2015-2016学年八年级上期末数学试卷含答案解析

合集下载

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。

每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。

BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。

对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。

使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。

江苏省无锡市宜兴市八年级数学上学期期末试题(含解析) 苏科版-苏科版初中八年级全册数学试题

江苏省无锡市宜兴市八年级数学上学期期末试题(含解析) 苏科版-苏科版初中八年级全册数学试题

某某省某某市宜兴市2015-2016学年八年级数学上学期期末试题一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中,是轴对称图形的是( )A.(1)(2) B.(1)(3) C.(1)(4) D.(2)(3)2.下列实数中,是无理数的为( )A.B.C.0 D.﹣33.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF 的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E4.满足下列条件的△ABC不是直角三角形的是( )A.a=1、b=2,c=B.a=1、b=2,c=C.a:b:c=3:4:5 D.∠A:∠B:∠C=3:4:55.如图,直线l是一条河,P,Q是两个村庄.计划在l上的某处修建一个水泵站M,向P,Q两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )A.B.C.D.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( ) A.2 B.﹣2 C.4 D.﹣47.如图,在平面直角坐标系中,点P坐标为(﹣4,3),以点B(﹣1,0)为圆心,以BP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.﹣6和﹣5之间B.﹣5和﹣4之间C.﹣4和﹣3之间D.﹣3和﹣2之间8.在平面直角坐标系中,点A(1,1),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为( )A.2 B.3 C.4 D.5二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是__________.10.点A(﹣3,4)关于y轴对称的坐标为__________.11.地球上七大洲的总面积约为149 480 000km2,把这个数值精确到千万位,并用科学记数法表示为__________.12.函数中自变量x的取值X围是__________.13.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=__________°.14.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为__________.15.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为__________.16.如图,直线y=kx+b与x轴交于点(2,0),若y<0时,则x的取值X围是__________.17.已知点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,则点P的坐标为__________.18.函数y=kx+b(k≠0)的图象平行于直线y=3x+2,且交y轴于点(0,﹣1),则其函数表达式是__________.19.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为__________.三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(1)计算:+﹣(2)求4x2﹣9=0中x的值.(3)求(x﹣1)3=8中x的值.21.已知某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.求﹣b﹣a的算术平方根.22.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.23.近年来,某某省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的X村、李村之间建一座定点医疗站P,X、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到X、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)24.如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于__________ 与__________.25.如图,一次函数y=(m+1)x+的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的函数表达式.26.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.27.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是__________千米/小时,乙比甲晚出发__________小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?28.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是__________;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.2015-2016学年某某省某某市宜兴市八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中,是轴对称图形的是( )A.(1)(2) B.(1)(3) C.(1)(4) D.(2)(3)【考点】轴对称图形.【分析】根据轴对称图形的概念对各小题分析判断即可得解.【解答】解:(1)是轴对称图形,(2)不是轴对称图形,(3)不是轴对称图形,(4)是轴对称图形;综上所述,是轴对称图形的是(1)(4).故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列实数中,是无理数的为( )A.B.C.0 D.﹣3【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、是分数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是整数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF 的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【解答】解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4.满足下列条件的△ABC不是直角三角形的是( )A.a=1、b=2,c=B.a=1、b=2,c=C.a:b:c=3:4:5 D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理对A、B、C进行逐一判断,再利用三角形内角和定理可得D 选项中最大角的度数,进而可进行判断.【解答】解:A、∵12+()2=22,∴能构成直角三角形,故本选项不符合要求;B、∵12+22=()2,∴能构成直角三角形,故本选项不符合要求;C、∵32+42=52,∴能构成直角三角形,故本选项不符合要求;D、∵180°×=5°,∴不能构成直角三角形,故本选项符合要求.故选:D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.如图,直线l是一条河,P,Q是两个村庄.计划在l上的某处修建一个水泵站M,向P,Q两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )A.B.C.D.【考点】轴对称-最短路线问题.【分析】用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线l的对称点P′,连接QP′交直线l于M.根据两点之间,线段最短,可知选项B修建的管道,则所需管道最短.故选D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( ) A.2 B.﹣2 C.4 D.﹣4【考点】正比例函数的性质.【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B【点评】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.7.如图,在平面直角坐标系中,点P坐标为(﹣4,3),以点B(﹣1,0)为圆心,以BP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.﹣6和﹣5之间B.﹣5和﹣4之间C.﹣4和﹣3之间D.﹣3和﹣2之间【考点】勾股定理;估算无理数的大小;坐标与图形性质.【分析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【解答】解:∵点P坐标为(﹣4,3),点B(﹣1,0),∴OB=1,∴BA=BP==3,∴OA=3+1,∴点A的横坐标为﹣3﹣1,∵﹣6<﹣3﹣1<﹣5,∴∴点A的横坐标介于﹣6和﹣5之间.故选:A.【点评】本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解答此题的关键.8.在平面直角坐标系中,点A(1,1),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为( )A.2 B.3 C.4 D.5【考点】等腰三角形的判定;坐标与图形性质.【分析】首先根据线段的中垂线上的点到线段两端点的距离相等,求出AB的中垂线与x轴的交点,即可求出点C1的坐标;然后再求出AB的长,以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;最后判断出以点B为圆心,以AB的长为半径画弧,与x轴没有交点,据此判断出点C的个数为多少即可.【解答】解:如图,∵AB所在的直线是y=x,∴设AB的中垂线所在的直线是y=﹣x+b,∵点A(1,1),B(3,3),∴AB的中点坐标是(2,2),把x=2,y=2代入y=﹣x+b,解得b=4,∴AB的中垂线所在的直线是y=﹣x+4,∴C1(4,0)以点A为圆心,以AB的长为半径画弧,与x轴的交点为点C2、C3;AB==2,∵2<3,∴以点B为圆心,以AB的长为半径画弧,与x轴没有交点.综上,可得若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为3.故选:B.【点评】此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是±4.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.点A(﹣3,4)关于y轴对称的坐标为(3,4).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点A(﹣3,4)关于y轴对称的坐标为(3,4).故答案为:(3,4);【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.11.地球上七大洲的总面积约为149 480 000km2,把这个数值精确到千万位,并用科学记数法表示为1.5×108.【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.函数中自变量x的取值X围是x≥2.【考点】函数自变量的取值X围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值X围,考查的知识点为:二次根式的被开方数是非负数.13.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=15°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴A D=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.14.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为3.【考点】全等三角形的判定与性质.【分析】先证出∠DBF=∠DAC,由AAS证明△BDF≌△ADC,得出对应边相等AD=BD=BC﹣CD=5,DF=CD=2,即可得出AF的长.【解答】解:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC,在△BDF与△ADC中,∴△BDF≌△ADC(ASA),∴AD=BD=BC﹣CD=7﹣2=5,DF=CD=2,∴AF=AD﹣DF=5﹣2=3;故答案为:3.【点评】本题考查了全等三角形的判定和性质;证明三角形的全等得出对应边相等是解此题的关键.15.如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为48.【考点】勾股定理.【分析】分别在两个直角三角形中求得线段BD和线段CD的长,然后求得BC的长,从而求得周长.【解答】解:在直角三角形ABD中,AB=17,AD=8,根据勾股定理,得BD=15;在直角三角形ACD中,AC=10,AD=8,根据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为:48.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度,本题因给出了图形,故只有一种情况.16.如图,直线y=kx+b与x轴交于点(2,0),若y<0时,则x的取值X围是x>2.【考点】一次函数与一元一次不等式.【分析】根据函数的图象直接解答即可.【解答】解:由直线y=kx+b的图象可知,当x>2时函数的图象在x轴的下方.故答案为x>2.【点评】此题考查了一次函数与不等式,利用数形结合是解题的关键.17.已知点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,则点P的坐标为(﹣2,4).【考点】点的坐标.【分析】直接利用第二象限点的坐标性质结合到y轴的距离为2,得出a的值,进而得出点P的坐标.【解答】解:∵点P(a﹣1,a+5)在第二象限,且到y轴的距离为2,∴a﹣1=﹣2,解得:a=﹣1,∴a+5=4,则点P的坐标为:(﹣2,4).故答案为:(﹣2,4).【点评】此题主要考查了点的坐标,正确利用坐标性质得出a的值是解题关键.18.函数y=kx+b(k≠0)的图象平行于直线y=3x+2,且交y轴于点(0,﹣1),则其函数表达式是y=3x﹣1.【考点】两条直线相交或平行问题.【分析】根据平行直线的解析式求出k值,再把点的坐标代入解析式求出b值,即可得解.【解答】解:∵y=kx+b的图象平行于直线y=3x+2,∴k=3,又∵与y轴的交点坐标为(0,﹣1),∴b=﹣1,∴函数的表达式是y=3x﹣1.故答案为:y=3x﹣1.【点评】本题考查了两直线平行的问题,根据平行直线的解析式的k值相等求出k的值是解题的关键,也是本题的难点.19.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为(,0).【考点】轴对称-最短路线问题;坐标与图形性质.【分析】作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.利用待定系数法求出直线AB′的解析式,然后求出其与x轴交点的坐标,即M点的坐标.【解答】解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B′.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).【点评】本题考查了轴对称﹣﹣最短路线问题、坐标与图形性质.解题时可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通.三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(1)计算:+﹣(2)求4x2﹣9=0中x的值.(3)求(x﹣1)3=8中x的值.【考点】实数的运算;平方根;立方根.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解;(3)方程利用立方根定义开立方即可求出x的值.【解答】解:(1)原式=3+3﹣2=4;(2)方程整理得:x2=,开方得:x=±;(3)开立方得:x﹣1=2,解得:x=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.已知某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.求﹣b﹣a的算术平方根.【考点】平方根;算术平方根;立方根.【分析】根据两个平方根互为相反数进行解答即可.【解答】解:∵某正数的两个平方根分别是a+3和2a﹣15,可得:a+3+2a﹣15=0,解得:a=4,∵b的立方根是﹣2,可得:b=﹣8,把a=4,b=﹣8代入﹣b﹣a=8﹣4=4,所以﹣b﹣a的算术平方根是2.【点评】此题考查平方根问题,关键是根据两个平方根互为相反数得出a的值.22.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据SSS定理推出即可;(2)根据全等三角形的性质得出∠BAC=∠DAC,根据等腰三角形的性质得出即可.【解答】证明:(1)∵在△ABC与△ADC中,∴△ABC≌△ADC(SSS);(2)∵△ABC≌△ADC,∴∠BAC=∠DAC,又∵AB=AD,∴AC垂直平分BD.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能求出△ABC≌△ADC是解此题的关键,注意:全等三角形的对应边相等,对应角相等.23.近年来,某某省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的X村、李村之间建一座定点医疗站P,X、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到X、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)【考点】作图—应用与设计作图.【分析】医疗站到两村的距离相等,所点P在X村与李村所组成线段的垂直平分线上,医疗站到两公路的距离相等,则医疗站在公路夹角的平分线上.【解答】解:如图所示:点P即为所求作的点.【点评】本题主要考查的是作图﹣﹣应用与设计作图,掌握角平分线的性质和线段垂直平分线的性质是解题的关键.24.如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于4 与.【考点】利用轴对称设计图案.【分析】利用轴对称图形的性质得出符合题意的三角形,再利用三角形面积求法得出答案.【解答】解:如图所示:图①的面积是:3×3﹣×1×3﹣×1×3﹣×2×2=4,图②的面积是:2×3﹣×1×2﹣×1×3﹣×1×2=.故答案为:4,.【点评】此题主要考查了利用轴对称设计图案以及三角形面积求法,正确掌握轴对称图形的性质是解题关键.25.如图,一次函数y=(m+1)x+的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的函数表达式.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)先利于y=(m+1)x+可求出B(0,),所以OB=,则利用三角形面积公式计算出OA=1,则A(﹣1,0);然后把点A(﹣1,0)代入y=(m+1)x+可求出m的值;(2)利用OP=3OA=3可得到点P的坐标为(3,0),然后利用待定系数法求直线BP的函数解析式.【解答】解:(1)当x=0时,y=(m+1)x+=,则B(0,),所以OB=,∵S△OAB=,∴×OA×OB=,解得OA=1,∴A(﹣1,0);把点A(﹣1,0)代入y=(m+1)x+得﹣m﹣1+=0,∴m=;(2)∵OP=3OA,∴OP=3,∴点P的坐标为(3,0),设直线BP的函数表达式为y=kx+b,把P(3,0)、B(0,)代入得,解得,∴直线BP的函数表达式为y=﹣x+.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.也考查了待定系数法求一次函数解析式.26.如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;(2)若BC=6,AC=8,求CE的长.【考点】翻折变换(折叠问题);勾股定理.【分析】(1)利用翻折变换的性质得出DE垂直平分AB,进而得出∠1=∠2=∠A即可得出答案;(2)利用勾股定理得出CE的长,即可得出CD的长.【解答】解:(1)∵折叠使点A与点B重合,折痕为DE.∴DE垂直平分AB.∴AE=BE,∴∠A=∠1,又∵DE⊥AB,∠C=90°,DE=CE,∴∠1=∠2,∴∠1=∠2=∠A.由∠A+∠1+∠2=90°,解得:∠A=30°;(2)设CE=x,则AE=BE=8﹣x.在Rt△BCE中,由勾股定理得:BC2+CE 2=BE2.即 62+x2=(8﹣x)2,解得:x=,即CE=.【点评】此题主要考查了翻折变换的性质以及勾股定理,根据已知熟练应用勾股定理得出是解题关键.27.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是5千米/小时,乙比甲晚出发1小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?【考点】一次函数的应用.【分析】(1)根据速度,路程,时间三者之间的关系求得结果;(2)设乙的解析式为s=kt+b(k≠0),然后利用待定系数法求解即可;(3)联立两函数解析式,解方程组即可.【解答】解:(1)甲的速度是:20÷4=5,乙比甲晚出发1小时;故答案为:5,1;(2)设甲的解析式为:s=mt,则20=4m,∴m=5,∴甲的解析式为:s=5t,设乙的解析式为s=kt+b(k≠0),则,解得,∴乙的解析式为s=20t﹣20;(3)解得,∴甲经过h被乙追上,此时两人距离B地还有km.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,两直线交点的求法,需熟练掌握并灵活运用是解题的关键.28.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是(0,);(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.【考点】一次函数综合题.【专题】压轴题;数形结合.【分析】(1)联立方程,解方程即可求得;(2)设P点坐标是(0,y),根据勾股定理列出方程,解方程即可求得;(3)分两种情况:①当Q点在线段AB上:作QD⊥y轴于点D,则QD=x,根据S△OBQ=S△OAB﹣S△OAQ 列出关于x的方程解方程求得即可;②当Q点在AC的延长线上时,作QD⊥x轴于点D,则QD=﹣y,根据S△OCQ=S△OAQ﹣S△OAC列出关于y的方程解方程求得即可.【解答】解:(1)解方程组:得:∴A点坐标是(2,3);(2)设P点坐标是(0,y),∵△OAP是以OA为底边的等腰三角形,∴OP=PA,∴22+(3﹣y)2=y2,解得y=,∴P点坐标是(0,),故答案为(0,);(3)存在;由直线y=﹣2x+7可知B(0,7),C(,0),∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),当Q点在线段AB上:作QD⊥y轴于点D,如图①,则QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,∴OB•QD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐标是(,),当Q点在AC的延长线上时,作QD⊥x轴于点D,如图②则QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=,∴OC•QD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐标是(,﹣),综上所述:点Q是坐标是(,)或(,﹣).【点评】本题是一次函数的综合题,考查了交点的求法,勾股定理的应用,三角形面积的求法等,分类讨论思想的运用是解题的关键.。

