过程控制实验报告
北京科技大学过程控制实验报告
实验报告课程名称:过程控制系统实验项目名称:被控对象特性测试实验日期与时间: 2022.07 指导教师:班级:姓名:学号:成绩:一、实验目的要求1.了解控制对象特性的基本形式。
2.掌握实验测试对象特性的方法,并求取对象特性参数二、实验内容本节实验内容主要完成测试对象特性,包含以下两部分内容:1.被控对象特性的实验测定本实验采用飞升曲线法(阶跃向应曲线法)测取对象的动特性。
飞升曲线是指输入为阶跃信号时的输出量变化的曲线。
实验时,系统处于开环状态,被控对象在某一状态下稳定一段时间后,输入一阶跃信号,使被控对象达到另一个稳定状态,得到被控对象的飞升曲线。
在实验时应注意以下的一些问题:1)测试前系统应处于正常工作状态,也就是说系统应该是平衡的。
采取一切措施防止其他干扰的发生,否则将影响实验结果。
2)在测试工作中要特别注意工作点与阶跃幅度的选取。
作为测试对象特性的工作点,应该选择正常工作状态,也就是在额定负荷及正常的其他干扰下,因为整个控制过程将在此工作点附近进行。
阶跃作用的取值范围为其额定值的 5-10%。
如果取值太小,由于测量误差及其它干扰的影响,会使实验结果不够准确。
如果取值过大,则非线性影响将扭曲实验结果。
不能获得应有的反应曲线,同时还将使生产长期处于不正常的工作状态,特别是有进入危险区域的可能性,这是生产所不能允许的。
3)实验时,必须特别注意的是,应准确地记录加入阶跃作用的计时起点,注意被调量离开起始点时的情况,以便计算对象滞后的大小,这对以后整定控制器参数具有重要的意义。
4)每次实验应在相同的条件下进行两次以上,如果能够重合才算合格。
为了校验线性,宜作正负两种阶跃进行比较。
也可作不同阶跃量的实验。
2.飞升曲线数据处理在飞升曲线测得以后,可以用多种方法来计算出所测对象的微分方程式,数据处理方法有面积法、图解法、近似法等。
面积法较复杂,计算工作量较大。
近似法误差较大,图解法较方便,误差比近似法小。
过程控制实验报告【范本模板】
过程控制实验实验报告班级:自动化1202姓名:杨益伟学号:1209003212015年10月信息科学与技术学院实验一 过程控制系统建模作业题目一:常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simul ink 中建立相应模型,并求单位阶跃响应曲线.答:常见的工业过程动态特性的类型有:无自平衡能力的单容对象特性、有自平衡能力的单容对象特性、有相互影响的多容对象的动态特性、无相互影响的多容对象的动态特性等。
通常的模型有一阶惯性模型,二阶模型等. 单容过程模型1、无自衡单容过程的阶跃响应实例已知两个无自衡单容过程的模型分别为s s G 5.01)(=和se ss G 55.01)(-=,试在Simuli nk 中建立模型,并求单位阶跃响应曲线。
Simul ink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:2、自衡单容过程的阶跃响应实例已知两个自衡单容过程的模型分别为122)(+=s s G 和s e s s G 5122)(-+=,试在Simu link 中建立模型,并求单位阶跃响应曲线.Simu link 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:多容过程模型3、有相互影响的多容过程的阶跃响应实例已知有相互影响的多容过程的模型为121)(22++=Ts s T s G ξ,当参数1=T , 2.1 ,1 ,3.0 ,0=ξ时,试在S imulink 中建立模型,并求单位阶跃响应曲线在Simu lin k中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:4、无相互影响的多容过程的阶跃响应实例已知两个无相互影响的多容过程的模型为)1)(12(1)(++=s s s G (多容有自衡能力的对象)和)12(1)(+=s s s G (多容无自衡能力的对象),试在Simulink 中建立模型,并求单位阶跃响应曲线。
在Simu lin k中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:作业题目二:某二阶系统的模型为2() 224nG s s s n nϖζϖϖ=++,二阶系统的性能主要取决于ζ,n ϖ两个参数。
过程控制实验报告
过程控制实验报告过程控制实验报告引言:过程控制是一种重要的工程控制方法,广泛应用于工业生产、环境保护、交通运输等各个领域。
本实验旨在通过对过程控制的实际操作,理解和掌握过程控制的基本原理和方法。
一、实验目的本实验的主要目的是通过搭建一个简单的过程控制系统,了解过程控制的基本概念和原理,并通过实际操作掌握过程控制的方法和技巧。
二、实验装置和原理实验所用的装置是一个温度控制系统,由温度传感器、控制器和执行器组成。
温度传感器负责测量温度,控制器根据测量值与设定值的差异来控制执行器的动作,从而实现温度的控制。
三、实验步骤1. 将温度传感器安装在被控温度区域,并连接到控制器上。
2. 设置控制器的参数,包括设定值、比例系数、积分时间和微分时间等。
3. 打开控制器,开始实验。
观察温度的变化过程,并记录实验数据。
4. 根据实验数据分析控制效果,并对控制器的参数进行调整,以达到更好的控制效果。
5. 重复步骤3和4,直到达到满意的控制效果。
四、实验结果与分析在实验过程中,我们观察到温度的变化过程,并记录了实验数据。
