示的平面区域如图所示:当目标函数z=2x+y表示的直线经过点A时,z取得最小值,而点A的坐标为(1,2a-),所以221a-=,解得12a=,故选B.【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.二、填空题13.【解析】【分析】由正弦定理和三角函数公式化简已知式子可得cosA的值由余弦定理可求64=(b+c)2﹣bc求bc即可得三角形的面积【详解】∵在△ABC 中btanB+btanA=﹣2ctanB∴由正弦93【解析】【分析】由正弦定理和三角函数公式化简已知式子可得cosA的值,由余弦定理可求64=(b+c)2﹣bc,求bc,即可得三角形的面积.【详解】∵在△ABC中btanB+btanA=﹣2ctanB,∴由正弦定理可得sinB(tanA+tanB)=﹣2sinCtanB,∴sinB(tanA+tanB)=﹣2sinC•sinB cosB,∴cosB(tanA+tanB)=﹣2sinC,∴cosB(sinAcosA+sinBcosB)=﹣2sinC,∴cosB•sinAcosB cosAsinBcosAcosB+=﹣2sinC ,∴cosB•()sin A B cosAcosB+=sinCcosA=﹣2sinC , 解得cosA=﹣12,A=23π;∵a=8,b c +=64=b 2+c 2+bc=(b+c )2﹣bc , ∴bc=9∴△ABC 的面积为S =12bcsinA=1922⨯⨯4,. 【点睛】本题考查正、余弦定理解三角形,涉及同角三角函数基本关系和三角形的面积公式,属于中档题.14.【解析】分析:根据可以求出通项公式;判断与是否相等从而确定的表达式详解:根据递推公式可得由通项公式与求和公式的关系可得代入化简得经检验当时所以所以点睛:本题考查了利用递推公式求通项公式的方法关键是最解析:4,141,2n n a n n =⎧=⎨-≥⎩.【解析】分析:根据1n n n a S S -=-可以求出通项公式n a ;判断1S 与1a 是否相等,从而确定n a 的表达式。
(易错题)高中数学选修三第二单元《随机变量及其分布》测试(有答案解析)(3)
一、选择题1.设0a >,若随机变量ξ的分布列如下:A .()D ξB .(||)D ξC .(21)D ξ-D .(2||1)D ξ+2.某人射击一发子弹的命中率为0.8,现他射击19发子弹,理论和实践都表明,这19发子弹中命中目标的子弹数n 的概率()f n 如下表,那么在他射击完19发子弹后,其中击中目标的子弹数最大可能是( )A .14发B .15发C .16发D .15或16发3.若随机变量X 的分布列为则X 的数学期望()E X =( ) A .2a b + B .2+a bC .2D .34.若X ~B (20,0.3),则( )A .E (X )=3B .P (X ≥1)=1﹣0.320C .D (X )=4D .P (X =10)1010200.21C =⨯5.随机变量ξ的分布列如表所示,若1()3E X =-,则(31)D X +=( )A .4B .5C .6D .76.已知随机变量ξ,η的分布列如下表所示,则( )A .E E ξη<,D D ξη<B .E E ξη<,D D ξη>C .E E ξη<,D D ξη= D .E E ξη=,D D ξη=7.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为( ) A .110B .14C .310D .258.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A ,2A ,3A 是两两互斥的事件 C .()35P B =D .()17|11P B A =9.已知ξ是离散型随机变量,则下列结论错误的是( ) A .21133P P ξξ⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭ B .()()()22E E ξξ≤C .()()1D D ξξ=-D .()()()221D D ξξ=-10.如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,事件A 表示“豆子落在正方形EFGH 内”,事件B 表示“豆子落在扇形OHE(阴影部分)内”,则P(B|A)等于( )A .18B .14C .12D .3811.已知随机变量X 的分布列如下表所示则(25)E X -的值等于 A .1B .2C .3D .412.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为( ) A .14B .13C .12D .1二、填空题13.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是________.14.如图,EFGH 是圆O 的内接正方形,将一颗豆子随机扔到圆O 内,记事件A :“豆子落在正方形EFGH 内”,事件B :“豆子落在扇形OEH (阴影部分)内”,则条件概率(|)P B A =__.15.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上,设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则(|)P B A =________. 16.以下4个命题中,所有正确命题的序号是______. ①已知复数()12i z i i +=-,则105z =;②若()727012731x a a x a x a x -=+++⋅⋅⋅+,则1234567127a a a a a a a ++++=++ ③一支运动队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽取一个容量为28的样本,则样本中男运动员有16人;④若离散型随机变量X 的方差为()3D X =,则()2112D X -=.17.驻马店市某校高三年级学生一次数学诊断考试的成绩(单位:分)X 服从正态分布()2110,10N ,记(]90,110X ∈为事件(],80,100A X ∈为事件B ,则()|P B A __________.(结果用分数示)附:()0.68P X μσμσ-<≤+=;()220.95P X μσμσ-<≤+=;()330.99P X μσμσ-<≤+=.18.已知某随机变量X 的分布列如下(,p q R ∈):且X 的数学期望()12E X =,那么X 的方差()D X =__________. 三、解答题19.已知某射手射中固定靶的概率为34,射中移动靶的概率为23,每次射中固定靶、移动靶分别得1分、2分,脱靶均得0分,每次射击的结果相互独立,该射手进行3次打靶射击:向固定靶射击1次,向移动靶射击2次.(1)求“该射手射中固定靶且恰好射中移动靶1次”的概率; (2)求该射手的总得分X 的分布列和数学期望.20.某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除了颜色外均相同. (1)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记取到红球的次数为ξ,求ξ的分布列;(3)每次从纸箱中摸取一个小球,记录颜色后放回纸箱,这样摸取20次,取得几次红球的概率最大?(只需写出结论)21.一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X ,求X 的分布列及数学期望. 22.根据国家《环境空气质量》规定:居民区中的PM 2.5(PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM 2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM 2.5的24小时平均浓度的监测数据,数据统计如下: 组别 PM 2.5/(微克/立方米) 频数/天 频率 第一组 [0,15) 4 0.1 第二组 [15,30) 12 0.3 第三组[30,45)80.2(2)求该样本的平均数,并根据样本估计总体的思想,从PM 2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;(3)将频率视为概率,监测去年的某2天,记这2天中该居民区PM 2.5的24小时平均浓度符合环境空气质量标准的天数为ξ,求ξ的分布列及均值E (ξ)和方差D (ξ).23.现有甲、乙两个规模一致的大型养猪场,均养有1万头猪.根据猪的体重,将其分为三个成长阶段,如下表:根据以往经验,两个养猪场内猪的体重X 均近似服从正态分布()250,16N .由于我国有关部门加强对大型养猪场即将投放市场的成年期的猪的监控力度,高度重视其质量保证,为了养出健康的成年期的猪,甲、乙两个养猪场引入两种不同的防控及养殖模式.已知甲,乙两个养猪场内一头成年期的猪能通过质检合格的概率分别为43,54. (1)试估算各养猪场三个阶段的猪的数量;(2)已知甲养猪场出售一头成年期的猪,若为健康合格的猪,则可盈利400元,若为不合格的猪,则亏损200元;乙养猪场出售--头成年期的猪,若为健康合格的猪,则可盈利500元,若为不合格的猪,则亏损100元记Y 为甲,乙养猪场各出售一头成年期的猪所得的总利润,求随机变量Y 的分布列,假设两个养猪场均能把成年期的猪售完,求两个养猪场的总利润的期望值. (参考数据:若()2~,Z Nμσ,则()0.683,(22)0.954,(33)0.997P Z P Z P Z μσμσμσμσμσμσ-+≈-+≈-+≈)24.某工厂生产甲、乙两种电子产品,甲产品的正品率为p (p 为常数且00.9p <<),乙产品的正品率为0.1p +.生产1件甲产品,若是正品,则可盈利4万元,若是次品,则亏损1万元;生产1件乙产品,若是正品,则可盈利6万元,若是次品,则亏损2万元.设生产各件产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,若()8.2E X =,求p ;(2)在(1)的条件下,求生产4件甲产品所获得的利润不少于11万元的概率. 25.随着如今人们生活水平的不断提高,旅游成了一种生活时尚,尤其是老年人的旅游市场在不断扩大.为了了解老年人每年旅游消费支出(单位:元)的情况,相关部门抽取了某地区1000名老年人进行问卷调查,并把所得数据列成如下所示的频数分布表:(2)根据样本数据,可近似地认为老年人的旅游费用支出X 服从正态分布()23000,1000N ,若该地区共有老年人95000人,试估计有多少位老年人旅游费用支出在5000元以上;(3)已知样本数据中旅游费用支出在[)5000,6000范围内的10名老人中有7名女性,3名男性.现想选其中3名老人回访,记选出的男生人数为ξ,求ξ的分布列. 附:若()2~,X Nμσ,()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.26.面对环境污染,党和政府高度重视,各级环保部门制定了严格措施治理污染,同时宣传部门加大保护环境的宣传力度,因此绿色低碳出行越来越成为市民的共识,为此某市在八里湖新区建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分缴费,具体扣分标准如下: ①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分; ③租用时间为2小时以上且不超过3小时,扣2分; ④租用时间为3小时以上且不超过4小时,扣3分;⑤租车时间超过4小时除扣3分外,超出时间按每小时扣2分收费(不足1小时的部分按1小时计算)甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过4小时,设甲、乙租用时间不超过一小时的概率分别是0.4,0.5;租用时间为1小时以上且不超过2小时的概率分别是0.3,0.3;租用时间为2小时以上且不超过3小时的概率分别是0.2,0.1.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由概率分布列求出参数a ,然后求出均值和方差再比较. 【详解】由题意231a a a ++=,16a =, ()11151026326E ξ=-⨯+⨯+⨯=,1117()1026326E ξ=⨯+⨯+⨯=,()D ξ=222151515(1)(0)(2)663626⨯--+⨯-+⨯-=5336, 222171717()(1)(0)(2)663626D ξ=⨯-+⨯-+⨯-=2936.()()1D D ξξ>>,5353(21)4369D ξ-=⨯=,2929(21)4369D ξ+=⨯=. 其中(21)D ξ-最大. 故选:C . 【点睛】方法点睛:求随机变量的期望和方差的基本方法如下:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求(),aX b a b R +∈的期望与方差,利用期望和方差的性质(()()E aX b aE X b +=+,()()2D aX b a D X +=)进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算.2.D解析:D 【分析】设第k 发子弹击中目标的概率最大,根据题意,可以表示第1k -、k 、1k +发子弹击中目标的概率,进而可得()()1f k f k ≥+且()()1f k f k ≥-,即可得关于k 的不等式组,求解可得答案. 【详解】根据题意,设第k 发子弹击中目标的概率最大,而19发子弹中命中目标的子弹数n 的概率()19190.80.2k k k P n k C -⋅⋅==(0k =,1,2,,19),则有()()1f k f k ≥+且()()1f k f k ≥-,即191118191919112019190.80.20.80.20.80.20.80.2k k k k k kkk k k k kC C C C -++-----⎧⋅⋅≥⋅⋅⎨⋅⋅≥⋅⋅⎩ ,解可得1516k ≤≤ , 即第15或16发子弹击中目标的可能性最大,则他射完19发子弹后,击中目标的子弹最可能是第15或16发. 故选:D . 【点睛】本题考查n 次独立重复试验中发生k 次的概率问题,考查逻辑思维能力和运算求解能力,属于常考题.3.C解析:C 【分析】由期望公式可知()2(2)E X a b =+,而总体的概率21a b +=,即可求得()E X 【详解】由1122()()()...()n n E X X P X X P X X P X =+++ ∴()1232(2)E X a b a a b =⨯+⨯+⨯=+,而21a b += ∴()2E X = 故选:C 【点睛】本题考查了概率,理解期望的含义,利用期望公式求离散型变量的期望,并根据样本总体概率为1求期望值4.D解析:D 【分析】根据二项分布的均值,方差以及概率公式求解即可. 【详解】因为20,0.3n p ==,所以()200.36E X =⨯=,()()200.310.3 4.2D X =⨯⨯-=()()()202020110110.310.7P X P X C ≥=-==--=- ()()10101010102020100.310.30.21P X C C ==-=⋅故选:D 【点睛】本题主要考查了二项分布的均值,方差以及概率公式,属于中档题.5.B解析:B 【分析】由于()13E X =-,利用随机变量的分布列列式,求出a 和b ,由此可求出()D X ,再由()(319)X D D X +=,即可求出结果.【详解】 根据题意,可知:112a b ++=,则12a b +=, ()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=,()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=, ∴5(31)D X +=.故选:B. 【点睛】本题考查离散型随机变量的方差的求法,以及离散型随机变量的分布列、数学期望等知识,考查运算求解能力.6.C解析:C 【分析】由题意分别求出E ξ,D ξ,E η,D η,由此能得到E ξ<E η,D ξ>D η. 【详解】 由题意得: E ξ111123326=⨯+⨯+⨯=116, D ξ22211111111151(1)(2)(3)636108266=-⨯+-⨯+-⨯=. E η111131236236=⨯+⨯+⨯=, D η=(1316-)216⨯+(2136-)212⨯+(3136-)21513108⨯=, ∴E ξ<E η,D ξ=D η. 故选:C . 【点睛】本题考查离散型随机变量的分布列、数学期望、方差的求法,考查运算求解能力,是中档题.7.B解析:B 【分析】记事件:A 甲乙相邻,事件:B 乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出()P A 和()P AB ,再利用条件概率公式可计算出所求事件的概率. 【详解】记事件:A 甲乙相邻,事件:B 乙丙相邻,则事件:AB 乙和甲丙都相邻,所求事件为B A ,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为424248A A =,由古典概型的概率公式可得()554825P A A ==. 乙和甲丙都相邻,则将甲乙丙三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为323212A A =,由古典概型的概率公式可得()5512110P AB A ==, 由条件概率公式可得()()()1511024P AB P B A P A ==⨯=,故选B. 【点睛】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,属于中等题.8.C解析:C 【分析】依次判断每个选项得到答案. 【详解】A.乙罐取出的球是红球的事件与前面是否取出红球相关,正确B. 1A ,2A ,3A 两两不可能同时发生,正确C. ()5756131011101122P B =⨯+⨯=,不正确 D. ()11117()7211|1()112P BA P B A P A ⨯===,正确 故答案选C 【点睛】本题考查了独立事件,互斥事件,条件概率,综合性强,意在考查学生的综合应用能力和计算能力.9.D解析:D 【分析】利用概率、数学期望、方差的性质直接求解. 【详解】在A中,211113333P P P P ξξξξ⎛⎛⎫⎛⎫⎛⎫≤=-≤≤≤≤=≤≤ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,故A 正确;在B 中,由数学期望的性质得()()()22E E ξξ≤,故B 正确;在C 中,由方差的性质得()()1D D ξξ=-,故C 正确; 在D 中,()()()()()22214D D D D ξξξξ≠-=+,故D 错误.故选D. 【点睛】本题考查命题真假的判断,考查概率、数学期望、方差的性质等基础知识,考查运算求解能力,是基础题.10.B解析:B 【分析】由几何概型概率计算公式可得P(A)=2π,再根据条件概率的计算公式,即可求解. 【详解】由几何概型概率计算公式可得P(A)=S 2S π=正圆;事件AB 表示“豆子落在△EOH 内”, 则P(AB)=2EOH11S12.S π2π圆⨯==由条件概率的计算公式可得P(B|A)=1P(AB)12π2P(A)4π==,故选B. 【点睛】本题主要考查了几何概型及其概率的计算,以及条件概率的计算问题,其中解答中正确理解题意,合理利用几何概型及其概率的计算公式和条件概率的计算公式,合理、准确求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.11.A解析:A 【分析】先求出b 的值,再利用期望公式求出E(X),再利用公式求出()25E X -. 【详解】由题得0.1+0.2+0,20.11,0.4,b b ++=∴=,所以()10.120.230.440.250.13E X =⨯+⨯+⨯+⨯+⨯= 所以(25)2()52351E X E X -=-=⨯-=. 故答案为A 【点睛】(1)本题主要考查分布列的性质和期望的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 若a b ηξ=+(a 、b 是常数),ξ是随机变量,则η也是随机变量,E η=()E a b aE b ξξ+=+,2()D a b a D ξξ+=.12.C解析:C 【解析】分析:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,利用古典概型概率公式求出()(),P A P AB 的值,由条件概率公式可得结果. 