(全国版)2019版高考数学一轮复习第8章平面解析几何第1讲直线的倾斜角与斜率增分练
高考数学复习笔记第八章 平面解析几何
第八章⎪⎪⎪平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.[小题体验]1.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°解析:选D 由倾斜角的取值范围知,只有当0°≤α+45°<180°,即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°,故选D.2.下列说法中正确的是( )A.y -y 1x -x 1=k 表示过点P 1(x 1,y 1),且斜率为k 的直线方程 B .直线y =kx +b 与y 轴交于一点B (0,b ),其中截距b =|OB | C .在x 轴和y 轴上的截距分别为a 与b 的直线方程是x a +yb =1D .方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示过点P 1(x 1,y 1),P 2(x 2,y 2)的直线 解析:选D 对于A ,直线不包括点P 1,故A 不正确;对于B ,截距不是距离,是B 点的纵坐标,其值可正可负,故B 不正确;对于C ,经过原点的直线在两坐标轴上的截距都是0,不能表示为x a +yb =1,故C 不正确;对于D ,此方程为直线两点式方程的变形,故D正确.故选D.3.(2018·嘉兴检测)直线l 1:x +y +2=0在x 轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转90°,则所得到的直线l 2的方程为________________.解析:对于直线l 1:x +y +2=0,令y =0,得x =-2,即直线l 1在x 轴上的截距为-2;令x =0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =x -2,即x -y -2=0.答案:-2 x -y -2=01.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.[小题纠偏]1.直线x cos α+3y +2=0的倾斜角的范围是( ) A.⎣⎡⎦⎤π6,π2∪⎣⎡⎦⎤π2,5π6 B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6解析:选B 设直线的倾斜角为θ,则tan θ=-33cos α, 又cos α∈[-1,1],所以-33≤tan θ≤33, 又0≤θ<π,且y =tan θ在⎣⎡⎭⎫0,π2和⎝⎛⎭⎫π2,π上均为增函数, 故θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.故选B. 2.过点(5,10),且到原点的距离为5的直线方程是________. 解析:当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=0考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[题组练透]1.若直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎝⎛⎭⎫π2,π C.⎣⎡⎭⎫π4,π2D.⎝⎛⎦⎤π2,3π4解析:选C 因为直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.故倾斜角α的取值范围是⎣⎡⎭⎫π4,π2.2.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.解析:如图所示,结合图形,若l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k <0时,倾斜角α为钝角,k =0时,α=0,k >0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:[-1,1] ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 3.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,求1a +1b的值.解:∵k AB =0-2a -2=-2a -2,k AC =b -20-2=-b -22,且A ,B ,C 三点共线,∴k AB =k AC ,即-2a -2=-b -22,整理得ab =2(a +b ),将该等式两边同除以2ab 得1a +1b =12.[谨记通法]1.倾斜角与斜率的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的3种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率. (2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)方程法:若已知直线的方程为Ax +By +C =0(B ≠0),则l 的斜率k =-AB . 考点二 直线的方程(重点保分型考点——师生共研)[典例引领]求适合下列条件的直线方程:(1)经过点(4,1),且在两坐标轴上的截距相等;(2)经过点(-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点(3,4),且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线方程在x ,y 轴上的截距均为a , 若a =0,即直线方程过点(0,0)和(4,1), ∴直线方程为y =14x ,即x -4y =0;若a ≠0,则设直线方程为x a +ya =1,∵直线方程过点(4,1),∴4a +1a =1, 解得a =5,∴直线方程为x +y -5=0.综上可知,所求直线的方程为x -4y =0或x +y -5=0.(2)由已知,设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34.又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).即所求直线的方程为x -y +1=0或x +y -7=0.[由题悟法]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]求适合下列条件的直线方程:(1)经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半的直线方程为________.(2)过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程为________. 解析:(1)由3x +y +1=0,得此直线的斜率为-3, 所以倾斜角为120°,从而所求直线的倾斜角为60°, 所以所求直线的斜率为 3. 又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3), 即3x -y +6=0.(2)由题意可设直线方程为x a +yb=1,则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 故所求直线方程为x +y -3=0或x +2y -4=0.答案:(1)3x -y +6=0 (2)x +y -3=0或x +2y -4=0 考点三 直线方程的综合应用(题点多变型考点——多角探明) [锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题;(2)与导数的几何意义相结合的问题; (3)由直线方程解决参数问题.[题点全练]角度一:与基本不等式相结合的最值问题1.过点P (2,1)作直线l ,与x 轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程; (3)|PA |·|PB |的最小值及此时直线l 的方程. 解:(1)设直线l 的方程为y -1=k (x -2), 则可得A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ). ∵直线l 与x 轴,y 轴正半轴分别交于A ,B 两点,∴⎩⎨⎧2k -1k>0,1-2k >0,得k <0.∴S △AOB =12·|OA |·|OB |=12·⎝⎛⎭⎫2-1k ·(1-2k )=12⎝⎛⎭⎫4-1k-4k ≥12⎣⎡⎦⎤4+2 ⎝⎛⎭⎫-1k ·(-4k ) =4,当且仅当-1k=-4k ,即k =-12时,△AOB 的面积有最小值4,此时直线l 的方程为y -1=-12(x -2),即x +2y -4=0.(2)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴截距之和为2-1k +1-2k =3-2k -1k ≥3+2 (-2k )·⎝⎛⎭⎫-1k =3+22,当且仅当-2k =-1k ,即k =-22时等号成立.故截距之和的最小值为3+22, 此时直线l 的方程为y -1=-22(x -2), 即x +2y -2-2=0.(3)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴|PA |·|PB |=1k 2+1·4+4k 2=2⎣⎢⎡⎦⎥⎤1-k +(-k )≥4, 当且仅当-k =-1k , 即k =-1时上式等号成立.故|PA |·|PB |的最小值为4,此时直线l 的方程为y -1=-(x -2),即x +y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( ) A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.角度三:由直线方程解决参数问题3.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×(2-a )×2+12×(a 2+2)×2=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,四边形的面积最小,故a =12.[通法在握]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围为[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.一抓基础,多练小题做到眼疾手快1.(2019·金华一中模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π 解析:选B 由直线方程可知斜率k =-1a 2+1,设倾斜角为α,则tan α=-1a 2+1,而-1≤-1a 2+1<0,∴-1≤tan α<0,又∵α∈[0,π),∴3π4≤α<π,故选B.2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π 解析:选B 设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.3.