通过对实验数据的分析,我们可以评估控制效果的好坏,并对控制器的参数进行调整。
五、实验总结与体会通过本次实验,我们深入了解了过程控制的基本原理和方法。
实践操作使我们更加熟悉了过程控制的过程和技巧。
同时,我们也体会到了过程控制在工程实践中的重要性和应用价值。
六、实验改进与展望本次实验中,我们采用了简单的温度控制系统进行实验。
未来可以进一步扩展实验内容,涉及到其他参数的控制,如压力、流量等,以更全面地了解过程控制的应用。
结语:过程控制是一门重要的工程学科,对于提高生产效率、保护环境、提升产品质量等方面具有重要意义。
通过本次实验,我们对过程控制的原理和方法有了更深入的理解,为今后的工程实践打下了坚实的基础。
希望通过不断学习和实践,我们能够在工程领域中运用过程控制的知识,为社会发展做出更大的贡献。
《过程控制系统》实验报告
《过程控制系统》实验报告实验报告:过程控制系统一、引言过程控制系统是指对工业过程中的物理、化学、机械等变量进行监控和调节的系统。
它能够实时采集与处理各种信号,根据设定的控制策略对工业过程进行监控与调节,以达到所需的目标。
在工业生产中,过程控制系统起到了至关重要的作用。
本实验旨在了解过程控制系统的基本原理、组成以及操作。
二、实验内容1.过程控制系统的组成及原理;2.过程控制系统的搭建与调节;3.过程控制系统的优化优化。
三、实验步骤1.复习过程控制系统的原理和基本组成;2.使用PLC等软件和硬件搭建简单的过程控制系统;3.设计一个调节过程,如温度控制或液位控制,调节系统的参数;4.通过修改控制算法和调整参数,优化过程控制系统的性能;5.记录实验数据并进行分析。
四、实验结果与分析在本次实验中,我们搭建了一个温度控制系统,通过控制加热器的功率来调节温度。
在调节过程中,我们使用了PID控制算法,并调整了参数,包括比例、积分和微分。
通过观察实验数据,我们可以看到温度的稳定性随着PID参数的调整而改变。
当PID参数调整合适时,温度能够在设定值附近波动较小,实现了较好的控制效果。
在优化过程中,我们尝试了不同的控制算法和参数,比较了它们的性能差异。
实验结果表明,在一些情况下,改变控制算法和参数可以显著提高过程控制系统的性能。
通过优化,我们实现了更快的响应时间和更小的稳定偏差,提高了系统的稳定性和控制精度。
五、结论与总结通过本次实验,我们了解了过程控制系统的基本原理、组成和操作方法。
我们掌握了搭建过程控制系统、调节参数以及优化性能的技巧。
实验结果表明,合理的控制算法和参数选择可以显著提高过程控制系统的性能,实现更好的控制效果。
然而,本次实验还存在一些不足之处。
首先,在系统搭建过程中,可能由于设备和软件的限制,无法完全模拟实际的工业过程。
其次,实验涉及到的控制算法和参数调节方法较为简单,在实际工程中可能需要更为复杂和精细的控制策略。
《过程控制系统》实验报告
《过程控制系统》实验报告一、实验目的过程控制系统实验旨在通过实际操作和观察,深入理解过程控制系统的组成、工作原理和性能特点,掌握常见的控制算法和参数整定方法,培养学生的工程实践能力和解决实际问题的能力。
二、实验设备1、过程控制实验装置包括水箱、水泵、调节阀、传感器(液位传感器、温度传感器等)、控制器(可编程控制器 PLC 或工业控制计算机)等。
2、计算机及相关软件用于编程、监控和数据采集分析。
三、实验原理过程控制系统是指对工业生产过程中的某个物理量(如温度、压力、液位、流量等)进行自动控制,使其保持在期望的设定值附近。
其基本原理是通过传感器检测被控量的实际值,将其与设定值进行比较,产生偏差信号,控制器根据偏差信号按照一定的控制算法计算出控制量,通过执行机构(如调节阀、电机等)作用于被控对象,从而实现对被控量的控制。
常见的控制算法包括比例(P)控制、积分(I)控制、微分(D)控制及其组合(如 PID 控制)。
四、实验内容及步骤1、单回路液位控制系统实验(1)系统组成及连接将液位传感器安装在水箱上,调节阀与水泵相连,控制器与传感器和调节阀连接,计算机与控制器通信。
(2)参数设置在控制器中设置液位设定值、控制算法(如 PID)的参数等。
(3)系统运行启动水泵,观察液位的变化,通过控制器的调节使液位稳定在设定值附近。
(4)数据采集与分析利用计算机采集液位的实际值和控制量的数据,绘制曲线,分析系统的稳定性、快速性和准确性。
2、温度控制系统实验(1)系统组成与连接类似液位控制系统,将温度传感器安装在加热装置上,调节阀控制加热功率。
设置温度设定值和控制算法参数。
(3)运行与数据采集分析启动加热装置,观察温度变化,采集数据并分析。
五、实验数据及结果分析1、单回路液位控制系统(1)实验数据记录不同时刻的液位实际值和控制量。
(2)结果分析稳定性分析:观察液位是否在设定值附近波动,波动范围是否在允许范围内。
快速性分析:计算液位达到设定值所需的时间。
过程控制控实验报告
过程控制控实验报告实验⼀单容⾃衡⽔箱特性的测试⼀、实验⽬的1. a 根据实验得到的液位阶跃响应曲线,⽤相应的⽅法确定被测对象的特征参数K 、T 和传递函数。
⼆、实验设备1. A3000⾼级过程控制实验系统2. 计算机及相关软件三、实验原理由图2.1可知,对象的被控制量为⽔箱的液位h ,控制量(输⼊量)是流⼊⽔箱中的流量Q 1,Q 2为流出⽔箱的流量。
⼿动阀QV105和闸板QV116的开度(5~10毫⽶)都为定值。
根据物料平衡关系,在平衡状态时:0Q Q 2010=- (1)动态时则有: dtdVQ Q 21=- (2)式中V 为⽔箱的贮⽔容积,dtdV为⽔贮存量的变化率,它与h 的关系为Adh dV =,即:dtdhA dt dV = (3) A 为⽔箱的底⾯积。