详解:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,()()31111,62224P A P AB ===⨯=, ()()()114|122P AB P B A P A ===,∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为12,故选C. 点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.二、填空题13.【分析】利用列举法求出已知这个家庭有一个是女孩的条件下基本事件总数n=3这时另一个也是女孩包含的基本事件个数m=1由此能求出已知这个家庭有一个是女孩的条件下这时另一个也是女孩的概率【详解】一个家庭有解析:13【分析】利用列举法求出已知这个家庭有一个是女孩的条件下,基本事件总数n =3,这时另一个也是女孩包含的基本事件个数m=1,由此能求出已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率.【详解】一个家庭有两个小孩,假设生男生女是等可能的,基本事件有: {男,男},{男,女},{女,男},{女,女},已知这个家庭有一个女孩的条件下,基本事件总数n=3 ,这时另一个也是女孩包含的基本事件个数m=1,∴已知这个家庭有一个女孩的条件下,这时另一个也是女孩的概率是13mpn==,故答案为:13【点睛】本题主要考查了条件概率,可以列举在某条件发生的情况下,所有事件的个数及所研究事件的个数,利用古典概型求解,属于中档题.14.【分析】利用与面积有关的几何概型公式求出然后代入条件概率公式即可求解【详解】如图设正方形边长为由几何概型的概率公式可得(A)由条件概率公式可得故答案为:【点睛】本题考查与面积有关的几何概型和条件概率解析:14【分析】利用与面积有关的几何概型公式求出()(),P A P AB,然后代入条件概率公式()()()P ABP B AP A=即可求解.【详解】如图,设正方形边长为a,由几何概型的概率公式可得,P(A)2222()aππ==⨯,21122()22()aaP ABaππ⨯==⨯,∴由条件概率公式可得,1()12(|)2()4P ABP B AP Aππ===.故答案为:14【点睛】本题考查与面积有关的几何概型和条件概率的求解;熟练掌握概率公式是求解本题的关键;属于中档题、常考题型.15.【分析】先列出事件与事件的基本事件的个数再利用独立事件与条件概率的求法可得即可求解【详解】由题意先后抛掷三次一枚质地均匀的硬币事件A 为第一次正面向上其基本事件为(正正正)(正正反)(正反正)(正反反解析:14【分析】先列出事件A 与事件B 的基本事件的个数,再利用独立事件与条件概率的求法可得(|)P B A ,即可求解.【详解】由题意,先后抛掷三次一枚质地均匀的硬币,事件A 为“第一次正面向上”,其基本事件为(正,正,正),(正,正,反),(正,反,正),(正,反,反)共4个,在第一次正面向上的条件下,“后两次均反面向上”,其基本事件为(正,反,反)共1个, 即1(|)4P B A =, 故答案为14. 【点睛】本题主要考查了独立事件与条件概率的计算,其中解答中熟记条件概率的计算公式,合理计算是解答的关键,着重考查了推理与运算能力,属于基础题.16.①③④【分析】根据复数的模的运算可知①正确;代入所得式子作差即可知②正确;利用分层抽样原则计算可知③正确;根据方差的性质可知④正确【详解】①则①正确;②令则;令则②错误;③抽样比为:则男运动员应抽取解析:①③④ 【分析】根据复数的模的运算可知z z ==,①正确;代入0x =,1x =,所得式子作差即可知②正确;利用分层抽样原则计算可知③正确;根据方差的性质可知④正确. 【详解】①()11212i i z i i i ++==-+,则111212i i z z i i ++=====++,①正确; ②令0x =,则()7011a =-=-;令1x =,则0123456772a a a a a a a a +++++=++1234567721129a a a a a a a ∴+++++=+=+,②错误;③抽样比为:28256427=+,则男运动员应抽取:256167⨯=人,③正确;④由方差的性质可知:()()2143412D X D X -==⨯=,④正确. 本题正确结果:①③④ 【点睛】本题考查命题的真假性的判断,涉及到复数模长运算、二项式系数和、分层抽样、方差的性质等知识,属于中档题.17.【解析】分析:利用条件概率公式即可得出结论详解:由题意故答案为点睛:本题考查条件概率考查正态分布考查计算能力属于中档题 解析:2795【解析】分析:利用条件概率公式,即可得出结论. 详解:由题意,()()()()()110.475,0.990.680.155,0.950.680.13522P A P B P AB ==-==-=, ()0.13527|0.47595P B A ∴==. 故答案为2795. 点睛:本题考查条件概率,考查正态分布,考查计算能力,属于中档题.18.【解析】根据题意可得解得故的方差解析:34【解析】根据题意可得112p q p q +=⎧⎪⎨-=⎪⎩,解得34p =,14q =,故X 的方差()22131131124244D X ⎛⎫⎛⎫=-⨯+--⨯= ⎪ ⎪⎝⎭⎝⎭.三、解答题19.(1)13;(2)分布列答案见解析,数学期望:4112. 【分析】(1)记“该射手射中固定靶且恰好射中移动靶1次”为事件D ,得到D ABC BC A =+,结合互斥事件和相互独立事件的概率计算公式,即可求解;(2)随机变量X 的可能取值为0,1,2,3,4,5,根据互斥事件和相互独立事件的概率计算公式,求得相应的概率,得出分布列,利用期望的公式,即可求解. 【详解】(1)记“该射手射中固定靶且恰好射中移动靶1次”为事件D , 则()34P A =,()()23P B P C ==, D ABC BC A =+,其中ABC C AB +互斥,,,,,A B C B C 相互独立,从而()()()()322114336P ABC P A P B P C ⎛⎫==⨯-= ⎪⎝⎭, 则()()()()13P D P ABC ABC P ABC P ABC =+=+=, 所以该射手射中固定靶且恰好射中移动靶1次的概率为13. (2)随机变量X 的可能取值为0,1,2,3,4,5,则()()()()()3221011143336P X P ABC P A P B P C ⎛⎫⎛⎫⎛⎫====---=⎪⎪⎪⎝⎭⎝⎭⎝⎭, ()()()()()3111143312P X P ABC P A P B P C ====⨯⨯=,1211121(2)()()()()()()()4334339P X P ABC ABC P A P B P C P A P B P C ==+=+=⨯⨯+⨯⨯=,()()()()()()()()321312134334333P X P ABC ABC P A P B P C P A P B P C ==+=+=⨯⨯+⨯⨯=()()()()()122144339P X P ABC P A P B P C ====⨯⨯=,3221(5)()()()()4333P X P ABC P A P B P C ====⨯⨯=,该射手的总得分X 的分布列为随机变量X 的数学期望()012345.3612939312E X =⨯+⨯+⨯+⨯+⨯+⨯= 【点睛】求随机变量X 的期望与方差的方法及步骤: 理解随机变量X 的意义,写出X 可能的全部值; 求X 取每个值对应的概率,写出随机变量的分布列; 由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解. 20.(1)12;(2)分布列见解析;(3)15次. 【分析】(1)利用组合数公式和古典概型的概率公式可求得所求事件的概率; (2)由题意可知,34,4B ξ⎛⎫⎪⎝⎭,利用二项分布可得出随机变量ξ的分布列; (3)根据独立重复试验的概率公式可得出结论. 【详解】(1)一次从纸箱中摸出两个小球,恰好摸出2个红球,相当于从3个红球中摸出2个红球,由古典概型的概率公式可知,所求事件的概率为232412C P C ==;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,则每次摸到红球的概率均为34, 这样摸球4次,则34,4B ξ⎛⎫ ⎪⎝⎭, 所以,()4110=4256P ξ⎛⎫== ⎪⎝⎭,()3143131=4464P C ξ⎛⎫==⋅⋅ ⎪⎝⎭,()22243127244128P C ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()334312734464P C ξ⎛⎫==⋅⋅= ⎪⎝⎭,()438144256P ξ⎛⎫===⎪⎝⎭. 因此,随机变量ξ的分布列如下表所示:【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.21.(1)0.28;(2)分布列见解析,()0.6E X =. 【分析】(1)由题意利用对立事件概率公式即可求得满足题意的概率值;(2)首先确定X 可能的取值,然后分别求解其概率值,最后确定其分布列并求解数学期望即可. 【详解】(1)设部件1需要调整为事件A ,部件2需要调整为事件B ,部件3需要调整为事件C , 由题意可知:()()()0.1,0.2,0.3P A P B P C ===. 部件1,2中至少有1个需要调整的概率为:()()11110.90.810.720.28P A P B ⎡⎤⎡⎤---=-⨯=-=⎣⎦⎣⎦.(2)由题意可知X 的取值为0,1,2,3.且:()()()()0111P X P A P B P C ⎡⎤⎡⎤⎡⎤==---⎣⎦⎣⎦⎣⎦()()()10.110.210.3=-⨯-⨯-0.504=,()()()()111P X P A P B P C ⎡⎤⎡⎤==--⎣⎦⎣⎦()()()11P A P B P C ⎡⎤⎡⎤+--⎣⎦⎣⎦()()()11P A P B P C ⎡⎤⎡⎤+--⎣⎦⎣⎦0.10.80.7=⨯⨯0.90.20.7+⨯⨯0.90.80.3+⨯⨯ 0.398=,()()()()21P X P A P B P C ⎡⎤==-⎣⎦()()()1P A P B P C ⎡⎤+-⎣⎦()()()1P A P C P B ⎡⎤+-⎣⎦0.10.20.7=⨯⨯0.10.80.3+⨯⨯0.90.20.3+⨯⨯ 0.092=.()()()()30.10.20.30.006P X P A P B P C ===⨯⨯=,故X 的分布列为:其数学期望:0.50400.39810.09220.00630.6E X=⨯+⨯+⨯+⨯=.【点睛】思路点晴:求离散型随机变量X的数学期望的一般步骤:(1)先分析X的可取值,根据可取值求解出对应的概率;(2)根据(1)中概率值,得到X的分布列;(3)结合(2)中分布列,根据期望的计算公式求解出X的数学期望.22.(1)22.5微克/立方米, 37.5微克/立方米;(2)40.5(微克/立方米), 需要改进,理由见解析;(3)分布列见解析,1.8,0.18.【分析】(1)根据表中数据即可得出;(2)直接计算出平均数即可判断;(3)可得ξ的可能取值为0,1,2,且92,10Bξ⎛⎫⎪⎝⎭,由此的可得出分布列,求出均值和方差.【详解】(1)由表可知众数在第二组,为15+3022.52=微克/立方米,因为前两组的频率之和为0.4,前三组的频率之和为0.6,故中位数在第三组,设为x,则0.1300.24530x-=-,解得37.5x=微克/立方米,所以众数为22.5微克/立方米,中位数为37.5微克/立方米.(2)去年该居民区PM2.5的年平均浓度为7.5×0.1+22.5×0.3+37.5×0.2+52.5×0.2+67.5×0.1+82.5×0.1=40.5(微克/立方米).∵40.5>35,∴去年该居民区PM2.5的年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.(3)记事件A表示“一天PM2.5的24小时平均浓度符合环境空气质量标准”,则P(A)=9 10.随机变量ξ的可能取值为0,1,2,且92,10Bξ⎛⎫⎪⎝⎭.∴2299()11010k kkP k Cξ-⎛⎫⎛⎫==-⎪ ⎪⎝⎭⎝⎭(k=0,1,2),即∴()2 1.810E np ξ==⨯=, 91()(1)20.181010D np p ξ=-=⨯⨯=. 【点睛】本题考查样本数据众数、中位数、平均数的求解,考查二项分布的分布列和均值、方差的求解,解题的关键是正确分析数据,得出92,10B ξ⎛⎫ ⎪⎝⎭. 23.(1)幼年期的猪215头,成长期的猪9540头,成年期的猪215头;(2)135450元. 【分析】(1)设各阶段猪的数量分别为123,,n n n ,根据猪的体重X 近似服从正态分布2(50,16)N ,分别求得(218)P X <,(1882)P X <,(8298)P X 即可.(2)随机变量Y 的所有可能取值为900,300,300-,分别求得其概率,列出分布列,再根据分布列利用均值公式求解. 【详解】(1)设各阶段猪的数量分别为123,,n n n , ∵猪的体重X 近似服从正态分布2(50,16)N ,0.9970.954(218)(50316502 16) 0.02152P X P X -∴<=-⨯<-⨯≈=,1100000.0215215n ∴=⨯=(头);(1882)(5021650216)0.954P X P X <=-⨯<+⨯≈2100000.9549540n ∴=⨯=(头);0.9970.954(8298)(5021650316) 0.02152P X P X -=+⨯+⨯≈=,3100000.0215215n ∴=⨯=(头)∴甲、乙两个养猪场各有幼年期的猪215头,成长期的猪9540头,成年期的猪215头. (2)随机变量Y 的所有可能取值为900,300,300-.43341137111(900),(300),(300)5455454205420P Y P Y P Y ==⨯===⨯+⨯==-=⨯=,Y ∴的分布列为()90030030063052020E Y ∴=⨯+⨯-⨯=(元),由于两个养猪场均有215头成年期的猪,且两个养猪场各出售一头成年期的猪所得的总利润的期望为630元,则总利润的期望为630215135450⨯=(元). 【点睛】方法点睛: (1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)注意性质的应用:若随机变量X 的均值为E (X ),则对应随机变量aX +b 的均值是aE (X )+b ,方差为a 2D (X ). 24.(1)0.8p =;(2)0.8192. 【分析】(1)先确定X 的可能取值,进而利用独立事件概率公式求得分布列,然后利用期望值定义列出期望值,根据已知得到关于p 的方程,求解即得;(2)先根据题意求得4件产品中正品的件数,利用独立重复事件概率公式求得结果. 【详解】(1)由题设知,X 的可能取值为10,5,2,-3, 且(10)(0.1)P X p p ==+,(5)(1)(0.1)P X p p ==-+,(2)(10.1)(0.9)P X p p p p ==--=-,(3)(1)(10.1)(1)(0.9)P X p p p p =-=---=--.所以X 的分布列为:()3(1)(0.9)2(0.9)E X p p p p =---+⨯-5(1)(0.1)10(0.1)13 2.2p p p p p +⨯-++⨯+=-,因为()8.2E X =,所以13 2.28.2p -=,解得0.8p =. (2)设生产的4件甲产品中正品有n 件,则次品有4n -件, 由题意知,()4411n n --≥,则3n =或4n =.所以33440.80.20.80.8192P C =⨯⨯+=.故所求概率为0.8192. 【点睛】命题意图本题考查独立事件的概率,随机变量的分布列与数学期望. 25.(1)2320元;(2)2166位;(3)分布列见解析. 【分析】(1)将每组的中点值乘以对应组的人数,将所得结果全部相加并除以1000可得出该样本。
【易错题】高三数学上期中模拟试题附答案(2)
【易错题】高三数学上期中模拟试题附答案(2)一、选择题1.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形2.若不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则实数a 的取值范围是( )A .4,3⎡⎫+∞⎪⎢⎣⎭B .(]0,1C .41,3⎡⎤⎢⎥⎣⎦D .(]40,1,3⎡⎫+∞⎪⎢⎣⎭U3.在ABC V 中,4ABC π∠=,AB =3BC =,则sin BAC ∠=( )A.10B.5CD4.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或75.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.6.已知数列{}n a 的通项公式为()*21log N 2n n a n n +=∈+,设其前n 项和为n S ,则使5n S <-成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值317.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .138.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n+B .2533n n+C .2324n n+D .2n n +9.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .510.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( ) A .()8,10B .()22,10C .()22,10D .()10,811.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --< D .log log c b a a <12.已知正项数列{}n a 中,*12(1)()2n n n a a a n N ++++=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,tan tan 2tan b B b A c B +=-,且8a =,73b c +=,则ABC V 的面积为______.14.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.15.已知实数x y ,满足2,2,03,x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩则2z x y =-的最大值是____.16.已知数列{}n a 满足11a =,111n na a +=-+,*n N ∈,则2019a =__________. 17.已知数列的前项和,则_______.18.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________19.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知,,a b c 成等比数列,且22a c ac bc -=-,则sin cb B的值为________. 20.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.三、解答题21.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且3cos cos (tan tan 1)1A C A C -=.(Ⅰ)求sin B 的值; (Ⅱ)若33a c +=,3b =,求的面积.22.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知()3cos cos 0a b C c B ++=. (1)求cos C 的值;(2)若6c =ABC ∆32,求+a b 的值; 23.在ABC V 中,角A ,B ,C 的对边分别是a ,b ,c ()3cos 23cos a C b c A =(Ⅰ)求角A 的大小;(Ⅱ)若2a =,求ABC V 面积的最大值.24.