(2018·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可得直线l 的斜率为-3-17+5=-13.4.如图中的直线l1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.5.(2018·豫西五校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=3x 2-1≥-1,所以tan θ≥-1, 结合正切函数的图象可知, θ的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 二保高考,全练题型做到高考达标1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0D .x -y =0解析:选B 因为B (3,1),C (1,3), 所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A ,所以其直线方程为x -y +2=0.2.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2 解析:选A ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A.3.(2018·温州五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0的图象可能是( )解析:选B 当a >0,b >0时,-a <0,-b <0,选项B 符合.4.若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2]. 5.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny -1=0(mn >0)上,则1m +1n 的最小值为( )A .2B .4C .8D .1解析:选B ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1). ∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =⎝⎛⎭⎫1m +1n (m +n )=2+n m +m n ≥2+2 n m ·m n =4(当且仅当m =n =12时取等号), ∴1m +1n 的最小值为4.6.(2018·温州调研)已知三角形的三个顶点为A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:∵BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x+13y +5=0.答案:x +13y +5=07.若直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为________________.解析:由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧ x +3=0,y -1=0,可得⎩⎪⎨⎪⎧x =-3,y =1,∴M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),∴所求直线方程为2x +3y +12=0.答案:2x +3y +12=08.若圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是________.解析:由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9, ∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称, ∴该直线经过圆心(-1,3),即-a -3b +3=0, ∴a +3b =3(a >0,b >0). ∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号. 故1a +3b 的最小值是163.答案:1639.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎨⎧m +n 2=12·m -3n2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.三上台阶,自主选做志在冲刺名校 1.已知曲线y =1e x+1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e x(e x +1)2=-1e x +1ex +2, 因为e x >0,所以e x +1e x ≥2e x ·1e x =2(当且仅当e x =1e x ,即x =0时取等号),所以e x +1ex+2≥4,故y ′=-1e x +1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,当△ABO 的面积取最小值时,求直线l 的方程.解:法一:设A (a,0),B (0,b )(a >0,b >0), 则直线l 的方程为x a +yb =1.因为l 过点P (3,2),所以3a +2b =1.因为1=3a +2b ≥26ab ,整理得ab ≥24,所以S △ABO =12ab ≥12,当且仅当3a =2b ,即a =6,b =4时取等号. 此时直线l 的方程是x 6+y4=1,即2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0), 则A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4-k≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4-k=12×(12+12)=12, 当且仅当-9k =4-k,即k =-23时,等号成立.所以所求直线l 的方程为2x +3y -12=0.第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式1.(2018·金华四校联考)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3 D.-2或-3解析:选C∵直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,∴2m=m+13≠4-2,解得m=2或-3.2.“a=14”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直,得(a+1)(a-1)+3a(a+1)=0,即4a2+3a-1=0,解得a=14或-1,∴“a=14”是“直线(a+1)x+3ay+1=0与直线(a-1)x+(a+1)y-3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P的坐标为(x,1-x),x∈R,则动点P的轨迹方程为________,它到原点距离的最小值为________.解析:设点P的坐标为(x,y),则y=1-x,即动点P的轨迹方程为x+y-1=0.原点到直线x+y-1=0的距离为d=|0+0-1|1+1=22,即为所求原点到动点P的轨迹的最小值.答案:x+y-1=02 21.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x,y的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A .7B.172C .14D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172.考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( )A .0B .2C .4D. 2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a ,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a 和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-ab +2,-ab -2,由-ab +2·⎝⎛⎭⎪⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2, 且l 1在y 轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( )A.2B.823 C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a ,解得a =-1,所以l 1:x -y +6=0,l 2:x-y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪6-232=823.2.直线3x +4y -3=0上一点P 与点Q (2,-2)的连线的最小值是________. 解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值, ∴|P Q |min =|3×2+4×(-2)-3|32+42=1.答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1, 即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.法二:当AB ∥l 时,有k =k AB =-13, ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a ,b ),则⎩⎪⎨⎪⎧2a -3b +6=0,a 2+b 2=(a +1)2+(b -1)2,解得a =3,b =4.∴P 点的坐标为(3,4).法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧ x =3,y =4,则P 点的坐标为(3,4). 答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________.解析:法一:要使点A ,B 到直线l 的距离相等,则AB ∥l ,或A ,B 的中点(2,4)在直线l 上.所以-a =6-23-1=2或2a +4-1=0, 解得a =-2或-32. 法二:要使点A ,B 到直线l 的距离相等, 则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32. 