把式(3)代⼊式(2)得:QV116V104V103hh QV105QV102P102LT103LICA 103FV101MQ 1Q 2图2.1单容⽔箱特性测试结构图图2.2 单容⽔箱的单调上升指数曲线dtdhA=-21Q Q (4)基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dtdhA R h Q S =-1,即:或写作:1)()(1+=TS Ks Q s H (5)式中T=AR S ,它与⽔箱的底积A 和V 2的R S 有关;K=R S 。
式(5)就是单容⽔箱的传递函数。
若令SR s Q 01)(=,R 0=常数,则式(5)可改为: TS KR S R K S R T S T K s H 0011/)(0+-=?+= 对上式取拉⽒反变换得: )e -(1KR h(t)t/T0-= (6)当∞→t 时0KR )h(=∞,因⽽有=∞=0R )h(K 阶跃输⼊输出稳态值。
当t=T 时,则)h(KR )e-(1KR h(T) 001∞===-0.6320.632。
式(6)表⽰⼀阶惯性环节的响应曲线是⼀单调上升的指数函数,如图2.2所⽰。
过程控制实验报告
过程控制实验报告1. 背景过程控制是一种控制技术,用于监测和调整工业过程中的变量,以确保产品的质量和效率。
在工业生产中,过程控制对于提高产品质量、降低生产成本和提高生产效率起着至关重要的作用。
本实验旨在通过模拟一个简单的工业过程,了解过程控制的基本原理和方法。
通过对过程中的变量进行监测和调整,我们可以在不同条件下优化过程,并得出相应的结论和建议。
2. 实验设备和方法2.1 实验设备•控制器:使用PID控制器进行过程控制。
•传感器:使用温度传感器、压力传感器和流量传感器等监测过程中的变量。
•执行器:使用阀门、电机等对过程进行调整。
2.2 实验方法1.设定控制目标:根据实验要求,确定需要控制的变量和目标值。
2.连接传感器和执行器:将传感器和执行器与控制器连接,确保数据的传输和命令的执行。
3.数据采集和处理:通过传感器获取过程中的数据,并将其输入到控制器中进行处理。
4.控制策略选择:选择合适的控制策略,如比例控制、积分控制、微分控制等。
5.调整参数:根据实际情况,调整控制器的参数,以达到控制目标。
6.系统监测和优化:实时监测过程中的变量,并根据实验结果进行系统优化。
3. 实验结果经过实验,我们获得了以下结果:•利用PID控制器进行温度控制实验,成功将温度稳定在目标温度范围内,并保持稳定不变。
•利用PID控制器进行压力控制实验,成功将压力稳定在目标压力范围内,并保持稳定不变。
•利用PID控制器进行流量控制实验,成功将流量控制在目标流量范围内,并保持稳定不变。
通过数据分析和结果对比,我们得出以下结论:•PID控制器具有较好的控制性能,能够实现对温度、压力和流量等变量的精确控制。
•过程控制的关键在于选择合适的控制策略和参数调整,通过不断优化可以实现更好的控制效果。
•实时监测对于控制系统的稳定性和可靠性具有至关重要的作用,可以及时发现问题并进行修正。
4. 建议根据实验结果和分析,我们提出以下建议:1.在实际工业生产中,可以采用PID控制器对关键的工艺变量进行控制,以提高产品质量和生产效率。
过程控制实验报告汇总1
过程控制课程实验报告1.实验一: 串级系统的仿真控制实验要求:假设一串级控制系统的结构框图为:其中:2.将传递函数带入并绘制串级控制系统的Simulink结构图:执行程序:clc; %清除命令窗口clear all; %清除所有记录[a,b,c,d]=linmod('chuanji'); %加载simulink模型sys=ss(a,b,c,d); %建立状态空间表达式figure(1); %绘制图形1step(sys); %获得阶跃响应曲线hold on %绘图保持[y,t]=step(sys); %y为纵轴, t为横轴的阶跃曲线[mp,tf]=max(y); %返回峰值与峰值时间cs=length(t); %获得稳态时间yss=y(cs); %获得稳态值sigma=100*(mp-yss)/yss; % 计算超调量tp=t(tf); %计算峰值时间%计算调节时间i=cs+1;n=0;while n==0,i=i-1;if i==1n=1;elseif y(i)>1.05*yss %判断响应值是否大于稳态值%的1.05倍n=1;endendt1=t(i);cs=length(t);j=cs+1;n=0;while n==0,j=j-1;if j==1n=1;elseif y(i)<0.95*yss %判断响应值是否小于稳态值的0.95倍 n=1;endendt2=t(j);If t2<tp,if t1>t2,ts=t1;endelseif t2>tp,if t2<t1,ts=t2;elsets=t1;endendsigma=sigma(:,:,1) %显示超调量tp=tp(:,:,1) %显示峰值时间ts %显示调节时间3.实验结果与性能指标(1).实验结果sigma =32.3442tp =58.4907ts =90.9393(2).与单回路系统的对比Simulink仿真图性能指标sigma =73.4939tp =69.2071ts =820.16444.实验结论:1.(从回路的个数分析)由于串级控制系统是一个双回路系统, , 因此能迅速克服进入副回路的干扰, 从某个角度讲, 副回路起到了快速“粗调”作用, 主回路则担当进一步“细调”的功能, 所以应设法让主要扰动的进入点位于副回路内。