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5A =. (1)求2sincos 22B CA ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值. 25.在ABC ∆中,内角,,ABC 的对边分别是,,a b c ,已知2223,3A b c a π=+=. (1)求a 的值;(2)若1b =,求ABC ∆的面积.26.已知在等比数列{a n }中,2a =2,,45a a =128,数列{b n }满足b 1=1,b 2=2,且{12n n b a +}为等差数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos 333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B 【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.2.D解析:D 【解析】 【分析】要确定不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是否一个三角形,我们可以先画出0220y x y x y ⎧⎪+⎨⎪-⎩…„…,再对a 值进行分类讨论,找出满足条件的实数a 的取值范围. 【详解】不等式组0220y x y x y ⎧⎪+⎨⎪-⎩…„…表示的平面区域如图中阴影部分所示.由22x y x y =⎧⎨+=⎩得22,33A ⎛⎫⎪⎝⎭,由022y x y =⎧⎨+=⎩得()10B ,. 若原不等式组0220y x y x y x y a ⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则直线x y a +=中a 的取值范围是(]40,1,3a ⎡⎫∈+∞⎪⎢⎣⎭U故选:D 【点睛】平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.3.C解析:C 【解析】试题分析:由余弦定理得229223cos5,54b b π=+-⋅⋅⋅==.由正弦定理得35sin sin 4BAC π=∠310sin 10BAC ∠=. 考点:解三角形.4.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.5.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得42c =. 由余弦定理可得:()222222142214252b ac accosB =+-=+-⨯⨯⨯=. 6.A解析:A 【解析】 【分析】利用对数运算,求得n S ,由此解不等式5n S <-,求得n 的最小值. 【详解】 ∵()*21log N 2n n a n n +=∈+, ∴12322223log log log 3142n n S a a a a n n =++++⋯+=++⋯++222312log log 3422n n n +⎛⎫=⨯⨯⋯⨯= ⎪++⎝⎭,又因为21215log 6232232n S n n <-=⇒<⇒>+, 故使5n S <-成立的正整数n 有最小值:63. 故选:A. 【点睛】本小题主要考查对数运算和数列求和,属于基础题.7.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.8.A解析:A 【解析】 【分析】 【详解】 设公差为d 则解得,故选A.9.A解析:A 【解析】 【分析】先画不等式组表示的平面区域,由图可得目标函数(0,0)z ax by a b =+>>何时取最大值,进而找到a b ,之间的关系式236,a b +=然后可得23123()(23)6a b a b a b+=++,化简变形用基本不等式即可求解。
【易错题】高三数学上期中一模试卷带答案(1)
【易错题】高三数学上期中一模试卷带答案(1)一、选择题1.下列函数中,y 的最小值为4的是( )A .4y x x=+B .222(3)2x y x +=+C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 2.在ABC V 中,4ABC π∠=,2AB =,3BC =,则sin BAC ∠=( )A .1010B .105C .31010D .553.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或74.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 kmB .3 kmC .105 kmD .107 km5.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n +B .2533n n+C .2324n n+D .2n n +6.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞B .()22,-+∞C .[)3,-+∞D .)22,⎡-+∞⎣7.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .98.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .7109.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-10.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++11.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( )A .()8,10B .(22,10C .()22,10D .)10,812.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n nn a b ++=-- ,则数列{}n b 的前10项和10S =___________14.已知等差数列{}n a 的前n 项和为n S ,且136S =,则91032a a -=__________.15.已知数列111112123123n+++++++L L L ,,,,,,则其前n 项的和等于______. 16.已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=L ,且13k a =,则k =_________.17.已知数列{}n a 满足1133,2,n n a a a n +=-=则na n的最小值为__________. 18.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______. 19.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.20.已知,x y 满足条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若目标函数=+z -ax y 取得最大值的最优解不唯一,则实数a 的值为__________.三、解答题21.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD .其中AB =3百米,AD=5百米,且△BCD 是以D 为直角顶点的等腰直角三角形.拟修建两条小路AC ,BD (路的宽度忽略不计),设∠BAD=θ,θ∈(2π,π).(1)当cos θ=5-时,求小路AC 的长度; (2)当草坪ABCD 的面积最大时,求此时小路BD 的长度.22.已知等差数列{}n a 满足12231()()()2(1)n n a a a a a a n n +++++++=+L (*n N ∈). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S . 23.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且3cos cos (tan tan 1)1A C A C -=.(Ⅰ)求sin B 的值; (Ⅱ)若33a c +=,3b =,求的面积.24.已知数列{}n a 的首项123a =,且当2n ≥时,满足1231312n n a a a a a -++++=-L .(1)求数列{}n a 的通项公式; (2)若2n nnb a =,n T 为数列{}n b 的前n 项和,求n T . 25.如图,Rt ABC V 中,,1,32B AB BC π===.点,M N 分别在边AB 和AC 上,将AMN V 沿MN 翻折,使AMN V 变为A MN '△,且顶点'A 落在边BC 上,设AMN θ∠=(1)用θ表示线段AM 的长度,并写出θ的取值范围; (2)求线段CN 长度的最大值以及此时A MN '△的面积,26.数列{}n a 中,11a = ,当2n ≥时,其前n 项和n S 满足21()2n n n S a S =⋅-.(1)求n S 的表达式; (2)设n b =21nS n +,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值; 选项B 错误,化简可得22222y x x ⎫=++,由基本不等式可得取等号的条件为2222x x +=+,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).2.C解析:C 【解析】试题分析:由余弦定理得229223cos5,54b b π=+-⋅⋅⋅==.由正弦定理得35sin sin4BAC π=∠310sin BAC ∠=. 考点:解三角形.3.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.4.D解析:D 【解析】 【分析】直接利用余弦定理求出A,C两地的距离即可.【详解】因为A,B两地的距离为10km,B,C两地的距离为20km,现测得∠ABC=120°,则A,C两地的距离为:AC2=AB2+CB2﹣2AB•BC cos∠ABC=102+202﹣21 10202⎛⎫⨯⨯⨯-=⎪⎝⎭700.所以AC=107km.故选D.【点睛】本题考查余弦定理的实际应用,考查计算能力.5.A解析:A【解析】【分析】【详解】设公差为d则解得,故选A.6.D解析:D【解析】由()1,2x∈时,220x mx++≥恒成立得2m xx⎛⎫≥-+⎪⎝⎭对任意()1,2x∈恒成立,即max2,m xx⎡⎤⎛⎫≥-+⎪⎢⎥⎝⎭⎣⎦Q当2x时,2xx⎛⎫-+⎪⎝⎭取得最大值22,22m-∴≥-,m的取值范围是)22,⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).7.D解析:D【解析】【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++=L ,可得31212log 12a a a =L ,进而可得()6121212673a a a a a ==L ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.8.B解析:B 【解析】试题分析: 如下图:由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:56sin 45sin 30AB =o o, 103AB ∴=那么在Rt ADB ∆中,60ABD o ∠=,3sin 6010315AD AB ∴===o , 即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为310(米 /秒). 故选B .考点:解三角形在实际问题中的应用.9.C解析:C 【解析】试题分析:由21,,n n n S S S ++成等差数列可得,212n n n n S S S S +++-=-,即122n n n a a a ++++=-,也就是2112n n a a ++=-,所以等比数列{}n a 的公比12q =-,从而2231111()24a a q ==⨯-=,故选C.考点:1.等差数列的定义;2.等比数列的通项公式及其前n 项和.10.A解析:A 【解析】 【分析】 【详解】试题分析:在数列{}n a 中,11ln 1n n a a n +⎛⎫-=+⎪⎝⎭112211()()()n n n n n a a a a a a a a ---∴=-+-+⋅⋅⋅⋅⋅⋅+-+12lnln ln 2121n n n n -=++⋅⋅⋅⋅⋅⋅++-- 12ln()2121n n n n -=⋅⋅⋅⋅⋅⋅⋅⋅+-- ln 2n =+ 故选A. 11.B 解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a ⎧+>⎨+>⎩,由于0a >,解得a <<C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<.12.A 解析:A 【解析】 【分析】【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.【解析】【分析】对于当n=1代入得-4依次得发现规律利用求出【详解】由当n=1代入得-4依次得发现规律利用得b=-求出故答案为【点睛】本题考查的是在数列中给了递推公式不好求通项公式时可以列举几项再发 解析:20462047-【解析】 【分析】 对于()()11132nn n n a a -+-+=⋅,当n=1,代入得2a =-4,依次得345a =10a =-22a =46...,,发现规律, 利用()()112121n n n n a b ++=--,求出10S .【详解】 由()()11132nn n n a a -+-+=⋅,当n=1,代入得2a =-4,依次得2345634567a =32-2a =-32+2a =32-2a =-32+2a =32-2...⨯⨯⨯⨯⨯,,,,发现规律, 利用()()112121n n nn a b ++=--,得b 1=-43,234510224694b =b =-b =b =-...3771515313163⨯⨯⨯⨯,,, ,求出1020462047S =-.故答案为20462047- 【点睛】本题考查的是在数列中,给了递推公式不好求通项公式时,可以列举几项再发现规律,求出题中要求的前10项和,属于中档题.14.【解析】分析:根据等差数列中下标和的性质和前n 项和公式求解详解:∵等差数列中∴∴设等差数列的公差为则点睛:等差数列的项的下标和的性质即若则这个性质经常和前n 项和公式结合在一起应用利用整体代换的方法可解析:613. 【解析】分析:根据等差数列中下标和的性质和前n 项和公式求解. 详解:∵等差数列{}n a 中136S =, ∴()11371313132622a a a S +⨯===, ∴7613a =. 设等差数列{}n a 的公差为d ,则()9109109976322213a a a a a a d a -=-+=-==. 点睛:等差数列的项的下标和的性质,即若()*,,,,m n p q m n p q Z+=+∈,则m n p q a a a a +=+,这个性质经常和前n 项和公式()12n n n a a S +=结合在一起应用,利用整体代换的方法可使得运算简单.15.【解析】【分析】由题意可知此数列为将代入根据数列特点将通项公式化简利用裂项相消的求和方法即可求出前n 项和【详解】由题意可知此数列分母为以1为首项以1为公差的等差数列的前n 项和由公式可得:所以数列通项 解析:21nn + 【解析】 【分析】由题意可知此数列为1n S ⎧⎫⎨⎬⎩⎭,将n S 代入,根据数列特点,将通项公式化简,利用裂项相消的求和方法即可求出前n 项和. 【详解】由题意可知此数列分母为以1为首项,以1为公差的等差数列的前n 项和, 由公式可得:()12n n n S +=,所以数列通项:()1211211nS n n n n ⎛⎫==- ⎪++⎝⎭,求和得:122111nn n ⎛⎫-=⎪++⎝⎭. 【点睛】本题考查数列通项公式与数列求和,当通项公式为分式且分母为之差为常数时,可利用裂项相消的方法求和,裂项时注意式子的恒等,有时要乘上系数.16.18【解析】观察下标发现4710成等差数列所以同理解析:18【解析】471017a a a ++=,观察下标发现4,7,10成等差数列,所以74710317a a a a =++=,7173a ∴=同理94561213141177a a a a a a a =++++++=L ,97a ∴=423d ∴=,23d =91376k a a -=-=2693÷=9918k ∴=+=17.【解析】【分析】先利用累加法求出an =33+n2﹣n 所以设f (n )由此能导出n =5或6时f (n )有最小值借此能得到的最小值【详解】解:∵an+1﹣an =2n ∴当n≥2时an =(an ﹣an ﹣1)+(a 解析:212【解析】 【分析】先利用累加法求出a n =33+n 2﹣n ,所以331n a n n n =+-,设f (n )331n n=+-,由此能导出n =5或6时f (n )有最小值.借此能得到na n的最小值. 【详解】解:∵a n +1﹣a n =2n ,∴当n ≥2时,a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1=2[1+2+…+(n ﹣1)]+33=n 2﹣n +33 且对n =1也适合,所以a n =n 2﹣n +33. 从而331n a n n n=+- 设f (n )331n n =+-,令f ′(n )23310n-=+>,则f (n )在)+∞上是单调递增,在(0上是递减的,因为n ∈N +,所以当n =5或6时f (n )有最小值.又因为55355a =,66321662a ==, 所以n a n 的最小值为62162a =故答案为 212【点睛】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.18.【解析】【分析】根据等差数列的前项和转化为关于和的数量关系来求解【详解】等差数列的前项和为则有解得故答案为【点睛】本题考查了等差数列前项和的公式运用在解答此类题目时可以将其转换为关于和的数量关系来求解析:【解析】 【分析】根据等差数列的前n 项和转化为关于1a 和d 的数量关系来求解 【详解】Q 等差数列{}n a 的前n 项和为n S ,39S =,636S =,则有()()31613313926616362S a d S a d ⎧⨯-=+=⎪⎪⎨⨯-⎪=+=⎪⎩,解得112a d =⎧⎨=⎩78911116783213121245a a a a d a d a d a d ∴++=+++++=+=⨯+⨯=故答案为45 【点睛】本题考查了等差数列前n 项和的公式运用,在解答此类题目时可以将其转换为关于1a 和d 的数量关系来求解,也可以用等差数列和的性质来求解,较为基础。
高三数学一轮复习易错题3基本初等函数
易错点7.公式运用不熟练没有得到最终解
【例7】已知 求
【错解】∵ ∴
∴
错因:因对性质不熟而导致题目没解完.
【正解】∵ ∴
∴
易错点8.关于方程根考虑不全面
【例8】已知 有且只有一根在区间(0,1)内,求 的取值范围.
【错解】设 ∵ 有且只有一根在区间(0,1)内
∴ 得 <-2
所以 ,解得 ,此时 ,
综上 ,即 的取值范围是 ,
故选:D.
10.函数 在 的图像大致为()
A. B.
C. D.
【答案】D
【解析】因为 ,所以 为奇函数,关于原点对称,故排除 ,又因为 , , , ,故排除 、 ,
故选:D.
11.已知函数 ,若 ,则实数 的取值范围是( )
A. B. C. D.
【答案】C
【正解】方法一:∵
= = =- ,∴ 是奇函数
方法二:∵
=
∴ 是奇函数
易错点5.不理解定义域和单调性的联系
【例5】已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,求x的取值范围.
【错解】∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),
综上, .
故选:C
8.函数 的零点个数为( )
A.1B.2C.3D.4
【答案】B
【解析】函数f(x)=ex|lnx|﹣2的零点可以转化为:|lnx| 的零点;
在坐标系中画出两个函数 的图象,根据图象可得有两个交点;
故原函数有两个零点.
故选:B.