答案:-2或-32考点三 对称问题(题点多变型考点——多角探明)[锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有:(1)点关于点对称;(2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0.答案:x +4y -4=02.已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A (-1,-2)对称的直线l ′的方程为________.解析:法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.答案:2x -3y -9=0角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解:(1)设A ′(x ,y ),则⎩⎨⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧ x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎨⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3). 又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( )A .x -2y +3=0B .x -2y -3=0C .x +2y +1=0D .x +2y -1=0 解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎨⎧ x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2, 由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法(1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.2.轴对称问题的2个类型及求解方法(1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧ A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎨⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0. 同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4). 2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎨⎧ b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0. 又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0.答案:6x -y -6=03.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎨⎧ y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5), ∴△ABC 周长的最小值为 ||A 1A 2=(4-0)2+(-5-7)2=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧ a (a -2)=3×1,a ×1≠3×1,解得a =-1,故选C. 2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3) D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎪⎨⎪⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3). 3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( )A .6x +5y -1=0B .5x +6y +1=0C .5x -6y -1=0D .6x -5y -1=0 解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0. 4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析:依题意知,63=a -2≠c -1, 解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c 2=0, 又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6. 答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q |2的值为( )A.102B.10C .5D .10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直, ∴M 位于以P Q 为直径的圆上,∵|P Q |=9+1=10,∴|MP |2+|M Q |2=|P Q |2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722.3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q |的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行, 由题意可知|P Q |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q |的最小值为2910. 4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎨⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎨⎧ m =35,n =315,故m +n =345. 5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎨⎧ y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧ x 1=0,y 1=3,所以A 1(0,3). 同理设A 2(x 2,y 2),易求得A 2(-2,-1).所以BC 边所在直线方程为2x -y +3=0.答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.答案:2x -y -2=0或2x +3y -18=8.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210. 答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q |=[2-(-1)]2+(-1-3)2=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0, 得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的取值范围为________.。
高考数学一轮复习第8章平面解析几何第1节直线的倾斜角与斜率直线的方程课件
4.已知直线斜率的绝对值等于1,则直线的倾斜角为________. π4或34π [设直线的倾斜角为α,则|tan α|=1,∴tan α=±1. 又α∈[0,π),∴α=π4或34π.]
1234
02
细研考点·突破题型
考点一 考点二 考点三
直线的倾斜角与斜率 直线方程的求法 直线方程的综合应用
1234
ABC [对于A选项,该方程不能表示过点P且垂直于x轴的直线, 即点斜式只能表示斜率存在的直线,所以A不正确;对于B选项,该 方程不能表示过点P且平行于x轴的直线,即该方程不能表示斜率为零 的直线,所以B不正确;对于C选项,斜截式不能表示斜率不存在的直 线,所以C不正确;对于D选项,经过任意两个不同的点P1(x1,y1), P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示,是 正确的,该方程没有任何限制条件,所以D正确.]
选A.]
1234
3.(多选)下面说法中错误的是( ) A.经过定点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示 B.经过定点P(x0,y0)的直线都可以用方程x-x0=m(y-y0)表示 C.经过定点A(0,b)的直线都可以用方程y=kx+b表示 D.经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用 方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示
截距式 一般式
纵、横截距
不过原点,且与两坐 ___ax_+__by_=__1__ 标轴均不垂直的直线 Ax+By+C=0 平面内所有直线都适 (A2+B2≠0) 用
提醒:“截距”是直线与坐标轴交点的坐标值,它可正、可负, 也可以是零,而“距离”是一个非负数.
[精品课件]2019届高考数学一轮复习 第八章 解析几何 第1讲 直线的倾斜角与斜率、直线的方程课件 文 新人
[解] (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为 α,则 sin α= 1100(0<α<π), 从而 cos α=±31010,则 k=tan α=±13. 故所求直线方程为 y=±13(x+4). 即 x+3y+4=0 或 x-3y+4=0.
(2)设直线 l 在 x,y 轴上的截距均为 a. 若 a=0,即 l 过点(0,0)及(4,1), ∴l 的方程为 y=14x,即 x-4y=0. 若 a≠0,则设 l 的方程为ax+ay=1, ∵l 过点(4,1),∴4a+1a=1, ∴a=5,∴l 的方程为 x+y-5=0. 综上可知,直线 l 的方程为 x-4y=0 或 x+y-5=0.
【针对补偿】 3.求适合下列条件的直线方程: (1)经过点 P(3,2)且在两坐标轴上的截距相等; (2)过点 A(-1,-3),斜率是直线 y=3x 的斜率的-14倍; (3)过点 A(1,-1)与已知直线 l1:2x+y-6=0 相交于 B 点且|AB|=5.
[解] (1)设直线 l 在 x,y 轴上的截距均为 a, 若 a=0,即 l 过点(0,0)和(3,2), ∴l 的方程为 y=23x,即 2x-3y=0. 若 a≠0,则设 l 的方程为ax+ay=1, ∵l 过点(3,2),∴3a+2a=1, ∴a=5,∴l 的方程为 x+y-5=0, 综上可知,直线 l 的方程为 2x-3y=0 或 x+y-5=0.
(2)待定系数法,具体步骤为: ①设所求直线方程的某种形式; ②由条件建立所求参数的方程(组); ③解这个方程(组)求出参数; ④把参数的值代入所设直线方程.