山东省菏泽市单县度八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题

山东省菏泽市单县度八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省某某市单县2015-2016学年度八年级数学上学期期末考试试题一、选择题(本题共10小题,每小题3分,共30分)1.下列命题中,假命题是()A.两条直角边对应相等的两个直角三角形全等B.有一个角是60°的等腰三角形是等边三角形C.顶角相等的两个等腰三角形全等D.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等2.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元3.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF4.某次射击训练中,一小组的成绩如下表所示:环数789人数23已知该小组的平均成绩为8.1环,那么成绩为8环的人数是()A.5人B.6人C.4人D.7人5.如图,在△ABC中,AB=AC,O为△ABC内一点,且OA=OB=OC,过点O作AC的垂线交AC,AB于点E,F,则图中全等的三角形的对数是()A.1对B.2对C.3对D.4对6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠AFB C.∠BED D.∠ABF7.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=38.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB 于点G,下列说法正确的是()A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1D.无法判断10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500二、填空题(本题共10小题,每小题3分,共30分)11.如图,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品是.12.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是.13.计算+的结果为.14.如图,有一条直的宽纸带,按如图折叠,则∠1的度数为.15.如图,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线交BC于D,DE⊥AB,且DE:DB=3:5,则DB的长为.16.已知=,则=.17.观察下列等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,若1+3+5+7+…+2015=n2,则n=.18.计算÷(1﹣)的结果是.19.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.20.对于两个不相等的有理数a,b,我们规定符号Max{a,b}表示a,b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{﹣,}=的解为.三、解答题(满分60分)21.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.(1)若∠ADE=40°,求∠DBC的度数;(2)若△ABC与△DBC的周长分别是40cm,24cm,求AB的长.22.(1)求作:△ABC,使AB=AC=a,∠B=∠α(保留作图痕迹,不写作法);(2)解方程:=﹣.23.已知,如图,AB∥CD,E是AB的中点,CE=DE,求证:AC=BD.24.某校要从新入学的两名体育特长生李勇、X浩中挑选一人参加校际跳远比赛,在跳远专项测试以及以后的6次跳远选拔赛中,他们的成绩(单位:cm)如下表所示:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 602 X浩596 578 596 628 590 631 595 (1)把X浩同学7次测试成绩的平均数,李勇同学7次测试成绩的方差填在表格相应位置出.(方差的结果保留一位小数)(2)请你分析两人成绩的特点.(3)经查阅历届比赛的资料,成绩若达到6.00m,就很可能得到冠军,你认为应选去参数夺冠军比较有把握.(4)以往的该项最好成绩的记录是6.15m,若想要打破记录,你认为应选去参赛.25.如图,∠ABC=90°,D、E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:△AFM≌△DFC;(2)AD与MC垂直吗?并说明理由.26.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票,下面是两个小伙伴的对话:小亮:如果今天看演出,我们每人一X票,正好会差两X票的钱.小颖:过两天就是“儿童节”了,那时候来看这场演出,票价会打六折,我们每人一X票,还能剩72元钱呢!根据对话的内容,请你求出小伙伴的人数.某某省某某市单县2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.下列命题中,假命题是()A.两条直角边对应相等的两个直角三角形全等B.有一个角是60°的等腰三角形是等边三角形C.顶角相等的两个等腰三角形全等D.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等【考点】命题与定理.【分析】利用全等三角形的判定、等边三角形的判定分别判断后即可确定正确的选项.【解答】解:A、两条直角边对应相等的两个直角三角形全等,正确,是真命题;B、有一个角是60°的等腰三角形是等边三角形,正确,是真命题;C、顶角相等的两个等腰三角形相似但不全等,故错误,是假命题;D、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等,正确,是真命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定等知识,属于基础定理,难度不大.2.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元【考点】众数;中位数.【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选C.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).3.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A.BC=EF B.∠A=∠D C.AC∥DF D.AC=DF【考点】全等三角形的判定.【分析】要使△ABC≌△DEF,已知AB=ED,BE=CF,具备了两条边对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:可添加AC=DF,或AB∥DE或∠B=∠DEF,证明添加AC=DF后成立,∵BE=CF,∴BC=EF,又AB=DE,AC=DF,∴△ABC≌△DEF.故选D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.4.某次射击训练中,一小组的成绩如下表所示:环数789人数23已知该小组的平均成绩为8.1环,那么成绩为8环的人数是()A.5人B.6人C.4人D.7人【考点】加权平均数.【专题】图表型.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数,据此列出方程,再求解.【解答】解:设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得:x=5人.故选A.【点评】本题主要考查了平均数的概念.一组数据的平均数等于所有数据的和除以数据的个数.5.如图,在△ABC中,AB=AC,O为△ABC内一点,且OA=OB=OC,过点O作AC的垂线交AC,AB于点E,F,则图中全等的三角形的对数是()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.【解答】解:∵AB=AC,D是BC的中点,∴∠CAD=∠BAD,AD⊥BC,∴OC=OB,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS);同理:△COD≌△BOD,在△AOC和△AOB中,,∴△OAC≌△OAB(SSS);∵EF是AC的垂直平分线,∴OA=OC,∠OEA=∠OEC=90°,在Rt△OAE和Rt△OCE中,,∴Rt△OAE≌Rt△OCE(HL).故选D.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠AFB C.∠BED D.∠ABF【考点】全等三角形的判定与性质.【分析】利用“边边边”求出△ABC和△DEB全等,再根据全等三角形对应角相等可得∠ACB=∠DBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:在△ABC和△DEB中,∵,∴△ABC≌△DEB(SSS),∴∠ACB=∠DBE,在△BCF中,由三角形的外角性质得,∠ACB+∠DBE=∠A FB,∴∠ACB=∠AFB.故选B.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和,难点在于准确确定出全等三角形的对应角.7.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【考点】分式方程的增根.【分析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④A C=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB 于点G,下列说法正确的是()A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1D.无法判断【考点】三角形的外角性质;平行线的性质.【分析】根据角平分线的定义得到∠1=∠ECF,根据平行线的性质得到∠F=∠ECF,根据三角形的外角的性质列式计算即可.【解答】解:∵CE平分∠ACD,∴∠1=∠ECF,∵FG∥CE,∴∠F=∠ECF,∵∠FCD=∠3+∠BAC,∠BAC=∠2+∠F,∴∠FCD=∠3+∠2+∠F,∴∠1+∠ECF=∠3+∠2+∠F,∴∠2+∠3=∠1,故选:C.【点评】本题考查的是三角形的外角的性质、平行线的性质以及角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500【考点】由实际问题抽象出分式方程.【分析】根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.【解答】解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.【点评】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到等量关系是解决问题的关键.二、填空题(本题共10小题,每小题3分,共30分)11.如图,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品是书.【考点】轴对称图形.【分析】根据轴对称图形的性质得出这个单词,进而得出答案.【解答】解:如图所示:这个单词是BOOK,所指的物品是书.故答案为:书.【点评】此题主要考查了轴对称图形的性质,正确得出单词的名称是解题关键.12.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是 2.8 .【考点】方差;众数.【分析】根据众数的概念,确定x的值,再求该组数据的方差.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]==2.8.故答案为:2.8.【点评】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.13.计算+的结果为 1 .【考点】分式的加减法.【专题】计算题;分式.【分析】原式第一项约分后,两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.如图,有一条直的宽纸带,按如图折叠,则∠1的度数为75°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据平行线的性质得出∠EDC=∠EFA=30°,∠1+∠BDC=180°,根据折叠求出∠EDB=75°,代入求出即可.【解答】解:∵AB∥CD,∴∠EDC=∠EFA=30°,∠1+∠BDC=180°,根据折叠得出∠EDB=(180°﹣30°)=75°,∵∠BFD=∠EFA=30°,∴∠1=180°﹣75°﹣30°=75°,故答案为:75°.【点评】本题考查了翻折变换,平行线的性质的应用,能灵活运用平行线的性质进行推理是解此题的关键.15.如图,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线交BC于D,DE⊥AB,且DE:DB=3:5,则DB的长为25 .【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,根据比例求出CD的长,即可得解.【解答】解:∵AD是∠BAC的平分线交BC于D,∠C=90°,DE⊥AB,∴CD=DE,∵BC=40,DE:DB=3:5,∴CD=×40=15,∴DE=CD=15,∴BD=BC﹣CD=25,故答案为:25.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.16.已知=,则=.【考点】比例的性质.【分析】直接利用已知将原式变形得出a,b的关系,进而得出答案.【解答】解:∵=,∴6a+3b=3a+5b,则3a=2b,故a=b,故==.故答案为:.【点评】此题主要考查了比例的性质,得出a,b的关系是解题关键.17.观察下列等式:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,若1+3+5+7+…+2015=n2,则n= 1008 .【考点】规律型:数字的变化类.【分析】通过观察题中给定的等式发现存在1+3+5+…+2n﹣1=n2的规律,令2015=2n﹣1,即可求得结论.【解答】解:观察1=12;1+3=22;1+3+5=32;1+3+5+7=42,可知,1+3+5+…+2n﹣1=n2,∴2015=2n﹣1,∴n=÷2=1008.故答案为:1008.【点评】本题考查了数字的变换,解题的关键是发现1+3+5+…+2n﹣1=n2的规律.18.计算÷(1﹣)的结果是.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8 cm.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【专题】探究型.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.20.对于两个不相等的有理数a,b,我们规定符号Max{a,b}表示a,b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{﹣,}=的解为x=1或x=﹣3 .【考点】解分式方程.【专题】新定义;分式方程及应用.【分析】分类讨论﹣与的大小,利用题中的新定义化简,求出解即可.【解答】解:当﹣<时,方程整理得:=,去分母得:3﹣x=2x,解得:x=1,经检验x=1是分式方程的解;当﹣>时,方程整理得:﹣=,去分母到:x﹣3=2x,解得:x=﹣3,经检验x=﹣3是分式方程的解.故答案为:x=1或x=﹣3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.三、解答题(满分60分)21.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.(1)若∠ADE=40°,求∠DBC的度数;(2)若△ABC与△DBC的周长分别是40cm,24cm,求AB的长.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)由DE垂直平分AB,根据线段垂直平分线的性质,可得∠AED=∠BED=90°,DA=DB,又由∠ADE=40°,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得答案;(2)由△ABC与△DBC的周长分别是40cm,24cm,易得AB=△ABC与△DBC的周长的差.【解答】解:(1)∵DE垂直平分AB,∴∠AED=∠BED=90°,DA=DB,∵∠ADE=40°,∴∠A=∠ABD=50°,又∵AB=AC,∴∠ABC=(180°﹣50°)÷2=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°;(2)∵△ABC的周长表示为:AB+BC+CA,△DBC的周长表示为BD+BC+CD,∴(AB+BC+CA)﹣(BD+BC+CD)=AB+BC+CA﹣BD﹣BC﹣CD=AB+CA﹣BD﹣CD=AB+CA﹣DA﹣CD=AB,∵△ABC与△DBC的周长分别为40cm,24cm,∴AB=16cm.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.22.(1)求作:△ABC,使AB=AC=a,∠B=∠α(保留作图痕迹,不写作法);(2)解方程:=﹣.【考点】作图—复杂作图;解分式方程.【分析】(1)直接利用作一角等于已知角的方法进而结合已知线段得出答案;(2)首先找出最简公分母,进而去分母,解方程求出答案.【解答】解:(1)如图所示,△ABC即为所求作的三角形;(2)方程两边都乘x(x+1),得4x+2=3x﹣(x+1),解这个一元一次方程,得:x=﹣,经检验x=﹣是原方程的解.所以原方程的解是x=﹣.【点评】此题主要考查了复杂作图以及分式方程的解法,正确掌握作一角等于已知角的方法是解题关键.23.已知,如图,AB∥CD,E是AB的中点,CE=DE,求证:AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用SAS证明△AEC≌△BED,即可得到AC=BD.【解答】证明:∵CE=DE,∴∠ECD=∠EDC,∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∴∠AEC=∠BED,又∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED.∴AC=BD.【点评】本题考查了等腰三角形的性质、全等三角形的性质定理与判定定理,解决本题的关键是证明△AEC≌△BED.24.某校要从新入学的两名体育特长生李勇、X浩中挑选一人参加校际跳远比赛,在跳远专项测试以及以后的6次跳远选拔赛中,他们的成绩(单位:cm)如下表所示:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 60249.4 X浩596 578 596 628 590 631 595602 (1)把X浩同学7次测试成绩的平均数,李勇同学7次测试成绩的方差填在表格相应位置出.(方差的结果保留一位小数)(2)请你分析两人成绩的特点.(3)经查阅历届比赛的资料,成绩若达到6.00m,就很可能得到冠军,你认为应选李勇去参数夺冠军比较有把握.(4)以往的该项最好成绩的记录是6.15m,若想要打破记录,你认为应选X浩去参赛.【考点】方差;算术平均数.【分析】(1)根据众数、方差的概念计算即可;(2)从众数、方差等角度分析即可;(3)根据方差,从成绩的稳定性方面分析;(4)从最高成绩方面进行分析,超过6.15米的破纪录的可能性大.【解答】解:(1)X浩成绩的平均数为:(596+578+596+628+590+631+595)÷7=602cm,李勇的方差为:s2=[(603﹣602)2+(589﹣602)2+…+(608﹣602)2]2;填表如下:专项测试和6次跳远选拔赛成绩平均数方差李勇603 589 602 596 604 612 608 602 X浩596 578 596 628 590 631 595 602 (2)从成绩的平均数来看,两人的“平均水平”相同,从成绩的方差来看,李勇的成绩比X浩的稳定;(3)在跳远专项测试以及之后的6次跳远选拔赛中,李勇有5次成绩超过6米,而X浩只有两次超过6米,从成绩的方差来看,李勇的成绩比X浩的稳定,选李勇更有把握夺冠;(4)X浩有两次成绩为6.31米和6.28米,超过6.15米,而李勇没有一次达到6.15米,故选X浩.故答案为602,49.4;李勇;X浩.【点评】本题考查了方差及算术平均数的计算方法,此题结合实际问题考查了平均数、方差等方面的知识,体现了数学来源于生活、服务于生活的本质.25.如图,∠ABC=90°,D、E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB 相交于点M.(1)求证:△AFM≌△DFC;(2)AD与MC垂直吗?并说明理由.【考点】全等三角形的判定与性质;平行线的判定与性质.【专题】证明题.【分析】(1)易证△ADE、△AFD、△DFE为等腰直角三角形,从而可得AF=DF,∠AFM=∠DFC=90°,根据同角的余角相等可得∠AMF=∠DCF,根据AAS即可得到△AFM≌△DFC;(2)由于AD⊥DE,要证AD⊥DE,只需证DE∥MC,只需证∠ACM=∠AED=45°,只需证△MFC为等腰直角三角形即可.【解答】证明:(1)∵AD⊥DE,AD=DE,点F是AE的中点,∴∠AFM=∠DFC=90°,AF=DF,∠DEA=∠DAE=45°.∵∠ABC=∠AFM=90°,∴∠AMF+∠MAC=90°,∠DCF+∠MAC=90°,∴∠AMF=∠DCF.在△AFM和△DFC中,∴△AFM≌△DFC;(2)AD⊥MC.理由如下:由(1)知,△AFM≌△DFC,∴FM=FC.∴△FMC是等腰直角三角形,∴∠FCM=45°.∵∠FED=45°,∴∠FED=∠FCM,∴DE∥MC.∵AD⊥DE,∴AD⊥MC.【点评】本题主要考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线等于斜边的一半、全等三角形的判定与性质、平行线的判定与性质等知识,考查了分析问题与解决问题的能力.26.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票,下面是两个小伙伴的对话:小亮:如果今天看演出,我们每人一X票,正好会差两X票的钱.小颖:过两天就是“儿童节”了,那时候来看这场演出,票价会打六折,我们每人一X票,还能剩72元钱呢!根据对话的内容,请你求出小伙伴的人数.【考点】分式方程的应用.【分析】设小伙伴的人数为x人,根据图中所给的信息可得小伙伴的人数为:,根据小伙伴的人数不变,列方程求解.【解答】解:设小伙伴的人数为x人,根据题意,得+2=,解得x=8.经检验x=8是原方程的根且符合题意.答:小伙伴的人数为8人.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.。

广东省惠州市惠城区八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题

广东省惠州市惠城区八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省某某市惠城区2015-2016学年八年级数学上学期期末考试试题一.选择题(本大题共10个小题,每小题3分,共30分)1.下列长度的线段能组成一个三角形的是()A.15cm、10cm、7cm B.4cm、5cm、10cmC.3cm、8cm、5cm D.3cm、3cm、6cm2.八边形的外角和为()A.180°B.360°C.900°D.1260°3.如图,∠1=∠2,PD⊥OA于D,PF⊥OB于F,下列结论错误的是()A.PD=PF B.OD=OF C.∠DPO=∠FPO D.PD=OD4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或175.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.106.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2 B.3 C.4 D.57.下列运算正确的是()A.a3b3=(ab)3B.a2a3=a6C.a6÷a3=a2D.(a2)3=a58.下面的多项式在实数X围内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+19.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b210.已知,则的值是()A.B.﹣C.2 D.﹣2二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,△ABC中,AB=AC,AD⊥BC,BD=5,则CD=.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.13.计算:(4x3y﹣8xy3)÷(﹣2xy)=.14.化简=.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.16.已知a﹣b=1,a2+b2=25,则ab=.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.如图,网格图中的每小格均是边长是1的正方形,△ABC的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出△A1B1C1,使它与△ABC关于x轴对称;(2)写出△A1B1C1三个顶点的坐标.18.解分式方程:.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.求∠ECB的度数.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 ﹣2 ﹣3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.21.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.22.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.先化简,再求值:,其中a=,b=.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB 于点F,FG⊥BC于点G.求证:AE=FG.25.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.2015-2016学年某某省某某市惠城区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.下列长度的线段能组成一个三角形的是()A.15cm、10cm、7cm B.4cm、5cm、10cmC.3cm、8cm、5cm D.3cm、3cm、6cm【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、10+7>15,能组成三角形,故此选项正确;B、4+5<10,不能组成三角形,故此选项错误;C、3+5=8,不能组成三角形,故此选项错误;D、3+3=6,不能组成三角形,故此选项错误;故选:A.【点评】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.八边形的外角和为()A.180°B.360°C.900°D.1260°【考点】多边形内角与外角.【分析】根据多边形的外角和等于360°进行解答.【解答】解:八边形的外角和等于360°.故选B.【点评】本题主要考查了多边形的外角和定理,多边形的外角和等于360°,与边数无关.3.如图,∠1=∠2,PD⊥OA于D,PF⊥OB于F,下列结论错误的是()A.PD=PF B.OD=OF C.∠DPO=∠FPO D.PD=OD【考点】角平分线的性质.【分析】根据角平分线性质得出PF=PD,根据勾股定理推出OF=OD,根据三角形内角和定理推出∠DPO=∠FPO.【解答】解:A、∵∠1=∠2,PD⊥OA,PF⊥OB,∴PE=PD,正确,故本选项错误;B、∵PD⊥OA,PF⊥OB,∴∠PFO=∠PDO=90°,∵OP=OP,PF=PD,∴由勾股定理得:OF=OD,正确,故本选项错误;C、∵∠PFO=∠PDO=90°,∠POB=∠POA,∴由三角形的内角和定理得:∠DPO=∠FPO,正确,故本选项错误;D、根据已知不能推出PD=OD,错误,故本选项正确;故选D.【点评】本题主要考查平分线的性质,三角形的内角和,熟练掌握角平分线的性质是解题的关键.4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.5.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.10【考点】多边形内角与外角.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:A【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.6.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2 B.3 C.4 D.5【考点】轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形的概念判断各图形即可求解.【解答】解:根据轴对称图形的定义可知:①角的对称轴是该角的角平分线所在的直线;②线段的对称轴是线段的垂直平分线;③等腰三角形的对称轴是底边的高所在的直线;⑤圆的对称轴有无数条,是各条直径所在的直线,故轴对称图形共4个.故选C.【点评】本题考查轴对称图形的知识,注意掌握轴对称图形的判断方法:图形沿一条直线折叠后,直线两旁的部分能够互相重合.7.下列运算正确的是()A.a3b3=(ab)3B.a2a3=a6C.a6÷a3=a2D.(a2)3=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、原式利用积的乘方运算法则变形得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=(ab)3,正确;B、原式=a5,错误;C、原式=a3,错误;D、原式=a6,错误,故选A.【点评】此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.下面的多项式在实数X围内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+1【考点】实数X围内分解因式.【分析】利用因式分解的方法,分别判断得出即可.【解答】解;A、x2+y2,无法因式分解,故A选项错误;B、x2﹣y,无法因式分解,故B选项错误;C、x2+x+1,无法因式分解,故C选项错误;D、x2﹣2x+1=(x﹣1)2,故D选项正确.故选:D.【点评】此题主要考查了公式法分解因式,熟练应用公式是解题关键.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10.已知,则的值是()A.B.﹣C.2 D.﹣2【考点】分式的化简求值.【专题】计算题.【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.【解答】解:∵,∴﹣=,∴,∴=﹣2.故选D.【点评】解答此题的关键是通分,认真观察式子的特点尤为重要.二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,△ABC中,AB=AC,AD⊥BC,BD=5,则CD= 5 .【考点】等腰三角形的性质.【分析】由已知条件,根据等腰三角形“三线合一”的性质,可得CD=BD=5.【解答】解:∵AB=AC∴∠ABD=∠ACD∵AD⊥BC∴∠ADC=∠ADB=90°∴CD=BD=5.故填5.【点评】此题主要考查等腰三角形“三线合一”的性质.题目思路比较直接,属于基础题.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【专题】开放型.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.13.计算:(4x3y﹣8xy3)÷(﹣2xy)= ﹣2x2+4y2.【考点】整式的除法.【分析】直接利用整式的除法运算法则化简求出答案.【解答】解:(4x3y﹣8xy3)÷(﹣2xy)=﹣2x2+4y2.故答案为:﹣2x2+4y2.【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.14.化简= 1 .【考点】分式的加减法.【专题】计算题.【分析】首先把两个分式的分母变为相同再计算.【解答】解:原式=﹣==1.故答案为:1.【点评】此题考查的知识点是分式的加减法,关键是先把两个分式的分母化为相同再计算.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200 台机器.【考点】分式方程的应用.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得: =.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.16.已知a﹣b=1,a2+b2=25,则ab= 12 .【考点】完全平方公式.【专题】计算题.【分析】根据完全平方公式得到(a﹣b)2=a2﹣2ab+b2,再把a﹣b=1,a2+b2=25整体代入,然后解关于ab的方程即可.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,∴1=25﹣2ab,∴ab=12.故答案为12.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了整体思想的运用.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.如图,网格图中的每小格均是边长是1的正方形,△ABC的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出△A1B1C1,使它与△ABC关于x轴对称;(2)写出△A1B1C1三个顶点的坐标.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接即可;(2)根据网格结构写出顶点的坐标.【解答】解:(1)所作图形如图所示:;(2)坐标为:A1(﹣1,﹣4)、B1(﹣2,﹣2)、C1(0,﹣1).【点评】本题考查了根据轴对称变化作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.18.解分式方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边乘以(x+2)(x﹣2),得x(x+2)﹣8=(x+2)(x﹣2),解这个方程,得x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.求∠ECB的度数.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理求出∠ACB的度数,根据线段垂直平分线的性质得到EA=EC,求出∠ACE的度数,计算即可.【解答】解:∵AB=AC,∠A=36°∴∠ACB=∠B==72°,又∵DE是AC的垂直平分线,∴EA=EC,∴∠ACE=∠A=36°∴∠ECB=∠ACB﹣∠ACE=36°.【点评】本题考查的是线段的垂直平分线的性质和三角形内角和定理以及等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 ﹣2 ﹣3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.【考点】整式的除法.【分析】(1)根据计算程序把数据代入即可求出答案;(2)把n代入计算程序后列出代数式化简即可.【解答】解:(1)输入n 3 ﹣2 ﹣3 …输出答案 1 1 1 1…(2)(n2+n)÷n﹣n(n≠0)=﹣n=n+1﹣n=1.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系,读表,明确计算程序是正确解答本题的前提.21.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BE D;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.22.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【考点】分式方程的应用.【专题】应用题.【分析】设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同.三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.先化简,再求值:,其中a=,b=.【考点】分式的化简求值;分母有理化.【专题】计算题.【分析】首先把除法运算转化成乘法运算,能因式分解的先因式分解,进行约分,然后进行减法运算,最后代值计算.【解答】解:原式=﹣=﹣==,当a=,b=时,原式==.【点评】本题的关键是正确进行分式的通分、约分,并准确代值计算.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB 于点F,FG⊥BC于点G.求证:AE=FG.【考点】等腰三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据角平分线上的点到两边的距离相等可得:FG=FA;则只要在确定FA与AE的关系即可确定AE与FG之间的关系;在直角三角形AFC中∠AFC+∠ACF=90°,在直角三角形CDE中,∠DEC+∠ECD=90°,根据角平分线的性质可知:∠ACF=∠DCE,则∠AFC=∠DEC,又知∠AEF=∠DEC,则∠AFC=∠AEF,所以AE=FA,则AE=FG.【解答】证明:∵CF平分∠ACB,FA⊥AC,FG⊥BC∴FG=FA∵∠AFC+∠ACF=90°,∠DEC+∠ECD=90°,且∠ACF=∠ECD∴∠AFC=∠DEC∵∠AEF=∠DEC∴∠AFC=∠AE F∴AE=FA∴AE=FG.【点评】本题主要考查了等腰三角形的判定和性质,角平分线的性质;解题时利用了AF这个中间量进行了等量代换是解答本题的关键.25.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)欲证明AD=BE,只要证明△ACD≌△BAE即可.(2)由α=∠ABE+∠BAP=∠CAD+∠BAP即可得出结论.(3)在RT△PBQ中,利用30度角的性质即可知道PB=2PQ,由此可以解决问题.【解答】(1)证明:∵△ABC为等边三角形,∴AC=AB,∠C=∠BAC=60°在△ACD和△BAE中,,∴△ACD≌△BAE,∴AD=BE.(2)解:不变.由(1)可知:△ACD≌△BAE,∴∠CAD=∠ABE,∵α=∠ABE+∠BAP=∠CAD+∠BAP=60°,(3)解:在△PBQ中,∠PBQ=90°﹣∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.【点评】本题考查全等三角形的判定和性质、直角三角形30度角的性质等知识,解题的根据利用全等三角形的性质,属于中考常考题型.。

四川省凉山彝族自治州西昌市凉山州2015-2016学年八年级上学期数学期末考试试卷及参考答案

四川省凉山彝族自治州西昌市凉山州2015-2016学年八年级上学期数学期末考试试卷及参考答案

A . 2对 B . 3对 C . 4对 D . 5对 13. 计算(﹣2)2015+22014等于( )
A . 22015 B . ﹣22015 C . ﹣22014 D . 22014
14. 已知分式方程
=1的解是非负数,则m的值是( )
A . m≤﹣1 B . m≤﹣1且m≠﹣2 C . m≥﹣1 D . m≥﹣1且m≠2 15. 若x2﹣2x﹣1=0(x≠0),则x+ 的值是( )
19. 若关于x的分式方程
无解,则m的值是________.
20. △ABC中,∠ABC和∠ACB的平分线交于点O,OD⊥BC于D,△ABC的面积18,AB=6,AC=8,OD=2,则BC 的长是________.
三、解答题
21. 计算:0.25×(﹣ )﹣2+( ﹣π)0+( )2 .
22. 化简求值:( +1)÷
A . 2 B . ﹣2 C . ±2 D . 2
二、填空题
16. 计算(2a﹣2bc3)2(﹣3ab5c﹣2)2=________. 17. 如图,点D在BC上,AB=AC=BD,AD=DC,则∠BAC的度数是________.
18. 如图△ABC中,AB=AC,DE⊥AB,D是AB的中点,DE交AC于E点,连结BE,BC=10cm, △BEC的周长是24cm,那么AB的长是________.
6. 如图,AC与BD交于O点,∠1=∠2,下列不能使△ABO≌△DCO的条件是( )
A . ∠A=∠D B . AC=BD C . AB=DC D . ∠ABC=∠DCB 7. 已知x﹣y=﹣3,xy=2,则(x+3)(y﹣3)的值是( ) A . ﹣6 B . 6 C . 2 D . ﹣2 8. 已知等腰三角形一腰上的高与另一腰的夹角是40°,则这个等腰三角形的底角是( )