9.已知 ,函数 ,若关于 的不等式 在 上恒成立,则 的取值范围为()
【易错题】高三数学下期中试题含答案(3)
【易错题】高三数学下期中试题含答案(3)一、选择题1.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1762.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为n T ,则2017T =( ) A .2016B .2017C .2018D .20193.数列{}n a 为等比数列,若11a =,748a a =,数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则5(S = )A .3116B .158C .7D .314.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .565.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =6.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .157.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8B .10C .12D .168.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .169.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .71010.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .611.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin 23sin 0b A a B +=,3b c =,则ca的值为( ) A .1B .33C 5D .7712.已知正项数列{}n a *12(1)()2n n n a a a n N +=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.14.已知,x y 满足约束条件420y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值为__________.15.设0a >,若对于任意满足8m n +=的正数m ,n ,都有1141a m n ++≤,则a 的取值范围是______. 16.已知是数列的前项和,若,则_____.17.已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=L ,且13k a =,则k =_________.18.已知数列{}n a 中,11a =,且1113()n nn N a a *+=+∈,则10a =__________.(用数字作答)19.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____. 20.如图所示,位于A 处的信息中心获悉:在其正东方向40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=______________.三、解答题21.等差数列{}n a 中,71994,2a a a ==. (1)求{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S . 22.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。
高考状元数学错题本:第1章集合易错题含解析
我的高考数学错题本第1章 集合易错题易错点1 遗忘空集致误由于空集是任何非空集合的真子集,在解题中如果思维不够缜密就有可能忽视了B =∅这种情况,导致解题结果错误.【例 1】 设2{|230}A x x x =--=,{|10}B x ax =-=,B A ⊆,求的值.【错解】 {3,1}A =-,1{}B a =,从而13a =或1-. 【错因】忽略了集合B =∅的情形【正解 】当B ≠∅时,得13a =或1-;B =∅时,得0a =.所以13a =或1a =-或0a =. 【纠错训练】已知{|23}A x a x a =≤≤+,{|15}B x x x =<->或,若=AB ∅,求a 的取值范围. 【解析】由=A B ∅,(1)若A =∅,有23a a >+,所以3a >.(2)若A ≠∅,则有213523a a a a ≥-⎧⎪+≤⎨⎪≤+⎩,解得122a -≤≤. 综上所述,的取值范围是1{|23}2x a a -≤≤>或. 易错点2 忽视集合元素的三要素致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.【例2】已知集合{1,4,}A a =,2{1,,}B a b =,若A B =,求实数,的值.【错解】由题意得,24a a b ⎧=⎨=⎩,解得22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩. 【错因】本题误认为两个集合相等则对应项相同,这显然违背了集合的无序性.【正解】∵A B =,由集合元素的无序性,∴有以下两种情形:(1)24a a b ⎧=⎨=⎩,解得22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩; (2)24a a b ⎧=⎨=⎩,解得04a b =⎧⎨=⎩或12a b =⎧⎨=-⎩,经检验12a b =⎧⎨=-⎩与元素互异性矛盾,舍去.∴22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩或04a b =⎧⎨=⎩.【例3】 已知集合{1,4,}A a =,集合2{1,}B a =,若B A ⊆,求的值.【错解】24a =或2a a =,解得2a =±或0a =或1a =.【错因】没有将计算结果代回到集合中检验,忽略了集合中元素的互异性,导致出现了增解.【正解】24a =或2a a =,解得2a =±或0a =或1a =,经检验当1a =时,{1,4,1}A =,与集合中元素的互异性相矛盾,舍去,所以2a =±或0a =.【纠错训练】已知集合{1,2}A =,{|30}B x ax =-=,若B A ⊆,则实数的值是( )A .30,,32B .0,3C . 3,32D .【解析】若B A ⊆,则集合B 是集合A 的子集,当B =∅,显然0a =;当B ≠∅时,解得3B a ⎧⎫=⎨⎬⎩⎭,则有31a=或32a =,解得3a =或32a =,即的值为30,,32,选A .易错点3 弄错集合的代表元【例4】已知{}| 1 A y y x ==+,{}22(,)|1B x y x y =+=,则集合A B 中元素的个数为________.【错解】 1个或无穷多个【错因】没有弄清集合B 的代表元的含义【正解】集合A 是一个数集,集合B 是一个点集,二者的交集为空集,所包含的元素个数为0.【例5】已知函数()y f x =,[,]x a b ∈,那么集合{(,)|(),[,]}{(,)|2}x y y f x x a b x y x =∈=中元素的个数为( )A .1 A .0 C .0或1 D .1或2【错解】不知题意,无从下手,蒙出答案D【错因】没有弄清两个集合打代表元,事实上,{|()}x y f x =、{|()}y y f x =、{(,)|()}x y y f x =分别表示函数()y f x =的定义域、值域、函数图象上的点的坐标组成的集合.【正解】本题中集合的含义是两个图象交点的个数,从函数值的唯一性可知,两个集合的交中之多有一个交点,故选C .【纠错训练】1.已知集合2{|1}A y y x ==+,{|2}B x y =,则A B =_______________. 【解析】{|1}A y y =≥,{|0}B x x =≥,所以{|1}A B x x =≥.【纠错训练】2.设集合{(,)|25}A x y x y =+=,{(,)|23}B x y x y =-=-,则A B =______.【解析】由2523x y x y +=⎧⎨-=-⎩,解得12x y =⎧⎨=⎩,从而{(1,2)}A B =.易错点4 忽略了题目中隐含的限制条件【例6】【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【错解】{}{}20,1x x x M ===,{}{}lg 01x x x x N =≤=≤,所以(,1]M N =-∞,故选D .【错因】在解lg 0x ≤时,忽略了0x >这个隐含的限制条件. 【正解】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =,故选A .【纠错训练】【2015高考重庆,理4】“1x >“是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .易错点5 集合的交并运算弄反【例7】【2015高考山东,理1】已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B =() A .(1,3) B .(1,4) C .(2,3) D .(2,4) 【错解】因为{}13A x x =<<,{}24B x x =<<,所以{}14A B x x =<<,故选B .【错因】将集合的“交运算”误认为是“并运算”.【正解】{}{}{}132423A B x x x x x x =<<<<=<<,故选C .【纠错训练】【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<【解析】{|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<,故选A .【错题巩固】1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞A 【解析】2{|}{0,1}M x x x ===,{|lg 0}{|01}N x x x x =≤=<≤,所以M N =[0,1].故选A .2.集合A = { x | x < a },B = { x | 1 < x < 2},若A B =R R ð,则实数a 的取值范围是( )A .a ≤1B .a < 1C .a ≥2D .a > 2 C 【解析】{|1,2}B x x x =≤≥R 或ð,因为A B =R R ð,所以a ≥2,选C.3.已知A ={x | -2≤x ≤5}, B =a +1,2a -1].若B A ⊆,则实数的取值范围是______.【解析】易知B ≠∅,所以应满足21521211a a a a -≤+⎧⎪≥-⎨⎪->+⎩,解得2<a ≤3.故实数的取值范围是(2,3].4.已知A ={x | -2≤x ≤5},B ={x | a +1≤x ≤2a -1}.若B A ⊆,则实数的取值范围是______.3a ≤【解析】①当B =∅时,即121a a +>-,有a <2;②当B ≠∅,则21521211a a a a -≤+⎧⎪≥-⎨⎪-≥+⎩,解得2≤a ≤3.综合①②得a 的取值范围为a ≤3.5.已知集合A =14(,]a a-,集合B =1(,2]2-.若B A ⊆,则实数的取值范围是______. 02a <≤【解析】1411242a a aa ⎧-<⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得02a <≤,所以实数a 的取值范围为02a <≤. 6.知集合2[2,2],{|430}A a a B x x x =-+=-+≤,AB ,则实数的取值范围是01a <<【解析】122322aa a a ≤-⎧⎪+≤⎨⎪-<+⎩,得01a <≤,当1=a ,[1,3],[1,3]A B ==不符合,所以01a <<。
2022-2023学年天津市南开中学高三(上)期中数学试卷+答案解析(附后)
2022-2023学年天津市南开中学高三(上)期中数学试卷1. 设集合,,,则( )A. B. C. D.2.已知,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 已知一组数据的频率分布直方图如图所示,则数据的中位数估计值为( )A. 64B. 65C.D. 664. 函数图像大致为( )A. B.C. D.5. 三个数,,之间的大小关系是( )A. B. C. D.6. 已知曲线在点处的切线的倾斜角为,则( )A. B. C. D. 17. 将函数的图象先向右平移个单位长度,再把所得函数图象上每一个点的横坐标变为原来的2倍,纵坐标不变,得到函数的图象,则的值为( )A. B. C. D.8.已知是等差数列的前n项和,公差,,若,,成等比数列,则的最小值为( )A. B. 2 C. D.9. 设函数若方程有四个不同的实根,,,,则的取值范围是;若方程有四个不同的实根,,,,则的取值范围是;若方程有四个不同的实根,则a的取值范围是;方程的不同实根的个数只能是1,2,3,四个结论中,正确的结论个数为( )A. 1B. 2C. 3D. 410. 已知复数,则______.11. 展开式中的常数项是______用数字作答12.已知各项都为正的等差数列中,若,,,成等比数列,则______.13. 甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球球除颜色外,大小质地均相同先从甲箱中随机取出一球放入乙箱,分别以,和表示由甲箱中取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B表示由乙箱中取出的球是红球的事件,则______.14. 若正数a,b满足,则的最小值为______.15. 如图,在梯形ABCD中,且,E为BC的中点,AC与DE交于若,则的余弦值为______.16. 在中,角A,B,C的对边分别为a,b,c,且求B;如图,若D为外一点,且,,,,求并求17. 如图,在四棱锥中,底面ABCD,,,,,点E为棱PC的中点.证明:;求直线BE与平面PBD所成角的正弦值;若F为棱PC上一点,满足,求平面FAB与平面ABP夹角的余弦值.18. 已知等差数列为递增数列,为数列的前n项和,,求的通项公式;若数列满足,求的前n项和19.记是公差不为0的等差数列的前n项和,已知,,数列满足,且求的通项公式,并证明数列是等比数列;若数列满足,求的前n项和的最大值、最小值.求证:对于任意正整数n,20. 已知函数若,求的单调区间和极值;若、为的两个不同的极值点,且,求a的取值范围;对于任意实数,不等式恒成立,求b的取值范围.答案和解析1.【答案】B【解析】解:集合,,,,故选:先求出,由此能求出本题主要考查了交集、补集的求法,解题时要认真审题,注意交集、补集定义的合理运用,属于基础题.2.【答案】B【解析】解:解不等式可得:,因为,所以“”是“”的必要不充分条件,故选:先解出不等式的解集,然后根据集合的包含关系以及充分,必要条件的定义即可判断求解.本题考查了充分,必要条件的定义,属于基础题.3.【答案】B【解析】解:因为,所以中位数位于之间,设中位数为x,则,解得,即中位数为故选:首先判断中位数位于之间,设中位数为x,依题意可得,,解得x即可.本题主要考查频率分布直方图,属于基础题.4.【答案】B【解析】解:,则,即是奇函数,排除A,当,,排除D,当时,,排除C,故选:先化简,判断函数的奇偶性和对称性,利用极限思想进行判断即可.本题主要考查函数图象的识别和判断,利用函数的奇偶性和对称性,利用极限数学进行判断是解决本题的关键,是基础题.5.【答案】C【解析】解:,,,,,,,故选:利用对数函数和指数函数的性质求解.本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意对数函数和指数函数的性质的合理运用.6.【答案】C【解析】解:曲线,,当时,,即,,故选:先求出导函数,进而求得倾斜角的正切值,再结合二倍角公式即可求得结论.本题主要考查导数知识的应用,以及二倍角公式的应用,考查计算能力,属于基础题.7.【答案】C【解析】解:函数的图象先向右平移个单位长度,得,再把所得函数图象上每一个点的横坐标变为原来的2倍,纵坐标不变,得函数,故故选:先根据图象的变换规律求出的解析式,然后计算即可.本题考查利用三角函数图象的变换规律求解析式,以及正弦函数值的计算,属于基础题.8.【答案】A【解析】解:由,,成等比数列,得,即,解得,,则令,则且,由函数在上为减函数,在上为增函数,当时,,则的最小值为故选:由已知列式求得公差,得到等差数列的通项公式与前n项和,代入,再由数列的函数特性求最小值.本题考查等差数列的通项公式与前n项和,考查数列的函数特性,是中档题.9.【答案】B【解析】解:对于:作出的图像如下:若方程有四个不同的实根,,,,则,不妨设,则,是方程的两个不等的实数根,,是方程的两个不等的实数根,所以,,所以,所以,,所以的取值范围是,故正确;对于:由上可知,,,且,所以,所以,,所以,所以,故错误;对于:方程的实数根的个数,即为函数与的交点个数,因为恒过坐标原点,当时,有3个交点,当时最多2个交点,所以,当与相切时,设切点为,即,所以,解得,所以,所以当与相切时,即时,此时有4个交点,若有4个实数根,即有4个交点,当时由图可知只有3个交点,当时,令,,则,则当时,,即单调递增,当时,,即单调递减,所以当时,函数取得极大值即最大值,,又及对数函数与一次函数的增长趋势可知,当x无限大时,即在和内各有一个零点,即有5个实数根,故错误;对于:,所以,所以或,由图可知,当时,的交点个数为2,当,0时,的交点个数为3,当时,的交点个数为4,当时,的交点个数为1,所以若时,则,交点的个数为个,若时,则,交点的个数为3个,若,则,交点有个,若且时,则且,交点有个,若,交点有1个,综上所述,交点可能有1,2,3,6个,即方程不同实数根1,2,3,6,故正确;故选:作出的图像,利用函数与方程之间的关系,分析问题,即可得出答案.本题考查函数零点问题,属于中档题.10.【答案】【解析】解:复数,故答案为:利用复数的乘除法运用,即可得出结论.本题考查复数的乘除法运用,考查学生的计算能力,比较基础.11.【答案】【解析】解:由展开式的通项公式可得:当时,即时,该项为常数项,即展开式中的常数项是,故答案为:由展开式的通项公式可得:当时,该项为常数项,然后求解即可.本题考查了二项式定理的应用,重点考查了二项式展开式的通项公式,属基础题.12.【答案】19【解析】解:在各项都为正的等差数列中,设等差数列的公差为d,且,,,,成等比数列,,即,将代入整理得,解得或不合题意,舍去,,,故答案为:由题意设等差数列的公差为d,可得,整理得,求解即可得出答案.本题考查等差数列和等比数列的综合,考查转化思想和方程思想,考查逻辑推理能力和运算能力,属于中档题.13.【答案】【解析】解:根据题意,事件发生且B事件发生的概率为,事件发生且B事件发生的概率为,事件发生且B事件发生的概率为,故故答案为:分析事件B所有的可能性,结合已知条件,计算即可.本题主要考查条件概率公式,属于基础题.14.【答案】16【解析】解:正数a,b满足,则有,则有,,即有,则有,当且仅当即有,又,即有,,取得最小值,且为故答案为:由条件可得,,且,代入所求式子,再由基本不等式,即可得到最小值,注意等号成立的条件.本题考查基本不等式的运用:求最值,考查化简变形的能力,属于中档题和易错题.15.【答案】【解析】解设,,则,,,,又,,即,,,,,则,即,,,,,故答案为:由向量共线,找出,与,的数量关系,再由三角形法则,把,用,表示,由已知,,利用向量数量积的定义,求出夹角余弦值.本题考查向量的数量积的应用,考查向量的表示以及几何计算,考查计算能力.属于中档题.16.【答案】解:在中,,,可得,,,,为外一点,且,,,,连接BD,,,,所以,在中,,【解析】利用两角和与差的三角函数,结合正弦定理,三角形内角和定理化简已知等式,转化可求B的值.由,可求并求本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,余弦定理,三角函数恒等变换的应用以及正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.17.【答案】依题意,以点A为原点建立空间直角坐标系如图,可得,,,,由点E为棱PC的中点,得证明:向量,,故解:向量,设为平面PBD的法向量,则,即,不妨令,可得为平面PBD的一个法向量.于是有,直线BE与平面PBD所成角的正弦值为解:,由点F在棱PC上,故,由,得,解得,即设为平面ABF的法向量,则,即,不妨令,可得为平面ABF的一个法向量.取平面PAB的法向量,则易知二面角是锐角,其余弦值为【解析】可以建立空间直角坐标系,利用向量数量积来证明;向量法:先求平面PBD的法向量,然后利用公式求直线BE与平面PBD所成角的正弦值;向量法:先求平面ABF和平面PBA的法向量,再利用公式来求二面角的余弦值.本题主要考查异面直线垂直的证明,线面角的相关计算,面面角的计算,空间向量及其应用等知识,属于中等题.18.【答案】解:设等差数列的公差为,由,得,又,得,解得或,当时,,舍去,当时,,,所以,所以;,所以,则,两式相减得,所以【解析】设等差数列的公差为,根据题意可得,则,进一步根据即可求出与的值,从而利用可求出首项与公差d,最后利用进行求解即可.易知,从而利用错位相减求和法即可求出本题考查等差数列的性质、通项公式,错位相减求和法,考查学生逻辑推理与运算求解的能力,属于中档题.19.【答案】证明:设数列的公差为d,因为,,所以,,解得,所以的通项公式为,由,两边同时除以得,,整理得,故数列是公比为的等比数列.解:,设数列的前n项和为,当n为偶数时,……,随着n增大,也增大,所以的最小值为;当n为奇数时,…,随着n增大,减小,所以的最大值为,综上,的前n项和的最大值为,最小值为证明:因为,所以,由可得,数列是首项为,公比为的等比数列,所以,即,所以,所以……,得证.【解析】根据等差数列的通项公式与前n项和公式可求得数列的公差d,从而得的通项公式;在两边同时除以,再移项整理,利用等比数列的定义,得证;裂项可得,再分n为偶数和n为奇数两种情况,分别求得的前n项和,并结合数列的单调性,得解;易知数列是首项为,公比为的等比数列,从而求得的通项公式,再结合放缩法,得解.本题主要考查数列的求和,熟练掌握等差数列的通项公式与前n项和公式,裂项求和法,放缩法,数列的单调性是解题的关键,考查转化思想,逻辑推理能力和运算能力,属于难题.20.【答案】解:由已知得,,令得或1,或,,故的单调减区间为,单调增区间为,,的极小值为,极大值为;,若、为的两个不同的极值点,则,是,即的两不等实根,即,,且,而,结合,上式可化为,即,因为,故,所以,得即为所求;由恒成立得:恒成立,,令,,,当时,,令得,故时,,时,,故在上单调递增,在上单调递减,故,故要使原式恒成立,只需即可,故所求b的范围是【解析】按照求导数,令导数为0,并判断导数的零点两侧的符号,确定单调区间和极值点;先将原式化简为①,结合、为的两个不同的极值点,即的两个互异实根,结合韦达定理代入①式,解关于a的不等式即可;将原不等式化简,分离b得到在上恒成立,将右边看成一个关于a的新函数,求其最大值即可.本题考查利用导数研究函数的单调性、极值以及最值,从而解决不等式恒成立问题的基本思路,同时考查了学生的逻辑推理、数学运算等核心素养,属于较难的题目.。
【易错题】高三数学上期中模拟试题附答案(4)