运算符与流程控制实验报告
运算符与流程控制实验报告一、引言运算符与流程控制是程序设计中的重要基础知识,它们能够帮助程序员实现对数据的处理和操作。
本实验旨在通过实际操作和分析,深入理解运算符和流程控制的原理和应用。
二、实验目的1. 掌握常见的运算符及其优先级;2. 熟悉条件语句和循环语句的使用方法;3. 理解程序执行的流程控制。
三、实验过程1. 运算符实验在实验中,我们首先进行了常见运算符的实验,包括算术运算符、关系运算符、逻辑运算符和赋值运算符。
通过编写程序,我们可以观察到不同运算符之间的优先级和操作规则。
例如,在算术运算符中,“*”和“/”的优先级高于“+”和“-”,而在逻辑运算符中,“&&”的优先级高于“||”。
通过实验,我们对运算符的使用和规则有了更深入的了解。
2. 条件语句实验条件语句是根据不同的条件选择性地执行不同的代码块。
我们在实验中使用了if语句、if-else语句和switch语句。
通过编写程序,我们可以根据不同的条件执行不同的操作,实现灵活的程序流程控制。
例如,在一个简单的成绩判断程序中,我们可以根据不同的分数范围输出不同的评语。
3. 循环语句实验循环语句可以重复执行一段代码块,直到满足特定条件才停止。
我们在实验中使用了while循环、do-while循环和for循环。
通过编写程序,我们可以实现重复执行某段代码的需求。
例如,在一个简单的倒计时程序中,我们可以使用循环语句实现从10倒数到1的功能。
四、实验结果与分析通过实验,我们得到了以下结论:1. 运算符的优先级和操作规则是确定的,程序员可以根据需要合理运用;2. 条件语句可以根据不同的条件执行不同的操作,灵活性较高;3. 循环语句可以重复执行一段代码,节省了程序设计的工作量。
五、实验总结通过本次实验,我们深入学习了运算符与流程控制的原理和应用。
实验中我们掌握了常见的运算符及其优先级,熟悉了条件语句和循环语句的使用方法,并理解了程序执行的流程控制。
过程控制实验报告
过程控制实验报告引言过程控制是工程领域中一项重要的技术,其通过监测和控制生产过程中的各种变量,以最大程度地提高生产效率和质量。
本文将介绍一项涉及过程控制的实验,并分析实验结果以及对于工业生产的意义。
实验目的本次实验的目的是通过模拟实际工业生产过程,在实验室环境中对过程控制进行验证和学习。
该实验旨在通过控制设备和监测仪器,了解过程控制在工业生产中的应用,并且掌握相关的理论知识和实际操作经验。
实验设备和材料本次实验使用的设备包括温度传感器、压力传感器、流量计、控制阀和数据采集系统等。
实验所需材料有水、气体和一种特定化学品。
实验步骤1. 实验前准备:清洁实验设备,确保其正常工作状态。
检查传感器和控制阀的准确性和灵敏度。
2. 确定实验参数:选择要监测和控制的变量,比如温度、压力和流量。
根据设计要求设置合理的上限和下限。
3. 运行实验:通过控制阀控制流量和压力,同时记录设备的实际参数。
4. 数据采集:使用数据采集系统实时记录和保存实验过程中的各种参数数据。
5. 数据分析:将实验中收集到的数据进行整理和分析,比较设定值和实际值之间的偏差,并进行统计学处理。
实验结果和讨论根据实验数据的分析,我们可以得出以下结论:1. 过程控制对于维持稳定的生产工艺非常重要。
通过对温度、压力和流量的控制,我们可以确保产品的质量和一致性。
2. 传感器的精确度对过程控制的结果有直接影响。
不准确的传感器可能导致控制误差,从而影响产品的质量。
3. 过程控制需要根据实际情况进行调整和优化。
在实验中,我们可以通过改变控制阀的开度和调整设定值来实现更好的控制效果。
4. 数据采集和分析的重要性不可忽视。
通过收集和分析实验数据,我们可以及时发现问题并采取措施进行调整,从而提高系统的稳定性和可靠性。
总结通过本次实验,我们对过程控制的原理和应用有了更深入的了解。
过程控制在工业生产中起着关键作用,它可以提高生产效率、降低生产成本、改善产品质量,并且减少对环境的影响。
浙江大学化工原理(过程控制)实验报告_传热综合实验2
实验报告课程名称:__过程工程原理实验(甲)I__ 指导老师:____ 成绩:__________ 实验名称:传热综合实验 实验类型:工程实验 同组学生姓名:_______ 一、实验目的和内容 二、实验装置与流程示意图 三、实验的理论依据(实验原理) 四、注意事项 五、原始记录数据表 六、整理计算数据表 七、数据整理计算过程举例 八、实验结论 九、实验结果的分析和讨论 一、实验目的和内容 1、掌握空气在普通和强化传热管内的对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径。
2、把测得的数据整理成n BRe =Nu 形势的准数方程,并与教材中相应公式进行比较。
3、了解温度、加热功率、空气流量的自动控制原理和使用方法。
二、实验装置与流程示意图本实验装置流程如图1由蒸汽发生器、孔板流量变送器、变频器、套管换热器及温度传感器、智能显示仪表等构成。
专业: _________ 姓名:_________ 学号:_________ 日期:_________ 地点: _________图1 竖管对流传热系数测定实验装置流程图表1 竖管对流传热系数测定实验装置流程图符号说明表空气进行换热交换,冷凝水经排出阀排入盛水装置。
空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器内管,热交换后从风机出口排出。
注意:本实验中,普通和强化实验通过管路上的切换阀门进行切换。