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。

答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。

第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。

义务教育宜春市新课标人教版八年级上期末数学试卷含答案解析初二数学试题试卷.doc

义务教育宜春市新课标人教版八年级上期末数学试卷含答案解析初二数学试题试卷.doc

2015-2016学年江西省宜春市八年级《上〉期末数学试卷一、选择题(本大题共有6个小题,每题3分,共18分.每小题只有一个正确选项) 1. 以下列各组线段长为边能组成三角形的是()A. 1cm 2cm 4cmB. 8cm 6cm 4cmC. 12cm 5cm 6cmD. 2cm 3cm 6cm 2. 下面的图形是天气预报使用的图标,从左到右分别代表“霾”、“大雪”、“扬沙”、邙月,其中是轴对称图形的是()3. 2015年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种病毒的长度约为 0. 00000456毫米,则数据0. 00000456用科学记数法表示为()A. 0. 456X10-5 B ・ 4.56X10'6 C ・ 4.56X10-7 D ・ 45.6X10'7 4. 下列计算中正确的是()A. (x 2) 3=x 5B. (-3x 3y) 2=-9x 6y 2C. X 64-X 3=X 2 D ・ X ^X 二x‘ 5. 如图,已知在ZkABC 中,CD 是AB 边上的高线,BE 平分ZABC,交CD 于点E, BC 二5, DE 二2, 则ABCE 的面积等于( )A. 10B. 7 C ・ 5 D ・ 4 6.电子跳蚤游戏盘如图所示的AABC, AB 二8, AC 二9, BC 二10,如果跳蚤开始时在BC 边的点P°处,BP 0=4.跳蚤第一步从P 。

跳到AC 边的片(第1次落点)处,且CP L CP 。

;第二步从匕跳到 AB 边的P2 (第2次落点)处,且AP2二AP “第三步从P2跳到BC 边的P3 (第3次落点)处,且 BP 3=BP 2;跳蚤按上述规则一直跳下去,第n 次落点为匕(n 为正整数),则点P ⑼5与A 间的距D.A.离为()二、填空题(本大题共有8个小题,每题3分,共24分)7. 若分式一的值为0,则实数x的值为・x+18. 等腰三角形的一个外角是140°,则其底角是_・9. 已知点P (1-a, a+2)关于y轴的对称点在第二象限,则a的取值范围是—・10. 分解因式:ax'y - "^axy二____ ・11. 若4x2+kx+9是完全平方式,则k= _____ ・12. 如图,在AABC中,ZA二36° , AB二AC, BD是ZABC的角分线,若在边AB上截取BE二BC, 连接DE,则图中共有—个等腰三角形.13. 古希腊数学家把1, 3, 6, 10, 15, 21,…叫做三角形数,其中1是第一个三角形数,3 是第2个三角形数,6是第3个三角形数,…依此类推,那么第—个三角形数是55,第n个三角形数是—・14. 如图,以Z\ABC的三边为边分别作等边Z\ACD、A ABE. ABCF,则下列结论:①BE二FD;②ZBFE二ZCFD;③△EBF9ADFC.其中正确的结论是_ (请写出正确结论的序号)・F三、解答题(本大题共4小题,每小题5分,共20分)15.如图,在AAEC 和ZiDBF 中,ZE二ZF,点A、B、C、D 在同一条直线上,AB二CD、CE〃BF, 求证:△AEC9ADBF.16.作图题:(不要求写作法)如图,AABC在平面直角坐标系中,其中,点A、B、C的坐标分别为A (-2, 1) , B (-4,5) , C ( -5, 2)(1)作AABC关于图中所示直线I: x=-1对称的△人BG,其中,点A, B, C的对应点分别为点A[、B[、C| ;18.从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?四、解答题(本大题共3小题,每小题7分,共21分〉值代入其中再求值.20.如图,Z\ABC 中,AC 二BC, D 、E 分别在BC 、AC±, AD 和BE 相交于点F,连接CF 交AB 于点P,若ZCAD 二ZCBE,求证:点P 是AB 的中点.五、(本题共2小题,第22题8分,第23题9分,共17分)22.如图,已知ZiABC 中AB 二AC, BD 、CD 分别平分ZEBA 、ZECA, BD 交AC 于F,连接AD.(1) 当ZBAC 二50°时,求ZBDC 的度数;(2) 请直接写出ZBAC 与ZBDC 的数量关系;23.等腰RtAABC 中,ZBAC 二90° , AB 二AC,点A 、点B 分别是y 轴、x 轴上两个动点,直角边 AC 交x 轴于点D,斜边BC 交y 轴于点E. 2015a 19.请你先将式子 —2三 1 一 za+ aT ⑴古)化简,然后从7。

山东省潍坊市寿光市度八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题

山东省潍坊市寿光市度八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省潍坊市寿光市2015-2016学年度八年级数学上学期期末考试试题一、选择题(每小题3分,共36分,在每小题给出的4个选项中,只有一个是符合题目要求的.)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.代数式,,,8﹣,中,分式的个数为()A.1个B.2个C.3个D.4个3.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号220 225 230 235 240 245 250数量(双) 3 5 10 15 8 3 2对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数 C.中位数D.方差4.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对5.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定6.在▱ABCD中,∠A:∠B:∠C=2:3:2,则∠D的度数为()A.36° B.60° C.72° D.108°7.下列分式中,是最简分式的是()A.B.C.D.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=19.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE 的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS10.如果方程有增根,那么m的值为()A.1 B.2 C.3 D.无解11.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF二、填空题(每小题4分,共24分)13.命题“同位角相等,两直线平行”的逆命题是:.14.若分式的值为零,则x的值为.15.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.2015~2016学年度八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩.17.若已知一组数据x1,x2…,x n的平均数为x,方差为S2,那么另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数为,方差为.18.在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为cm.三、解答题(10分+10分+8分+10分+10分+12分=60分)19.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.20.同学们,期2016届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动脑筋,挑战一下下面这个题吧!相信你会做得更好!(1)下面图均为4的网格,每个小正方形的边长为1,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)21.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.22.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.24.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?某某省潍坊市寿光市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分,在每小题给出的4个选项中,只有一个是符合题目要求的.)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.代数式,,,8﹣,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】根据分式的定义直接判断得出即可.【解答】解:只有,,8﹣,符合分式的定义,一共有3个.故选:C.【点评】此题主要考查了分式的定义,准确把握分式定义是解题关键.3.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号220 225 230 235 240 245 250数量(双) 3 5 10 15 8 3 2对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数 C.中位数D.方差【考点】统计量的选择;众数.【分析】众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【解答】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.【点评】考查了众数、平均数、中位数和标准差意义,比较简单.4.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对【考点】全等三角形的判定.【分析】两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边和对应高不一定相等,故面积相等的两个三角形不一定全等.【解答】解:因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.故选C.【点评】本题考查了全等三角形的判定.解答此题需要熟悉三角形的面积公式.5.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定【考点】角平分线的性质;平行线之间的距离.【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥B C于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.在▱ABCD中,∠A:∠B:∠C=2:3:2,则∠D的度数为()A.36° B.60° C.72° D.108°【考点】平行四边形的性质.【分析】首先根据题意画出图形,然后由四边形ABCD是平行四边形,可得对角相等,邻角互补,又由在▱ABCD中,∠A:∠B:∠C=2:3:2,即可求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AD∥BC,∴∠C+∠D=180°,∵∠A:∠B:∠C=2:3:2,∴∠D=×180°=108°.故选D.【点评】此题考查了平行四边形的性质.注意结合题意画出图形,利用图形求解是关键.7.下列分式中,是最简分式的是()A.B.C.D.【考点】最简分式.【专题】探究型.【分析】将选项中式子进行化简,不能化简的选项即是所求的最简分式.【解答】解:,,,不能化简.故选D.【点评】本题考查最简分式,解题的关键是明确最简分式的定义.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【考点】作图—基本作图;坐标与图形性质;角平分线的性质.【专题】压轴题.【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b 的数量关系.【解答】解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.【点评】此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.9.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE 的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】根据已知条件分析,题目中给出了三角形的边相等,两条垂线,可得一对角相等,加上图形中的对顶角相等,条件满足了ASA,答案可得.【解答】解:∵AB⊥BC,DE⊥BC,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,要根据已知选择方法.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如果方程有增根,那么m的值为()A.1 B.2 C.3 D.无解【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣3),得x=3m.∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3.m=x=1,故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.11.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m【考点】三角形中位线定理.【专题】应用题.【分析】根据三角形中位线定理可得MN∥AB,MN=AB,然后可得△CMN∽△CAB,根据相似三角形面积比等于相似比的平方,线段的中点定义进行分析即可.【解答】解:∵AC,BC的中点M,N,∴MN∥A B,MN=AB,∴△CMN∽△CAB,∴S△M:S△ACB=(MN:AB)2,∴S△M:S△ACB=4:1,∴S△CMN=S△ABC,故A描述错误;∵M是AC中点,∴CM:CA=1:2,故B描述正确;∵AC,BC的中点M,N,∴MN∥AB,故C描述正确;∵MN的长为12m,MN=AB,∴AB=24m,故D描述正确,故选:A.【点评】此题主要考查了三角形的中位线,以及相似三角形的性质,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【考点】正方形的判定;线段垂直平分线的性质.【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.二、填空题(每小题4分,共24分)13.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【考点】命题与定理.【分析】把一个命题的题设和结论互换就得到它的逆命题.【解答】解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.若分式的值为零,则x的值为﹣2 .【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得|x|﹣2=0,x﹣2≠0,由|x|﹣2=0,解得x=2或x=﹣2,由x﹣2≠0,得x≠2,综上所述,得x=﹣2,故答案为:﹣2.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=35°.【考点】等腰三角形的性质.【专题】计算题.【分析】根据AD=AE,BD=EC,∠ADB=∠AEC=105°,可知△ADB≌△AEC,可得出AB=AC,根据等腰三角形的性质即可解答.【解答】解:∵AD=AE,BD=EC,∠ADB=∠AEC=105°,∴△ADB≌△AEC,∴AB=AC,∴∠B=∠C=40°,在△AEC中,∠CAE+∠C+∠AEC=180°,∴∠CAE=180°﹣40°﹣105°=35°,故答案为:35°.【点评】本题考查了等腰三角形的性质,属于基础题,关键是先求出AB=AC,再根据等腰三角形等边对等角的关系即可.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.2015~2016学年度八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩90分.【考点】加权平均数.【分析】根据加权平均数的计算公式求解即可.【解答】解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,95这三个数的平均数,对平均数的理解不正确.17.若已知一组数据x1,x2…,x n的平均数为x,方差为S2,那么另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数为3x﹣2 ,方差为9S2.【考点】方差;算术平均数.【分析】一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;一组数据中的每一个数都变为原数的n倍,它的方差变为原数据的n2倍;依此规律求解即可.【解答】解:∵一组数据x1,x2…,x n的平均数为x,方差为S2,∴另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数=(3x1﹣2+3x2﹣2+…+3x n﹣2)=[3(x1+x2+…+x n)﹣2n]=3x﹣2,原来的方差S2=[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],现在的方差s2=[(3x1﹣2﹣3x+2)2+(3x2﹣2﹣3x+2)2+…+(3x n﹣2﹣3x+2)2]=[9(x1﹣x)2+9(x2﹣x)2+…+9(x n﹣x)2]=9S2.故答案为3x﹣2,9S2.【点评】本题考查了平均数与方差,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.18.在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为10 cm.【考点】平行四边形的性质;解一元一次方程.【分析】根据平行四边形的对边相等可列出方程,从而解出a,这样就可得出各边的长,继而得出周长.【解答】解:∵平行四边形的对边相等,当a﹣3=9﹣a时a﹣3=9﹣a,解得:a=6cm,即得AB=3cm、BC=2cm、CD=3cm、DA=2cm,∴平行四边形ABCD的周长是:AB+BC+CD+DA=10cm;当a﹣4=9﹣a时,a=6.5cm,即得AB=3.5cm、BC=2.5cm、CD=2.5cm、DA=2.5cm,∴AB≠BC=CD=DA,∴四边形不是平行四边形,故答案为10【点评】本题考查平行四边形的性质,需要熟练掌握平行四边形对边相等的性质,如果不能看出哪两组边为对边,可以画出草图,这样有助于分析.三、解答题(10分+10分+8分+10分+10分+12分=60分)19.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先根据∠BAC=∠DAE得出∠BAD=∠CAE,再根据全等三角形的判定得出△ABD≌△ACE,解答即可.【解答】证明:∵∠BAC=∠DAE∴∠BAD=∠CAE∵∠ABD=∠ACE,AB=AC∵在△ABD与△ACE中,∴△ABD≌△ACE(ASA)∴BD=CE.【点评】本题考查了全等三角形的判定与性质,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.20.同学们,期2016届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动脑筋,挑战一下下面这个题吧!相信你会做得更好!(1)下面图均为4的网格,每个小正方形的边长为1,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)【考点】利用轴对称设计图案.【分析】(1)观察发现四个图形都是轴对称图形;(2)根据轴对称图形的特点设计图案即可.【解答】解:(1)这四个图案都具有的两个共同特征是:都是轴对称图形;(2)如图:.【点评】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.21.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.【考点】分式的化简求值.【专题】开放型.【分析】先算小括号里的,小括号里面的先对第二项的分母分解因式,然后找出两项分母的最简公因式(x﹣1)(x+1),对小括号里的第一项的分子分母都乘以x﹣1,第二项不变,然后根据同分母相加减的法则,分母不变.只把分子相加减,再把除法统一成乘法,约分化为最简.注意化简后,代入的数不能使分母的值为0.【解答】解:===x2+1;当x=0时,原式的值为1.说明:只要x≠±1,且代入求值正确,均可记满分.【点评】分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.注意化简后,代入的数不能使分母的值为0.22.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.【考点】分式方程的应用.【专题】行程问题.【分析】设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.根据题意,知小汽车所用的时间比公共汽车所用的时间少3小时﹣20分=小时,列方程求解.【解答】解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时.【点评】找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.此题中关键是弄清两车的时间关系.23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.【考点】平行四边形的性质;全等三角形的判定.【专题】证明题.【分析】根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.24.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?【考点】方差.【分析】(1)利用平均数计算公式、中位数解答即可;(2)先求出方差,根据方差的大小再确定哪段台阶路走起来更舒服;(3)要使台阶路走起来更舒服,就得让方差变得更小.【解答】解:(1)将甲、乙两台阶高度值从小到大排列如下,甲:10,12,15,17,18,18;乙:14,14,15,15,16,16;甲的中位数是:(15+17)÷2=16,平均数是:(10+12+15+17+18+18)=15;乙的中位数是:(15+15)÷2=15,平均数是:(14+14+15+15+16+16)=15;故两台阶高度的平均数相同,中位数不同;(2)=[(10﹣15)2+(12﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(18﹣15)2]=,=[(14﹣15)2+(14﹣15)2+(15﹣15)2+(15﹣15)2+(18﹣15)2+(18﹣15)2]=,∵乙台阶的方差比甲台阶方差小,∴乙台阶上行走会比较舒服;(3)修改如下:为使游客在两段台阶上行比较舒服,需使方差尽可能小,最理想应为0,同时不能改变台阶数量和台阶总体高度,故可使每个台阶高度均为15cm(原平均数),使得方差为0.【点评】此题主要考查了方差在实际生活中的应用,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。

2015-2016学年度上学期期末考试八年级数学试卷(含答案)

2015-2016学年度上学期期末考试八年级数学试卷(含答案)