[知识自测] 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( ) (3)直线的倾斜角越大,其斜率就越大.( ) (4)直线的斜率为 tan α,则其倾斜角为 α.( ) (5)斜率相等的两直线的倾斜角不一定相等.( ) (6)经过任意两个不同的点 P1(x1,y1),P2(x2,y2)的直线都可以用 方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( ) [答案] (1)√ (2)× (3)× (4)× (5)× (6)√
届数学一轮复习第八章平面解析几何第一节直线的倾斜角与斜率直线的方程教师文档教案文
第一节直线的倾斜角与斜率、直线的方程授课提示:对应学生用书第150页[基础梳理]1.直线的倾斜角(1)定义:(2)范围:直线的倾斜角α的取值范围是:[0,π).2条件公式直线的倾斜角θ,且θ≠90°k=tan__θ直线过点A(x1,y1),B(x2,y2)且x1≠x2k=错误! 3.条件两直线位置关系斜率的关系两条不重合的直线l1,l2,斜率分别为k1,k2平行k1=k2k1与k2都不存在垂直k1k2=-1k1与k2一个为零、另一个不存在4。
直线方程的五种形式名称已知条件方程适用范围点斜式斜率k与点(x1,y1)y-y1=k(x-x1)不含直线x=x1斜截式斜率k与直线在y轴上的截距by=kx+b不含垂直于x轴的直线两点式两点(x1,y1),(x2,y2)错误!=错误!(x1≠x2,y1≠y2)不含直线x=x1(x1=x2)和直线y=y1(y1=y2)截距式直线在x轴、y轴上的截距分别为a,b错误!+错误!=1(a≠0,b≠0)不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用5.线段的中点坐标公式若点P1,P2的坐标分别为(x1,y1),(x2,y2),线段P1,P2的中点M的坐标为(x,y),则错误!此公式为线段P1P2的中点坐标公式.1.斜率与倾斜角的两个关注点(1)倾斜角α的范围是[0,π),斜率与倾斜角的函数关系为k=tan α,图像为:(2)当倾斜角为90˚时,直线垂直于x轴,斜率不存在.2.直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件为A1A2+B1B2=0。
[四基自测]1.(基础点:根据两点求斜率)过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1B.4C.1或3 D.1或4答案:A2.(基础点:直线的倾斜角与斜率的关系)直线x+错误!y+1=0的倾斜角是()A。
错误!B.错误!C。
2019版高考数学(理)高分计划一轮课件:第8章 平面解析几何 8-1
题型 2 直线方程的求法 典例 求适合下列条件的直线的方程: (1)在 y 轴上的截距为-5,倾斜角的正弦值是35; (2)经过点 P(3,2),且在两坐标轴上的截距相等; (3)经过点 A(-1,-3),倾斜角等于直线 y=3x 的倾斜 角的 2 倍.
根据已知条件代入相应公式,分别为斜 截式、截距式、点斜式.
+cosθ= 55,则 l 的源自率为( )A.-12B.-12或-2
C.12或 2
D.-2
解析 ∵sinθ+cosθ= 55,① ∴(sinθ+cosθ)2=1+sin2θ=15, ∴2sinθcosθ=-45,∴(sinθ-cosθ)2=95, 易知 sinθ>0,cosθ<0,
∴sinθ-cosθ=3 5 5,②
2.教材衍化 (1)(必修 A2P109A 组 T2)如果 A·C<0,且 B·C<0,那么直 线 Ax+By+C=0 不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
解析 由已知得直线 Ax+By+C=0 在 x 轴上的截距- CA>0,在 y 轴上的截距-CB>0,故直线经过一、二、四象限, 不经过第三象限.故选 C.
(2)设所求直线 l 的方程为 y-1=k(x-2).
则可得 A2k-k 1,0,B(0,1-2k)(k<0), ∴截距之和为2k-k 1+1-2k
=3-2k-1k≥3+2 -2k·-1k=3+2 2.
此时-2k=-1k⇒k=-
2 2.
故截距之和最小值为 3+2 2,此时 l 的方程为 y-1=
(2)(必修 A2P95T3)倾斜角为 150°,在 y 轴上的截距为-3 的直线方程为__y_=__-___33_x_-__3__.
高考一轮复习第8章解析几何第1讲直线的倾斜角斜率与直线的方程
第八章 解析几何第一讲 直线的倾斜角、斜率与直线的方程知识梳理·双基自测 知识梳理知识点一 直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,把x 轴__正向__与直线l__向上__方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为__0°__.(2)倾斜角的取值范围为__[0°,180°)__. 知识点二 直线的斜率(1)定义:一条直线的倾斜角α的__正切值__叫做这条直线的斜率,斜率常用小写字母k 表示,即k =__tan_α__,倾斜角是90°的直线斜率不存在.(2)过两点的直线的斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2)的直线的斜率公式为k =__y 2-y 1x 2-x 1__.知识点三 直线方程的五种形式 名称 方程适用范围 点斜式 __y -y 0=k(x -x 0)__不含直线x =x 0 斜截式 __y =kx +b 不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1不含垂直于坐标轴的直线截距式x a +y b =1 不含垂直于x 轴、平行于x 轴和__过原点的__直线一般式 Ax +By +C =0 其中要求__A 2+B 2≠0__适用于平面直角坐标系内的所有直线重要结论直线的倾斜角α和斜率k 之间的对应关系: α 0° 0°<α<90° 90° 90°<α<180° k 0k >0且α越大,k 就越大不存在k <0且α越大,k 就越大双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (2)直线的倾斜角越大,其斜率就越大.