【易错题】高三数学上期中模拟试题附答案(4)一、选择题1.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018 B .2018-C .4036-D .40362)63a -≤≤的最大值为( )A .9B .92C .3D .23.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .14.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .165.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .166.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40377.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( )A .2BC .2D .48.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( )A .()3,-+∞B .()-+∞C .[)3,-+∞D .)⎡-+∞⎣9.已知数列{an}的通项公式为an =2()3nn 则数列{an}中的最大项为( ) A .89B .23C .6481D .12524310.若a ,b ,c ,d∈R,则下列说法正确的是( )A .若a >b ,c >d ,则ac >bdB .若a >b ,c >d ,则a+c >b+dC .若a >b >0,c >d >0,则cd a b> D .若a >b ,c >d ,则a ﹣c >b ﹣d11.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6612.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-1二、填空题13.已知等差数列{}n a 的前n 项和为n S ,且136S =,则91032a a -=__________. 14.如图,无人机在离地面高200m 的A 处,观测到山顶M 处的仰角为15°、山脚C 处的俯角为45°,已知∠MCN=60°,则山的高度MN 为_________m.15.若数列{}n a 通项公式是12,123,3n n n n a n --⎧≤≤=⎨≥⎩,前n 项和为n S ,则lim n n S →∞=______. 16.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩ 若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________17.某公司租赁甲、乙两种设备生产A,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.18.已知实数,x y 满足240{220330x y x y x y -+≥+-≥--≤,,,则22x y +的取值范围是 .19.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠∠==︒,120ACB ∠=︒,则A ,B 两点的距离为________.20.已知数列{}n a 的通项11n n a n+=+,则其前15项的和等于_______.三、解答题21.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且sin 31cos a Cc A=-.(1)求角A 的大小;(2)若10b c +=,ABC ∆的面积43ABC S ∆=,求a 的值.22.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,b c 的值; (2)若角为锐角,求m 的取值范围.23.已知数列{}n a 是公差为2-的等差数列,若1342,,a a a +成等比数列. (1)求数列{}n a 的通项公式;(2)令12n n n b a -=-,数列{}n b 的前n 项和为n S ,求满足0n S ≥成立的n 的最小值.24.设数列{}n a 满足12a = ,12nn n a a +-= ;数列{}n b 的前n 项和为n S ,且2132n S n n =-()(1)求数列{}n a 和{}n b 的通项公式;(2)若n n n c a b = ,求数列{}n c 的前n 项和n T . 25.设a ,b ,c 均为正数,且a+b+c=1,证明: (Ⅰ)ab+bc+ac ≤13; (Ⅱ)2221a b c b c a++≥.26.已知数列为等差数列,且12a =,12312a a a ++=. (1) 求数列的通项公式; (2) 令,求证:数列是等比数列.(3)令11n n n c a a +=,求数列{}n c 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.2.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:36922a a -++≤= 当且仅当36a a -=+,即32a =-时,等号成立, 故选B. 【点睛】本题主要考查了均值不等式,属于中档题.3.A解析:A【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=, 2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,22(2)5592x x -++≥=-Q , 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+,32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.4.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1, ∴()111199911016y x x y x y x y x y ⎛⎫+=+⋅+=+++≥+= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D.本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.5.A解析:A 【解析】 【分析】利用正弦定理角化边可构造方程2cos cos bC C a=,由cos 0C ≠可得2a b =;利用ABC ACD BCD S S S ∆∆∆=+可构造方程求得3cos 24C =,利用二倍角公式求得结果.【详解】由正弦定理得:22224cos a b c b C +-=则22224cos 2cos cos 22a b c b C bC C ab ab a+-===ABC ∆Q 为斜三角形 cos 0C ∴≠ 2a b ∴=ABC ACD BCD S S S ∆∆∆=+Q 1112sin sin 2sin 22222C Cb b C b b b b ∴⋅=⋅+⋅即:2sin 4sin cos 3sin 222C C CC ==()0,C π∈Q 0,22C π⎛⎫∴∈ ⎪⎝⎭ sin 02C ∴≠ 3cos 24C ∴= 291cos 2cos 1212168C C ∴=-=⨯-= 本题正确选项:A 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用、二倍角公式求三角函数值等知识;关键是能够通过面积桥的方式构造方程解出半角的三角函数值.6.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.7.A解析:A 【解析】 【分析】由正弦定理,化简求得sin 0B B =,解得3B π=,再由余弦定理,求得()224b a c =+,即可求解,得到答案.【详解】在ABC ∆中,因为sin cos 0b A B -=,且2b ac =,由正弦定理得sin sin cos 0B A A B =, 因为(0,)A π∈,则sin 0A >,所以sin 0B B =,即tan B =3B π=,由余弦定理得222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-, 即()224b a c =+,解得2a cb+=,故选A . 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.8.D解析:D 【解析】由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫≥-+⎪⎝⎭对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦Q当x 时,2x x ⎛⎫-+ ⎪⎝⎭取得最大值m -∴≥-,m 的取值范围是)22,⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).9.A解析:A 【解析】解法一 a n +1-a n =(n +1)n +1-nn=·n,当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.解法二 ==,令>1,解得n <2;令=1,解得n =2;令<1,解得n >2.又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.10.B解析:B 【解析】 【分析】利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】A 项,虽然41,12>->-,但是42->-不成立,所以不正确;B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;C 项,虽然320,210>>>>,但是3221>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.11.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.12.D解析:D 【解析】 【分析】利用等差数列的通项公式,以及等比中项公式和前n 项和公式,准确运算,即可求解. 【详解】由题意,可得等差数列{}n a 的通项公式为11(1)(2)2(1)n a a n a n =+-⨯-=--, 所以112141,22,412S a S a S a ==-=-,因为1S ,2S ,4S 成等比数列,可得2111(22)(412)a a a -=-,解得11a =-.故选:D . 【点睛】本题主要考查了等差数列通项公式,以及等比中项公式与求和公式的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题13.【解析】分析:根据等差数列中下标和的性质和前n 项和公式求解详解:∵等差数列中∴∴设等差数列的公差为则点睛:等差数列的项的下标和的性质即若则这个性质经常和前n 项和公式结合在一起应用利用整体代换的方法可解析:613. 【解析】分析:根据等差数列中下标和的性质和前n 项和公式求解. 详解:∵等差数列{}n a 中136S =, ∴()11371313132622a a a S +⨯===, ∴7613a =.设等差数列{}n a 的公差为d ,则()9109109976322213a a a a a a d a -=-+=-==. 点睛:等差数列的项的下标和的性质,即若()*,,,,m n p q m n p q Z+=+∈,则m n p q a a a a +=+,这个性质经常和前n 项和公式()12n n n a a S +=结合在一起应用,利用整体代换的方法可使得运算简单.14.300【解析】试题分析:由条件所以所以这样在中在中解得中故填:300考点:解斜三角形【思路点睛】考察了解三角形的实际问题属于基础题型首先要弄清楚两个概念仰角和俯角都指视线与水平线的夹角将问题所涉及的解析:300 【解析】试题分析:由条件,,所以,,,所以,,这样在中,,在中,,解得,中,,故填:300.考点:解斜三角形【思路点睛】考察了解三角形的实际问题,属于基础题型,首先要弄清楚两个概念,仰角和俯角,都指视线与水平线的夹角,将问题所涉及的边和角在不同的三角形内转化,最后用正弦定理解决高度.15.【解析】【分析】利用无穷等比数列的求和公式即可得出结论【详解】数列通项公式是前项和为当时数列是等比数列故答案为:【点睛】本题主要考查的是数列极限求出数列的和是关键考查等比数列前项和公式的应用是基础题解析:5518. 【解析】 【分析】利用无穷等比数列的求和公式,即可得出结论. 【详解】Q 数列{}n a 通项公式是12,123,3n n n n a n --⎧≤≤=⎨≥⎩,前n 项和为n S ,当3n ≥时,数列{}n a 是等比数列,331112731115531123118183182313n n n n S --⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭=++=+-=- ⎪ ⎪⎝⎭⎝⎭-,5531lim 5518218l m 3i n n n n S →∞→∞⎡⎤⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=. 故答案为:5518. 【点睛】本题主要考查的是数列极限,求出数列的和是关键,考查等比数列前n 项和公式的应用,是基础题.16.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13-【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12mx -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.17.2300【解析】【分析】【详解】设甲种设备需要生产天乙种设备需要生产天该公司所需租赁费为元则甲乙两种设备生产AB 两类产品的情况为下表所示:产品设备 A 类产品(件)(≥50) B 类产品(件)(≥140解析:2300 【解析】 【分析】 【详解】设甲种设备需要生产天, 乙种设备需要生产天, 该公司所需租赁费为元,则200300z x y =+,甲、乙两种设备生产A,B 两类产品的情况为下表所示:产品 设备A 类产品 (件)(≥50)B 类产品 (件)(≥140)租赁费(元)甲设备510200乙设备620300则满足的关系为5650{10201400,0x y x y x y +≥+≥≥≥即:105{2140,0x y x y x y +≥+≥≥≥, 作出不等式表示的平面区域,当200300z x y =+对应的直线过两直线610{5214x y x y +=+=的交点(4,5)时,目标函数200300z x y =+取得最低为2300元.18.【解析】【分析】【详解】画出不等式组表示的平面区域由图可知原点到直线距离的平方为的最小值为原点到直线与的交点距离的平方为的最大值为因此的取值范围为【考点】线性规划【名师点睛】线性规划问题首先明确可行 解析:4[,13]5【解析】 【分析】 【详解】画出不等式组表示的平面区域,由图可知原点到直线220x y +-=距离的平方为22x y +的最小值,为2455=,原点到直线24=0x y -+与33=0x y --的交点(2,3)距离的平方为22x y +的最大值为13,因此22xy +的取值范围为4[,13].5【考点】 线性规划 【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线(一般不涉及虚线),其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数最值或值域范围.19.【解析】【分析】△ACD 中求出AC △ABD 中求出BC △ABC 中利用余弦定理可得结果【详解】解:由已知△ACD 中∠ACD =15°∠ADC =150°∴∠DAC=15°由正弦定理得△BCD 中∠BDC =15 解析:805【解析】【分析】△ACD 中求出AC ,△ABD 中求出BC ,△ABC 中利用余弦定理可得结果. 【详解】解:由已知,△ACD 中,∠ACD =15°,∠ADC =150°,∴∠DAC=15°由正弦定理得80sin15040sin15AC ===oo,△BCD 中,∠BDC =15°,∠BCD =135°, ∴∠DBC=30°, 由正弦定理,CD BCsin CBD sin BDC=∠∠,所以BC 80sin15160154012CD sin BDC sin sin CBD⋅∠⨯︒===︒=∠;△ABC 中,由余弦定理,AB 2=AC 2+BC 2﹣2AC •BC •cos ∠ACB=((08116008160216002-+++⨯⨯⨯16001616004160020=⨯+⨯=⨯解得:AB =则两目标A ,B间的距离为.故答案为. 【点睛】本题主要考查了正弦、余弦定理在解三角形中的应用问题,也考查了数形结合思想和转化思想,是中档题.20.【解析】【分析】将通过分母有理化化简得出再利用裂项相消法求出前15项的和【详解】利用分母有理化得设数列的前项的和为所以前15项的和为:即:故答案为:3【点睛】本题考查利用裂项相消法求数列的前项的和还 解析:3【解析】 【分析】将n a =15项的和. 【详解】利用分母有理化得na ===设数列{}n a 的前n 项的和为n S ,所以前15项的和为:151215S a a a =+++L1=L1= 413=-= 即:153S =. 故答案为:3. 【点睛】本题考查利用裂项相消法求数列的前n 项的和,还运用分母有理化化简通项公式,属于基础题.三、解答题21.(1)3A π=;(2)【解析】 【分析】(1)把sin 1cos a C A =-中的边化为角的正弦的形式,再经过变形可得sin()32A π+=进而可求得3A π=.(2)由ABC S ∆=16bc =,再由余弦定理可求得a =.【详解】(1)由正弦定理及sin 1cos a C A =-得sin sin 1cos A CC A=-,∵sin 0C ≠,∴)sin 1cos A A =-,∴sin 2sin 3A A A π⎛⎫+=+= ⎪⎝⎭∴sin 32A π⎛⎫+= ⎪⎝⎭, 又0A π<<, ∴4333A πππ<+<, ∴233A p p +=,∴3A π=.(2)∵13sin 24ABC S bc A bc ∆==, ∴16bc =.由余弦定理得()()222222cos 233a b c bc b c bc bc b c bc π=+-=+--=+-,又10b c +=,∴221031652a =-⨯=,213a ∴=.【点睛】解三角形经常与三角变换结合在一起考查,解题时注意三角形三个内角的关系.另外,使用余弦定理解三角形时,注意公式的变形及整体思想的运用,如()2222b c b c bc +=+-等,可简化运算提高解题的速度.22.(1)2 12b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩; (2)62m <<. 【解析】试题分析: 本题考查正弦定理和余弦定理;(1)先利用正弦定理将角角关系转化为边边关系,再通过解方程组求解;(2)利用余弦定理进行求解. 试题解析:由题意得2,40b c ma a bc +=-=. (1)当52,4a m ==时,5,12b c bc +==, 解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩; (2)()222222cos 22b c bc a b c a A bc bc+--+-===()222222232a ma a m a --=-, ∵为锐角,∴()2cos 230,1A m =-∈,∴2322m <<,又由b c ma +=可得0m >,62m << 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.23.(1)92n a n =-;(2)5. 【解析】 【分析】(1)根据等差数列{}n a 的公差为-2,且1342,,a a a +成等比数列列出关于公差d 的方程,解方程可求得d 的值,从而可得数列{}n a 的通项公式;(2)由(1)可知1292n n b n -=-+,根据分组求和法,利用等差数列与等比数列的求和公式可得结果.【详解】(1)1342,,a a a +Q 成等比数列,()()()2111426a a a ∴-=+-, 解得:17a =,92n a n ∴=-. (2)由题可知()()0121222275392n n S n -=++++-++++-L L ,()212812n n n -=--- 2281n n n =+--, 显然当4n ≤时,0n S <,580S =>,又因为5n ≥时,n S 单调递增, 故满足0n S ≥成立的n 的最小值为5. 【点睛】本题主要考查等差数列的通项公式与求和公式以及等比数列的求和公式,利用“分组求和法”求数列前n 项和,属于中档题. 利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减.24.(1)2nn a =,32n b n =-;(2)()110352n n T n +=+-⋅【解析】 【分析】(1)分别利用累加法、数列的递推公式得到数列{}n a 和数列{}n b 的通项公式. (2)利用数列求和的错位相减即可得到数列{}n c 的前n 项和n T . 【详解】(1)1212a a -=Q , 2322a a -=,3432a a -= ,……,112n n n a a ---= ,以上1n - 个式子相加得:()11231121222222212n n nn a a ----=+++?==--2n n a ∴=当2n ≥ 时,1n n n b S S -=-=2132n n ()-213[112]n n ()()---- 32n =-当1n = 时,111b S == ,符合上式,32n b n \=-;(2)322n n n n c a b n ==-?Q () 123124272322n n T n =???+-?L () ① 23412124272322n n T n +=???+-?L () ② ①-②得23123222322n n n T n +-=++++--?L ()() ()14122312n --=+⨯-1322n n +--?()110532n n +=-+-?()110352n n T n +\=+-?()【点睛】已知1()n n a a f n +=+ 求数列的通项公式时,可采用累加法得到通项公式,通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘)的前n 项和采用错位相减法. 25.(Ⅰ)证明见解析;(II )证明见解析. 【解析】 【分析】 【详解】(Ⅰ)由222a b ab +≥,222c b bc +≥,222a c ac +≥得:222a b c ab bc ca ++≥++,由题设得,即2222221a b c ab bc ca +++++=, 所以3()1ab bc ca ++≤,即13ab bc ca ++≤. (Ⅱ)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,所以222()2()a b c a b c a b c b c a+++++≥++,即222a b c a b c b c a++≥++, 所以2221a b c b c a++≥.本题第(Ⅰ)(Ⅱ)两问,都可以由均值不等式,相加即得到.在应用均值不等式时,注意等号成立的条件:“一正二定三相等”.【考点定位】本小题主要考查不等式的证明,熟练基础知识是解答好本类题目的关键. 26.解: (1)∵数列为等差数列,设公差为, 由,得,,∴,.(2)∵,∴∴数列是首项为9,公比为9的等比数列 .(3)∵11n n n c a a +=,2n a n =, ∴1111()22(1)41n c n n n n ==-⋅++∴11111(1)()42423n S =-+-+…111()41n n +-+11(1)41n =-+ 【解析】试题分析:(1)∵数列为等差数列,设公差为, …………………… 1分由,得,,∴, …………………… 3分. …………………… 4分(2)∵, …………………… 5分 ∴, …………………… 6分∴数列是首项为9,公比为9的等比数列 . …………………… 8分(3)∵11n n n c a a +=,2n a n =, ∴1111()22(1)41n c n n n n ==-⋅++………………… 10分∴11111(1)()42423n S =-+-+…111()41n n +-+11(1)41n =-+……… 12分 考点:等差数列的性质;等比数列的性质和定义;数列前n 项和的求法.点评:裂项法是求前n 项和常用的方法之一.常见的裂项有:,,,,,。
【易错题】高三数学上期中试题含答案(3)
【易错题】高三数学上期中试题含答案(3)一、选择题1.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+2)63a -≤≤的最大值为( )A .9B .92C .3D .23.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( )A .12B .10C .D .4.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8B .10C .12D .165.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .136.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =,c =,30B =︒,则AB 边上的中线的长为( )A B .34C .32或2D .34或27.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( )A .()3,-+∞B .()-+∞C .[)3,-+∞D .)⎡-+∞⎣8.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞9.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92 C .143D .510.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9B .27C .54D .8111.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-12.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .14.已知120,0,2a b a b>>+=,2+a b 的最小值为_______________. 15.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____. 16.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.17.已知数列的前项和,则_______.18.已知等比数列{}n a 的首项为2,公比为2,则112n na a a a a a a a +=⋅⋅⋅L _______________.19.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______. 20.在△ABC 中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角的大小..为________.三、解答题21.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式;(2)设数列{}n n a b +是首项为1,公比为2的等比数列,求{}n b 的前n 项和n S .22.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,b c 的值; (2)若角为锐角,求m 的取值范围.23.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且3cos cos (tan tan 1)1A C A C -=.(Ⅰ)求sin B 的值; (Ⅱ)若33a c +=,3b =,求的面积.24.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值. 25.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S .26.已知在等比数列{a n }中,2a =2,,45a a =128,数列{b n }满足b 1=1,b 2=2,且{12n n b a +}为等差数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。