2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。

2.本卷是试题卷,不能答题。

答题必须写在答题卡上。

解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。

3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。

★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。

湖北省天门市八年级上期末数学试卷含答案解析

湖北省天门市八年级上期末数学试卷含答案解析

2015-2016学年湖北省天门市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,是轴对称图形的是( )A.B.C.D.2.在下列各式的计算中,正确的是( )A.﹣40=1 B.2a(a+1)=2a2+2aC.(a+b)﹣1=a﹣1+b﹣1D.(y﹣2x)(y+2x)=y2﹣2x23.已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为( )A.﹣15 B.﹣2 C.﹣6 D.64.如果多项式x2﹣mx+6分解因式的结果是(x﹣3)(x+n),那么m,n的值分别是( )A.m=﹣2,n=5 B.m=2,n=5 C.m=5,n=﹣2 D.m=﹣5,n=25.等腰三角形腰上的高与底边的夹角等于( )A.底角 B.底角的一半C.顶角 D.顶角的一半6.把方程中的分母化为整数,正确的是( )A.B.C.D.7.已知等腰三角形两边a,b,满足|2a﹣3b+5|+(2a+3b﹣13)2=0,则此等腰三角形的周长为( )A.7或8 B.6或10 C.6或7 D.7或108.满足下列条件:①a=2,b=3,c=4;②a=3,b=5,c=2;③a:b:c=1:2:3;④a=m+1,b=n+2,c=2m(m>2)的三条线段a、b、c,能组成三角形的有( )A.①②B.③④C.①④D.①③9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.3 B.4 C.6 D.510.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x米,则根据题意所列方程正确的是( )A.﹣=2 B.=2+C.﹣=2 D.=2+二、填空题(共6小题,每小题3分,满分18分)11.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为__________.12.已知﹣=3,则分式的值为__________.13.有一个多边形的内角和为540°,则它的对角线共有__________ 条.14.已知7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,则这个多项式是__________.15.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=__________度.16.如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是__________.三、解答题(共10小题,满分72分)17.计算:(1)(﹣)×(﹣)2×(﹣)3;(2)(y+2)(y﹣2)﹣(y﹣1)(y+5).18.因式分解:(1)x2y﹣4y;(2)(m+n)2﹣4n(m+n)+4n2.19.先化简,再求值:(﹣)÷,其中x=﹣3.20.解方程:.21.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.22.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.23.如图,在边长为a的正方形中剪去一个边长为b小正方形(a>b),把剩下的部分拼成一个梯形,请利用甲、乙两图验证我们本学期学过的一个乘法公式.24.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.25.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.26.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)若AC=10,求四边形ABCD的面积;(2)求证:AC平分∠ECF;(3)求证:CE=2AF.2015-2016学年湖北省天门市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.在下列各式的计算中,正确的是( )A.﹣40=1 B.2a(a+1)=2a2+2aC.(a+b)﹣1=a﹣1+b﹣1D.(y﹣2x)(y+2x)=y2﹣2x2【考点】负整数指数幂;单项式乘多项式;平方差公式;零指数幂.【分析】根据0次幂、负整数指数次幂以及整式的乘法法则即可判断.【解答】解:A、﹣40=﹣1,故选项错误;B、2a(a+1)=2a2+2a,选项正确;C、a+b)﹣1=,选项错误;D、(y﹣2x)(y+2x)=y2﹣(2x)2=y2﹣4x2,选项错误.故选B.【点评】本题考查了零指数幂,负整数指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为( )A.﹣15 B.﹣2 C.﹣6 D.6【考点】因式分解的应用;代数式求值.【专题】整体思想;因式分解.【分析】首先将a﹣b=3、b+c=﹣5两式等号左右两边分别相加,得到a+c的值;再将代数式ac﹣bc+a2﹣ab分解因式转化为(a﹣b)(a+c);最后将a﹣b、a+c作为一个整体代入求得代数式的结果.【解答】解:∵a﹣b=3,b+c=﹣5∴a﹣b+b+c=3﹣5,解a+c=﹣2∴ac﹣bc+a2﹣ab=c(a﹣b)+a(a﹣b)=(a﹣b)(a+c)=3×(﹣2)=﹣6故选C【点评】本题考查因式分解的应用、代数式求值.解决本题的关键是将a﹣b、b+c、a+c做为一个整体来应用.4.如果多项式x2﹣mx+6分解因式的结果是(x﹣3)(x+n),那么m,n的值分别是( )A.m=﹣2,n=5 B.m=2,n=5 C.m=5,n=﹣2 D.m=﹣5,n=2【考点】因式分解-十字相乘法等.【专题】计算题.【分析】因式分解的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m与n的值即可.【解答】解:x2﹣mx+6=(x﹣3)(x+n)=x2+(n﹣3)x﹣3n,可得﹣m=n﹣3,﹣3n=6,解得:m=5,n=﹣2.故选C【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.5.等腰三角形腰上的高与底边的夹角等于( )A.底角 B.底角的一半C.顶角 D.顶角的一半【考点】等腰三角形的性质.【分析】先根据三角形内角和定理求出底角的度数,再利用直角三角形两锐角互余即可求出.【解答】解:设等腰三角形的顶角为α,根据题意得底角=(180°﹣α)=90°﹣α,∴夹角为90°﹣(90°﹣α)=α.即等腰三角形腰上的高与底边的夹角等于顶角的一半.故选D.【点评】本题考查了等腰三角形的性质及三角形内角和定理和直角三角形的两锐角互余;本题的结论可以记住,分析别的问题时可直接应用.6.把方程中的分母化为整数,正确的是( )A.B.C.D.【考点】解一元一次方程.【专题】计算题.【分析】把方程左边的两个式子分别扩大10倍和100倍,右边的值不变,即可得到答案.【解答】解:方程左边的两个式子分别扩大10倍和100倍,得:﹣=1,故选D.【点评】本题考查了解一元一次方程,解题的关键是明确分母化为整数的方法.7.已知等腰三角形两边a,b,满足|2a﹣3b+5|+(2a+3b﹣13)2=0,则此等腰三角形的周长为( )A.7或8 B.6或10 C.6或7 D.7或10【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【专题】计算题.【分析】先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;故选A.【点评】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.8.满足下列条件:①a=2,b=3,c=4;②a=3,b=5,c=2;③a:b:c=1:2:3;④a=m+1,b=n+2,c=2m(m>2)的三条线段a、b、c,能组成三角形的有( )A.①②B.③④C.①④D.①③【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:①∵2+3>4,∴能组成三角形;②∵2+3=5,∴不能组成三角形;③∵1+2=3,∴不能组成三角形;④∵m+1+m+2>2m,∴能组成三角形;故选:C.【点评】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.3 B.4 C.6 D.5【考点】角平分线的性质.【专题】几何图形问题.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.10.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x米,则根据题意所列方程正确的是( )A.﹣=2 B.=2+C.﹣=2 D.=2+【考点】由实际问题抽象出分式方程.【分析】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,根据题意可知,实际比计划提前2天完成任务,列方程即可.【解答】解:设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,由题意得,=2+.故选D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.二、填空题(共6小题,每小题3分,满分18分)11.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为3.4×10﹣10.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.已知﹣=3,则分式的值为.【考点】分式的值.【专题】压轴题;整体思想.【分析】由已知条件可知xy≠0,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把﹣=3代入即可.【解答】解:∵﹣=3,∴x≠0,y≠0,∴xy≠0.∴=====.故答案为:.【点评】本题主要考查了分式的基本性质及求分式的值的方法,把﹣=3作为一个整体代入,可使运算简便.13.有一个多边形的内角和为540°,则它的对角线共有5 条.【考点】多边形内角与外角;多边形的对角线.【分析】根据n边形的内角和定理得到关于n的方程(n﹣2)•180°=540°,解方程求得n,然后利用n边形的对角线条数为n•(n﹣3)计算即可.【解答】解:设该多边形的边数为n,∴(n﹣2)•180°=540°,解得n=5;∴这个五边形共有对角线×5×(5﹣3)=5条.故答案为:5.【点评】本题考查了n边形的内角和定理:n边形的内角和为(n﹣2)•180°;也考查了n边形的对角线.14.已知7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,则这个多项式是4x+xy﹣3.【考点】整式的除法.【分析】先根据已知得出这个多项式是(28x4y2+7x4y3﹣21x3y2)÷7x3y2,再进行计算即可.【解答】解:∵7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,∴这个多项式是(28x4y2+7x4y3﹣21x3y2)÷7x3y2=4x+xy﹣3,故答案为:4x+xy﹣3.【点评】此题考查了整式的除法,关键是根据已知条件得出这个多项式是(28x4y2+7x4y3﹣21x3y2)÷7x3y2,再用到的知识点是多项式除以单项式的法则.15.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=90度.【考点】全等三角形的应用.【分析】由图可得,△ABC与△DEF均是直角三角形,由已知可根据HL判定两三角形全等,再根据全等三角形的对应角相等,不难求解.【解答】解:∵△ABC与△DEF均是直角三角形,BC=EF,AC=DF∴Rt△ABC≌Rt△DEF(HL)∴∠ABC=∠DEF∵∠DEF+∠DFE=90°∴∠ABC+∠DFE=90°.故填90【点评】此题主要考查学生对全等三角形的判定及性质的综合运用能力.16.如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是3.【考点】轴对称-最短路线问题;等边三角形的性质;平行线分线段成比例.【专题】计算题.【分析】连接AG交EF于M,根据等边三角形的性质证明A、G关于EF对称,得到P,△PBG周长最小,求出AB+BG即可得到答案.【解答】解:要使△PBG的周长最小,而BG=1一定,只要使BP+PG最短即可,连接AG交EF于M,∵等边△ABC,E、F、G分别为AB、AC、BC的中点,∴AG⊥BC,EF∥BC,∴AG⊥EF,AM=MG,∴A、G关于EF对称,即当P和E重合时,此时BP+PG最小,即△PBG的周长最小,AP=PG,BP=BE,最小值是:PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.故答案为:3.【点评】本题主要考查对等边三角形的性质,轴对称﹣最短路线问题,平行线分线段成比例定理等知识点的理解和掌握,能求出BP+PG的最小值是解此题的关键.三、解答题(共10小题,满分72分)17.计算:(1)(﹣)×(﹣)2×(﹣)3;(2)(y+2)(y﹣2)﹣(y﹣1)(y+5).【考点】整式的混合运算.【专题】计算题;整式.【分析】(1)原式利用同德数幂的乘法法则计算,化简即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=(﹣)1+2+3=(﹣)6=;(2)原式=y2﹣4﹣y2﹣5y+y+5=﹣4y+1.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.因式分解:(1)x2y﹣4y;(2)(m+n)2﹣4n(m+n)+4n2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式y,再利用平方差公式分解因式得出答案;(2)直接利用完全平方公式分解因式得出答案.【解答】解:(1)x2y﹣4y=y(x2﹣4)=y(x﹣2)(x+2);(2)(m+n)2﹣4n(m+n)+4n2=(m+n﹣2n)2=(m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.19.先化简,再求值:(﹣)÷,其中x=﹣3.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入原式进行计算即可.【解答】解::原式=•=•=•=当x=﹣3时,原式==2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.解方程:.【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是3(x+1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.【点评】当分母是多项式,又能进行因式分解时,应先进行因式分解,再确定最简公分母.分式方程里单独的一个数和字母也必须乘最简公分母.21.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.【考点】作图-轴对称变换;轴对称-最短路线问题.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于直线DE对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据轴对称确定最短路线问题连接A1C与DE的交点即为所求点Q.【解答】解:(1)△A1B1C1如图所示;(2)点Q如图所示.【点评】本题考查了利用轴对称变换作图,轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.【考点】全等三角形的判定.【分析】找到两三角形全等的条件,三角形全等就写出来,选择一组证明即可.【解答】解:△AEM≌△ACN,△BMF≌△DNF,△ABN≌△ADM.选择△AEM≌△ACN,理由如下:∵△ADE≌△ABC,∴AE=AC,∠E=∠C,∠EAD=∠CAB,∴∠EAM=∠CAN,∵在△AEM和△ACN中,∴△AEM≌△ACN(ASA).【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.如图,在边长为a的正方形中剪去一个边长为b小正方形(a>b),把剩下的部分拼成一个梯形,请利用甲、乙两图验证我们本学期学过的一个乘法公式.【考点】平方差公式的几何背景.【分析】利用左图中阴影部分的面积是a2﹣b2等于右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b)即可解答.【解答】解:左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b),∵左右的阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).【点评】此题主要考查的是平方差公式的几何背景,运用不同方法表示阴影部分面积是解题的关键.24.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.【考点】等腰三角形的性质.【分析】(1)求得∠A的度数后利用四边形的内角和定理求得结论即可;(2)连接FB,根据AB=BC,且点F是AC的中点,得到BF⊥AC,∠ABF=∠CBF=∠ABC,证得∠CFD=∠CBF后即可证得∠CFD=∠ABC.【解答】解:(1)∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°,在Rt△EDC中,∴∠C=90°﹣25°=65°,∵AB=BC,∴∠C=∠A=65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.(2)连接BF∵AB=BC,且点F是AC的中点,∴BF⊥AC,∠ABF=∠CBF=∠ABC,∴∠CFD+∠BFD=90°,∠CBF+∠BFD=90°,∴∠CFD=∠CBF,∴∠CFD=∠ABC.【点评】本题考查了等腰三角形的性质,解题的关键是从复杂的图形中找到相等的线段,这是利用等腰三角形性质的基础.25.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.【考点】分式方程的应用.【专题】工程问题.【分析】本题的等量关系为:工作时间=工作总量÷工作效率,根据题意可得出:甲队的总工作量+乙队的总工作量=1,由此可列出方程求解.【解答】解:(1)设乙工程队单独完成这项工程需要x天,根据题意得:×20=1,解之得:x=60,经检验,x=60是原方程的解.答:乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y天,根据题意得:y=1,解之得:y=24.答:两队合做完成这项工程所需的天数为24天.【点评】本题主要考查分式方程的应用,考查学生对方程知识的应用能力,属于中难度题.26.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)若AC=10,求四边形ABCD的面积;(2)求证:AC平分∠ECF;(3)求证:CE=2AF.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)求出∠BAC=∠EAD,根据SAS推出△ABC≌△ADE,推出四边形ABCD的面积=三角形ACE的面积,即可得出答案;(2)根据等腰直角三角形的性质得出∠ACE=∠AEC=45°,△ABC≌△ADE求出∠ACB=∠AEC=45°,推出∠ACB=∠ACE即可;(3)过点A作AG⊥CG,垂足为点G,求出AF=AG,求出CG=AG=GE,即可得出答案.【解答】(1)解:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),=S△ABC+S△ACD,∵S四边形ABCD∴;(2)证明:∵△ACE是等腰直角三角形,∴∠ACE=∠AEC=45°,由△ABC≌△ADE得:∠ACB=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF;(3)证明:过点A作AG⊥CG,垂足为点G,∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质和判定,角平分线性质,直角三角形的性质的应用,能综合运用性质进行推理是解此题的关键,难度适中.。

八年级上学期期末复习试卷(代数几何压轴题)

八年级上学期期末复习试卷(代数几何压轴题)

实用文档正兴学校2015~2016学年八年级上学期期末复习清北班数学科试题(几何压轴题)1.定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动. 小亮用12根火柴棒,摆成如图所示的“整数三角形”; 小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”. (1)请你画出小颖和小辉摆出的“整数三角形”的示意图; (2)你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.①摆出等边“整数三角形”;②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.【解答】解:(1)小颖摆出如图1所示的“整数三角形”:小辉摆出如图2所示三个不同的等腰“整数三角形”:(2)①不能摆出等边“整数三角形”.理由如下: 设等边三角形的边长为a ,则等边三角形面积为.因为,若边长a 为整数,那么面积一定非整数.所以不存在等边“整数三角形”;②能摆出如图3所示一个非特殊“整数三角形”:2.(2008•江西)如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B ′处,点A 落在点A ′处;(1)求证:B ′E=BF ;(2)设AE=a ,AB=b ,BF=c ,试猜想a ,b ,c 之间的一种关系,并给予证明.【解答】(1)证明:由题意得B ′F=BF ,∠B ′FE=∠BFE , 在矩形ABCD 中,AD ∥BC ,∴∠B ′EF=∠BFE ,∴∠B ′FE=∠B'EF ,∴B ′F=B ′E ,∴B ′E=BF ; (2)答:a ,b ,c 三者关系不唯一,有两种可能情况: (ⅰ)a ,b ,c 三者存在的关系是a 2+b 2=c 2. 证明:连接BE ,由(1)知B ′E=BF=c ,∵B ′E=BE ,∴四边形BEB ′F 是平行四边形,∴BE=c . 在△ABE 中,∠A=90°,∴AE 2+AB 2=BE 2,∵AE=a ,AB=b ,∴a 2+b 2=c 2;(ⅱ)a ,b ,c 三者存在的关系是a+b >c . 证明:连接BE ,则BE=B ′E . 由(1)知B ′E=BF=c ,∴BE=c ,在△ABE 中,AE+AB >BE ,∴a+b >c .3.(2007•鄂尔多斯)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.班级: 姓名:____________座号:_____________密 封 线(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.(1)解:正方形、长方形、直角梯形.(任选两个均可)(2)解:答案如图所示.M(3,4)或M′(4,3).(3)证明:连接EC,∵△ABC≌△DBE,∴AC=DE,BC=BE,∵∠CBE=60°,∴EC=BC=BE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,∴DC2+EC2=DE2,∴DC2+BC2=AC2.即四边形ABCD是勾股四边形.、4.(2013•莆田模拟)阅读下面材料,并解决问题:(I)如图4,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5.则∠APB= 150°,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP .这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.(II)(拓展运用)已知△ABC三边长a,b,c 满足.(1)试判断△ABC的形状等腰直角三角形(2)如图1,以点A为原点,AB所在直线为x轴建立平面直角坐标系,直接出点B,C的坐标B (12,0),C(6,6);(3)如图2,过点C作∠MCN=45°交AB于点M,N.请证明AM2+BN2=MN2;(4)在(3)的条件下,若点N的坐标是(8,0),则点M的坐标为(3,0);此时MN= 5 .并求直线CM的解析式.(5)如图3,当点M,N分布在点B异侧时.则(3)中的结论还成立吗?解:(Ⅰ)∵△ABC是等边三角形,∴∠BAC=60°,∵△ABP绕顶点A旋转到△ACP′处,∴△ACP′≌△ABP,∴P′A=PA=3,PB=P′C=4,∠PAP′=∠BAC=60°,∴△APP′是等边三角形,∴∠AP′P=60°,PP′=PA=3,在△P′PC中,P′P2+P′C2=32+42=25=PC2,∴∠PP′C=90°,∴∠APB=∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=150°;故答案是:150°,△ABP;(Ⅱ)(1)整理得,|a﹣6|+(c﹣12)2+=0,由非负数的性质得,a﹣6=0,c﹣12=0,b﹣6=0,解得a=b=6,c=12,∵a2+b2=(6)2+(6)2=144=c2,∴△ABC是直角三角形,又∵a=b,∴△ABC是等腰直角三角形;(2)∵AB=c=12,∴点B(12,0),第一届清北班数学试卷第4页共22页第一届清北班数学试卷第3页共22页实用文档过点C作CD⊥x轴于D,则AD=CD=AB=×12=6,∴点C的坐标为(6,6);(3)如图,把△ACM绕点C逆时针旋转90°得到△BCM′,连接M′N,由旋转的性质得,AM=BM′、CM=CM′、∠CAM=∠CBM′=45°,∠ACM=∠BCM′,∴∠M′BN=∠ABC+∠CBN′=45°+45°=90°,∵∠MCN=45°,∴∠M′CN=∠BCN+∠BCM′=∠BCN+∠ACM=90°﹣∠MCN=90°﹣45°=45°,∴∠MCN=∠M′CN,在△MCN和△M′CN中,,∴△MCN≌△M′CN(SAS),∴MN=M′N,在Rt△M′NB中,BM′2+BN2=M′N2,∴AM2+BN2=MN2;(4)设AM=x,∵点N的坐标是(8,0),∴AN=8,BN=12﹣8=4,∴MN=8﹣x,由(3)的结论,x2+42=(8﹣x)2,解得x=3,∴AM=3,MN=8﹣3=5,∴点M的坐标(3,0);设直线CM的解析式为y=kx+b,∵点C(6,6),M(3,0),∴,解得,∴设直线CM的解析式为y=2x﹣6;(5)如图,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,把△BCN绕点C顺时针旋转90°得到△ACN′,由旋转的性质得,AN′=BN,CN′=CN,∠CAN′=∠CBN=135°,∴∠MAN′=135°﹣45°=90°,∴点N′在y轴上,∵∠MCN=45°,∴∠MCN′=90°﹣45°=45°,∴∠MCN=∠MCN′,在△MCN和△MCN′中,,∴△MCN≌△MCN′(SAS),∴MN=MN′,在Rt△AMN′中,AM2+AN′2=MN′2,∴AM2+BN2=MN2.5.如图,Rt△ABC中,∠ACB=90°,AC=BC=4cm,CD=1cm,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,至A点结束,设E点的运动时间为t秒,连接DE,当△BDE是直角三角形时,t的值为秒。