( × ) (3)斜率相等的两直线的倾斜角一定相等.( √ )(4)经过定点A(0,b)的直线都可以用方程y =kx +b 表示.( × ) (5)不经过原点的直线都可以用x a +yb=1表示.( × )(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )题组二 走进教材2.(必修2P 38T3)经过两点A(4,2y +1),B(2,-3)的直线的倾斜角为3π4,则y =( B )A .-1B .-3C .0D .2[解析] 由2y +1--34-2=2y +42=y +2,得y +2=tan 3π4=-1,∴y =-3.3.(必修2P 100A 组T9)过点P(2,3)且在两坐标轴上截距相等的直线方程为__3x -2y =0或x +y -5=0__.[解析] 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +ya=1,则2a +3a =1,解得a =5.所以直线方程为x +y -5=0. 题组三 走向高考4.(2016·北京,7)已知A(2,5),B(4,1),若点P(x ,y)在线段AB 上,则2x -y 的最大值为( C ) A .-1 B .3 C .7D .8[解析] 线段AB 的方程为y -1=5-12-4(x -4), 2≤x≤4.即2x +y -9=0,2≤x≤4,因为P(x ,y)在线段AB 上,所以2x -y =2x -(-2x +9)=4x -9.又2≤x≤4,则-1≤4x-9≤7,故2x -y 最大值为7.5.(2010·辽宁)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( D )A .⎣⎢⎡⎭⎪⎫0,π4B .⎣⎢⎡⎭⎪⎫π4,π2C .⎝ ⎛⎦⎥⎤π2,3π4 D .⎣⎢⎡⎭⎪⎫3π4,π[解析] 由题意可知切线的斜率k =tan α=-4exe x+12=-4e x+1ex +2,∴-1≤tan α<0,又0≤α<π,∴3π4≤α<π,故选D .考点突破·互动探究考点一 直线的倾斜角与斜率——自主练透例 1 (1)(2021·兰州模拟)直线2xcos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的变化范围是( B )A .⎣⎢⎡⎦⎥⎤π6,π3B .⎣⎢⎡⎦⎥⎤π4,π3C .⎣⎢⎡⎦⎥⎤π4,π2 D .⎣⎢⎡⎦⎥⎤π4,2π3(2)(2020·贵州遵义航天高级中学期中,11)经过点P(0,-1)作直线l ,若直线l 与连接A(1,-2),B(2,1)的线段总有公共点,则直线l 的倾斜角的取值范围为( A )A .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫34π,πB .⎣⎢⎡⎦⎥⎤0,π4C .⎣⎢⎡⎭⎪⎫34π,π D .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤34π,π (3)已知曲线f(x)=ln x 的切线经过原点,则此切线的斜率为( C )A .eB .-eC .1eD .-1e[解析] (1)直线2xcos α-y -3=0的斜率k =2cos α.由于α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].由于θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的变化范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图所示,设直线l 的倾斜角为α,α∈[0,π). k PA =-1+20-1=-1,k PB =-1-10-2=1.∵直线l 与连接A(1,-2),B(2,1)的线段总有公共点, ∴-1≤tan α≤1.∴α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫34π,π.故选A .(3)解法一:∵f(x)=ln x ,∴x ∈(0,+∞),f′(x)=1x .设切点P(x 0,ln x 0),则切线的斜率k =f′(x 0)=1x 0=ln x 0x 0,∴ln x 0=1,x 0=e ,∴k =1x 0=1e.解法二(数形结合法):在同一坐标系中作出曲线f(x)=ln x 及曲线f(x)=ln x 经过原点的切线,如图所示,数形结合可知,切线的斜率为正,且小于1,故选C .[引申1]若将例(2)中“有公共点”改为“无公共点”,则直线l 的斜率的范围为__(-∞,-1)∪(1,+∞)__.[引申2]若将题(2)中A(1,-2)改为A(-1,0),其它条件不变,求直线l 斜率的取值范围为__(-∞,-1]∪[1,+∞)__,倾斜角的取值范围为__⎣⎢⎡⎦⎥⎤π4,3π4__.[解析]∵P(0,-1),A(-1,0),B(2,1),∴k AP =-1-00--1=-1,k BP =1--12-0=1.如图可知,直线l 斜率的取值范围为(-∞,-1]∪[1,+∞),倾斜角的取值范围为⎣⎢⎡⎦⎥⎤π4,3π4.名师点拨(1)求倾斜角的取值范围的一般步骤:①求出斜率k =tan α的取值范围,但需注意斜率不存在的情况;②利用正切函数的单调性,借助图象或单位圆,数形结合确定倾斜角α的取值范围.(2)求直线斜率的方法: ①定义法:k =tan α; ②公式法:k =y 2-y 1x 2-x 1;③导数法:曲线y =f(x)在x 0处切线的斜率k =f′(x 0).(3)注意倾斜角的取值范围是[0,π),若直线的斜率不存在,则直线的倾斜角为π2,直线垂直于x 轴.〔变式训练1〕(1)(2021·大庆模拟)直线xsin α+y +2=0的倾斜角的范围是( B ) A .[0,π)B .