【易错题】高三数学上期中模拟试卷含答案(3)
【易错题】高三数学上期中模拟试卷含答案(3)一、选择题1.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--2.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .33.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或74.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .165.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 kmBkmC.D.6.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .87.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( )A .34B .56 C .78 D .238.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A +=()2224S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒9.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4010.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( )A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 11.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-12.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13B .38C .37D .1二、填空题13.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a =,且()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为______.14.设数列{}()1,n a n n N*≥∈满足122,6aa ==,且()()2112n n n n a a a a +++---=,若[]x 表示不超过x 的最大整数,则122019201920192019[]a a a +++=L ____________. 15.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.16.已知数列{}n a 的前n 项和为n S ,且221n S n n n N *=++∈,,求n a =.__________.17.已知各项为正数的等比数列{}n a 满足7652a a a =+,若存在两项,m n a a 使得122m n a a a ⋅=,则14m n+的最小值为__________. 18.已知数列是各项均不为的等差数列,为其前项和,且满足()221n n a S n *-=∈N.若不等式()()11181nn n n a nλ++-+⋅-≤对任意的n *∈N 恒成立,则实数的取值范围是 .19.设a >0,b >0. 若关于x,y 的方程组1,{1ax y x by +=+=无解,则+a b 的取值范围是 .20.正项等比数列{}n a 满足2418-=a a ,6290-=a a ,则{}n a 前5项和为________.三、解答题21.已知等差数列{}n a 的前n 项和为n S ,各项为正的等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式;(2)若321T =,求3S22.数列{}n a 中,11a =,121n n a a n +=++. (1)求{}n a 的通项公式; (2)设141n n b a =-,求出数列{}n b 的前n 项和.23.等差数列{}n a 的各项均为正数,11a =,前n 项和为n S .等比数列{}n b 中,11b =,且226b S =,238b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)求12111nS S S ++⋯+. 24.设等差数列{}n a 满足35a =,109a =- (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值 25.已知{}n a 为等差数列,前n 项和为()*n S n N∈,{}nb 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式; (2)求数列{}221n n a b -⋅的前n 项和.26.已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且112a b ==,338a b ==.(1)求数列{}n a 和{}n b 的通项公式; (2)记n n b c a =,求数列{}n c 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.2.D解析:D 【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.3.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.4.A解析:A 【解析】 【分析】作出可行域,变形目标函数并平移直线3y x =,结合图象,可得最值. 【详解】作出x 、y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩所对应的可行域(如图ABC V ),变形目标函数可得3y x z =-,平移直线3y x =可知, 当直线经过点(2,2)A 时,截距z -取得最大值, 此时目标函数z 取得最小值3224⨯-=. 故选:A.【点睛】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.5.D解析:D【解析】【分析】直接利用余弦定理求出A,C两地的距离即可.【详解】因为A,B两地的距离为10km,B,C两地的距离为20km,现测得∠ABC=120°,则A,C两地的距离为:AC2=AB2+CB2﹣2AB•BC cos∠ABC=102+202﹣2110202⎛⎫⨯⨯⨯-=⎪⎝⎭700.所以AC=7km.故选D.【点睛】本题考查余弦定理的实际应用,考查计算能力.6.D解析:D【解析】【分析】利用等比数列性质求出a7,然后利用等差数列的性质求解即可.【详解】等比数列{a n}中,a3a11=4a7,可得a72=4a7,解得a7=4,且b7=a7,∴b7=4,数列{b n}是等差数列,则b5+b9=2b7=8.故选D.【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.7.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===, 所以2cos 2n A n+=. 又根据余弦定理的推论得222(2)(1)5cos 2(2)(1)2(2)n n n n A n n n +++-+==+++.所以2522(2)n n n n ++=+,解得4n =, 所以453cos 2(42)4A +==+,即最小角的余弦值为34. 故选A . 【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.8.D解析:D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)222S b a c =+-,得1sin 2cos 2ab C ab C =,整理得tan C =,又00090C <<,所以060C =,故030B =.故选D 【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.9.B解析:B 【解析】 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.10.D解析:D 【解析】 【分析】 先求出31()2n n a -=,再求出2511()2n n n a a -+=,即得解.【详解】由题得35211,82a q q a ==∴=. 所以2232112()()22n n n n a a q---==⨯=,所以32251111()()()222n n n n n a a ---+=⋅=. 所以1114n n n n a a a a +-=,所以数列1{}n n a a +是一个等比数列.所以12231n n a a a a a a +++⋅⋅⋅+=18[1()]4114n --=()32143n --. 故选:D 【点睛】本题主要考查等比数列通项的求法和前n 项和的计算,意在考查学生对这些知识的理解掌握水平.11.A解析:A 【解析】 【分析】将代数式21x y+与2x y +相乘,展开式利用基本不等式求出2x y +的最小值8,将问题转化为解不等式()2min 72m m x y +<+,解出即可.【详解】由基本不等式得()21422448y x x y x y x y x y ⎛⎫+=++=++≥=⎪⎝⎭,当且仅当()4,0y xx y x y=>,即当2x y =时,等号成立,所以,2x y +的最小值为8. 由题意可得()2min 728m m x y +<+=,即2780m m +-<,解得81m -<<.因此,实数m 的取值范围是(8,1)-,故选A. 【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.12.A解析:A 【解析】 【分析】分析题意,取3x y +倒数进而求3x y+的最小值即可;结合基本不等式中“1”的代换应用即可求解。
【易错题】高三数学上期中一模试题带答案(3)
【易错题】高三数学上期中一模试题带答案(3)一、选择题1.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018B .2018-C .4036-D .40362.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .20173.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形4)63a -≤≤的最大值为( )A .9B .92C .3D .25.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或76.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5)7.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( )A .5B .25C D .8.已知AB AC ⊥u u u v u u u v ,1AB t=u u uv ,AC t =u u u v ,若P 点是ABC V 所在平面内一点,且4AB AC AP AB AC=+u u u v u u u v u u u v u u u v u u u v ,则·PB PC u u u v u u u v 的最大值等于( ). A .13B .15C .19D .219.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30°,第一排和最后一排的距离为部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .33B .53C .73D .8310.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B 相距6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km11.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形12.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 4二、填空题13.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 14.在ABC V 中,角A B C ,,所对的边分别为,,a b c ,且满足222sin sin sin sin sin A B C A B +=+,若ABC V 3,则ab =__15.等差数列{}n a 中,1351,14,a a a =+=其前n 项和100n S =,则n=__16.设0x >,则231x x x +++的最小值为______.17.若两个正实数,x y 满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围是____________ .18.设a >0,b >0. 若关于x,y 的方程组1,{1ax y x by +=+=无解,则+a b 的取值范围是 . 19.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知,,a b c 成等比数列,且22a c ac bc -=-,则sin cb B的值为________. 20.已知实数x ,y 满足约束条件20x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩,若2z x y =+的最小值为3,则实数b =____ 三、解答题21.在ABC V 中,5cos 13A =-,3cos 5B =. (1)求sinC 的值;(2)设5BC =,求ABC V 的面积.22.已知向量11,sin 22x x a ⎛⎫ ⎝=⎪ ⎪⎭v 与()1,b y =v 共线,设函数()y f x =. (1)求函数()f x 的最小正周期及最大值.(2)已知锐角ABC ∆的三个内角分别为,,A B C,若有3f A π⎛⎫-= ⎪⎝⎭,边BC B ==,求ABC ∆的面积. 23.已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 24.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .25.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5A =.(1)求2sincos 22B CA ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值.26.已知函数()[)22,1,x x af x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.2.C解析:C 【解析】依题意知100810091008100920170,20180a a a a +=>=-<,Q 数列的首项为正数,()()1201610081009100810092016201620160,0,022a a a a a a S +⨯+⨯∴>∴==,()12017201710092017201702a a S a+⨯==⨯<,∴使0n S >成立的正整数n 的最大值是2016,故选C.3.D解析:D 【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.4.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:369(3)(6)22a a a a -++-+≤= 当且仅当36a a -=+,即32a =-时,等号成立, 故选B. 【点睛】本题主要考查了均值不等式,属于中档题.5.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.6.A解析:A 【解析】 【分析】不等式等价转化为(1)()0x x a --<,当1a >时,得1x a <<,当1a <时,得1<<a x ,由此根据解集中恰有3个整数解,能求出a 的取值范围。
【易错题】高三数学上期中模拟试卷(含答案)(3)
【易错题】高三数学上期中模拟试卷(含答案)(3)一、选择题1.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形2.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④3.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1224.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸5.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .36.下列函数中,y 的最小值为4的是( )A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 7.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .168.已知不等式2230x x --<的解集为A ,260x x +-<的解集为B ,不等式2+0x ax b +<的解集为A B I ,则a b +=( )A .-3B .1C .-1D .39.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .5210.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9 B .27C .54D .8111.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( )A .()8,10B.(C.()D.)12.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-二、填空题13.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知274sincos 222A B C +-=,且5,a b c +==,则ab 为 .14.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____. 15.定义11222n n n a a a H n-+++=L 为数列{}n a 的均值,已知数列{}n b 的均值12n n H +=,记数列{}n b kn -的前n 项和是n S ,若5n S S ≤对于任意的正整数n 恒成立,则实数k 的取值范围是________.16.设2a b +=,0b >,则当a =_____时,1||2||a a b+取得最小值.17.若原点和点(1,2019)-在直线0x y a -+=的同侧,则a 的取值范围是________(用集合表示).18.已知数列{}n a 满足1133,2,n n a a a n +=-=则na n的最小值为__________. 19.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 20.若已知数列的前四项是2112+、2124+、2136+、2148+,则数列前n 项和为______. 三、解答题21.已知函数()3sin cos f x x x =-. (1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围. 22.如图,游客从某旅游景区的景点A 处下上至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50/min m .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C ,假设缆车匀速直线运动的速度为130/min m ,山路AC 长为1260m ,经测量12cos 13A =,3cos 5C =.(1)求索道AB 的长;(2)问:乙出发多少min 后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在什么范围内?23.在ABC ∆ 中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=(1) 求sin sin CA的值 (2) 若1cos ,24B b == ,求ABC ∆的面积.24.设数列{}n a 满足12a = ,12nn n a a +-= ;数列{}n b 的前n 项和为n S ,且2132n S n n =-()(1)求数列{}n a 和{}n b 的通项公式;(2)若n n n c a b = ,求数列{}n c 的前n 项和n T .25.在ABC ∆角中,角A 、B 、C 的对边分别是a 、b 、c ,若3asinB bcosA =. (1)求角A ;(2)若ABC ∆的面积为235a =,,求ABC ∆的周长.26.已知函数()[)22,1,x x af x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.2.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.3.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.4.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。
【易错题】高三数学上期中模拟试卷(附答案)(3)