北京市房山区八级上期末数学试卷含答案解析

北京市房山区八级上期末数学试卷含答案解析

2015-2016学年北京市房山区八年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.2的平方根是()A.±B.C.﹣D.42.剪纸是中国最古老的民间艺术之一,是中华传统文化中的一块瑰宝.下列四个剪纸图案中不是轴对称图形的是()A.B.C.D.3.将3个红球,2个白球装在一个不透明的盒子里,这五个球除了颜色不同外其他均相同.如果从盒子中任摸出一个球,那么恰好摸到白球的可能性是()A.B.C.D.14.已知一个三角形两边的长分别为3和7,那么第三边的边长可能是下列各数中的()A.3 B.4 C.7 D.105.在0,π,,,0.021021021…这五个数字中,无理数有()A.2个B.3个C.4个D.5个6.小丽做了一个画角平分线的仪器(图1),其中AB=AC,BD=DC.将仪器上的点A与∠PQR的顶点Q重合,调整AB 和AC的位置,使它们分别落在∠PQR的两边上,过点A、D的射,线就是∠PRQ的角平分线(图2).此仪器的画图原理是:根据仪器结构,可得△ABD≌△ACD,这样就有∠BAD=∠CAD.其中,△ABD≌△ACD的依据是()A.SAS B.ASA C.AAS D.SSS7.某校有19名同学参加了中学生规范汉字书写大赛的初赛,他们的成绩各不相同,在统计这些同学的成绩后取前10名代表学校参加复赛.如果小新只知道自己的成绩,想判断自己能否进入复赛,那么他需要知道这组数据的()A.平均数B.中位数C.众数 D.频数8.下列计算正确的是()A. =a B. +=C.()2=a D. =9.如图,△ABC中,AC=3,BC=4,AB=5,BD平分∠ABC,如果M、N分别为BD、BC上的动点,那么CM+MN的最小值是()A.2.4 B.3 C.4 D.4.810.如图,直线m表示一条河,点M、N表示两个村庄,计划在m上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)()A. B.C.D.二、填空题(本题共18分,每小题3分)11.若二次根式有意义,则x的取值范围是.12.如果将一副三角板按如图方式叠放,那么∠1= .13.已知x1和x2分别为方程x2+x﹣2=0的两个实数根,那么x1+x2= ;x1•x2= .14.计算:(﹣)2+2= .15.“已知点P在直线 l 上,利用尺规作图过点P作直线 PQ⊥l”的作图方法如下:①以点P为圆心,以任意长为半径画弧,交直线l于A、B两点;②分别以A、B两点为圆心,以大于AB的长为半径画弧,两弧交于点Q;③连接PQ.则直线 PQ⊥l.请说明此方法依据的数学原理是.16.中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD的面积为1,如果把它的各边分别延长一倍得到正方形A1B1C1D1,则正方形A1B1C1D1的面积为;再把正方形A1B1C1D1的各边分别延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形AnBnCnDn的面积为(用含n的式子表示,n为正整数).三、解答题(本题共30分,每题5分)17.计算:(1﹣)0+|2﹣|﹣+.18.用配方法解一元二次方程:x2+6x=9.19.从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).20.某调查小组采用简单随机抽样方法,对我区部分初中生每天进行课外阅读的时间进行了抽样调查,将所得数据进行整理后绘制成如下统计图表,根据图表中的信息回答下列问题:(1)该调查小组抽取的样本容量是多少?(2)分别补全两个统计图表;(3)请估计我区初中生每天进行课外阅读的平均时间.21.已知:关于x的一元二次方程(k﹣2)x2+2x+1=0有两个实数根.(1)求k的取值范围;(2)如果k为正整数,且该方程的两个实根都是整数,求k的值.22.对于正实数a、b,定义新运算a*b=﹣a+b.如果16*x2=61,求实数x的值.四、解答题(本题共21分)23.已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0(m为实数)的两个实数根分别是△ABC的两边AB、AC 的长,且第三边BC的长为5.当m取何值时,△ABC为直角三角形?24.列方程解应用题:某校为开展开放性综合实践活动,计划在校园内靠墙用篱笆围出一块长方形种植园地.已知离校墙10m的距离有一条平行于墙的甬路,如果篱笆的长度是40m,种植园地的面积是198m2,那么这个长方形园地的边长应该各是多少m?25.如图,在Rt△ABC中,∠ACB=90°,AB=8cm,AC=4cm,点D从点B出发,以每秒cm的速度在射线BC上匀速运动,当点D运动多少秒时,以A、D、B为顶点的三角形恰为等腰三角形?(结果可含根号).26.已知:如图1,△ABC为等边三角形,CE平分△ABC的外角∠ACM,点在BC上,连接AD、DE,如果∠ADE=60°,求证:AD=DE.(2)如果△ABC为任意三角形,且∠ACB=60°,其他条件不变,这个结论还成立吗?说明你的理由.2015-2016学年北京市房山区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.2的平方根是()A.±B.C.﹣D.4【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:∵ =2,∴2的平方根是±,故选:A.【点评】本题考查了平方根的定义,解决本题的关键是熟记平方根的定义.2.剪纸是中国最古老的民间艺术之一,是中华传统文化中的一块瑰宝.下列四个剪纸图案中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解即可.【解答】解:A、是轴对称图形,本选项错误;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、不是轴对称图形,本选项正确.故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,3.将3个红球,2个白球装在一个不透明的盒子里,这五个球除了颜色不同外其他均相同.如果从盒子中任摸出一个球,那么恰好摸到白球的可能性是()A.B.C.D.1【考点】可能性的大小.【分析】先求出总球的个数,再根据概率公式即可得出答案.【解答】解:∵袋中共有3+2=5个球,∴摸到白球的可能性是;故选B.【点评】此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.已知一个三角形两边的长分别为3和7,那么第三边的边长可能是下列各数中的()A.3 B.4 C.7 D.10【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则4<x<10,所以符合条件的整数为7,故选C.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.5.在0,π,,,0.021021021…这五个数字中,无理数有()A.2个B.3个C.4个D.5个【考点】无理数.【分析】根据无理数的定义,即可解答.【解答】解:无理数是:π,,共2个,故选:A.【点评】本题考查了无理数,解决本题的关键是熟记无理数的定义.6.小丽做了一个画角平分线的仪器(图1),其中AB=AC,BD=DC.将仪器上的点A与∠PQR的顶点Q重合,调整AB 和AC的位置,使它们分别落在∠PQR的两边上,过点A、D的射,线就是∠PRQ的角平分线(图2).此仪器的画图原理是:根据仪器结构,可得△ABD≌△ACD,这样就有∠BAD=∠CAD.其中,△ABD≌△ACD的依据是()A.SAS B.ASA C.AAS D.SSS【考点】作图—基本作图;全等三角形的应用.【分析】根据“SSS”即可判定△ADB≌△ADC,由此即可解决问题.【解答】解:图2中,在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠BAD=∠CAD.故选D.【点评】本题考查基本作图、全等三角形的判定和性质等知识,熟练掌握全等三角形的判定就解题的关键,属于中考常考题型.7.某校有19名同学参加了中学生规范汉字书写大赛的初赛,他们的成绩各不相同,在统计这些同学的成绩后取前10名代表学校参加复赛.如果小新只知道自己的成绩,想判断自己能否进入复赛,那么他需要知道这组数据的()A.平均数B.中位数C.众数 D.频数【考点】统计量的选择.【分析】19人成绩的中位数是第10名的成绩.参赛选手要想知道自己是否能进入前10名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有19个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前10名,故应知道中位数.故选:B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、频数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8.下列计算正确的是()A. =a B. +=C.()2=a D. =【考点】二次根式的混合运算.【分析】根据二次根式的性质逐一判别即可得答案.【解答】解:A、=|a|,此选项错误;B、+不一定等于,此选项错误;C、()2=a,此选项正确;D、当a≥0,且b≥0时, =•,此选项错误;故选:C.【点评】本题主要考查二次根式的混合运算和二次根式的性质,熟练掌握二次根式的性质是解题的关键.9.如图,△ABC中,AC=3,BC=4,AB=5,BD平分∠ABC,如果M、N分别为BD、BC上的动点,那么CM+MN的最小值是()A.2.4 B.3 C.4 D.4.8【考点】轴对称-最短路线问题.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵AC=3,BC=4,AB=5,∴AC2+BC2=AB2,∴∠ACB=90°,∴AB•CE=BC•AC,即5CE=3×4∴CE=.即CM+MN的最小值为.故选A.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.10.如图,直线m表示一条河,点M、N表示两个村庄,计划在m上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)()A. B.C.D.【考点】作图—应用与设计作图.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点M关于直线m的对称点M′,连接NM′交直线m于Q.根据两点之间,线段最短,可知选项D修建的管道,则所需管道最短.故选:D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.二、填空题(本题共18分,每小题3分)11.若二次根式有意义,则x的取值范围是x≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.12.如果将一副三角板按如图方式叠放,那么∠1= 105°.【考点】三角形内角和定理.【分析】由三角形的内角和为180°即可得出∠2+∠3+45°=180°结合∠2=30°即可求出∠3的度数,再由∠1和∠3为对顶角即可得出∠1的度数.【解答】解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.【点评】本题考查了三角形内角和定理,解题的关键是利用三角形的内角和为180°求出∠3的度数.本题属于基础题,难度不大,解决该题型题目时,根据三角形的内角和以及另外两角的度数求出第三个角的度数是关键.13.已知x 1和x 2分别为方程x 2+x ﹣2=0的两个实数根,那么x 1+x 2= ﹣1 ;x 1•x 2= ﹣2 . 【考点】根与系数的关系.【分析】首先确定方程x 2+x ﹣2=0中的a 、b 、c 的值,然后代入x 1+x 2=﹣,x 1x 2=计算即可. 【解答】解:∵方程x 2+x ﹣2=0中a=1,b=1,c=﹣2, ∴x 1+x 2=﹣=﹣=﹣1,x 1x 2==﹣2,故答案为:﹣1;﹣2.【点评】此题主要考查了根与系数的关系,关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=﹣,x 1x 2=.14.计算:(﹣)2+2= 5 .【考点】二次根式的混合运算.【分析】直接利用完全平方公式化简进而合并同类二次根式即可.【解答】解:原式=2+3﹣2+2=5.故答案为:5.【点评】此题主要考查了二次根式的混合运算,正确应用完全平方公式是解题关键.15.“已知点P 在直线 l 上,利用尺规作图过点P 作直线 PQ ⊥l”的作图方法如下: ①以点P 为圆心,以任意长为半径画弧,交直线l 于A 、B 两点; ②分别以A 、B 两点为圆心,以大于AB 的长为半径画弧,两弧交于点Q ;③连接PQ .则直线 PQ ⊥l .请说明此方法依据的数学原理是 三线合一或到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线. .【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据等腰三角形的性质(三线合一)或垂直平分线的定义即可得出结论.【解答】解:三线合一或到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线.注:此题答案不唯一.故答案为三线合一或到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线.【点评】本题考查作图﹣基本作图、线段垂直平分线的定义和性质等知识,解题的关键是理解题意,记住等腰三角形的性质,线段垂直平分线的定义和性质,属于基础题,中考常考题型.16.中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD 的面积为1,如果把它的各边分别延长一倍得到正方形A 1B 1C 1D 1,则正方形A 1B 1C 1D 1的面积为 5 ;再把正方形A 1B 1C 1D 1的各边分别延长一倍得到正方形A 2B 2C 2D 2(如图2),如此进行下去,得到的正方形A n B n C n D n 的面积为 5n (用含n 的式子表示,n 为正整数).【考点】勾股定理的证明.【分析】根据三角形的面积公式,知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.【解答】解:已知小正方形ABCD 的面积为1,则把它的各边延长一倍后,△AA 1B 1的面积是1, 新正方形A 1B 1C 1D 1的面积是5,从而正方形A 2B 2C 2D 2的面积为5×5=25=52, …正方形A n B n C n D n 的面积为5n . 故答案为:5n .【点评】此题是勾股定理的证明,主要考查了正方形的性质和三角形的面积公式,能够从图形中发现规律,此题难度不大.三、解答题(本题共30分,每题5分)17.计算:(1﹣)0+|2﹣|﹣+.【考点】实数的运算;零指数幂. 【专题】计算题.【分析】此题涉及零指数幂、绝对值、立方根、算术平方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】解:(1﹣)0+|2﹣|﹣+=1+2﹣﹣2+4=7﹣3【点评】此题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握零指数幂、绝对值、立方根、算术平方根的运算.18.用配方法解一元二次方程:x 2+6x=9. 【考点】解一元二次方程-配方法.【分析】移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可. 【解答】解:x 2+6x=9, x 2+6x+9=9+9, (x+3)2=18, x+3=±3,x 1=﹣3+3,x 2=﹣3﹣3.【点评】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.19.从①∠B=∠C ;②∠BAD=∠CDA ;③AB=DC;④BE=CE 四个等式中选出两个作为条件,证明△AED 是等腰三角形(写出一种即可).【考点】等腰三角形的判定.【分析】首先选择条件证得△BAD≌△CDA,再利用全等三角形的性质得出∠ADB=∠DAC,即得出∠ADE=∠DAE,利用等腰三角形的判定定理可得结论.【解答】解:选择的条件是:①∠B=∠C ②∠BAD=∠CDA(或①③,①④,②③);证明:在△BAD和△CDA中,∵,∴△BAD≌△CDA(AAS),∴∠ADB=∠DAC,即在△AED中∠ADE=∠DAE,∴AE=DE,△AED为等腰三角形.【点评】本题主要考查了等腰三角形的判定定理,选择条件证得△BAD≌△CDA是解答此题的关键.20.某调查小组采用简单随机抽样方法,对我区部分初中生每天进行课外阅读的时间进行了抽样调查,将所得数据进行整理后绘制成如下统计图表,根据图表中的信息回答下列问题:(1)该调查小组抽取的样本容量是多少?(2)分别补全两个统计图表;(3)请估计我区初中生每天进行课外阅读的平均时间.【考点】条形统计图;总体、个体、样本、样本容量;统计表;扇形统计图.【分析】(1)根据统计图中30分钟的学生有220人占总人数的44%,可以求得调查小组抽取的样本容量;(2)根据统计图中的数据可以求得40分钟的人数和扇形统计图中缺少的数据,从而可以解答本题;(3)根据统计图中的数据可以求得我区初中生每天进行课外阅读的平均时间.【解答】解:(1)由统计图可得,调查小组抽取的样本容量是:220÷44%=500,即调查小组抽取的样本容量是500;(2)阅读时间为40分钟的人数为:500﹣100﹣220﹣60=120,补全的统计图如右图所示,(3)由统计图可得,=32.8,即我区初中生每天进行课外阅读的平均时间是32.8分钟.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、样本容量,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.21.已知:关于x的一元二次方程(k﹣2)x2+2x+1=0有两个实数根.(1)求k的取值范围;(2)如果k为正整数,且该方程的两个实根都是整数,求k的值.【考点】根的判别式.【分析】(1)根据一元二次方程的定义以及判别式的意义得出k≠2且△=22﹣4×(k﹣2)×1=12﹣4k≥0,可确定k的取值范围;(2)由k为正整数,得出k=1或3.再根据方程(k﹣2)x2+2x+1=0的两个实根都为整数,得出△是完全平方数,求出k=3.【解答】解:(1)∵关于x的一元二次方程(k﹣2)x2+2x+1=0有两个实根,∴k≠2且△=22﹣4×(k﹣2)×1=12﹣4k≥0,∴k≤3且k≠2;(2)∵k为正整数,∴k=1或3.又∵方程(k﹣2)x2+2x+1=0的两个实根都为整数,当k=1时,△=12﹣4k=8,不是完全平方数,∴k=1不符合题意,舍去;当k=3时,△=12﹣4k=0,原方程为x2+2x+1=0,符合题意,∴k=3.【点评】本题主要考查了根的判别式的知识,熟知一元二次方程的根与△的关系是解答此题的关键,此题难度不大.22.对于正实数a、b,定义新运算a*b=﹣a+b.如果16*x2=61,求实数x的值.【考点】实数的运算.【专题】计算题;新定义;实数.【分析】已知等式利用题中的新定义化简,分x大于0与小于0两种情况求出解即可得到x的值.【解答】解:∵a*b=﹣a+b,且a=16,b=x2,∴﹣16+x2=61,当x>0时,得:4x﹣16+x2=61,即x2+4x﹣77=0,解得:x1=﹣11(舍去),x2=7;当x<0时,得:﹣4x﹣16+x2=61,即x2﹣4x﹣77=0,解得:x3=11(舍去),x4=﹣7,∴x=±7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.四、解答题(本题共21分)23.已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0(m为实数)的两个实数根分别是△ABC的两边AB、AC 的长,且第三边BC的长为5.当m取何值时,△ABC为直角三角形?【考点】勾股定理的逆定理;根的判别式.【分析】首先利用根的判别式,判定无论m 取何值,方程总有两个不相等的实数根,然后利用公式法求出两个解,再设AB=m+1,AC=m+2,则AB <AC ,再分情况计算:①当BC 为直角边时,②当BC 为斜边时,分别算出m 的值. 【解答】解:∵a=1,b=﹣(2m+3),c=m 2+3m+2, ∴△=b 2﹣4ac ,=[﹣(2m+3)]2﹣4(m 2+3m+2), =4m 2+12m+9﹣4m 2﹣12m ﹣8, =1>0,∴无论m 取何值,方程总有两个不相等的实数根,由求根公式得:,即x 1=m+2,x 2=m+1,不妨设AB=m+1,AC=m+2,则AB <AC , ∵△ABC 为直角三角形且第三边BC=5, 当BC 为直角边时,由勾股定理得: AB 2+BC 2=AC 2∴(m+1)2+52=(m+2)2, 解得m=11,当BC 为斜边时,由勾股定理得:AB 2+AC 2=BC 2, ∴(m+1)2+(m+2)2=52, 解得m 1=2,m 2=﹣5, 当m=﹣5时,AB=m+1=﹣4, ∴m=﹣5(舍去)∴m=11或m=2时,△ABC 为直角三角形.【点评】此题主要考查了一元二次方程根的判别式,以及勾股定理逆定理的应用,关键是要分情况讨论,不要漏解.24.列方程解应用题:某校为开展开放性综合实践活动,计划在校园内靠墙用篱笆围出一块长方形种植园地.已知离校墙10m 的距离有一条平行于墙的甬路,如果篱笆的长度是40m ,种植园地的面积是198m 2,那么这个长方形园地的边长应该各是多少m ?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】根据题意设该园地垂直于校墙的一边长为 x m,则平行于墙的一边长为(40﹣2x)m,利用种植园地的面积是198m2,得出方程求出答案.【解答】解:设该园地垂直于校墙的一边长为 x m,则平行于墙的一边长为(40﹣2x)m,根据题意列方程得:x(40﹣2x)=198,整理,得:x2﹣20x+99=0解得:x1=11,x2=9∵11>10,∴x1=11不符合实际要求,舍去,∴x=9,此时40﹣2x=22,答:这个长方形园地该园地垂直于校墙的一边长为9 m,平行于墙的一边长为22 m.【点评】此题主要考查了一元二次方程的应用,根据题意正确表示出长方形园地的长是解题关键.25.如图,在Rt△ABC中,∠ACB=90°,AB=8cm,AC=4cm,点D从点B出发,以每秒cm的速度在射线BC上匀速运动,当点D运动多少秒时,以A、D、B为顶点的三角形恰为等腰三角形?(结果可含根号).【考点】等腰三角形的判定.【专题】动点型.【分析】分三种情况:①当 AB=AD 时,如图1,根据30°的三角函数列式计算即可;②当AB=BD时,如图2,则t=8,求出t;③当AD=AB时,如图3,根据BD=2BC列式,求t的值.【解答】解:在Rt△ABC中,∵∠ACB=90°,AB=8 cm,AC=4 cm,∴BC==cm∵点D从点B出发,以每秒cm的速度在射线BC上匀速运动,则BD=tcm,以A、D、B为顶点的三角形恰为等腰三角形时,分三种情况:①当 AB=AD 时,如图1,过D作DE⊥AB于E,则AE=BE=AB=4,在Rt△ACB中,∵AC=4,AB=8,∴∠B=30°,cos∠B=cos30°=,∴,t=;②当AB=BD时,如图2,∵AB=8,BD=t,则t=8,t=;③当AD=AB时,如图3,∵∠ACB=90°,∴DC=BC=4,则t=8,t=8;答:当点D运动8秒或秒或秒时,△ABD为等腰三角形.【点评】本题主要考查等腰三角形的性质和判定,由条件分三种情况分别得到关于t的方程是解题的关键,是常考题型;由动点组成的等腰三角形要采用分类讨论的思想.26.(1)已知:如图1,△ABC为等边三角形,CE平分△ABC的外角∠ACM,点在BC上,连接AD、DE,如果∠ADE=60°,求证:AD=DE.(2)如果△ABC为任意三角形,且∠ACB=60°,其他条件不变,这个结论还成立吗?说明你的理由.【考点】四点共圆;等边三角形的性质.【分析】(1)只要证明A、D、C、E四点共圆,即可得到∠ECM=∠DAE=60°,∠AED=∠ACB=60°,所以∠DAE=∠DEA 由此解决问题.(2)证明类似(1),先证明A、D、C、E四点共圆,再证明∠DAE=∠DEA即可.【解答】(1)证明:如图1中,∵△ABC是等边三角形,∴∠ACB=60°,∠ACM=120°,∴CE平分∠ACM,∴∠ACE=∠ECM=60°,∵∠ADE=60°,∠ACE=60°,∴∠ADE=∠ACE,∴A、D、C、E四点共圆,∴∠ECM=∠DAE=60°,∠AED=∠ACB=60°,∴∠DAE=∠DEA,∴AD=DE.(2)结论成立.DA=DE.理由:如图2中,连接AE,∵∠ACB=60°,∴∠ACM=180°﹣∠ACB=120°,∴CE平分∠ACM,∴∠ACE=∠ECM=60°,∵∠ADE=60°,∠ACE=60°,∴∠ADE=∠ACE,∴A、D、C、E四点共圆,∴∠ECM=∠DAE=60°,∠AED=∠ACB=60°,∴∠DAE=∠DEA,∴AD=DE.【点评】本题考查四点共圆,圆内接四边形的性质等知识,解题的关键是发现A、D、C、E四点共圆,掌握圆内接四边形的性质,题目有点难度.。

2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷

2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷

2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷、选择题(每小题 3分,共36分)A . 1B. 2C. 3D. 42. (3分)下列长度的线段不能构成直角三角形的是( )A . 8, 15, 17 B. 1.5, 2, 3C. 6, 8, 10 D . 5, 12, 13 3. (3分)如图,笑脸盖住的点的坐标可能为()A . (5, 2)B . (3, -4) C. (- 4, - 6) D. (- 1 , 3)4. (3分)点M (2, 1)关于x 轴对称的点的坐标是( )A. (1, - 2)B. (- 2, 1)C. (2, - 1)D.( - 1, 2)5. (3分)下列各式中,正确的是( )A . VT&=- 4 B. ±VT^=4 C .为 _ 事=-3 D . J (一 4)~~= - 4 A.中位数 B.平均数 C.众数 D.加权平均数10. (3分)2016年龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来, 同时小丽也往回走,遇到妈妈后聊了 一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为 t,小丽与体育馆的距离为S,下面能反映S 与t 的函数关系的大致图象是()勇扼,°・3中无理数的个数是(6. A.7. I k l(3分)右函数 y= (k - 1) xk= 土 1, b= - 1 B. k= 土 1, b=0 ((3 分)在 Rt△ ABC 中,Z C=90 °,D W4+b+1是正比例函数,贝U k 和b 的值为() 36T(3分)下列命题中,不成立的是( A.两直线平行,同旁内角互补 B .同位角相等,两直线平行C. 一个三角形中至少有一个角不大于D. 三角形的一个外角大于任何一个内角 A. B. 12 25C. 8.60度么最终买什么水果,下面的调查数据中最值得关注的是(班长对全班学生爱吃哪几种水果作了民意调查.)A.1.(3分)数学11. (3分)如图,/ X 的两条边被一直线所截,用含 a 和6的式子表示/ X 为(A . a _ 3 B. 3- a C. 180 - a+ 3D. 180 - a~ 312. (3分)如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是( )、填空题(每小题 3分,共12分)13. (3分)16的平方根是.14. (3分)数据3, 4, 6, 8, x, 7的众数是7,贝U 数据4, 3, 6, 8, 2, x 的中位数是 15. (3分)观察下列各式: 日—V2+1你发现的规律计算:(1 .1.1. - 1 (++ _+,, + ______ _________2+V?妮+2 V2016 +V201516. (3分)如图,在矩形 ABCD 中,AB=3 , BC=4,现将点A 、C 重合,使纸片折叠压平,折痕为EF,那么重叠部分三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) _.1'木历’志=2柄..请利用A . 3B . V10C . ^2D . 2龙△ AEF 的面积=17.(5分)计算:遍- |昨商-40"鹿.19. (7分)每年9月举行 全国中学生数学联赛”,成绩优异的选手可参加 全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入 国家集训队”.第31界冬令营已于2015年12 月在江西省鹰谭一中成功举行.现将脱颖而出的 50名选手分成两组进行竞赛,每组 25人,成绩整理并绘制成如下的统计图:18. (6分)解方程组:Q 5x+0.7y=35 jc+O. 4y=40二铝(1)请你将表格补充完整:平均数一组74二组 —中位数 众数 方差104 72(2)从本次统计数据来看, 组比较稳定.请你根据以上提供的信息解答下列问题:20.(8分)已知:如图,/ C= / 1 ,』2和』D互余,BE ± FD于点G.求证:AB // CD.21.(8分)双十一”当天,某淘宝网店做出优惠活动,按原价应付额不超过200元的一律9折优惠,超过200元的,其中200元按9折算,超过200元的部分按8折算.设某买家在该店购物按原价应付x元,优惠后实付y元.(1)当x> 200时,试写出y与x之间的函数关系式(如果是一次函数,请写成y=kx+b的形式);(2)该买家挑选的商品按原价应付300元,求优惠后实付多少元?22.(9分)如图,11反映了甲离开A地的时间与离A地的距离的关系12反映了乙离开A地的时间与离开A地距离之间的关系,根据图象填空:(1)当时间为0时,甲离A地千米;(2)当时间为时,甲、乙两人离A地距离相等;(3)图中P点的坐标是;(4) 11对应的函数表达式是:S1=;(5)当t=2时,甲离A地的距离是千米;(6)当S=28时,乙离开A地的时间是时.23.(9分)如图,在直角坐标系中,矩形OABC的顶点。

2015-2016年安徽省黄山市八年级(上)期末数学试卷(解析版)

2015-2016年安徽省黄山市八年级(上)期末数学试卷(解析版)