三、实验的理论依据(实验原理)在工业生产过程中,大量情况下,采用间壁式换热方式进行换热。
所谓间壁式换热,就是冷、热两种流体之间有一固体壁面,两流体分别在固体壁面的两侧流动,两流体不直接接触,通过固体壁面(传热元件)进行热量交换。
本装置主要研究汽—气综合换热,包括普通管和加强管。
其中,水蒸汽和空气通过紫铜管间接换热,空气走紫铜管内,水蒸汽走紫铜管外,采用逆流换热。
所谓加强管,是在紫铜管内加了弹簧,增大了绝对粗糙度,进而增大了空气流动的湍流程度,使换热效果更明显。
过程控制实验报告
2
4
6
8
10
12
14
16
18
20
22
24
水箱水位
LT1读数
(cm)
3.66
3.74
3.82
3.92
4.05
4.14
4.2
4.3
4.36
4.5
4.63
4.73
等到进入新的平衡状态后,再记录测量数据,并填入下表:
变频器输出频率f
PID输出Vo
水箱水位高度LT1显示值
HZ
v
cm
20.6
1.80
7.42
GK-02、GK-03、GK-04(两台)、GK-07
2、万用电表一只、计算机系统
三、实验原理
单回路控制系统解决了工业生产过程中大量的参数定值控制问题。
1、串级控制系统的结构
图3-1、串级控制系统结构
如图所示,串级控制系统是指不止采用一个调节器,而是将两个或几个调节器相串联,并将一个调节器的输出作为下一个调节器设定值的控制系统。
实验一、单容水箱对象特性的了解和了解调整位式调节器、智测试
一、实验目的
1、了解单容水箱的自衡特性。
2、掌握单容水箱的数学模型及其阶跃响应曲线。
二、实验设备
1、THKGK-1型过程控制实验装置:
GK-02 GK-03 GKHale Waihona Puke 04 GK-072、万用表一只
3、计算机及上位机软件
三、实验原理
阶跃响应测试法是被控对象在开环运行状况下,待工况稳定后,通过调节器手动改变对象的输入信号(阶跃信号)。同时,记录对象的输出数据和阶跃响应曲线,然后根据给定对象模型的结构形式,对实验数据进行合理的处理,确定模型中的相关参数。
过程装备控制实验报告
一、实验目的1. 理解过程装备控制的基本原理和概念。
2. 掌握过程装备控制系统的基本组成和结构。
3. 学习过程装备控制系统的调试和优化方法。
4. 培养动手能力和实验技能。
二、实验原理过程装备控制是研究过程工业中使用的装备及其装备的控制。
它涉及到过程工业中的温度、压力、流量、液位等变量的自动化控制。
本实验主要研究一阶、二阶单回路控制系统的结构与组成,以及调节器参数的整定。
三、实验仪器与设备1. 实验台:包含水箱、锅炉、压力容器、手动阀、闸板等。
2. 仪表:智能调节仪、上位机监控软件(MCGS工控组态软件)。
3. 传感器:液位传感器、压力传感器、温度传感器、流量传感器。
4. 控制器:PLC控制器、DCS控制器。
四、实验步骤1. 实验装置连接:按照设计要求完成系统的接线,连接传感器、控制器、执行器等。
2. 系统上电:接通总电源和相关仪表的电源,启动计算机,运行MCGS组态软件,进入本实验系统。
3. 参数整定:选用单回路控制系统所述的某种调节器参数的整定方法整定好调节器的参数。
4. 系统运行:设置系统给定值SV,手动操作调节器的输出,使被控制量接近给定值且基本稳定不变,切换调节器为自动运行。
5. 实验测试:(1)阶跃扰动实验:在系统稳定运行后,突加阶跃扰动(将给定量增加5%~15%),观察并记录系统的输出响应曲线。
(2)扰动实验:待系统进入稳定后,适量打开另一个阀,以作为系统的扰动,观察并记录在阶跃扰动作用下液位的变化过程。
(3)参数变化实验:适量改变PI的参数,用计算机记录不同参数时系统的响应曲线。
五、实验结果与分析1. 阶跃扰动实验结果:在阶跃扰动作用下,系统输出响应曲线呈现出典型的二阶系统响应特性,经过一定时间后,被控制量逐渐恢复到稳定状态。
2. 扰动实验结果:在扰动作用下,系统输出响应曲线同样呈现出典型的二阶系统响应特性,经过一定时间后,被控制量逐渐恢复到稳定状态。
3. 参数变化实验结果:通过改变PI参数,可以观察到系统响应曲线的变化。
过程控制基础与应用实验报告参考
答:串级控制和双容控制的区别在变送器和调节器数量的区别。串级控制比双容控制要容易些,因为串级控制可以将各个变量互相直接影响,而双容控制不行。
六、完成实验报告
(DDC)实验七上水箱液位与电动阀支路流量串级控制
一、实验目的
1、了解复杂过程控制系统的构成。
实验结果如下:由于 ,在下面的两张图数据中可以看出,流量变化是呈衰减震荡的,因而这种比例积分微分调节效果很好,满足要求。
在这次实验数据中,设置的 ,从而得出仪表调节器的传递函数可以近似表述为
六、完成实验报告
比较串级控制与双容控制区别和控制的难易度,为什么。复杂控制系统的优点在那里。
答:串级控制和双容控制的区别在变送器和调节器数量的区别。串级控制比双容控制要容易些,因为串级控制可以将各个变量互相直接影响,而双容控制不行
阶跃响应曲线数据处理记录表
参数值
测量情况
流量1
流量2
K1
T1
τ1
K2
T2
τ2
阶跃1
800
50
1
800
50
1
阶跃2
平均值
800
50
1
800
50
1
按常规内容编写实验报告,并根据K、T、τ平均值写出广义的传递函数。
五、实验结果分析或建议
实验结果如下:由于 ,在下面的两张图数据中可以看出,流量变化是呈衰减震荡的,因而这种比例积分微分调节效果很好,满足要求。
10、选择单回路控制实验的电动阀支路流量控制实验。
11、选择仪表控制方式。
12、观察计算机上的实时曲线和历史曲线。