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC .⎣⎢⎡⎦⎥⎤0,π4D .⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π (2)(多选题)(2021·安阳模拟改编)已知点A(1,3),B(-2,-1).若直线l :y =k(x -2)+1与线段AB 相交,则k 的值可以是( ABC )A .12 B .-2 C .0D .1[解析] (1)设直线的倾斜角为θ,则tan θ=-sin α,所以-1≤tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π,选B .(2)由已知直线l 恒过定点P(2,1),如图所示,若l 与线段AB 相交,则k PA ≤k≤k PB , ∵k PA =-2,k PB =12,∴-2≤k≤12,故选A 、B 、C .考点二 直线的方程——师生共研例2 求适合下列条件的直线的方程: (1)在y 轴上的截距为-5,倾斜角的正弦值是35;(2)经过点A(-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半; (3)过点(5,2)且在x 轴上的截距是在y 轴上的截距的2倍; (4)与直线3x -4y -5=0关于y 轴对称.[解析] (1)设直线的倾斜角为α,则sin α=35.∴cos α=±45,直线的斜率k =tan α=±34.又直线在y 轴上的截距是-5, 由斜截式得直线方程为y =±34x -5.即3x -4y -20=0或3x +4y +20=0.(2)由3x +y +1=0得此直线的斜率为-3,所以倾斜角为120°,从而所求直线的倾斜角为60°,故所求直线的斜率为3.又直线过点(-3,3),所以所求直线方程为y -3=3(x +3),即3x -y +6=0. (3)若直线过原点,则其斜率k =25,此时直线方程为y =25x ,即2x -5y =0.若直线不过原点,则设其方程为x 2b +y b =1,由52b +2b =1得b =92,故所求直线方程为x 9+2y9=1,即x+2y -9=0.∴所求直线的方程为x +2y -9=0或2x -5y =0.(4)直线3x -4y -5=0的斜率为34,与y 轴交点为⎝ ⎛⎭⎪⎫0,-54,故所求直线的斜率为-34,且过点⎝ ⎛⎭⎪⎫0,-54,∴所求直线方程为y =-34x -54,即3x +4y +5=0.名师点拨求直线方程应注意的问题(1)要确定直线的方程,只需找到直线上两个点的坐标,或直线上一个点的坐标与直线的斜率即可.确定直线方程的常用方法有两种:①直接法:根据已知条件确定适当的直线方程形式,直接写出直线方程;②待定系数法:先设出直线方程,再根据已知条件求出待定的系数,最后代入求出直线的方程.(2)选择直线方程时,应注意分类讨论思想的应用:选用点斜式或斜截式前,先讨论直线的斜率是否存在;选用截距式前,先讨论在两坐标轴上的截距是否存在或是不是0.〔变式训练2〕(1)已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),则BC 边上中线所在的直线方程为__x +13y +5=0__.(2)直线3x -y +4=0绕其与x 轴的交点顺时针旋转π6所得直线的方程为__3x -3y +4=0__.(3)已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,则直线l 的方程为__x -6y +6=0或x -6y -6=0__.[解析] (1)由题意可知BC 的中点为H ⎝ ⎛⎭⎪⎫32,-12,∴k AH =0-⎝ ⎛⎭⎪⎫-12-5-32=-113.故所求直线的方程为y -0=-113(x +5),即x +13y +5=0.(2)直线3x -y +4=0与x 轴的交点为⎝ ⎛⎭⎪⎫-433,0,斜率为3,倾斜角θ为π3,可知所求方程直线的倾斜角为π6,斜率k =33⎝ ⎛⎭⎪⎫或由k =tan ⎝ ⎛⎭⎪⎫θ-π6求,故所求直线的方程为y =33⎝ ⎛⎭⎪⎫x +433,即3x -3y +4=0.(3)设直线方程为y =16x +b ,则3b 2=3,∴b =±1,故所求直线方程为x -6y +6=0或x -6y -6=0.考点三 直线方程的应用——多维探究例3 已知直线l 过点M(2,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求: (1)当△AOB 面积最小时,直线l 的方程;(2)当在两坐标轴上截距之和取得最小值时,直线l 的方程; (3)当|MA|·|MB|取最小值时,直线l 的方程; (4)当|MA|2+|MB|2取得最小值时,直线l 的方程. [解析] 设直线的方程为x a +yb =1(a >0,b >0),则2a +1b=1.(1)∵2a +1b ≥22ab ⇒12ab≥4,当且仅当2a =1b =12,即a =4,b =2时,△AOB 面积S =12ab 有最小值为4.此时,直线l 的方程是x 4+y2=1.即x +2y -4=0.(2)a +b =(a +b)⎝ ⎛⎭⎪⎫2a +1b =3+2b a +a b ≥3+22b a ·a b =3+22.故a +b 的最小值为3+22,此时2ba=a b ,求得b =2+1,a =2+2.此时,直线l 的方程为x 2+2+y2+1=1.即x +2y -2-2=0. (3)解法一:设∠BAO =θ,则sin θ=1|MA|,cos θ=2|MB|,∴|MA|·|MB|=2sin θcos θ=4sin 2θ,显然当θ=π4时,|MA|·|MB|取得最小值4,此时k l =-1,所求直线的方程为y -1=-(x -2),即x +y-3=0.解法二:|MA|·|MB|=-MA →·MB →=-(a -2,-1)·(-2,b -1)=2a +b -5=(2a +b)⎝ ⎛⎭⎪⎫2a +1b -5=2b a +2ab≥4.当且仅当a =b =3时取等号,∴|MA|·|MB|的最小值为4,此时直线l 的方程为x +y -3=0. 