2015-2016学年安徽省黄山市八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,满分30分.在每小题所给的四个选项中,只有一项是正确的,请将正确选项的代号填入题中的括号内1.(3分)下列运算正确的是()A.2x+6x=8x2B.a6÷a2=a3C.(﹣4x3)2=16x6D.(x+3)2=x2+92.(3分)下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+23.(3分)化简:﹣=()A.1B.﹣x C.x D.4.(3分)一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5B.6C.7D.85.(3分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.4B.3C.2D.16.(3分)有四条线段,它们的长分别为1cm,2cm,3cm,4cm,从中选三条构成三角形,其中正确的选法有()A.1种B.2种C.3种D.4种7.(3分)若x+n与x+2的乘积中不含x的一次项,则n的值为()A.﹣2B.2C.0D.18.(3分)如图,四边形ABCD中,AB∥CD,AB=CD,E、F是对角线BD上的两点,如果再添加一个条件,使△ABE≌△CDF,则添加的条件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠2 9.(3分)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠310.(3分)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,满分18分,将答案直接填在题中相应的横线上11.(3分)化简:(m+n)(m﹣n)+2n2=.12.(3分)若a=2,a﹣2bc=3,则2a2﹣4abc的值为.13.(3分)已知a2﹣3ab+b2=0(a≠0,b≠0),则代数式+的值等于.14.(3分)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.15.(3分)如图,AB=AC=8cm,DB=DC,若∠ABC=60°,则BE=cm.16.(3分)在平面直角坐标系中,已知两点A(1,2),B(﹣1,﹣1),若△ABC 是以线段AB为一腰,对称轴平行于y轴的等腰三角形,则C点的坐标是.三、本大题共2小题,每小题6分,满分12分17.(6分)先化简,再求值:(a﹣b)2﹣(a+2b)(a﹣2b)+2a(1+b),其中a=2016,b=﹣1.18.(6分)化简:a﹣÷.四、本大题满分7分19.(7分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)连接BD,若AD=4,求AC的长度.五、本大题满分8分20.(8分)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?六、本大题共3小题,第21小题6分,第22小题8分,第23小题11分,满分25分21.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.22.(8分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.23.(11分)在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB 上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.2015-2016学年安徽省黄山市八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,满分30分.在每小题所给的四个选项中,只有一项是正确的,请将正确选项的代号填入题中的括号内1.(3分)下列运算正确的是()A.2x+6x=8x2B.a6÷a2=a3C.(﹣4x3)2=16x6D.(x+3)2=x2+9【解答】解:A、系数相加字母部分不变,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平方和加积的2倍,故D错误;故选:C.2.(3分)下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2【解答】解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误;故选:A.3.(3分)化简:﹣=()A.1B.﹣x C.x D.【解答】解:原式==﹣=﹣x.故选:B.4.(3分)一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5B.6C.7D.8【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.5.(3分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.4B.3C.2D.1【解答】解:第一个图形是轴对称图形,有2条对称轴,第二个图形是轴对称图形,有2条对称轴,第三个图形是轴对称图形,有2条对称轴,第四个图形是轴对称图形,有3条对称轴,所以,是轴对称图形,且对称轴的条数为2的图形的个数是3.故选:B.6.(3分)有四条线段,它们的长分别为1cm,2cm,3cm,4cm,从中选三条构成三角形,其中正确的选法有()A.1种B.2种C.3种D.4种【解答】解:能构成三角形的只有2、3、4这一种情况.故选A.7.(3分)若x+n与x+2的乘积中不含x的一次项,则n的值为()A.﹣2B.2C.0D.1【解答】解:∵(x+n)(x+2)=x2+2x+nx+2n=x2+(2+n)x+2n,又∵x+n与x+2的乘积中不含x的一次项,∴2+n=0,∴n=﹣2;故选:A.8.(3分)如图,四边形ABCD中,AB∥CD,AB=CD,E、F是对角线BD上的两点,如果再添加一个条件,使△ABE≌△CDF,则添加的条件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠2【解答】解:∵在四边形ABCD中,AB∥CD,AB=CD,∴四边形ABCD是平行四边形.A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),故此选项错误;C、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),故此选项错误;故选:A.9.(3分)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C.10.(3分)如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:结论①错误.理由如下:图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.在△AOD与△COE中,,∴△AOD≌△COE(ASA).同理可证:△COD≌△BOE.结论②正确.理由如下:∵△AOD≌△COE,=S△COE,∴S△AOD=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC,∴S四边形CDOE即△ABC的面积等于四边形CDOE的面积的2倍.结论③正确,理由如下:∵△AOD≌△COE,∴OD=OE;结论④正确,理由如下:∵△AOD≌△COE,∴CE=AD,∵AB=AC,∴CD=EB,∴CD+CE=EB+CE=BC.综上所述,正确的结论有3个.故选:C.二、填空题:本大题共6小题,每小题3分,满分18分,将答案直接填在题中相应的横线上11.(3分)化简:(m+n)(m﹣n)+2n2=m2+n2.【解答】解:原式=m2﹣n2+2n2=m2+n2.故答案为:m2+n2.12.(3分)若a=2,a﹣2bc=3,则2a2﹣4abc的值为12.【解答】解:∵a=2,a﹣2bc=3,∴2a2﹣4abc=2a(a﹣2bc)=2×2×3=12.故答案为:12.13.(3分)已知a2﹣3ab+b2=0(a≠0,b≠0),则代数式+的值等于3.【解答】解:∵a2﹣3ab+b2=0(a≠0,b≠0),∴a2+b2=3ab,∴+===3.故答案为:3.14.(3分)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=240度.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.15.(3分)如图,AB=AC=8cm,DB=DC,若∠ABC=60°,则BE=4cm.【解答】解:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,A在BC的垂直平分线上,∴BC=AB=8cm,∵DB=DC,∴点D在BC的垂直平分线上,∴AD垂直平分BC,∴BE=BC=4cm.故答案为:4.16.(3分)在平面直角坐标系中,已知两点A(1,2),B(﹣1,﹣1),若△ABC 是以线段AB为一腰,对称轴平行于y轴的等腰三角形,则C点的坐标是(3,﹣1)或(﹣3,2).【解答】解:分两种情况:①当A为顶角顶点时,根据题意得:等腰三角形的对称轴为x=1,∵点B的坐标为(﹣1,﹣1),∴点C的坐标为(3,﹣1);②当B为顶角顶点时,根据题意得:等腰三角形的对称轴为x=﹣1,∵点A的坐标为(1,2),∴点C的坐标为(﹣3,2);综上所述:C点的坐标为(3,﹣1)或(﹣3,2);故答案为:(3,﹣1)或(﹣3,2).三、本大题共2小题,每小题6分,满分12分17.(6分)先化简,再求值:(a﹣b)2﹣(a+2b)(a﹣2b)+2a(1+b),其中a=2016,b=﹣1.【解答】解:(a﹣b)2﹣(a+2b)(a﹣2b)+2a(1+b)=a2﹣2ab+b2﹣a2+4b2+2a+2ab=5b2+2a,当a=2016,b=﹣1时,原式=5×(﹣1)2+2×2016=4037.18.(6分)化简:a﹣÷.【解答】解:原式=a﹣•=a﹣=﹣=﹣.四、本大题满分7分19.(7分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)连接BD,若AD=4,求AC的长度.【解答】解:如图所示:(2)∵ED是AB的垂直平分线,∴AD=BD=4,∵∠A=30°,∴∠A=∠DBA=30°,∵∠A=30°,∠C=90°,∴∠ABC=60°,∴∠CBD=60°﹣30°=30°,∴CD=AD=2,∴AC=4+2=6.五、本大题满分8分20.(8分)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?【解答】解:(1)设单独由乙队摘果,需要x天才能完成,根据题意得:2(+)=1,解得:x=3,经检验x=3是分式方程的解,且符合题意,则单独由乙队完成需要3天才能完成;(2)方案1:总工资为6000元;方案2:总工资为5200元;方案3:总工资为4800元,则方案3总工资最低,最低总工资为4800元.六、本大题共3小题,第21小题6分,第22小题8分,第23小题11分,满分25分21.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.22.(8分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.【解答】解:OE垂直且平分AB.证明:在△BAC和△ABD中,,∴△BAC≌△ABD(SAS).∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.又点E是AB的中点,∴OE垂直且平分AB.23.(11分)在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB 上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.。

安徽省合肥市包河区八年级数学上学期期末试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

安徽省合肥市包河区八年级数学上学期期末试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

2015-2016学年某某省某某市包河区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.2.点(﹣2,3)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数y=的自变量x的取值X围是()A.x≠﹣2 B.x≥﹣2 C.x>﹣2 D.x<﹣24.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.6.下列各图中,能表示y是x的函数的是()A.B.C.D.7.下列命题中真命题是()A.三角形按边可分为不等边三角形,等腰三角形和等边三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的一个外角大于任何一个内角D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等8.若一次函数y=(m﹣1)x+m2﹣1的图象通过原点,则m的值为()A.m=﹣1 B.m=1 C.m=±1 D.m≠19.设三角形三边之长分别为3,8,1﹣2a,则a的取值X围为()A.3<a<6 B.﹣5<a<﹣2 C.﹣2<a<5 D.a<﹣5或a>210.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题(共5小题,每小题4分,满分20分)11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B 度数为.12.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为.13.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为.14.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.15.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.三、解答题(共3小题,满分21分)16.夏令营组织学员到某一景区游玩,老师交给同学一X画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为.18.如图,点F、C在BE上,BF=CE,∠A=∠D,∠B=∠E.求证:AB=DE.四、解答题(共1小题,满分9分)19.小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是m/分,点B的坐标是;(2)线段AB所表示的y与x的函数关系式是;(3)试在图中补全点B以后的图象.五、解答题(共1小题,满分9分)20.如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P 沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.六、解答题(共1小题,满分11分)21.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?2015-2016学年某某省某某市包河区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.点(﹣2,3)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣2,3)所在的象限是第二象限,故选B.3.函数y=的自变量x的取值X围是()A.x≠﹣2 B.x≥﹣2 C.x>﹣2 D.x<﹣2【考点】函数自变量的取值X围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得:x+2≥0,解得x≥﹣2.故选:B.4.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.【解答】解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选B.5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC 的高,再结合图形进行判断.【解答】解:线段BE是△ABC的高的图是选项D.故选D.6.下列各图中,能表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】在坐标系中,对于x的取值X围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B正确.故选:B.7.下列命题中真命题是()A.三角形按边可分为不等边三角形,等腰三角形和等边三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的一个外角大于任何一个内角D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等【考点】命题与定理.【分析】利用三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质分别判断后即可确定正确的选项.【解答】解:A、三角形按边可分为不等边三角形,等腰三角形,故错误,是假命题;B、等腰三角形任一个内角都有可能是钝角或直角,错误,是假命题;C、三角形的一个外角大于任何一个不相邻的内角,故错误,是假命题;D、三角形三条内角平分线相交于一点,这点到三角形三边的距离相等,正确,是真命题,故选D.8.若一次函数y=(m﹣1)x+m2﹣1的图象通过原点,则m的值为()A.m=﹣1 B.m=1 C.m=±1 D.m≠1【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的定义及函数图象经过原点的特点列出关于m的不等式组,求出m的值即可.【解答】解:∵一次函数y=(m﹣1)x+m2﹣1的图象经过原点,∴0=0+m2﹣1,m﹣1≠0,即m2=1,m≠1解得,m=﹣1.故选A.9.设三角形三边之长分别为3,8,1﹣2a,则a的取值X围为()A.3<a<6 B.﹣5<a<﹣2 C.﹣2<a<5 D.a<﹣5或a>2【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:由题意得:8﹣3<1﹣2a<8+3,解得:﹣5<a<﹣2,故选:B.10.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【考点】等边三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(共5小题,每小题4分,满分20分)11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B 度数为30°.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到DA=DB,得到∠B=∠DAB,根据角平分线的定义得到∠DAB=∠DAC,根据三角形内角和定理计算即可.【解答】解:∵DE是△ABC的AB边的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠B=∠DAB=∠DAC,又∠C=90°,∴∠B=30°,故答案为:30°12.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=﹣2x+2 .【考点】一次函数图象与几何变换.【分析】注意平移时k的值不变,只有b发生变化.向上平移3个单位,b加上3即可.【解答】解:原直线的k=﹣2,b=﹣1;向上平移3个单位长度得到了新直线,那么新直线的k=﹣2,b=﹣1+3=2.因此新直线的解析式为y=﹣2x+2.故答案为:y=﹣2x+2.13.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为10°.【考点】轴对称的性质;三角形的外角性质.【分析】根据轴对称的性质可知∠CA′D=∠A=50°,然后根据外角定理可得出∠A′DB.【解答】解:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.14.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是 4 .【考点】线段垂直平分线的性质.【分析】由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.【解答】解:∵AB=AC,D是BC的中点,∴∠CAD=∠BAD,AD⊥BC,∴OC=OB,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS);同理:△COD≌△BOD,在△AOC和△AOB中,,∴△OAC≌△OAB(SSS);∵EF是AC的垂直平分线,∴OA=OC,∠OEA=∠OEC=90°,在Rt△OAE和Rt△OCE中,,∴Rt△OAE≌Rt△OCE(HL).故答案为:4.15.为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于 1 万个.【考点】一次函数的应用.【分析】结合函数图象,设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据企业供应的足球数=库存+每日产量×生产天数,得出关于x、a的二元一次方程组,解方程组即可得出结论.【解答】解:∵(6﹣2)÷(4﹣2)=2,∴设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据题意可得:,解得:.∴每家企业供应的足球数量a=1万个.故答案为:1.三、解答题(共3小题,满分21分)16.夏令营组织学员到某一景区游玩,老师交给同学一X画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)【考点】作图—应用与设计作图.【分析】延长DB、CA交于点O,作∠DOC或∠DOC的外角的平分线,再作线段BC的垂直平分线,两线的交点就是所求的点.【解答】解:如图所示,点E或E′就是所求的点.17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为(a﹣3,b+2).【考点】作图-平移变换.【分析】(1)根据坐标系可得B点坐标,再根据关于y轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(3)根据△AOB的平移可得P的坐标为(a,b),平移后横坐标﹣3,纵坐标+2.【解答】解:(1)B点关于y轴的对称点坐标为(﹣3,2),故答案为:(﹣3,2);(2)如图所示:(3)P的坐标为(a,b)平移后对应点P1的坐标为(a﹣3,b+2).故答案为:(a﹣3,b+2).18.如图,点F、C在BE上,BF=CE,∠A=∠D,∠B=∠E.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【解答】证明:∵BF=CE,∴BF+CF=CE+CF即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.四、解答题(共1小题,满分9分)19.小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是60 m/分,点B的坐标是(9,120);(2)线段AB所表示的y与x的函数关系式是y=20x﹣60 ;(3)试在图中补全点B以后的图象.【考点】一次函数的应用.【分析】(1)由图象可知,当x=0时,y=60,即可得到弟弟1分钟走了60m;分别求出x=9时,哥哥走的路程,弟弟走的路程,即可得到兄弟两人之间的距离,即可解答;(2)利用待定系数法求出解析式,即可解答;(3)根据点B的坐标为(9,120),此时小明到达终点,弟弟离小明的距离为120米,弟弟到终点的时间为:120÷60=2(分),画出图形即可.【解答】解:(1)由图象可知,当x=0时,y=60,∵弟弟走得慢,先走1分钟后,小明才出发,∴弟弟1分钟走了60m,∴弟弟步行的速度是60米/分,当x=9时,哥哥走的路程为:80×9=720(米),弟弟走的路程为:60+60×9=600(米),兄弟两人之间的距离为:720﹣600=120(米),∴点B的坐标为:(9,120),故答案为:60,120;(2)设线段AB所表示的y与x的函数关系式是:y=kx+b,把A(3,0),B(9,120)代入y=kx+b得:解得:∴y=20x﹣60,故答案为:y=20x﹣60.(3)如图所示;五、解答题(共1小题,满分9分)20.如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P 沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.【考点】两条直线相交或平行问题.【分析】(1)当函数图象相交时,y1=y2,即﹣2x+6=x,再解即可得到x的值,再求出y的值,进而可得点A的坐标;当y1>y2时,图象在直线AB的右侧,进而可得答案;(2)由直线l2:y2=﹣2x+6求得B的坐标,然后根据三角形面积即可求得;(3)根据题意求得P的纵坐标,代入两直线解析式求得横坐标,即为符合题意的P点的坐标.【解答】解:(1)∵直线l1与直线l2相交于点A,∴y1=y2,即﹣2x+6=x,解得x=2,∴y1=y2=2,∴点A的坐标为(2,2);观察图象可得,当x>2时,y1>y2;(2)由直线l2:y2=﹣2x+6可知,当y=0时,x=3,∴B(3,0),∴S△AOB=×3×2=3;(3)∵△POB的面积是△AOB的面积的一半,∴P的纵坐标为1,∵点P沿路线O→A→B运动,∴P(1,1)或(,1).六、解答题(共1小题,满分11分)21.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【考点】全等三角形的判定与性质;一元一次方程的应用.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.【解答】解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;word(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.21 / 21。

2015-2016年四川省成都市武侯区八年级(上)期末数学试卷(解析版)

2015-2016年四川省成都市武侯区八年级(上)期末数学试卷(解析版)