13、待系统稳定后,给定加个阶跃信号,观察其液位变化曲线。
过程控制系统实验报告
过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。
本系统设计本着培养工程化、参数化、现代化、开放性、综合性人材为出发点。
实验对象采用当今工业现场常用的对象,如水箱、锅炉等。
仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS 工控组态软件。
对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开辟,如PLC 控制、DCS 控制开辟等。
学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。
同时该系统也为教师和研究生提供一个高水平的学习和研究开辟的平台。
本实验装置由过程控制实验对象、智能仪表控制台及上位机PC 三部份组成。
由上、下二个有机玻璃水箱和不锈钢储水箱串接, 4.5 千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。
用,透明度高,有利于学生直接观察液位的变化和记录结果。
水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。
二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。
锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。
做温度定值实验时,可用冷却循环水匡助散热。
加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。
采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。
整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。
为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。
检测上、下二个水箱的液位。
其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5 。
输出信号:4~20mA DC。
LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。
过程控制虚拟仿真实验报告
过程控制虚拟仿真实验报告实验名称:过程控制虚拟仿真实验实验目的:1. 掌握过程控制系统的基本模型;2. 具备使用模拟软件进行过程控制系统仿真实验的能力;3. 了解过程控制系统在工业生产中的应用。
实验原理:过程控制系统是现代化工、制造业等领域中必不可少的重要系统。
它是一种涉及多种工程学科的复杂系统,其基本功能是对工业生产过程中的各种参数进行监测、数据采集、控制和调节,实现对产品质量、生产效率、成本等方面的控制。
过程控制系统通常包含传感器、执行器、控制器和数据采集系统等组成部分,其中控制器是核心设备之一,其作用是读取传感器数据,并利用控制算法实现对各个执行机构的控制。
虚拟仿真软件是目前较为常用的过程控制系统建模和仿真工具之一,可模拟出不同类型的过程控制系统,并对其进行虚拟实验。
在本实验中,我们将使用 软件模拟出一个简单的加热反应过程,利用PID控制算法对反应温度进行控制,观察PID控制系统在控制反应温度时的表现。
实验步骤:1. 启动软件,并创建一个新的控制系统模型;2. 在模型界面中创建一个加热反应室,即将容器内的反应物加热至设定的温度;3. 设置温度传感器,并将其连接到PID控制器上;4. 设置执行器,控制加热反应室内的加热器;5. 设置控制算法,利用PID控制算法对反应温度进行控制;6. 设置数据采集系统,观察反应过程中各项参数的变化;7. 进行虚拟仿真实验,观察PID控制算法的控制效果;8. 改变PID控制参数,观察控制效果的变化,并分析原因。
实验结果:通过对PID控制参数的改变,我们发现当Kp=1、Ki=0.1、Kd=0时,PID控制系统对反应温度的控制效果最佳,并能够在较短的时间内将反应温度控制在目标温度范围内。
实验结论:本实验通过虚拟仿真的方式,实现了对过程控制系统的模拟和控制,提高了学生的实践能力和理论掌握能力,具备了相关过程控制系统的建模与仿真能力。
同时,通过分析实验结果,我们可以了解到PID控制算法在过程控制系统中的应用和控制效果。
过程控制实验报告
过程控制实验报告一、实验目的本次实验的主要目的是了解过程控制的基本概念和方法,学习使用PLC编程软件进行程序设计和调试,掌握PID控制算法及其在工业生产中的应用。
二、实验器材1. PLC编程软件2. 工业自动化控制箱3. 电机驱动器4. 温度传感器三、实验原理1. 过程控制:指对某一物理或化学过程进行监测和调节,以达到预期的结果。
2. PID控制算法:PID是比例、积分、微分三个英文单词的缩写。
PID 控制算法通过对反馈信号进行处理,计算出误差值,并根据误差值来调整输出信号,从而达到对被控对象进行精确调节的目的。
四、实验步骤1. 搭建实验装置:将温度传感器安装在被测物体上,并将电机驱动器与被测物体相连。
2. 编写PLC程序:使用PLC编程软件编写程序,对温度传感器采集到的数据进行处理并输出给电机驱动器。
3. 调试程序:在调试模式下运行程序,观察温度变化情况,并根据实际情况进行调整,使温度保持在设定值范围内。