解法三:若设直线l 的方程为y -1=k(x -2),则A ⎝ ⎛⎭⎪⎫2k -1k ,0,B(0,1-2k),∴|MA|·|MB|=1k 2+1·4+4k 2=2⎣⎢⎡⎦⎥⎤-1k+-k ≥4,当且仅当-k =-1k ,即k =-1时,取等号.故|MA|·|MB|的最小值为4,此时直线l 的方程为x +y -3=0.(4)同(3)|MA|=1sin θ,|MB|=2cos θ,∴|MA|2+|MB|2=1sin 2θ+4cos 2θ =(sin 2θ+cos 2θ)⎝⎛⎭⎪⎫1sin 2θ+4cos 2θ=5+cos 2θsin 2θ+4sin 2θcos 2θ≥9. ⎝ ⎛⎭⎪⎫当且仅当cos 2θ=2sin 2θ,即tan θ=22时取等号∴|MA|2+|MB|2的最小值为9,此时直线的斜率k =-22, 故所求直线的方程为y -1=-22(x -2), 即2x +2y -2(2+1)=0.注:本题也可设直线方程为y -1=k(x -2)(k <0)求解.名师点拨利用最值取得的条件求解直线方程,一般涉及函数思想即建立目标函数,根据其结构求最值,有时也涉及均值不等式,何时取等号,一定要弄清.〔变式训练3〕已知直线l 过点M(2,1),且与x 轴、y 轴正半轴分别交于A 、B ,O 为坐标原点.若S △AOB =92,求直线l的方程.[解析] 设直线l 的方程为x a +yb =1,则⎩⎪⎨⎪⎧2a +1b =1,ab =9解得⎩⎪⎨⎪⎧a =3,b =3或⎩⎪⎨⎪⎧a =6,b =32故所求直线方程为x 3+y 3=1或x 6+2y3=1,即x +y -3=0或x +4y -6=0.名师讲坛·素养提升(1)定点问题例4 (此题为更换后新题)已知直线l :kx -y +1+3k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不过第一象限,求k 的取值范围.[解析] (1)证明:直线l 的方程可化为y -1=k(x +3),故无论k 取何值,直线l 必过定点(-3,1). (2)令x =0得y =3k +1,即直线l 在y 轴上的截距为2k +1.由题意知⎩⎪⎨⎪⎧k <0,3k +1≤0解得k≤-13.故k 的取值范围是(-∞,-13].(此题为发现的重题,更换新题见上题)已知直线l :kx -y +1+2k =0(k ∈R).(1)证明:直线l 过定点;(2)若直线l 不过第四象限,求k 的取值范围.[解析] (1)证明:直线l 的方程可化为y -1=k(x +2),故无论k 取何值,直线l 必过定点(-2,1). (2)令x =0得y =2k +1,即直线l 在y 轴上的截距为2k +1.由题意知⎩⎪⎨⎪⎧k≥0,2k +1≥0解得k≥0.故取值范围是[0+∞).名师点拨过定点A(x 0,y 0)的直线系方程为y -y 0=k(x -x 0)(k 为参数)及x =x 0.方程为y -y 0=k(x -x 0)是直线过定点A(x 0,y 0)的充分不必要条件.(2)曲线的切线问题例5 (2021·湖南湘潭模拟)经过(2,0)且与曲线y =1x相切的直线与坐标轴围成的三角形面积为( A )A .2B .12C .1D .3[解析] 设切点为⎝ ⎛⎭⎪⎫m ,1m ,m≠0,y =1x 的导数为y′=-1x 2,可得切线的斜率k =-1m 2,切线方程为y -1m =-1m 2(x -m),代入(2,0),可得-1m =-1m 2(2-m),解得m =1,则切线方程为y -1=-x +1,切线与坐标轴的交点坐标为(0,2),(2,0),则切线与坐标轴围成的三角形面积为12×2×2=2.故选A .〔变式训练4〕(1)直线y =kx -k -2过定点__(1,-2)__.(2)(2018·课标全国Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为__2x -y -2=0__.。
高考数学大一轮复习 第八章 第1节 直线的倾斜角与斜率、直线方程
精选版ppt
18
对点训练 △ABC 的三个顶点为 A(-3,0),B(2,1), C(-2,3),求: (1)BC 所在直线的方程; (2)BC 边上中线 AD 所在直线的方程; (3)BC 的垂直平分线 DE 的方程.
精选版ppt
19
【解】 (1)因为直线 BC 经过 B(2,1)和 C(-2,3)两点, 由两点式得 BC 的方程为3y--11=-x-2-22,即 x+2y-4= 0. (2)设 BC 中点 D 的坐标(x,y),则 x=2-2 2=0,y=1+2 3=2. BC 边的中线 AD 过点 A(-3,0),D(0,2)两点,由截距式 得 AD 所在直线方程为-x3+2y=1,即 2x-3y+6=0.
精选版ppt
3
2.斜率公式
(1)直线 l 的倾斜角为 α≠90°,则斜率 k=_t_a_n_α__.
(2)P1(x1,y1),P2(x2,y2)在直线 l 上,且 x1≠x2,则 l 的 y2-y1
斜率 k=__x_2-__x_1__.
精选版ppt
4
二、直线方程的五种形式
名称
方程
适用范围
点斜式 斜截式
=
.
【答案】 -
精选版ppt
8
4.一条直线经过点 A(2,-3),并且它的倾斜角等于直
线
y=
1 3x
的倾斜角的
2
倍,则这条直线的一般式方程
是
,斜截式方程是
.
【答案】 3x-y-2 3-3=0 y= 3x-2 3-3
高考数学一轮复习第八章平面解析几何8.1直线的倾斜角与斜率、直线的方程课时提升作业理