【易错题】高三数学上期中模拟试卷(附答案)(3)一、选择题1.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形2.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--3.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1S B .19SC .20SD .37S4.()()()3663a a a -+-≤≤的最大值为( )A .9B .92C .3D .3225.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A 、C 两地的距离为 ( ) A .10 km B .3 kmC .105 kmD .107 km 6.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .367.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n +B .2533n n+C .2324n n+D .2n n +8.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14± D .149.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B 相距6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .603km10.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-11.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.14.如图,无人机在离地面高200m 的A 处,观测到山顶M 处的仰角为15°、山脚C 处的俯角为45°,已知∠MCN=60°,则山的高度MN 为_________m.15.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .16.已知数列{}n a 满足11a =,111n na a +=-+,*n N ∈,则2019a =__________. 17.如图所示,位于A 处的信息中心获悉:在其正东方向40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=______________.18.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = ________.19.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 20.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.三、解答题21.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若5AC =,求ABC ∆的面积;(2)若25sin 5CAD ∠=,4=AD ,求CD 的长. 22.已知数列{}n a 是公差为2-的等差数列,若1342,,a a a +成等比数列. (1)求数列{}n a 的通项公式;(2)令12n n n b a -=-,数列{}n b 的前n 项和为n S ,求满足0n S ≥成立的n 的最小值.23.已知{}n a 是递增的等差数列,2a ,4a 是方程的根.(1)求{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.24.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,已知cos2A ﹣3cos (B+C )=1.(1)求角A 的大小; (2)若△ABC 的面积S=5,b=5,求sinBsinC 的值.25.D 为ABC V 的边BC 的中点.222AB AC AD ===.(1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V .26.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,14cos a C a+=,1b =. (1)若90A ∠=︒,求ABC V 的面积; (2)若ABC V 3a ,c .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos 333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭2313111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为2 03Aπ<<所以3Aπ=故选B【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B A Cππ=+=,再利用三角公式转化,属于中档题.2.B解析:B【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【详解】作出不等式组110750310x yx yx y+-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y=+的几何意义表示直线的纵截距,即y ax z=-+,(1)当0a<时,直线z ax y=+的斜率为正,要使得z的最大值、最小值分别在,C A处取得,则直线z ax y=+的斜率不大于直线310x y--=的斜率,即3a-≤,30a∴-≤<.(2)当0a>时,直线z ax y=+的斜率为负,易知最小值在A处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.3.D解析:D 【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.4.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:369(3)(6)22a a a a -++-+≤= 当且仅当36a a -=+,即32a =-时,等号成立, 故选B. 【点睛】本题主要考查了均值不等式,属于中档题.5.D解析:D 【解析】 【分析】直接利用余弦定理求出A ,C 两地的距离即可. 【详解】因为A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,现测得∠ABC =120°, 则A ,C 两地的距离为:AC 2=AB 2+CB 2﹣2AB •BC cos ∠ABC =102+202﹣2110202⎛⎫⨯⨯⨯-= ⎪⎝⎭700. 所以AC =107km . 故选D . 【点睛】本题考查余弦定理的实际应用,考查计算能力.6.C解析:C 【解析】∵f (S n )=f (a n )+f (a n +1)-1=f[a n (a n +1)]∵函数f (x )是定义域在(0,+∞)上的单调函数,数列{a n }各项为正数∴S n =a n (a n +1)①当n=1时,可得a 1=1;当n≥2时,S n-1=a n-1(a n-1+1)②,①-②可得a n = a n (a n +1)-a n-1(a n-1+1)∴(a n +a n-1)(a n -a n-1-1)=0∵a n >0,∴a n -a n-1-1=0即a n -a n-1=1∴数列{a n }为等差数列,a 1=1,d=1;∴a n =1+(n-1)×1=n 即a n =n 所以故选C7.A解析:A 【解析】 【分析】 【详解】 设公差为d 则解得,故选A.8.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A . 【点睛】本题考查了等比中项的求法,属于基础题.9.D解析:D 【解析】 【分析】先判断三角形DAB 为直角三角形,求出BD ,然后推出CBD ∠为直角,可得CD ,进一步可得cos BDF ∠,最后在三角形EDB 中用余弦定理可得BF . 【详解】取AB 的中点E ,连DE ,设飞机飞行了15分钟到达F 点,连BF ,如图所示:则BF 即为所求.因为E 为AB 的中点,且120AB km =,所以60AE km =, 又60DAE ∠=o ,60AD km =,所以三角形DAE 为等边三角形,所以60DE km =,60ADE ∠=o ,在等腰三角形EDB 中,120DEB ∠=o ,所以30EDB EBD ∠=∠=o ,所以90ADB ∠=o ,由勾股定理得2BD 22221206010800AB AD =-=-=,所以BD =,因为9030CBE ∠=+o o 120=o ,30EBD ∠=o ,所以CBD ∠90=o ,所以240CD ===km ,所以cos 2404BD BDC CD ∠===, 因为1360904DF km =⨯=, 所以在三角形BDF 中,222222cos 90290BF BD DF BD DF BDF =+-⋅⋅∠=+-⨯g 10800=,所以BF =km .故一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B有. 故选D . 【点睛】本题考查了利用余弦定理解斜三角形,属于中档题.10.C解析:C 【解析】很明显等比数列的公比1q ≠,由题意可得:()231113S a q q =++=,①且:()21322a a a +=+,即()211122a q a a q +=+,②①②联立可得:113a q =⎧⎨=⎩或1913a q =⎧⎪⎨=⎪⎩,综上可得:公比q =3或13. 本题选择C 选项.11.C解析:C 【解析】试题分析:由21,,n n n S S S ++成等差数列可得,212n n n n S S S S +++-=-,即122n n n a a a ++++=-,也就是2112n n a a ++=-,所以等比数列{}n a 的公比12q =-,从而2231111()24a a q ==⨯-=,故选C.考点:1.等差数列的定义;2.等比数列的通项公式及其前n 项和.12.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.(﹣∞【解析】【分析】由正实数xy 满足可求得x+y≥5由x2+2xy+y2﹣ax ﹣ay +1≥0恒成立可求得a≤x+y+恒成立利用对勾函数的性质即可求得实数a 的取值范围【详解】因为正实数xy 满足而4x解析:(﹣∞,265] 【解析】 【分析】由正实数x ,y 满足4454x y xy ++=,可求得x +y≥5,由x 2+2xy+y 2﹣ax ﹣ay+1≥0恒成立可求得a ≤x+y+1x y+恒成立,利用对勾函数的性质即可求得实数a 的取值范围. 【详解】因为正实数x ,y 满足4454x y xy ++=,而4xy ≤(x+y )2,代入原式得(x +y )2﹣4(x+y )﹣5≥0,解得x +y≥5或x +y≤﹣1(舍去), 由x 2+2xy+y 2﹣ax ﹣ay+1≥0可得a (x +y )≤(x+y )2+1,即a ≤x+y+1x y+,令t=x +y ∈[5,+∞),则问题转化为a ≤t+1t,因为函数y=t +1t在[5,+∞)递增,所以y min =5+15=265, 所以a ≤265, 故答案为(﹣∞,265] 【点睛】本题考查基本不等式,考查对勾函数的单调性质,求得x +y≥5是关键,考查综合分析与运算的能力,属于中档题.14.300【解析】试题分析:由条件所以所以这样在中在中解得中故填:300考点:解斜三角形【思路点睛】考察了解三角形的实际问题属于基础题型首先要弄清楚两个概念仰角和俯角都指视线与水平线的夹角将问题所涉及的解析:300 【解析】试题分析:由条件,,所以,,,所以,,这样在中,,在中,,解得,中,,故填:300.考点:解斜三角形【思路点睛】考察了解三角形的实际问题,属于基础题型,首先要弄清楚两个概念,仰角和俯角,都指视线与水平线的夹角,将问题所涉及的边和角在不同的三角形内转化,最后用正弦定理解决高度.15.【解析】【分析】【详解】由题意解得或者而数列是递增的等比数列所以即所以因而数列的前项和故答案为考点:1等比数列的性质;2等比数列的前项和公式 解析:21n -【解析】 【分析】 【详解】 由题意,14231498a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==,而数列{}n a 是递增的等比数列,所以141,8a a ==, 即3418a q a ==,所以2q =,因而数列{}n a 的前n 项和1(1)1221112n nn n a q S q --===---,故答案为21n -. 考点:1.等比数列的性质;2.等比数列的前n 项和公式.16.-2【解析】【分析】根据题干中所给的表达式得到数列的周期性进而得到结果【详解】根据题干表达式得到可以得数列具有周期性周期为3故得到故得到故答案为:-2【点睛】这个题目考查了求数列中的某些项一般方法是解析:-2 【解析】 【分析】根据题干中所给的表达式得到数列的周期性,进而得到结果. 【详解】根据题干表达式得到2341231111,2, 1.1211a a a a a a =-=-=-=-=-=+++ 5674551111,2, 1.1211a a a a a a =-=-=-=-=-=+++ 可以得数列具有周期性,周期为3,故得到20193673.÷= 故得到2019 2.a =- 故答案为:-2. 【点睛】这个题目考查了求数列中的某些项,一般方法是求出数列通项,对于数列通项不容易求的题目,可以列出数列的一些项,得到数列的周期或者一些其它规律,进而得到数列中的项.17.【解析】【分析】在中由余弦定理求得再由正弦定理求得最后利用两角和的余弦公式即可求解的值【详解】在中海里海里由余弦定理可得所以海里由正弦定理可得因为可知为锐角所以所以【点睛】本题主要考查了解三角形实际解析:14【解析】 【分析】在ABC ∆中,由余弦定理,求得BC ,再由正弦定理,求得sin ,sin ACB BAC ∠∠,最后利用两角和的余弦公式,即可求解cos θ的值. 【详解】在ABC ∆中,40AB =海里,20AC =海里,120BAC ∠=o , 由余弦定理可得2222cos1202800BC AB AC AB AC =+-⋅=o ,所以BC =,由正弦定理可得sin sin 7AB ACB BAC BC ∠=⋅∠=,因为120BAC ∠=o ,可知ACB ∠为锐角,所以27cos 7ACB ∠=, 所以21cos cos(30)cos cos30sin sin 30ACB ACB ACB θ=∠+=∠-∠=o o o . 【点睛】本题主要考查了解三角形实际问题,解答中需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,合理使用正、余弦定理是解答的关键,其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:列方程,求结果.18.【解析】【分析】根据正弦定理将边化为角再根据两角和正弦公式以及诱导公式化简得cosB 的值即得B 角【详解】由2bcosB =acosC +ccosA 及正弦定理得2sinBcosB =sinAcosC +sin解析:3π 【解析】 【分析】根据正弦定理将边化为角,再根据两角和正弦公式以及诱导公式化简得cos B 的值,即得B 角. 【详解】由2b cos B =a cos C +c cos A 及正弦定理,得2sin B cos B =sin A cos C +sin C cos A . ∴2sin B cos B =sin(A +C ).又A +B +C =π,∴A +C =π-B .∴2sin B cos B =sin(π-B )=sin B . 又sin B ≠0,∴cos B =.∴B =.∵在△ABC 中,a cos C +c cos A =b ,∴条件等式变为2b cos B =b ,∴cos B =. 又0<B <π,∴B =. 【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.19.或【解析】【分析】先化简不等式再变量分离转化为对应函数最值问题最后根据二次函数最值以及解不等式得结果【详解】即即因为当时所以或故答案为:或【点睛】本题考查不等式恒成立问题以及二次函数最值考查综合分析解析:32m ≤或32m ≥【解析】 【分析】先化简不等式,再变量分离转化为对应函数最值问题,最后根据二次函数最值以及解不等式得结果. 【详解】2()4()(1)4()xf m f x f x f m m -≤-+Q22222()14(1)(1)14(1)xm x x m m∴---≤--+- 即2221(41)230m x x m+---≥ 即222123341,()2m x m x x +-≥+≥ 因为当32x ≥时22323839324x x +≤+=所以2221834134m m m +-≥∴≥∴3m ≤-或3m ≥ 故答案为:3m ≤-或3m ≥ 【点睛】本题考查不等式恒成立问题以及二次函数最值,考查综合分析求解能力,属中档题.20.-10【解析】作出可行域如图所示:由得平移直线由图象可知当直线经过点时直线的截距最大此时最小由得此时故答案为解析:-10 【解析】作出可行域如图所示:由3z x y =-得33x z y =-,平移直线33x zy =-,由图象可知当直线经过点A 时,直线33x zy =-的截距最大,此时z 最小由1{2x x y =-+=得(1,3)A -,此时13310z =--⨯=-故答案为10-三、解答题21.(1)12;(2 【解析】 【分析】(1)在ΔABC 中,由余弦定理,求得BC =进而利用三角形的面积公式,即可求解;(2)利用三角函数的诱导公式化和恒等变换的公式,求解sin BCA ∠=,再在ΔABC 中,利用正弦定理和余弦定理,即可求解. 【详解】(1)在ΔABC 中,222AC AB BC 2AB BC COS ABC ∠=+-⋅⋅即251BC BC =++ 2BC 40⇒+-=,解得BC =.所以ΔABC 111S AB BC sin ABC 12222∠=⋅⋅=⨯=.(2)因为0BAD 90,sin CAD 5∠∠==,所以cos BAC 5∠=,sin BAC ∠=πsin BCA sin BAC 4所以∠∠⎛⎫=- ⎪⎝⎭ )cos BAC sin BAC ∠∠=-2==⎝⎭.在ΔABC 中,AC AB sin ABC sin BCA ∠∠=, AB sin ABCAC sin BCA∠∠⋅∴==222CD AC AD 2AC AD cos CAD ∠=+-⋅⋅所以 5162413=+-=所以CD = 【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题. 22.(1)92n a n =-;(2)5. 【解析】 【分析】(1)根据等差数列{}n a 的公差为-2,且1342,,a a a +成等比数列列出关于公差d 的方程,解方程可求得d 的值,从而可得数列{}n a 的通项公式;(2)由(1)可知1292n n b n -=-+,根据分组求和法,利用等差数列与等比数列的求和公式可得结果.【详解】(1)1342,,a a a +Q 成等比数列,()()()2111426a a a ∴-=+-, 解得:17a =,92n a n ∴=-. (2)由题可知()()0121222275392n n S n -=++++-++++-L L ,()212812n n n -=--- 2281n n n =+--, 显然当4n ≤时,0n S <,580S =>,又因为5n ≥时,n S 单调递增, 故满足0n S ≥成立的n 的最小值为5. 【点睛】本题主要考查等差数列的通项公式与求和公式以及等比数列的求和公式,利用“分组求和法”求数列前n 项和,属于中档题. 利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减. 23.(1)112n a n =+;(2)1422n n n S ++=-. 【解析】 【分析】 (1)方程的两根为2,3,由题意得233,2a a ==,在利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n 项和公式即可求出.【详解】方程x 2-5x +6=0的两根为2,3. 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而得a 1=32. 所以{a n }的通项公式为a n =12n +1.(2)设2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为S n , 由(1)知2n n a =122n n ++, 则S n =232+342+…+12n n ++122n n ++, 12S n =332+442+…+112n n +++222n n ++, 两式相减得12S n =34+311122n +⎛⎫+⋅⋅⋅+ ⎪⎝⎭-222n n ++ =34+111142n -⎛⎫- ⎪⎝⎭-222n n ++, 所以S n =2-142n n ++. 考点:等差数列的性质;数列的求和. 【方法点晴】本题主要考查了等差数列的通项公式、“错位相减法”、等比数列的前n 项和公式、一元二次方程的解法等知识点的综合应用,解答中方程的两根为2,3,由题意得233,2a a ==,即可求解数列的通项公式,进而利用错位相减法求和是解答的关键,着重考查了学生的推理能力与运算能力,属于中档试题. 24.(1)(2)57【解析】试题分析:(1)根据二倍角公式,三角形内角和,所以,整理为关于的二次方程,解得角的大小;(2)根据三角形的面积公式和上一问角,代入后解得边,这样就知道,然后根据余弦定理再求,最后根据证得定理分别求得和.试题解析:(1)由cos 2A -3cos(B +C)=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0, 解得cos A =或cos A =-2(舍去).因为0<A<π,所以A =. (2)由S =bcsin A =bc×=bc =5,得bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bccos A =25+16-20=21,故a =.从而由正弦定理得sin B sin C =sin A×sin A =sin 2A =×=.考点:1.二倍角公式;2.正余弦定理;3.三角形面积公式.【方法点睛】本题涉及到解三角形问题,所以有关三角问题的公式都有涉及,当出现时,就要考虑一个条件,,,这样就做到了有效的消元,涉及三角形的面积问题,就要考虑公式,灵活使用其中的一个.25.(1)6=BC 2)3101520【解析】 【分析】(1)由题意知21AB AC AD ===,.设BD DC m ==,在ADB △与ADC V 中,由余弦定理即可解得m 的值.(2)在ACE △与BCE V 中,由正弦定理,角平分线的性质可得66AE AC BE BC ==.可求6BE AE =,2615AE =().利用余弦定理可求cos BAC ∠的值,根据同角三角函数基本关系式可求sin BAC ∠的值,利用三角形的面积公式即可计算得解. 【详解】解:(1)由题意知21AB AC AD ===,.设BD DC m ==.在ADB V 与ADC V 中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.即:212cos 4m m ADB +-∠=,①212cos 1m m ADB ++∠=.②由①+②,得:232m =, 所以62m =,即6BC = (2)在ACE V 与BCE V 中,由正弦定理得:,sin sin sin sin AE EC BE ECACE EAC BCE CBE==∠∠∠∠,由于ACE BCE ∠=∠,且sin sin BC ACBAC CBA=∠∠,所以66AE AC BE BC ==. 所以6BE AE =,所以2615AE =().又222222121cos 22214AB AC BC BAC AB AC +-+-∠===-⋅⨯⨯,所以sin 4BAC ∠=,所以11211225ACE S AC AE sin BAC =⋅⋅∠=⨯⨯=V (). 【点睛】本题主要考查了余弦定理,正弦定理,角平分线的性质,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 26.(1)2;(2)a =2c =. 【解析】 【分析】(1)已知14cos a C a+= ,根据余弦定理和勾股定理等已知条件,可求得a 与c 的值,应用三角形面积公式,可求得三角形面积;(2)根据三角形面积公式,得sinC,根据14cos a C a+=,得cosC ,代入sin 2C+cos 2C=1,得关于a 的方程,解方程即可. 【详解】(1)∵14cos a C a += ()222222142a c a b c ab a+-+-=⨯=,∴2221c a =+. 又∵90A ∠=︒,∴22221a b c c =+=+. ∴222212c a c =+=+,∴c =a =∴111sin 12222ABC S bc A bc ===⨯=V . (2)∵11sin sin 22ABC S ab C a C ===V,∴sin C =. ∵14cos a C a +=,sin C a=,∴221114a a ⎡⎤⎛⎫++= ⎪⎢⎥⎝⎭⎣⎦⎝⎭,化简得()2270a -=,∴a =2c =.【点睛】正弦定理和余弦定理可将已知条件中的边、角关系转化为角或边的关系;三角形面积公式S=111absin bcsin acsin222C A B==中既含有角,又含有边,可与正弦定理和余弦定理联系起来,为解三角形提供条件.。
【易错题】高三数学上期中一模试卷附答案(2)
7.中华人民共和国国歌有 个字, 小节,奏唱需要 秒,某校周一举行升旗仪式,旗杆正好处在坡度 的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为 和 ,第一排和最后一排的距离为 米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)
【易错题】高三数学上期中一模试卷附答案(2)
一、选择题
1.设 的三个内角 成等差数列, 、 、 成等比数列,则这个三角形的形状是()
A.直角三角形B.等边三角形C.等腰直角三角形D.钝角三角形
2.已知关于 的不等式 的解集为 ,则 的最大值是( )
A. B. C. D.
3.已知数列 的首项 ,数列 为等比数列,且 .若 ,则 ()
【点睛】
本题考查不等式恒成立问题的解法,运用分类讨论和参数分离、基本不等式求最值是解题的关键,属于中档题.
17.【解析】试题分析:外接圆直径为由图可知当在垂直平分线上时面积取得最大值设高则由相交弦定理有解得故最大面积为考点:解三角形【思路点晴】本题主要考查解三角形三角函数恒等变换二倍角公式正弦定理化归与转化的
12.已知 ,则
A. B.
C. D.
二、填空题
13.已知对满足 的任意正实数x,y,都有 ,则实数a的取值范围为______.