2015-2016学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题1.(3分)在函数y=中,自变量x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2 2.(3分)下列实数中是无理数的是()A.B.0.212121C.3πD.3.(3分)若点P(x,y)在第四象限内,且满足|x|=5,|y|=3,则点P的坐标是()A.(5,﹣3)B.(﹣5,3)C.(5,3)D.(﹣5,﹣3)4.(3分)估算的值在()A.5﹣6之间B.6﹣7之间C.7﹣8之间D.8﹣9之间5.(3分)如图,OA=OB,BC=1,则数轴上点A所表示的数为()A.B.C.D.﹣3.56.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁7.(3分)下列四个命题中,真命题有()①6的平方根是±②三角形的一个外角大于任何一个内角③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量④凡是定理都可以作为公理.A.1个B.2个C.3个D.4个8.(3分)将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,一次连接新的这些点,则所得三角形与原三角形的位置关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.原三角形向x轴的负方向平移一个单位即为所得三角形9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)10.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y只,则所列方程组正确的是()A.B.C.D.二、填空题11.(3分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=.12.(3分)若正比例函数y=kx的图象与一次函数y=2x﹣5的图象互相平行,则该正比例函数的表达式为.13.(3分)如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.14.(3分)将等宽的直条型纸片按照如图中的方式进行折叠,若∠1=58°,则∠2=.三、解答题15.(1)计算:;(2)计算:(3)解方程组:.16.如图,AB长为2,BC长为4,AF长为10,求正方形CDEF的周长.17.已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:AE∥FP.18.武侯区某校开展了“我阅读我快乐”活动,王华调查了本校40名学生本学期购买课外书的费用情况,数据如下表:(1)这40名学生本学期购买课外书的费用的众数是,中位数是,(2)求这40名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?19.如图,在平面直角坐标系中,直线l1:y=x与直线y2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD的面积.20.在长方形ABCD中,点E是AD的中点,将△ABE沿BE折叠后得到对应的△GBE,将BG延长交直线DC于点F.(1)如果点G在长方形ABCD的内部,如图①所示.Ⅰ)求证:GF=DF;Ⅱ)若DF=DC,AD=4,求AB的长度.(2)如果点G在长方形ABCD的外部,如图②所示,DF=kDC(k>1).请用含k 的代数式表示的值.一、填空题21.(3分)方程组的解是.22.(3分)如图,已知圆柱底面的周长为24cm,高为5cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度至少长cm.23.(3分)在实数范围内,若y=﹣3x+1,则y2015的个位数字是.24.(3分)如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的纵坐标为2,∠B=60°,OC=AC,点P是斜边DB上的一个动点,则△PAC的周长的最小值为.【说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.】25.(3分)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…,A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积A nB n B n﹣1的面积记作S n,那么S2015=.记作S3,…,四边形A n﹣1二、解答题26.某商店销售功能相同的A、B两种品牌的计算器,A品牌计算器的成本价为每个20元,B品牌计算器的成本价为每个25元,且销售3个A品牌和2个B 品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.(1)分别求这两种品牌计算器的销售单价;(2)春节前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按照原价的八折销售;B品牌计算器5个以上,从第6个开始按照原价的七折销售.设销售x个A品牌的计算器的利润为y1元,销售x各B品牌的计算器的利润为y2元.(I)分别求y1,y2与x之间的函数表达式;(Ⅱ)某单位准备到该商店购买同一品牌的计算器,且购买数量超过5个,试问:商店要想获得较大的利润,应选择推销哪种品牌的计算器给该单位呢?并说明理由.27.(1)如图①,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO绕点B逆时针旋转60°得到线段BO',连结线段OO',AO',试判断△AOO'的形状.(2)点D是以AB为斜边的等腰直角三角形ABC内一点,且BD=1,CD=2,AD=3.(Ⅰ)求∠BDC的度数;(Ⅱ)求△ABC的面积.28.如图,过A(﹣4,0),两点的直线与直线y=﹣x交于点C,平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿戈轴向左平移,到C点时停止.直线l分别交线段BC,OC于点D,E,以DE为边向右侧作等边△DEF.设△DEF与△BCO重叠部分图形的周长为m,直线l的运动时间为t(秒).(1)求C点坐标;(2)当点F落在y轴上时,求相应的时间t的值;(3)求m与t之间的关系式.【说明:不考虑直线l平移过程中“起点”与“终点”时的情况.】2015-2016学年四川省成都市武侯区八年级(上)期末数学试卷参考答案与试题解析一、选择题1.(3分)在函数y=中,自变量x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】根据二次根式被开方数非负即可得出关于x的一元一次不等式,解不等式即可得出结论.【解答】解:∵x+2≥0,∴m≥﹣2.故选:B.2.(3分)下列实数中是无理数的是()A.B.0.212121C.3πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,0.212121,﹣是有理数,3π是无理数,故选:C.3.(3分)若点P(x,y)在第四象限内,且满足|x|=5,|y|=3,则点P的坐标是()A.(5,﹣3)B.(﹣5,3)C.(5,3)D.(﹣5,﹣3)【分析】先根据P点的坐标判断出x,y的符号,进而求出x,y的值,即可求得答案【解答】解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=5,|y|=3,∴点P(x,y)坐标中,x=5,y=﹣3,∴P点的坐标是(5,﹣3).故选:A.4.(3分)估算的值在()A.5﹣6之间B.6﹣7之间C.7﹣8之间D.8﹣9之间【分析】求出7=,8=,即可求出的范围,即可得出答案.【解答】解:∵7=,8=,∴7<<8,即的值在7﹣8之间.故选:C.5.(3分)如图,OA=OB,BC=1,则数轴上点A所表示的数为()A.B.C.D.﹣3.5【分析】根据勾股定理,可得OB的长,根据等量代换,可得答案.【解答】解:OB==,OA=OB=,A点表示的数是﹣.故选:C.6.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.【解答】解:∵=0.65,=0.55,=0.50,=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选:D.7.(3分)下列四个命题中,真命题有()①6的平方根是±②三角形的一个外角大于任何一个内角③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量④凡是定理都可以作为公理.A.1个B.2个C.3个D.4个【分析】根据平方根的概念、三角形的外角性质、极差的概念、定理与公理的概念进行判断即可.【解答】解:①6的平方根是±;是真命题;②三角形的一个外角大于任何一个内角;是假命题;③一组数据中最大数据与最小数据的差称为极差,它是刻画数据离散程度的一个统计量;真命题;④凡是定理都可以作为公理.假命题;故选:B.8.(3分)将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,一次连接新的这些点,则所得三角形与原三角形的位置关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.原三角形向x轴的负方向平移一个单位即为所得三角形【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:将△ABC的三个顶点的纵坐标保持不变,横坐标分别乘以﹣1,则所得三角形与原三角形的位置关系是关于y轴对称,故选:A.9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【分析】根据一次函数性质逐项判断即可.【解答】解:∵y=x+6中k=1>0,∴y随x的增大而增大,故A正确;令x=0可得y=6,令y=0可求得x=﹣6,∴直线与x轴交于点(﹣6,0),与y轴交于点(0,6),∴函数图象与x轴的正方向成45°角,故B、C正确;D错误;故选:D.10.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y只,则所列方程组正确的是()A.B.C.D.【分析】首先明确生活常识:一只鸡有一个头,两只脚;一只兔有一个头,四只脚.此题中的等量关系为:①鸡的只数+兔的只数=36只;②2×鸡的只数+4×兔的只数=100只.【解答】解:如果设鸡为x只,兔为y只.根据“三十六头笼中露”,得方程x+y=36;根据“看来脚有100只”,得方程2x+4y=100.即可列出方程组.故选:C.二、填空题11.(3分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=﹣1.【分析】根据二元一次方程的定义,可得答案.【解答】解:由题意,得m+2=1,解得m=﹣1,故答案为:﹣1.12.(3分)若正比例函数y=kx的图象与一次函数y=2x﹣5的图象互相平行,则该正比例函数的表达式为y=2x.【分析】根据两直线平行,则自变量系数相同,即k值相同得出结论.【解答】解:由题意得:k=2则该正比例函数的表达式为:y=2x;故答案为:y=2x.13.(3分)如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【解答】解:∵直线y=ax+b和直线y=kx交点P的坐标为(﹣4,﹣2),∴关于x,y的二元一次方程组组的解为.故答案为.14.(3分)将等宽的直条型纸片按照如图中的方式进行折叠,若∠1=58°,则∠2=64°.【分析】先根据平行线的性质,得出∠1=∠4=58°,根据折叠的性质,得出∠3=∠4=58°,最后根据平角计算∠2的度数.【解答】解:由矩形的对边平行,可得∠1=∠4=58°,由折叠可得,∠3=∠4=58°,∴∠2=180°﹣2×58°=64°,故答案为:64°.三、解答题15.(1)计算:;(2)计算:(3)解方程组:.【分析】(1)首先进行各项的化简,然后合并同类项即可;(2)首先进行各项的化简,然后合并同类项即可;(3)根据x的系数互为相反数,利用加减消元法求解.【解答】解:(1)=+6=;(2)计算:=+3+12﹣5=(3)解:原方程可化为:,①+②得:4y=28,∴y=7,把y=7代入①得x=3,∴方程组的解为:.16.如图,AB长为2,BC长为4,AF长为10,求正方形CDEF的周长.【分析】在直角△ABC中,根据勾股定理即可求得AC2,然后在直角△ACF中求得FC,根据正方形CDEF的周长=4FC即可求解.【解答】解:在直角△ABC中,AC2=AB2+BC2=(2)2+42=28,在直角△ACF中,FC2=AF2+AC2=102+28=128.∴CF=8,而正方形CDEF的周长=4CF=32.17.已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:AE∥FP.【分析】先根据题意得出AB∥CD,故可得出∠BAP=∠APC,再由∠1=∠2即可得出∠EAP=∠APF,进而可得出结论.【解答】证明:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC.∵∠1=∠2,∴∠EAP=∠APF,∴AE∥FP.18.武侯区某校开展了“我阅读我快乐”活动,王华调查了本校40名学生本学期购买课外书的费用情况,数据如下表:(1)这40名学生本学期购买课外书的费用的众数是50,中位数是50,(2)求这40名学生本学期购买课外书的平均费用;(3)若该校共有学生1000名,试估计该校本学期购买课外书费用在50元以上(含50元)的学生有多少名?【分析】(1)众数就是出现次数最多的数,中位数就是大小处于中间位置的数,根据定义判断即可;(2)根据40名学生本学期购买课外书的总费用除以总人数,求得平均费用;(3)利用学校总人数1000乘以本学期购买课外书花费50元以上(含50元)的学生所占的比例即可求解.【解答】解:(1)这次调查获取的样本数据的众数是50元,这次调查获取的样本数据的中位数是50元,故答案是:50,50;(2)平均数为:×(6×20+10×30+12×50+8×80+4×100)=51.5(元);(3)调查的总人数是40人,其中购买课外书花费50元以上(含50元)的学生有24人,∴该校本学期购买课外书费用在50元以上(含50元)的学生有:1000×=600(人).19.如图,在平面直角坐标系中,直线l1:y=x与直线y2:y=kx+b相交于点A,点A的横坐标为4,直线l2交y轴负半轴于点B,且OA=OB.(1)求点B的坐标及直线l2的函数表达式;(2)现将直线l1沿y轴向上平移5个单位长度,交y轴于点C,交直线l2于点D,试求△BCD的面积.【分析】(1)利用直线l1的解析式求出点A的坐标,再根据勾股定理求出OA的长度,从而可以得到OB的长度,根据图象求出点B的坐标,然后利用待定系数法列式即可求出直线l2的函数表达式;(2)求得平移后的解析式,进而求得交点D的坐标,代入三角形的面积公式进行计算即可得解.【解答】解:(1)∵点A的横坐标为4,∴y=×4=3,∴点A的坐标是(4,3),∴OA==5,∵OA=OB,∴OB=2OA=10,∴点B的坐标是(0,﹣10),设直线l2的表达式是y=kx+b,则,解得,∴直线l2的函数表达式是y=x﹣10;(2)将直线l1沿y轴向上平移5个单位长度得y=x+5,解得交点的横坐标为6,=×BC•x D=×(10+5)×6=45.∴S△BCD20.在长方形ABCD中,点E是AD的中点,将△ABE沿BE折叠后得到对应的△GBE,将BG延长交直线DC于点F.(1)如果点G在长方形ABCD的内部,如图①所示.Ⅰ)求证:GF=DF;Ⅱ)若DF=DC,AD=4,求AB的长度.(2)如果点G在长方形ABCD的外部,如图②所示,DF=kDC(k>1).请用含k 的代数式表示的值.【分析】(1)、Ⅰ)、求简单的线段相等,可证线段所在的三角形全等,即连接EF,证△EGF≌△EDF即可;Ⅱ)、可设DF=x,BC=y;进而可用x表示出DC、AB的长,根据折叠的性质知AB=BG,即可得到BG的表达式,由(1)证得GF=DF,那么GF=x,由此可求出BF的表达式,进而可在Rt△BFC中,根据勾股定理求出x、y的比例关系,即可得到的值,代值即可得出结论;(2)方法同(2).【解答】解:(1)、Ⅰ)、连接EF,根据翻折的性质得,∠EGF=∠D=90°,EG=AE=ED,EF=EF,在Rt△EGF和Rt△EDF中,,∴Rt△EGF≌Rt△EDF(HL),∴GF=DF;Ⅱ)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x;在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴y=2x,∴=;∵AD=4,∴AB=2(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y,∵AB=DC==,∴BF=BG+GF=(+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(k﹣1)x]2=[(+1)x]2∴y=,∴==2.一、填空题21.(3分)方程组的解是.【分析】利用①+②可消去z,再与方程②组成二元一次方程组,再求解即可.【解答】解:在方程组中,①+③可得:3x+2y=43④,由②、④组成二元一次方程组,由②可得x=y+1,代入④可得:3(y+1)+2y=43,解得y=8,∴x=y+1=9,把x、y的值代入①可得:9+8+z=23,解得z=6,∴原方程组的解为.故答案为:.22.(3分)如图,已知圆柱底面的周长为24cm,高为5cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度至少长26cm.【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为24cm,圆柱高为5cm,∴AB=5cm,BC=BC′=12cm,∴AC2=52+122=169,∴AC=13cm,∴这圈金属丝的周长最小为2AC=26cm.故答案为:26.23.(3分)在实数范围内,若y=﹣3x+1,则y2015的个位数字是3.【分析】首先利用二次根式有意义的条件得出x,y的值,进而利用尾数特征求出答案.【解答】解:由题意可得:|x|﹣2=0,2﹣x≠0,解得:x=﹣2,则y=7,∵71=7,72=49,73=343;74=2401;75=16807,∴个位数每4个一循环,∵2015÷4=503…3,∴y2015的个位数字是:3.故答案为:3.24.(3分)如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的纵坐标为2,∠B=60°,OC=AC,点P是斜边DB上的一个动点,则△PAC的周长的最小值为2+4.【说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.】【分析】作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.【解答】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵顶点B的纵坐标为2,∠B=60°,∴AB=2,OA=6,由勾股定理得:OB=4,由三角形面积公式得:×OA×AB=×OB×AM,∴AM=3,∴AD=2×3=6,∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=AD=3,由勾股定理得:DN=3,∵C(1,0),∴CN=AC﹣AN=4﹣3=1,在Rt△DNC中,由勾股定理得:DC==2,即PA+PC的最小值是2,∴△PAC周长的最小值为:2+4.故答案为:2+4.25.(3分)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…,A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积A nB n B n﹣1的面积记作S n,那么S2015=.记作S3,…,四边形A n﹣1【分析】根据题意可知所求的面积等于梯形的面积,然后根据题目中数据和图形即可解答本题.【解答】解:由题意可得,S2015==,故答案为:.二、解答题26.某商店销售功能相同的A、B两种品牌的计算器,A品牌计算器的成本价为每个20元,B品牌计算器的成本价为每个25元,且销售3个A品牌和2个B 品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.(1)分别求这两种品牌计算器的销售单价;(2)春节前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按照原价的八折销售;B品牌计算器5个以上,从第6个开始按照原价的七折销售.设销售x个A品牌的计算器的利润为y1元,销售x各B品牌的计算器的利润为y2元.(I)分别求y1,y2与x之间的函数表达式;(Ⅱ)某单位准备到该商店购买同一品牌的计算器,且购买数量超过5个,试问:商店要想获得较大的利润,应选择推销哪种品牌的计算器给该单位呢?并说明理由.【分析】(1)设A品牌计算器的销售单价为m元/个,B品牌计算器的销售单价为n元/个,根据“销售3个A品牌和2个B品牌的计算器的价格为185元,销售2个A品牌和1个B品牌的计算器的价格为110元.”即可列出关于m、n的二元一次方程组,解之即可得出结论;(2)(I)根据“利润=销售额﹣成本”即可得出y1,y2与x之间的函数表达式;(II)分别令y1<y2、y1=y2以及y1>y2,求出x的取值范围,此题得解.【解答】解:(1)设A品牌计算器的销售单价为m元/个,B品牌计算器的销售单价为n元/个,根据题意,得:,解得:.答:A品牌计算器的销售单价为35元/个,B品牌计算器的销售单价为40元/个.(2)(I)根据题意得:y1=35×0.8x﹣20x=8x.当0≤x≤5时,y2=40x﹣25x=15x;当6≤x时,y2=(40﹣25)×5+[40×0.7﹣25]×(x﹣5)=3x+60.∴y2=.(II)当y1<y2时,有8x<3x+60,解得:x<12;当y1=y2时,有8x=3x+60,解得:x=12;当y1>y2时,有8x>3x+60,解得:x>12.∴当6≤x<12时,选择推销B品牌的计算器获得的利润高;当x=12时,选择推销A、B品牌的计算器获得的利润一样多;当x>12时,选择推销A品牌的计算器获得的利润高.27.(1)如图①,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO绕点B逆时针旋转60°得到线段BO',连结线段OO',AO',试判断△AOO'的形状.(2)点D是以AB为斜边的等腰直角三角形ABC内一点,且BD=1,CD=2,AD=3.(Ⅰ)求∠BDC的度数;(Ⅱ)求△ABC的面积.【分析】(1)利用旋转的性质得BO=BO′,∠OBO′=60°,则△OBO′为等边三角形,所以OO′=OB=8,则可判断△ABC为等边三角形,所以∠ABC=60°,BA=BC,接着利用旋转的定义可把△BOC绕点B逆时针旋转60°得到△BO′A,于是得到AO′=CO=10,然后根据勾股定理的逆定理可判断△AOO'为直角三角形,∠AOO′=90°;(2)(Ⅰ)将△CBD绕点B顺时针旋转90°得到△CAD′,如图②,根据旋转的性质得∠DCD′=90°,∠CD′A=∠CDB,CD′=CD=2,AD′=BD=1,则可判断△CDD′为等腰直角三角形,所以∠CD′D=45°,DD′=CD=2,然后根据勾股定理的逆定理可判断△ADD'为直角三角形,∠AD′D=90°;则∠AD′C=135°,所以∠BDC=135°;(Ⅱ)利用△CDD′为等腰直角三角形得到∠CDD′=45°,再判断点B、D、D′共线得到△BD′A为直角三角形,然后利用△ABC的面积=S△CDD′+S△BD′A进行计算.【解答】解:(1)∵线段BO绕点B逆时针旋转60°得到线段BO',∴BO=BO′,∠OBO′=60°,∴△OBO′为等边三角形,∴OO′=OB=8,∵△ABC为等边三角形,∴∠ABC=60°,BA=BC,∴△BOC绕点B逆时针旋转60°得到△BO′A,∴AO′=CO=10,在△AOO′中,∵AO′=10,AO=6,OO′=8,而62+82=102,∴OA2+OO′2=AO′2,∴△AOO'为直角三角形,∠AOO′=90°;(2)(Ⅰ)将△CBD绕点B顺时针旋转90°得到△CAD′,如图②,∴∠DCD′=90°,∠CD′A=∠CDB,CD′=CD=2,AD′=BD=1,∴△CDD′为等腰直角三角形,∴∠CD′D=45°,DD′=CD=2,在△ADD′中,AD=3,AD′=1,DD′=2,而12+(2)2=32,∴D′A2+AD2=DD′2,∴△ADD'为直角三角形,∠AD′D=90°;∴∠AD′C=135°,∴∠BDC=135°;(Ⅱ)∵△CDD′为等腰直角三角形,∴∠CDD′=45°,而∠BDC=135°;∴∠CDD′+∠BDC=180°,∴点B、D、D′共线,∴△BD′A为直角三角形,∴△ABC的面积=S△CDD′+S△BD′A=×2×2+×1×(1+2)=+.28.如图,过A(﹣4,0),两点的直线与直线y=﹣x交于点C,平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿戈轴向左平移,到C点时停止.直线l分别交线段BC,OC于点D,E,以DE为边向右侧作等边△DEF.设△DEF与△BCO重叠部分图形的周长为m,直线l的运动时间为t(秒).(1)求C点坐标;(2)当点F落在y轴上时,求相应的时间t的值;(3)求m与t之间的关系式.【说明:不考虑直线l平移过程中“起点”与“终点”时的情况.】【分析】(1)根据待定系数法求出直线AB的解析式,再利用方程组求出交点坐标C.(2)设E(t,﹣t),则D(﹣t,﹣t+4),推出DE=﹣2t+4,由△DFE是等边三角形,可得点F坐标(﹣4t+6,2),当点F在y轴上时,﹣4t+6=0,解方程即可解决问题.(3)分两种情形讨论①当0<t≤1.5时,重叠部分四边形DMNE.②当1.5<t <2时,重叠部分是△DEF.分别计算即可.【解答】解:(1)设直线AB的解析式为y=kx+b则有,解得,∴直线AB的解析式为y=x+4,由解得,∴点C坐标(﹣2,2).(2)如图1中,作FH⊥DE于H.设E(﹣t,t),则D(﹣t,﹣t+4),∴DE=﹣2t+4,∵△DFE是等边三角形,∴FH=DE=﹣3t+6,∴点F坐标(﹣4t+6,2),当点F在y轴上时,﹣4t+6=0,∴t=1.5,∴t=1.5s时,点F在y轴上.(3)如图2中,①当0<t≤1.5时,重叠部分四边形DMNE,m=3(﹣2t+4)﹣FM=﹣6t+12﹣(﹣4t+6)=﹣t+8.②当1.5<t<2时,重叠部分是△DEF,m=3(﹣2t+4)=﹣6t+12.综上所述,m=.。

江苏省扬州中学教育集团树人学校2015-2016学年八年级上学期期末数学试题(含解析)

江苏省扬州中学教育集团树人学校2015-2016学年八年级上学期期末数学试题(含解析)