4. 记录实验数据:记录温度传感器采集到的数据及程序调试过程中的各种参数和结果。
五、实验结果分析通过本次实验,我们成功地搭建了一个过程控制装置,并使用PID控制算法对被测物体进行了精确控制。
在调试程序的过程中,我们发现PID控制算法具有较高的精度和稳定性,在工业生产中得到了广泛的应用。
六、实验总结本次实验通过对过程控制和PID控制算法的学习,让我们更加深入地了解了工业自动化生产中的相关知识。
同时,也让我们对PLC编程软件有了更深入的认识,并学会了如何使用它来进行程序设计和调试。
通过本次实验,我们不仅获得了理论知识,还锻炼了动手能力和分析问题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东南大学自动化学院实验报告课程名称:过程控制实验实验名称:水箱液位控制系统院(系):自动化专业:自动化姓名:学号:实验室:实验组别:同组人员:实验时间:评定成绩:审阅教师:目录一、系统概论 (3)二、对象的认识 (4)三、执行机构 (14)四、单回路调节系统 (15)五、串级调节系统Ⅰ (17)六、串级调节系统Ⅱ (18)七、前馈控制 (20)八、软件平台的开发 (21)一、系统概论1.1实验设备1.1.1 组成器件图1.1 实验设备正面图图1.2 实验设备背面图本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、流量计、压力传感器、温度传感器、操作面板等。
1.1.2 铭牌·加热控制器:功率1500w,电源220V(单相输入)·泵:Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V,IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B·全自动微型家用增压器:型号15WZ-10,单相电容运转马达最高扬程10m,最大流量20L/min,级数2,转速2800rmp,电压220V,电流0.36A,频率50Hz,电容3.5µF,功率80w,绝缘等级E·LWY-C型涡轮流量计:口径4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V,标准信号输出4-20mA,负载0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65 ·压力传感器YMC303P-1-A-3RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V- ·SBWZ温度传感器 PT100量程0-100℃,精度0.5%Fs,输出4-20mADC,电源24VDC·智能电动调节阀型号2DYP-16P压力1.6MPa,输入信号4-20mA,口径2.5mm,电源220V,反馈信号4-20mA,阀门控制精度0.1%-8%可调·电磁阀MODEL UW-15,VOLTS 220V,ORIFICE 15,CYCLES 60Hz,PIPESIZE 1/211,OFERATING PRESSURE MINI 0kg/cm2—MAX 8kg/cm2·交流变频器功率1500w,电源220V(单相输入)380V(三相输入)1.2电气接线图见最后一页1.3操作面板图控制面板中有4个P909仪表,以及执行机构和变送器的接口。
每个P909有4组接口,分别为(PV,4-20mA),(外给定,4-20mA),(OUT,4-20mA),(报警)。
PV为测量值的输入口,即在闭环回路中为反馈值的输入口,该接口一般与变送器相连。
外给定为该P909的给定值是由其他仪器给定,而非手动人为调节,在串级控制中为外环的输出口与内环给定的接口。
OUT为该P909的输出值。
实验中用到的执行机构和变送器为电动阀、电动阀开度变送器、液位变送器。
二、对象的认识2.1 对液位系统的认识本系统的是由水箱、进水阀、出水阀、泵、压力表、电动阀等组成。
2.2实验软件2.2.1 程序安装打开安装包选择安装力控ForceControl 6.1进入安装向导根据向导提示进行安装直到结束,点击完成同理安装驱动程序直至完成在本地计算机安装文件夹下找到IO Severs,将P909驱动程序文件夹拷贝到力控安装目录下的“IO Servers”文件夹下然后把力控教学平台复制到Project文件夹下2.2.2程序运行及配置打开软件点击搜索,选择力控教学平台单击开发进入,点击忽略后软件主界面在IO设备组态中配置设备参数完成所有设备配置后,全部编译并运行登陆2.3 P909的认识和应用与本实验有关的一些功能操作:·设定SV值·各阶层参数说明·PV高点和低点校正Level3层中·外给定高点和低点校正Level3层中·故障与排除2.4 对象建模为了实现对水箱的建模,应该在断开所有的控制器的情况下让水箱获得自然平衡点。
利用P909手动控制电动阀的开度,保持出水阀的开度不变,手动调节进水阀的开度,使得液位逐渐达到平衡点。
在液位到达第一个平衡点之后保持进水阀和出水阀的开度不变,通过P909手动增大电动阀的开度。
(这里之所以实用电动阀来控制输入量是因为电动阀的是线性的,而进水阀是非线性的,从而电动阀的开度该变量是可以量化的)由于开度的增大,进水量必然会增大,但是由于液位不断升高,出水量也会随之增大,最终进水量与出水量相等从而液位重新达到平衡点。
这个过程的液位-时间曲线称为飞升曲线。
通过飞升曲线可以估计出水箱的模型结构,并且通过分析该曲线的数据可以得到模型的相关参数。
控制面板的连线如图2.1。