14.已知实数 , 满足不等式组 ,则 的最小值为__________.
15.已知等差数列 的公差为2,前n项和为 ,且 , , 成等比数列 令 ,则数列 的前100的项和为______.
A. B. C. D.
8.若 ,则
A. B.
C. D.
9.已知 的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【易错题】高三数学上期中模拟试题含答案(3)一、选择题1.数列{}n a 的前n 项和为21n S n n =++,()()1N*n n n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1002.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=LA .0B .100C .100-D .102003.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--4.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20475.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( ) A .5B .25CD.6.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40377.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-38.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30°,第一排和最后一排的距离为部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .33B .53C .73D .839.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4B .4C .14± D .1410.已知ABC ∆中,A ,B ,C 的对边分别是a ,b ,c ,且3b =,33c =,30B =︒,则AB 边上的中线的长为( )A .37B .34 C .32或372D .34或37211.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .2312.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .6二、填空题13.设数列{}()1,n a n n N*≥∈满足122,6aa ==,且()()2112n n n n a a a a +++---=,若[]x 表示不超过x 的最大整数,则122019201920192019[]a a a +++=L ____________. 14.设0,0,25x y x y >>+=,则xy的最小值为______.15.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.16.在△ABC 中,2a =,4c =,且3sin 2sin A B =,则cos C =____.17.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a a n +=++,则122016111a a a +++=L _________. 18.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.19.设2a b +=,0b >,则当a =_____时,1||2||a a b+取得最小值. 20.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.三、解答题21.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且sin 31cos a Cc A=-.(1)求角A 的大小;(2)若10b c +=,ABC ∆的面积43ABC S ∆=,求a 的值.22.若数列{}n a 的前n 项和n S 满足*231?(N )n n S a n =-∈,等差数列{}n b 满足113233b a b S ==+,.(1)求数列{}n a 、{}n b 的通项公式; (2)设3nn nb c a =,求数列{}n c 的前n 项和为n T . 23.已知数列{}n a 是等差数列,111038,160,37n n a a a a a a +>⋅=+=. (1)求数列{}n a 的通项公式;(2)若从数列{}n a 中依次取出第2项,第4项,第8项,L ,第2n 项,按原来的顺序组成一个新数列,求12n n S b b b =+++L .24.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知24sin 4sin sin 222A BA B -+=+ (1)求角C 的大小;(2)已知4b =,ABC ∆的面积为6,求边长c 的值. 25.已知{}n a 是递增的等差数列,2a ,4a 是方程的根.(1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 26.设函数2()1f x mx mx =--.(1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[1,3]x ∈,()0f x <恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.2.B解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++L L ()()()2410021359999224610099100a a a ++++=-++++-++++++=L L L ,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.3.B解析:B 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率 1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意.综上:31a -≤…. 故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.4.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.5.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===. 6.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.7.D解析:D 【解析】作出不等式对应的平面区域, 由z=x+y,得y=−x+z,平移直线y=−x+z ,由图象可知当直线y=−x+z 经过点A 时,直线y=−x+z 的截距最大, 此时z 最大为6.即x+y=6.经过点B 时,直线y=−x+z 的截距最小,此时z 最小.由6{0x y x y +=-=得A(3,3), ∵直线y=k 过A , ∴k=3. 由3{20y k x y ==+=,解得B(−6,3).此时z 的最小值为z=−6+3=−3, 本题选择D 选项.点睛:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:b zy x a b =-+,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得.8.B解析:B 【解析】 【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度. 【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45sin 30HB =︒︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,10353v ==/秒). 故选B . 【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.9.A解析:A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A . 【点睛】本题考查了等比中项的求法,属于基础题.10.C解析:C 【解析】 【分析】由已知利用余弦定理可得29180a a -+=,解得a 值,由已知可求中线12BD c =,在BCD V 中,由余弦定理即可计算AB 边上中线的长. 【详解】解:3,33,30b c B ===o Q ,∴由余弦定理2222cos b a c ac B =+-,可得239272332a a =+-⨯⨯,整理可得:29180a a -+=,∴解得6a =或3.Q 如图,CD 为AB 边上的中线,则1332BD c ==,∴在BCD V 中,由余弦定理2222cos CD a BD a BD B =+-⋅⋅,可得:222333336()26222CD =+-⨯⨯⨯,或222333333()23222CD =+-⨯⨯⨯, ∴解得AB 边上的中线32CD =或372. 故选C .【点睛】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.11.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===, 所以2cos 2n A n+=. 又根据余弦定理的推论得222(2)(1)5cos 2(2)(1)2(2)n n n n A n n n +++-+==+++.所以2522(2)n n n n ++=+,解得4n =, 所以453cos 2(42)4A +==+,即最小角的余弦值为34. 故选A . 【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.12.B解析:B 【解析】 【分析】 【详解】由z =x +3y 得y =-13x +3z,先作出0{x y x ≥≤的图象,如图所示,因为目标函数z =x +3y 的最大值为8,所以x +3y =8与直线y =x 的交点为C ,解得C (2,2),代入直线2x +y +k =0,得k =-6.二、填空题13.2018【解析】【分析】数列{an}满足a1=2a2=6且(an+2﹣an+1)﹣(an+1﹣an )=2利用等差数列的通项公式可得:an+1﹣an =2n+2再利用累加求和方法可得an =n (n+1)利解析:2018 【解析】 【分析】数列{a n }满足a 1=2,a 2=6,且(a n +2﹣a n +1)﹣(a n +1﹣a n )=2,利用等差数列的通项公式可得:a n +1﹣a n =2n +2.再利用累加求和方法可得a n =n (n +1).利用裂项求和方法即可得出. 【详解】∵()()2112n n n n a a a a +++---=,∴数列{a n +1﹣a n }为等差数列,首项为4,公差为2. ∴a n +1﹣a n =4+2(n ﹣1)=2n +2.∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1 =2n +2(n ﹣1)+…+2×2+2()122n n +=⨯=n (n +1).∴12201911111111111223201920202020a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L .∴][][122019201920192019201912019201820202020a a a ⎡⎤+++=-=+⎢⎥⎣⎦L =2018. 故答案为:2018.【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法与裂项相消求和方法,考查了推理能力与计算能力,属于中档题.14.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立解析:【解析】【分析】把分子展开化为26xy +,再利用基本不等式求最值.【详解】=Q 0,0,25,0,x y x y xy >>+=>∴Q≥= 当且仅当3xy =,即3,1x y ==时成立,故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立.15.【解析】【分析】利用余弦定理得到进而得到结合正弦定理得到结果【详解】由正弦定理得【点睛】本题考查解三角形的有关知识涉及到余弦定理正弦定理及同角基本关系式考查恒等变形能力属于基础题解析:3【解析】【分析】 利用余弦定理得到cos C ,进而得到sin C ,结合正弦定理得到结果.【详解】925491cos ,sin 302C C +-==-=,由正弦定理得2sin c R R C ===. 【点睛】本题考查解三角形的有关知识,涉及到余弦定理、正弦定理及同角基本关系式,考查恒等变形能力,属于 基础题.16.【解析】在△中且故故答案为:点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数属于简单题对余弦定理一定要熟记两种形式:(1);(2)同时还要熟练掌握运用两种形式的条件另外在解与三角 解析:14- 【解析】在△ABC 中,2a =,4c =,且3sin 2sin A B =,故222132,3,cos .24a b c a b b c ab +-=∴===- 故答案为:14-. 点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用. 17.【解析】试题分析:所以所以考点:累加法;裂项求和法 解析:40322017【解析】试题分析:111,n n n n a a n a a n +--=+-=,所以()11221112n n n n n n n a a a a a a a a ---+=-+-++-+=L ,所以11121n a n n ⎛⎫=- ⎪+⎝⎭,122016111140322120172017a a a ⎛⎫+++=-= ⎪⎝⎭L . 考点:累加法;裂项求和法.18.-4【解析】【分析】根据已知可得即可求解【详解】且故答案为:-4【点睛】本题考查数列的递推关系以及周期数列考查计算求解能力属于中档题 解析:-4【解析】【分析】根据已知可得6n n b b +=,即可求解.【详解】121,5b b ==且*21()n n n b b b n N ++=-∈,321211n n n n n n n n b b b b b b b b ++++++=-==-=--,63,20166336n n n b b b ++=-==⨯,201663214b b b b b ∴==-=-+=-.故答案为:-4【点睛】本题考查数列的递推关系以及周期数列,考查计算求解能力,属于中档题.19.【解析】【分析】利用代入所求式子得再对分并结合基本不等式求最小值【详解】因为所以又因为所以因此当时的最小值是;当时的最小值是故的最小值为此时即故答案为:【点睛】本题考查基本不等式求最值考查转化与化归 解析:2-【解析】【分析】利用2a b +=代入所求式子得||4||4||a b a a a b ++,再对a 分0a >,0a <并结合基本不等式求最小值.【详解】因为2a b +=, 所以1||||||2||4||4||4||a a b a a b a a b a b a a b++=+=++, 又因为0b >,||0a >,所以||14||b a a b +=…, 因此当0a >时,1||2||a a b +的最小值是15144+=; 当0a <时,1||2||a a b +的最小值是13144-+=. 故1||2||a a b +的最小值为34,此时,42,0,a b a b a b a ⎧=⎪⎪⎪+=⎨⎪<⎪⎪⎩即2a =-. 故答案为:2-.【点睛】本题考查基本不等式求最值,考查转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对a 的分类讨论及基本不等式求最值时,要验证等号成立的条件.20.()【解析】如图所示延长BACD 交于E 平移AD 当A 与D 重合与E 点时AB 最长在△BCE 中∠B=∠C=75°∠E=30°BC=2由正弦定理可得即解得=平移AD 当D 与C 重合时AB 最短此时与AB 交于F 在△B解析:(62-,6+2) 【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BE E C=∠∠,即o o 2sin 30sin 75BE =,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得BF=62-,所以AB 的取值范围为(62-,6+2).考点:正余弦定理;数形结合思想三、解答题21.(1)3A π=;(2)13 【解析】【分析】(1)把sin 31cos a C c A =-中的边化为角的正弦的形式,再经过变形可得3sin()32A π+=进而可求得3A π=.(2)由43ABC S ∆=16bc =,再由余弦定理可求得213a =.【详解】(1)由正弦定理及sin 31cos a C c A =-得sin sin 3sin 1cos A C C A=-, ∵sin 0C ≠,∴)sin 31cos A A =-,∴sin 3cos 2sin 33A A A π⎛⎫+=+= ⎪⎝⎭, ∴3sin 3A π⎛⎫+= ⎪⎝⎭, 又0A π<<, ∴4333A πππ<+<, ∴233A p p +=, ∴3A π=.(2)∵13sin 24ABC S bc A bc ∆==, ∴16bc =. 由余弦定理得()()222222cos233a b c bc b c bc bc b c bc π=+-=+--=+-, 又10b c +=,∴221031652a =-⨯=, 213a ∴=.【点睛】解三角形经常与三角变换结合在一起考查,解题时注意三角形三个内角的关系.另外,使用余弦定理解三角形时,注意公式的变形及整体思想的运用,如()2222b c b c bc +=+-等,可简化运算提高解题的速度.22.(1)13n n a -=,;(2)()223n nn T +=-. 【解析】【分析】(Ⅰ)由数列递推式求出a 1,在数列递推式中取n=n-1得另一递推式,作差后得到数列{a n }为等比数列,则数列{a n }的通项公式可求,再由b 1=3a 1,b 3=S 2+3求出数列{b n }的首项和公差,则{b n }的通项公式可求;(Ⅱ)把数列{a n }、{b n }的通项公式代入3n n n b c a =,直接由错位相减法求数列{c n }的前n 项和为T n .【详解】(Ⅰ)当1n =时,111231,1S a a =-∴=当2n ≥时,()()112223131n n n n n a S S a a --=-=---,即13n n a a -=∴数列{}n a 是以11a =为首项,3为公比的等比数列,13n n a -∴=.设{}n b 的公差为1132,33,3723,2d b a b S d d ===+==+=()31321n b n n ∴=+-⨯=+ , (Ⅱ)1232135721,33333n n n n n n c T ++==++++L ① 则234113572133333n n n T ++=++++L ②, 由①—②得,2312111211233333n n n n T ++⎛⎫=++++-⎪⎝⎭L 142433n n ++=+ ∴223n n n T +=-. 【点睛】 本题考查数列递推式,考查了等比关系的确定,训练了错位相减法求数列的前n 项和,是中档题.23.(1)32n a n =+;(2)6226n n T n =⨯+-【解析】【分析】(1)先由条件可以判断出数列是递增数列,再由等差数列的性质:m n p q m n p q a a a a +=+⇒+=+ 可以求得110,a a ,然后根据等差数列通项公式即可求解.(2)由(1)可得数列n b 的通项公式,然后利用分组求和即可求解.【详解】(1)等差数列{}n a 中,111038,37n n a a a a a a +>+=+=,11011016037a a a a ⋅=⎧⎨+=⎩ 解得110532a a =⎧⎨=⎩ 3253101d -∴==-, ()51332n a n n ∴=+-⨯=+.(2)由(1)知,12322b a ==⨯+,24342b a ==⨯+,…2322n n n b a ==⋅+,()()()12322342322n n n S b b b ∴=+++=⨯++⨯+++⋅+L L()122324223212n n n n +-=⨯++++=⨯+-L 13262n n +=⨯-+6226n n =⨯+-.【点睛】本题主要考查等差数列的通项公式、性质、等比数列的求和公式、利用“分组求和法”求数列前n 项和,属于中档题. 利用“分组求和法”求数列前n 项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减;解题中需要熟练掌握公式和性质,对计算能力要求较高.24.(1)4π;(2)10. 【解析】 【分析】(1)由二倍角的余弦公式把24sin 4sin sin 222A B A B -+=+降次,再用两个角的和的余弦公式求cos()A B +,由三角形三内角和定理可求得cos C ,从而求得角C ; (2)根据三角形的面积公式求出边a ,再由余弦定理求E 边.【详解】试题分析:(1)由已知得2[1cos()]4sin sin 22A B A B --+=+,化简得2cos cos 2sin sin 2A B A B -+=, 故2cos()2A B +=-,所以34A B π+=, 因为A B C π++=,所以4C π=. (2)因为1sin 2S ab C ⊥=,由6ABC S =V ,4b =,4C π=,所以32a =, 由余弦定理得2222cos c a b ab C =+-,所以10c =.【点睛】本题主要考查了两角和差公式的应用及利用余弦定理解三角形,属于基础题.25.(1)112n a n =+;(2)1422n n n S ++=-. 【解析】【分析】(1)方程的两根为2,3,由题意得233,2a a ==,在利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n 项和公式即可求出. 【详解】方程x 2-5x +6=0的两根为2,3.由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而得a 1=32. 所以{a n }的通项公式为a n =12n +1. (2)设2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为S n , 由(1)知2n n a =122n n ++, 则S n =232+342+…+12n n ++122n n ++, 12S n =332+442+…+112n n +++222n n ++, 两式相减得12S n =34+311122n +⎛⎫+⋅⋅⋅+ ⎪⎝⎭-222n n ++ =34+111142n -⎛⎫- ⎪⎝⎭-222n n ++, 所以S n =2-142n n ++. 考点:等差数列的性质;数列的求和.【方法点晴】本题主要考查了等差数列的通项公式、“错位相减法”、等比数列的前n 项和公式、一元二次方程的解法等知识点的综合应用,解答中方程的两根为2,3,由题意得233,2a a ==,即可求解数列的通项公式,进而利用错位相减法求和是解答的关键,着重考查了学生的推理能力与运算能力,属于中档试题.26.(1) 40m -<≤.(2) 16m <【解析】【分析】(1)利用判别式可求实数m 的取值范围,注意二次项系数的讨论.(2)就0,0,0m m m <=>三种情况讨论函数的最值后可得实数m 的取值范围.【详解】解:(1)要使210mx mx --<恒成立,若0m =,显然10-<;若0m ≠,则有2040m m m <⎧⎨∆=+<⎩,40m ∴-<<,∴40m -<≤.(2)当0m =时,()10f x =-<显然恒成立;当0m ≠时,该函数的对称轴是12x =,2()1f x mx mx =--在[1,3]x ∈上是单调函数. 当0m >时,由于(1)10f =-<,要使()0f x <在[1,3]x ∈上恒成立, 只要(3)0f <即可,即9310m m --<得16m <,即106m <<; 当0m <时,由于函数()0f x <在[1,3]x ∈上恒成立,只要(1)0f <即可, 此时(1)10f =-<显然成立. 综上可知16m <. 【点睛】一元二次不等式的恒成立问题,可以转化为函数的最值进行讨论,必要时需要考虑对称轴的不同位置.。