江苏省扬州中学教育集团树人学校2015~2016学年度八年级上学期期末数学试卷一、选择题1.下列图形不一定是轴对称图形的是()A.直角三角形B.线段 C.角D.等腰梯形2.下列计算正确的是()A.=±3 B.=﹣2 C.=﹣7 D.=93.若x、y为实数,且,则y x的值为()A.6 B.8 C.9 D.124.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.缩小6倍 D.不变5.已知点(﹣1,y1),(2,y2)都在直线y=x+b上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较6.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是()A.B.C.D.7.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.8.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)二、填空题9.81的算术平方根是.10.角的对称轴是.11.的最简公分母是.12.已知△ABC的三边长a、b、c满足,则△ABC一定是三角形.13.点P(2,﹣3)关于x轴的对称点坐标为.14.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为.15.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.16.当m=时,关于x的分式方程=﹣1有增根.17.如图,函数y=﹣3x和y=kx+b的图象相交于点A(m,4),则关于x的不等式kx+b+3x>0的解集为.18.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.三、解答题19.解方程:(1)5x2﹣2=8;(2)计算:﹣()2﹣﹣|﹣4|.20.先化简,再在0,﹣1,2中选取一个适当的数代入求值.21.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.22.如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O 恰好落在BC边上的点E处,若△ECD的周长为4,△EBA的周长为12.(1)矩形OABC的周长为;(2)若A点坐标为(5,0),求线段AD所在直线的解析式.23.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.24.为加快西部大开发,某自治区决定新修一条公路,甲,乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲,乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成,问原来规定修好这条公路需多少长时间?25.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB周长的数值与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)(a>0)在直线y=﹣x+b(b为常数)上,求a,b的值.26.有甲、乙两个圆柱体的蓄水池,将甲池中的水以一定的速度注入乙池.甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,其中,甲蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式为y=﹣x+2.结合图象回答:(1)求出乙蓄水池中水的深度y与注水时间x之间的函数关系式;(2)交点A表示的实际意义是;(3)当乙蓄水池中水的体积是甲蓄水池中水的体积3倍时,求甲池中水的深度.(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.已知,ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点,G为EF的中点,延长CG与AB交于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=6,CH=10,求边AC的长.江苏省扬州中学教育集团树人学校2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题1.下列图形不一定是轴对称图形的是()A.直角三角形B.线段 C.角D.等腰梯形【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,针对四个选项进行分析即可.【解答】解:根据轴对称图形的定义可得B、C、D都是轴对称图形,只有A不一定是,故选:A.【点评】此题主要考查了轴对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列计算正确的是()A.=±3 B.=﹣2 C.=﹣7 D.=9【考点】立方根;算术平方根.【分析】利用平方根与立方根的定义求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、=3,故本选项错误;B、=﹣2,故本选项正确;C、=|﹣7|=7,故本选项错误;D、(﹣)2=3,故本选项错误.故选B.【点评】此题考查了平方根与立方根的定义.此题比较简单,注意熟记定义是解此题的关键.3.若x、y为实数,且,则y x的值为()A.6 B.8 C.9 D.12【考点】二次根式有意义的条件.【专题】计算题.【分析】运用二次根式有意义的条件,即,必须同时根号下部分大于等于0,即x﹣2≥0,且2﹣x≥0,得出x的值,再代入,求出y的值,从而得出y x的值.【解答】解:∵x、y为实数,且,∴根据二次根式有意义的条件,,必须同时有意义,即x﹣2≥0,且2﹣x≥0,同时满足x﹣2≥0,且2﹣x≥0,x只能等于2,∴把x=2代入,解得:y=3,∴y x=32=9.则y x的值为9,故选:C.【点评】此题主要考查了二次根式有意义的条件,以及乘方运算,解决问题的关键是根据,同时有意义,即x﹣2≥0,且2﹣x≥0,从而得出x的值.4.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.缩小6倍 D.不变【考点】分式的基本性质.【专题】应用题.【分析】把原分式中的x换成3x,把y换成3y进行计算,再与原分式比较即可.【解答】解:把原分式中的x换成3x,把y换成3y,那么==3×.故选A.【点评】本题考查了分式的基本性质,解题的关键是整体代入.5.已知点(﹣1,y1),(2,y2)都在直线y=x+b上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】运用一次函数的增减性:当k>0时,y随x的增大而增大,即可比较大小.【解答】解:因为>0,y随x的增大而增大,又﹣1<2,所以,y1<y2.故选C.【点评】本题考查了一次函数的增减性,对于一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.本题可以通过代值计算函数值,比较大小.6.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是()A.B.C.D.【考点】一次函数的应用;一次函数的图象;等腰三角形的性质.【分析】根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之差小于第三边列式求出x的取值范围,即可得解.【解答】解:根据题意,x+2y=100,所以,y=﹣x+50,根据三角形的三边关系,x>y﹣y=0,x<y+y=2y,所以,x+x<100,解得x<50,所以,y与x的函数关系式为y=﹣x+50(0<x<50),纵观各选项,只有C选项符合.故选C.【点评】本题考查了一次函数的应用,主要利用了三角形的周长公式,难点在于利用三角形的三边关系求出底边x的取值范围.7.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选B.【点评】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.8.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)【考点】规律型:点的坐标.【分析】根据反弹时反射角等于入射角画出点的运动轨迹,表示出点的坐标,总结规律得到答案.【解答】解:当点P第1次碰到矩形的边时,点P的坐标为(3,0),当点P第2次碰到矩形的边时,点P的坐标为(7,4),当点P第3次碰到矩形的边时,点P的坐标为(8,3),当点P第4次碰到矩形的边时,点P的坐标为(5,0),当点P第5次碰到矩形的边时,点P的坐标为(1,4),当点P第6次碰到矩形的边时,点P的坐标为(0,3),当点P第7次碰到矩形的边时,点P的坐标为(3,0),2016÷6=336,故当点P第2016次碰到矩形的边时,点P的坐标为:(0,3).故选:A.【点评】本题考查的是根据图形找出点的坐标的变化规律,正确理解题意、画出合适的示意图、表示出变化过程中各点的坐标、正确总结规律是解题的关键.二、填空题9.81的算术平方根是9.【考点】算术平方根.【分析】直接利用算术平方根的定义得出答案.【解答】解:81的算术平方根是:=9.故答案为:9.【点评】此题主要考查了算术平方根的定义,正确把握算术平方根的定义是解题关键.10.角的对称轴是角平分线所在的直线.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:沿角平分线所在的直线折叠后直线两旁的部分能够完全重合,所以角的对称轴是角平分线所在的直线.【点评】注意:对称轴必须说成直线.11.的最简公分母是12x3yz.【考点】最简公分母.【分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【解答】解:的最简公分母是12x3yz.故答案为:12x3yz.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.12.已知△ABC的三边长a、b、c满足,则△ABC一定是等腰直角三角形.【考点】等腰直角三角形;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根;勾股定理的逆定理.【分析】先根据非负数的性质求出a、b、c的值,再根据三角形的三边关系进行判断即可.【解答】解:∵△ABC的三边长a、b、c满足,∴a﹣1=0,b﹣1=0,c﹣=0,∴a=1,b=1,c=.∵a2+b2=c2,∴△ABC一定是等腰直角三角形.【点评】本题考查的知识点是:一个数的算术平方根与某个数的绝对值以及另一数的平方的和等于0,那么算术平方根的被开方数为0,绝对值里面的代数式的值为0,平方数的底数为0及勾股定理的逆定理.13.点P(2,﹣3)关于x轴的对称点坐标为(2,3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(2,﹣3)关于x轴的对称点坐标为(2,3),故答案为:(2,3).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.14.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为12.【考点】勾股定理;直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2DE,再利用勾股定理列式计算即可得解.【解答】解:∵BE⊥AC,D为AB中点,∴AB=2DE=2×10=20,在Rt△ABE中,BE===12.故答案为:12.【点评】本题考查了勾股定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记性质与定理是解题的关键.15.如图,一次函数y=kx1+b1的图象l1与y=kx2+b2的图象l2相交于点P,则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】根据二元一次方程组的解即为两直线的交点坐标解答.【解答】解:由图可知,方程组的解是.故答案为:.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.16.当m=6时,关于x的分式方程=﹣1有增根.【考点】分式方程的增根.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣3=0,求出x的值,代入整式方程即可求出m的值.【解答】解:去分母得:2x﹣m=﹣x+3,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:6﹣m=﹣3+3,解得:m=6,故答案为:6.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.如图,函数y=﹣3x和y=kx+b的图象相交于点A(m,4),则关于x的不等式kx+b+3x>0的解集为x>﹣.【考点】一次函数与一元一次不等式.【分析】先利用自变量函数解析式确定A点坐标,然后观察函数图象得到,当x>﹣时,直线y=kx+b都在直线y=﹣3x的上方,于是可得到关于x的不等式kx+b+3x>0的解集.【解答】解:把A(m,4)代入y=﹣3x得﹣3m=4,解得m=﹣,即A点坐标为(﹣,4),当x>﹣时,kx+b+3x>0,所以关于x的不等式kx+b+3x>0的解集为x>﹣.故答案为x>﹣【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.18.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8cm.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【专题】探究型.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题19.解方程:(1)5x2﹣2=8;(2)计算:﹣()2﹣﹣|﹣4|.【考点】实数的运算;平方根.【专题】计算题;实数.【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)原式利用平方根、立方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)方程整理得:x2=2,开方得:x=±;(2)原式=5﹣6+4﹣4=﹣1.【点评】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.20.先化简,再在0,﹣1,2中选取一个适当的数代入求值.【考点】分式的化简求值.【专题】计算题.【分析】先根据分式混合运算的法则把原式进行化简,再在0,﹣1,2中选取一个适当的数代入求值即可.【解答】解:原式=(+)÷=×x(x﹣2)=x(x+3),∵x≠0,x≠2,∴当x=﹣1时,原式=﹣(﹣1+3)=﹣2.【点评】本题考查的是分式的化简求值,在解答此题时要注意x≠0,x≠2.21.已知y﹣3与x+5成正比例,且当x=2时,y=17.求:(1)y与x的函数关系;(2)当x=5时,y的值.【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】(1)由y﹣3与x+5成正比例,设y﹣3=k(x+5),把x与y的值代入求出k的值,即可确定出y与x函数关系;(2)把x=5代入计算即可求出y的值.【解答】解:(1)设y﹣3=k(x+5),把x=2,y=17代入得:14=7k,即k=2,则y﹣3=2(x+5),即y=2x+13;(2)把x=5代入得:y=10+13=23.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.如图所示,四边形OABC是矩形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O 恰好落在BC边上的点E处,若△ECD的周长为4,△EBA的周长为12.(1)矩形OABC的周长为16;(2)若A点坐标为(5,0),求线段AD所在直线的解析式.【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】(1)根据折叠和矩形的性质得出AE=OA=BC,OD=DE,BC=OA,AB=OC,根据已知得出CE+CD+DE+AB+BE+AE=16,推出CE+BE+AB+OA+OD+CD=16即可.(2)根据勾股定理求出BE,求出CE,再利用勾股定理求得D 的坐标,待定系数法求出直线AD 的解析式即可.【解答】解:(1)∵以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,四边形OABC是矩形,∴AE=OA=BC,OD=DE,BC=OA,AB=OC,∵△ECD的周长为4,△EBA的周长为12,∴CE+CD+DE+AB+BE+AE=4+12=16,∴CE+BE+AB+OA+OD+CD=16,即矩形OABC的周长为16,故答案为:16.(2)∵矩形OABC的周长为16,∴2OA+2OC=16,∵A点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt△ABE中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4,∴CE=5﹣4=1,∴设DE=OD=x,则CD=3﹣x,∴CD2+CE2=DE2,即(3﹣x)2+12=x2,∴x=,∴D(0,),设直线AD的解析式为y=kx+b(k≠0),∵A(5,0),E(0,),∴,解得.∴线段AD所在直线的解析式为:y=﹣x+.【点评】本题考查的是一次函数综合题,涉及到勾股定理,矩形的性质,折叠的性质的应用,难度适中.23.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.【考点】勾股定理.【专题】作图题.【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC、CD,求出△ACB是等腰直角三角形即可.【解答】解:(1)如图1的正方形的边长是,面积是10;(2)如图2的三角形的边长分别为2,,;(3)如图3,连接AC,CD,则AD=BD=CD==,∴∠ACB=90°,由勾股定理得:AC=BC==,∴∠ABC=∠BA C=45°.【点评】本题考查了勾股定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.24.为加快西部大开发,某自治区决定新修一条公路,甲,乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲,乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成,问原来规定修好这条公路需多少长时间?【考点】分式方程的应用.【专题】工程问题.【分析】本题的等量关系为:工作时间=工作总量÷工作效率.由题意可知,甲队施工的总工程量+乙队总工程量=1,由此可列出方程求解.【解答】解:设原计划需x个月,则甲单独完成需要x个月,乙单独完成需要(x+6)个月,由题意得4×(+)+(x﹣4)×=1,解得:x=12,经检验:x=12是原方程的解,答:原来规定修好这条公路需12个月.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.25.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB周长的数值与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)(a>0)在直线y=﹣x+b(b为常数)上,求a,b的值.【考点】一次函数图象上点的坐标特征.【专题】新定义.【分析】(1)根据和谐点的定义,利用矩形的面积和周长公式进行证明即可;(2)利用和谐点的定义列出关于a的方程(a+3)×2=3a,由此可以求得a=6.然后把点P的坐标代入直线方程,通过方程来求b的值.【解答】解:(1)∵1×2≠2(1+2),4×4=2×(4+4),∴点M不是和谐点,点N是和谐点.(2)由题意得,(a+3)×2=3a,∴a=6,∴P(6,3),∵点P在直线y=﹣x+b上,∴代入得3=﹣6+b,解得,b=9.综上所述,a、b的值分别是6,9.【点评】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.26.有甲、乙两个圆柱体的蓄水池,将甲池中的水以一定的速度注入乙池.甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,其中,甲蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式为y=﹣x+2.结合图象回答:(1)求出乙蓄水池中水的深度y与注水时间x之间的函数关系式;(2)交点A表示的实际意义是当注水时间为小时,甲乙两水池的水面高度相同,为米;(3)当乙蓄水池中水的体积是甲蓄水池中水的体积3倍时,求甲池中水的深度.【考点】一次函数的应用.【分析】(1)如图,根据甲蓄水池的函数关系式求出放完水的时间,即函数图象与x轴的交点B,从而得到乙图象上的点C的坐标,然后利用待定系数法求一次函数解析式解答;(2)联立两函数解析式,解方程组即可得到交点A的坐标,根据交点的纵坐标相等可知,两水池的水面高度相等;(3)求出甲、乙两个蓄水池的底面积的比,再求出乙蓄水池中水的体积是甲蓄水池中水的体积3倍时的高度的比,然后根据两函数解析式列式求出x的值,然后代入甲求出相应的y的值即可.【解答】解:(1)如图,当y=0时﹣x+2=0,解得x=3.所以,点C的坐标为(3,4),设乙蓄水池中水的深度y与注水时间x之间的函数关系式为y=kx+b,则,解得.所以,函数关系式为y=x+1;(2)联立,解得.所以,交点A的坐标为(,),表示的实际意义是:当注水时间为小时,甲乙两水池的水面高度相同,为米,故答案为:当注水时间为小时,甲乙两水池的水面高度相同,为米;(3)∵甲水池的水降低2米时乙水池的水上升3米,∴甲、乙两个蓄水池的底面积的比为3:2,∴乙蓄水池中水的体积是甲蓄水池中水的体积3倍时的高度的比为9:2,∴x+1=(﹣x+2),解得x=2,把x=2代入y=﹣x+2得,y=米.答:甲池中水深米.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,联立两函数解析式求交点坐标,难点在于(3)求出甲、乙两蓄水池的底面积的比.(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)【考点】一次函数的应用;分段函数.【专题】压轴题;图表型.【分析】(1)根据销售记录每升利润为1元,所以销售利润为4万元时销售量为4万升;(2)设BC所对应的函数关系式为y=kx+b(k≠0),求出图象中B点和C点的坐标代入关系式中即可.(3)判断利润率最大,应该看倾斜度.【解答】解:解法一:(1)根据题意,当销售利润为4万元,销售量为4÷(5﹣4)=4(万升).答:销售量x为4万升时销售利润为4万元;设线段AB所对应的函数关系式为y=kx+b,则解得设线段BC所对应的函数关系式为y=mx+n,则解得(3)线段AB倾斜度最大,所以利润率最高.解法二:(1)根据题意,线段OA所对应的函数关系式为y=(5﹣4)x,即y=x(0≤x≤4).当y=4时,x=4.答:销售量为4万升时,销售利润为4万元.(2)设线段AB所对应的函数关系式为y=kx+b(k≠0),则解得设BC所对应的函数关系式为y=kx+b(k≠0),x=1(万升).又∵本月共销售10万升,∴本月总利润为:=11(万元).∴C点坐标为(10,11).将B点和C点坐标代入y=kx+b得方程组为:,解得:.(3)线段AB倾斜度最大,所以利润率最高.【点评】这是一道分段函数难度中上的考题,主要考查从图表获取信息和利用一次函数解决实际问题的能力.本题的关键是要仔细审题,找出数量变化与对应函数图象的关系,思考:险段AB,OA,BC对应的函数有哪些不同其根本原因是每升的成本,利润的变化,导致销售量的变化,正确计算出三种情形中的每升利润,是解决这一分段函数的重中之重.28.已知,ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点,G为EF的中点,延长CG与AB交于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=6,CH=10,求边AC的长.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)①连接CD,由直角三角形斜边上的中线性质得出CD=AD=BD,CD⊥AB,证出∠EDA=∠CDF,由ASA证明△ADE≌△CDF,即可得出结论;②连接CD、DG,由直角三角形斜边上的中线性质得出CG=EG=FG,DG=EG=FG,得出CG=DG,因此∠GCD=∠GDC,由角的互余关系得出∠GHD=∠HDG,证出GH=GD,即可得出结论;(2)分两种情况:①当E在线段AC上时,CG=GH=EG=GF,得出CH=EF=10,由(1)得出AE=CF=6,由勾股定理得出CE,即可得出结论;②当E在线段CA延长线上时,AC=EC﹣AE=8﹣6=2;即可得出结果.【解答】(1)①证明:连接CD,如图1所示:∵∠ACB=90°,AC=BC,D为AB的中点,∴CD=AD=BD,CD⊥AB,∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,。

南京树人学校2015-2016学年第一学期八年级数学期末试卷

南京树人学校2015-2016学年第一学期八年级数学期末试卷

三、解答题(本大题共 10 小题,共 68 分.请在答题卷指定区域 内作答,解答时应写出文字说 ....... 明、证明过程或演算步骤) 17. (6 分)求下列各式中的 x: (1)4x =9;
2 3
(2)(x+1) =-8.
- 2 -
18. (5 分)如图,△ABC 的顶点均在格点上,利用网格线在图中找一点 O,使得 OA=OB=OC.
- 4 -
25. (8 分) 实际情境 甲、乙两人从相距 4 千米的两地同时、同向出发,甲每小时走 6 千米,乙每小时走 4 千米, 小狗随甲一起出发,每小时跑 12 千米.小狗遇到乙的时候它就往甲这边跑,遇到甲时又往 乙这边跑,遇到乙的时候再往甲这边跑„就这样一直跑下去. 数学研究 如图,折线 A-B-C、A-D-E 分别表示甲、小狗在行进过程中,离乙的路程 .....y(km)与甲行 进时间 x(h)之间的部分函数图像. (1)写出 D 点坐标的实际意义; (2)求线段 AB 对应的函数表达式; (3)求点 E 的坐标; (4)小狗从出发到它折返后第一次与甲相遇的过程中,直接写出 为何值时 ,它离乙的路 ....x . .... 程与它离甲的路程相等?
三、解答题(本大题共 11 小题,共 88 分,解答时应写出必要的文字说明、证明过程或演算步
3 17. (1) ; (2) 3 . 2 18.略.
19.略.
x 2 1 20. (1) ; (2) . 2 y 1
21.略. 22. (1)略; (2)C(1,3) ,D(-3,-2) ,y 23. (1) (-3,0) ; (2) 3 b 2 . 24. (1) y1 60 x , y2 350 80 x , 60 x 350 80 x , x 2.5 ; (2)2 或 3 小时. 1 25. (1)出发 后,小狗追上乙; 2 (2) y1 2x 4 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年黄山市八年级(上)期末数学试卷一、选择题(本大题共27分,每小题3分.在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在题后的括号里)1.计算2x3•x2的结果是()A.2x B.2x5C.2x6D.x52.下列图案中,是轴对称图形的是()A.B. C. D.3.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣14.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或175.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D6.若=,则的值为()A.1 B.C.D.7.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40° D.45°8.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( )A .= B . =C . =D . = 9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个二、填空题10.计算﹣(﹣3a 2b 3)2的结果是 .11.当1<x <2,化简+的值是 .12.如图,C 、D 点在BE 上,∠1=∠2,BD=EC 请补充一个条件: ,使△ABC ≌△FED .13.x 2+kx+9是完全平方式,则k= .14.分解因式:9x 3﹣18x 2+9x= .15.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 的长为 .16.如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式 .17.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为.三、解答题(共69分)18.(1)化简:(x+y)(x﹣y)﹣(2x﹣y)(x+3y);(2)解方程:(3x+1)(3x﹣1)﹣(3x+1)2=﹣8.19.(7分)解方程:.20.如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.21.先化简,再求值:÷(x﹣2﹣),其中x=3.22.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.23.如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E、D分别为边AB、AC上的点,且满足OE⊥OD,求证:OE=OD.24.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?2015-2016学年黄山市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共27分,每小题3分.在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在题后的括号里)1.计算2x3•x2的结果是()A.2x B.2x5C.2x6D.x5【考点】同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加解答.【解答】解:2x3•x2=2x5.故选B.【点评】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.下列图案中,是轴对称图形的是()A.B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、是轴对称图形,符合题意.故选D.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1【考点】分式有意义的条件.【专题】常规题型.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.5.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上内容逐个判断即可.【解答】解:A、AB=DC,AC=DB,BC=BC,符合全等三角形的判定定理“SSS”,即能推出△ABC≌△DCB,故本选项错误;B、AB=DC,∠ABC=∠DCB,BC=BC,符合全等三角形的判定定理“SAS”,即能推出△ABC≌△DCB,故本选项错误;C、在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=DC,∠ABO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠DCB,在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),即能推出△ABC≌△DCB,故本选项错误;D、具备条件AB=DC,BC=BC,∠∠A=∠D不能推出△ABC≌△DCB,故本选项正确.故选D.【点评】本题考查了全等三角形的性质和判定的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.若=,则的值为()A.1 B.C.D.【考点】比例的性质.【专题】计算题.【分析】根据合分比性质求解.【解答】解:∵ =,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.7.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40° D.45°【考点】等腰三角形的性质.【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.8.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( )A .= B . =C . =D . = 【考点】由实际问题抽象出分式方程.【专题】销售问题.【分析】设A 型陶笛的单价为x 元,则B 型陶笛的单价为(x+20)元,根据用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,列方程即可.【解答】解:设A 型陶笛的单价为x 元,则B 型陶笛的单价为(x+20)元,由题意得,=.故选:D .【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P 的位置即可.【解答】解:要使△ABP 与△ABC 全等,点P 到AB 的距离应该等于点C 到AB 的距离,即3个单位长度,故点P 的位置可以是P 1,P 3,P 4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P 的位置.二、填空题10.计算﹣(﹣3a2b3)2的结果是﹣9a4b6.【考点】幂的乘方与积的乘方.【分析】首先利用积的乘方和幂的乘方进行计算,再加上括号前面的负号即可.【解答】解:原式=﹣9a4b6,故答案为:﹣9a4b6.【点评】此题主要考查了积的乘方和幂的乘方,关键是掌握积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘.11.当1<x<2,化简+的值是﹣2 .【考点】约分.【分析】根据绝对值的定义,再根据已知条件,化简式子即可得出结果.【解答】解:因为1<x<2,所以+=,故答案为:﹣2【点评】此题主要考查了绝对值的性质,能够根据已知条件正确地化简式子,比较简单.12.如图,C、D点在BE上,∠1=∠2,BD=EC请补充一个条件:AC=DF ,使△ABC≌△FED.【考点】全等三角形的判定.【分析】条件是AC=DF,求出BC=DE,根据SAS推出即可.【解答】解:条件是AC=DF,理由是:∵BD=CE,∴BD﹣CD=CE﹣CD,∴BC=DE,在△ABC和△FED中,,∴△ABC≌△FED(SAS),故答案为:AC=DF.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.此题是一道开放型的题目,答案不唯一.13.x2+kx+9是完全平方式,则k= ±6 .【考点】完全平方式.【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3的积的2倍,故k=±6.【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.分解因式:9x3﹣18x2+9x= 9x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式9x,进而利用完全平方公式分解因式得出即可.【解答】解:9x3﹣18x2+9x=9x(x2﹣2x+1)=9x(x﹣1)2.故答案为:9x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.15.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为 2 .【考点】含30度角的直角三角形.【专题】计算题.【分析】过P作PE垂直与OB,由∠AOP=∠BOP,PD垂直于OA,利用角平分线定理得到PE=PD,由PC与OA平行,根据两直线平行得到一对内错角相等,又OP为角平分线得到一对角相等,等量代换可得∠COP=∠CPO,又∠ECP为三角形COP的外角,利用三角形外角的性质求出∠ECP=30°,在直角三角形ECP中,由30°角所对的直角边等于斜边的一半,由斜边PC的长求出PE的长,即为PD的长.【解答】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.【点评】此题考查了含30°角直角三角形的性质,角平分线定理,平行线的性质,以及三角形的外角性质,熟练掌握性质及定理是解本题的关键.同时注意辅助线的作法.16.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【考点】平方差公式的几何背景.【专题】计算题;压轴题.【分析】左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b),根据面积相等即可解答.【解答】解:a2﹣b2=(a+b)(a﹣b).【点评】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.17.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为 5.5 .【考点】等腰三角形的判定与性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=AB=×11=5.5,∴DF=5.5.故答案为:5.5.【点评】本题考查了等腰三角形的性质,平行线的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.三、解答题(共69分)18.(2015秋•黄冈校级期末)(1)化简:(x+y)(x﹣y)﹣(2x﹣y)(x+3y);(2)解方程:(3x+1)(3x﹣1)﹣(3x+1)2=﹣8.【考点】平方差公式;多项式乘多项式;解一元一次方程.【分析】(1)先根据平方差公式和多项式乘多项式法则计算,再合并同类项即可求解;(1)先根据平方差公式和完全平方公式计算,再合并同类项得到﹣6x﹣2=﹣8,再解一元一次方程即可求解.【解答】解:(1)原式=x2﹣y2﹣(2x2+5xy﹣3y2)=﹣x2﹣5xy+2y2;(2)去括号,得9x2﹣1﹣(9x2+6x+1)=﹣8,9x2﹣1﹣9x2﹣6x﹣1=﹣8,合并,得﹣6x﹣2=﹣8,解得x=1.【点评】本题考查了平方差公式,多项式乘多项式,完全平方公式,解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.19.解方程:.【考点】解分式方程.【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可.【解答】解: =1+,2x=x﹣2+1,x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣1.【点评】此题考查了解分式方程,用到的知识点是解分式方程的步骤:去分母化整式方程,解整式方程,最后要把整式方程的解代入最简公分母进行检验.20.如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由于BF=CE,利用等式性质可证BC=EF,而AB∥ED,AC∥FD,利用平行线的性质可得∠B=∠E,∠ACB=∠DFE,从而利用ASA可证△ABC≌△DEF,进而可得AB=DE.【解答】证明:∵BF=CE,∴BF+CF=CE+CF,即BC=EF,∵AB∥ED,∴∠B=∠E,∵AC∥FD,∴∠ACB=∠DFE,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AB=DE.【点评】本题考查了全等三角形的判定和性质,解题的关键是注意先证明ASA所需要的三个条件.21.先化简,再求值:÷(x﹣2﹣),其中x=3.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x=3代入进行计算即可.【解答】解:原式=÷=÷=•=.当x=3时,原式=1.【点评】本题考查的是分式的化简求值,熟知分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.22.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.【考点】作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,然后列式计算即可得解.【解答】解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);=6×6﹣×5×6﹣×6×3﹣×1×3,(2)S△ABC=36﹣15﹣9﹣1,=10.【点评】本题考查了利用轴对称变换作图,三角形的面积的求解,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E、D分别为边AB、AC上的点,且满足OE⊥OD,求证:OE=OD.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】连接AO,证明△BEO≌△ADO即可.【解答】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,在△AOD和△BOE中∴△AOD≌△BOE,∴OE=OD.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.24.(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?【考点】一元一次不等式组的应用;分式方程的应用.【分析】(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.【解答】解:(1)设去年每吨大蒜的平均价格是x元,由题意得,×2=,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将(300﹣m)吨加工成蒜片,由题意得,,解得:100≤m≤120,总利润为:1000m+600(300﹣m)=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.。

相关文档
最新文档