P909的(OUT,4-20mA)接电动阀的接口,(PV,4-20mA)接电动阀开度变送器的接口。
手动调节输出值OUTL来控制电动阀开度。
图2.1 建模连线图在实验中,电磁阀的开度由30%增大到50%,平衡点的液位高度由58.4mm增高到64.8mm。
飞升曲线如图2.2。
图2.2 飞升曲线由图2.2可以看出水箱的模型为一节惯性系统,其传递函数为KTs+1,其中,K = 64.8−58.450−30=0.32mm/%,T = 4.6min = 276s所以水箱的传递函数为0.32 276s+1三、执行机构本实验的执行机构为电动阀。
下面的工作是探究电动阀的传递函数。
将P909的(PV,4-20mA)接到电动阀开度变送器的接口,(OUT,4-20mA)接到电动阀的接口,连线如图3.1。
图3.1 电动阀连线图在软件平台上观察电动阀开度从0%-100%以及不同开度的变化曲线(图3.2),从而得出传递函数。
图3.2 电动阀开度调节曲线从图3.2可以得出,电动阀的开度变化和时间是线性关系,设为开度=kt,进一步分析曲线知k=100/(0.8×60)=2.1,所以开度(%)= 2.1t,传递函数为2.1 s2四、单回路调节系统4.1单回路调节系统方框图图4.1 单回路调节方框图4.2 PV校正通过测量知:低水位10mm,对应的液位变送器值为7mA;高水位510mm,对应的液位变送器值为20mA。
由于此处需要有一个量程的变换,即4-20mA→0-100,所以7mA→20,20mA→100。
在校正PV时,需要两个P909(A和B),连线如图4.2。
先将A调到手动模式,手动设置OUTL为20,使B进入到level3,在ANL1中调节SV的大小使PV值为10。
再先将A手动设置OUTL为100,使B进入到level3,在ANH1中调节SV的大小使PV值为510。
通过以上两步,完成高点和低点的PV校正。
图4.2 单回路PV校正4.3 实验过程·Step1:控制面板连线。
按照单回路方框图,P909的(PV,4-20mA)接到液位变送器,接口,(OUT,4-10mA)接到电磁阀接口。
如图4.3。
图4.3 单回路控制面板连线图·Step2:由于在实际的过程控制中被控量是不可能大幅度变化的,所以在对控制的效果进行评判时是观察在给定值附近的控制效果是否理想。
例如,实验时设定液位从100mm升到200mm,而为了模拟实际情况,我们应该观察从180mm到液位稳定这段时间的控制效果。
基于以上的分析,在实验中我们分两步进行,手动与自动相结合。
首先,当液位低于180mm 时,手动设置OUTL为100(即电动阀开度最大),使液位快速上升。
当液位达到180mm时,切换到自动调节,根据设定的参数进行PID调节,使液位最终稳定。
4.4实验结果经过不断的PID参数调整,最终我们获得如下的PID参数:P=8.5,I=43,D=0。
调节效果如图4.4所示。
图4.4 单回路PID调节从上图可以看出效果还是不错的,有一个超调,之后就进入稳态,超调量为217−200×100%=8.5%200如果忽略扰动(电流波动,液位晃动等),基本上是没有静差的。
五、串级调节系统Ⅰ5.1串级调节系统方框图图5.1 串级调节方框图5.2 PV校正5.1.1 主控制器的PV校正主控制器的测量值为液位,所以它的PV校正和单回路PV校正相同,控制面板连线见图4.2。
5.1.2 副控制器的PV及外给定校正串级控制系统比单级控制系统多一个控制器,即副控制器。
副控制器的给定值是主控制器的输出值,反馈值是电磁阀开度,所以副控制器需要PV校正和外给定校正。
PV校正:副控制器的PV校正的连线和单回路PV校正相同,先将主控制器调到手动模式,手动设置OUTL为0,使副控制器进入到level3,在ANL1中调节SV的大小使SV值为0。
再先将主控制器手动设置OUTL为100,使副控制器进入到level3,在ANH1中调节SV的大小使SV值为100。
通过以上两步,完成高点和低点的PV校正。
外给定校正:主控制器的输出值即电动阀开度的给定值,所以外给定校正的连线图如图5.2。
先将主控制器调到手动模式,手动设置OUTL为0,使副控制器进入到level3,在ANL2中调节SV的大小使PV值为0。
再先将主控制器手动设置OUTL为100,使副控制器进入到level3,在ANH2中调节SV的大小使PV值为100。
通过以上两步,完成高点和低点的外给定校正。
图5.2 外给定校正六、串级调节系统Ⅱ6.1 实验过程·Step1:控制面板连线。
按照单回路方框图,主控制器的(PV,4-20mA)接到液位变送器,接口,(OUT,4-10mA)接到副控制器的(外给定,4-20mA);副控制器的(PV,4-20mA)接到电磁阀开度变送器,(OUT,4-10mA)接到电磁阀接口。
如图6.1。
图6.1 串级控制连线图·Step2:串级控制系统中有两个PID控制器,在调节参数时不应该同时调节,而是应该先调节副控制器再调节主控制器。
对于副控制器的要求是响应速度快,电磁阀的开度要能跟得上给定值,所以副控制器的PID参数要求为放大倍数比较大,积分时间比较小。
对于主控制器的要求是输出的开度调节幅度不能太大,反应速度应该比副控制器慢,所以主控制器的PID参数要求是放大倍数比较小,积分时间比较大。
(注:P909中的P为比例度,为放大倍数的倒数,所以在调节参数时应该是主控制器的P比较大,副控制器的P比较小。
)·Step3:与单回路调节系统相同,由于在实际的过程控制中被控量是不可能大幅度变化的,所以在对控制的效果进行评判时是观察在给定值附近的控制效果是否理想。