⾼考数学⼀轮复习第⼋章平⾯解析⼏何8.1直线的倾斜⾓与斜率、直线的⽅程课时提升作业理直线的倾斜⾓与斜率、直线的⽅程(25分钟50分)⼀、选择题(每⼩题5分,共35分)1.直线x+y+1=0的倾斜⾓是( )A. B. C. D.【解析】选D.由直线的⽅程得直线的斜率为k=-,设倾斜⾓为α,则tanα=-,⼜α∈[0,π),所以α=.2.设直线ax+by+c=0的倾斜⾓为α,且sinα+cosα=0,则a,b满⾜( )A.a+b=1B.a-b=1C.a+b=0D.a-b=0【解析】选D.由题意得sinα=-cosα,显然cosα≠0,则tanα=-1,所以-=-1,a=b,a-b=0.3.下列命题中,正确的是( )A.直线的斜率为tanα,则直线的倾斜⾓是αB.直线的倾斜⾓为α,则直线的斜率为tanαC.直线的倾斜⾓越⼤,则直线的斜率就越⼤D.直线的倾斜⾓α∈∪时,直线的斜率分别在这两个区间上单调递增【解析】选D.因为直线的斜率k=tanα,且α∈∪时,α才是直线的倾斜⾓,所以A不对; 因为任⼀直线的倾斜⾓α∈[0,π),⽽当α=时,直线的斜率不存在,所以B不对;当α∈时,斜率⼤于0;当α∈时,斜率⼩于0,C不对.4.倾斜⾓为120°,在x轴上的截距为-1的直线的⽅程是( )A.x-y+1=0B.x-y-=0C.x+y-=0D.x+y+=0【解析】选 D.由于倾斜⾓为120°,故斜率k=-.⼜直线过点(-1,0),所以⽅程为y=-(x+1),即x+y+=0.5.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则实数a的值是( )A.1B.-1C.-2或-1D.-2或1【解析】选D.显然a≠0,由题意得a+2=,解得a=-2或1.6.(2016·西安模拟)点A(1,1)到直线xcosθ+ysinθ-2=0的距离的最⼤值是( )A.2B.2-C.2+D.4【解析】选C.由点到直线的距离公式,得d==2-sin,⼜θ∈R,所以d max=2+.7.已知a,b均为正数,且直线ax+by-6=0与直线2x+(b-3)y+5=0互相平⾏,则2a+3b的最⼩值为( )A.5B.25C.13D.15【解析】选B.因为直线ax+by-6=0与直线2x+(b-3)y+5=0互相平⾏,所以a(b-3)-2b=0,且5a+12≠0,所以3a+2b=ab,即+=1,⼜a,b均为正数,则2a+3b=(2a+3b)=4+9++≥13+2=25.当且仅当a=b=5时上式等号成⽴.⼆、填空题(每⼩题5分,共15分)8.已知直线的倾斜⾓是60°,在y轴上的截距是5,则该直线的⽅程为.【解析】因为直线的倾斜⾓是60°,所以直线的斜率为k=tan60°=.⼜因为直线在y轴上的截距是5,由斜截式得直线的⽅程为y=x+5.即x-y+5=0.答案:x-y+5=0【加固训练】过点A(-1,-3),斜率是直线y=3x的斜率的-的直线的⽅程为. 【解析】设所求直线的斜率为k,依题意k=-×3=-.⼜直线经过点A(-1,-3),因此所求直线⽅程为y+3=-(x+1),即3x+4y+15=0.答案:3x+4y+15=09.已知A(3,5),B(4,7),C(-1,x)三点共线,则x= .【解析】因为k AB==2,k AC==-.⼜A,B,C三点共线,所以k AB=k AC,即-=2,解得x=-3.答案:-310.(2016·平顶⼭模拟)与直线x+y-1=0垂直的直线的倾斜⾓为.【解析】因为直线x+y-1=0的斜率为k1=-,所以与直线x+y-1=0垂直的直线的斜率为k2=-=.所以它的倾斜⾓为.答案:(20分钟40分)1.(5分)(2016·保定模拟)直线y=tan的倾斜⾓等于( )A. B. C. D.0【解析】选D.因为tan=,所以y=tan即y=,表⽰⼀条与x轴平⾏的直线,因此直线y=tan的倾斜⾓等于0.2.(5分)已知点A(-1,0),B(cosα,sinα),且|AB|=,则直线AB的⽅程为( )A.y=x+或y=-x-B.y=x+或y=-x-C.y=x+1或y=-x-1D.y=x+或y=-x-【解析】选B.|AB|===,所以cosα=,sinα=±,所以k AB=±,即直线AB的⽅程为y=±(x+1),所以直线AB的⽅程为y=x+或y=-x-.【加固训练】已知直线l过点(0,2),且其倾斜⾓的余弦值为,则直线l的⽅程为( )A.3x-4y-8=0B.3x+4y-8=0C.3x+4y+8=0D.3x-4y+8=0【解析】选D.因为cosα=,α∈[0,π),所以sinα=,k=tanα=,所以直线l的⽅程为y-2=x,即3x-4y+8=0.3.(5分)过点(1,3)作直线l,若经过点(a,0)和(0,b),且a∈N*,b∈N*,则可作出的直线l的条数为( )A.1B.2C.3D.4【解析】选B.由题意得+=1?(a-1)(b-3)=3.⼜a∈N*,b∈N*,故有两个解或4.(12分)已知直线l过点P(0,1),且与直线l1:x-3y+10=0和l2:2x+y-8=0分别交于点A,B(如图).若线段AB被点P平分,求直线l的⽅程.【解析】因为点B在直线l2:2x+y-8=0上,故可设点B的坐标为(a,8-2a).因为点P(0,1)是线段AB的中点,得点A的坐标为(-a,2a-6).⼜因为点A在直线l1:x-3y+10=0上,故将A(-a,2a-6)代⼊直线l1的⽅程,得-a-3(2a-6)+10=0,解得a=4.所以点B的坐标是(4,0).因此,过P(0,1),B(4,0)的直线l的⽅程为+=1,即x+4y-4=0.【加固训练】已知直线l经过A(cosθ,sin2θ)和B(0,1)不同的两点,求直线l倾斜⾓的取值范围.【解析】当cosθ=0时,sin2θ=1-cos2θ=1,此时A,B重合.所以cosθ≠0.所以k==-cosθ∈[-1,0)∪(0,1].因此倾斜⾓的取值范围是∪.5.(13分)已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点.(2)若直线l不经过第四象限,求k的取值范围.(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的⾯积为S,求S的最⼩值及此时直线l的⽅程.【解析】(1)⽅法⼀:直线l的⽅程可化为y=k(x+2)+1,故⽆论k取何值,直线l总过定点(-2,1). ⽅法⼆:设直线l过定点(x0,y0),则kx0-y0+1+2k=0对任意k∈R恒成⽴,即(x0+2)k-y0+1=0恒成⽴,所以x0+2=0,-y0+1=0,解得x0=-2,y0=1,故直线l总过定点(-2,1).(2)直线l的⽅程为y=kx+2k+1,则直线l在y轴上的截距为2k+1,要使直线l不经过第四象限,则解得k的取值范围是[0,+∞).(3)依题意,直线l在x轴上的截距为-,在y轴上的截距为1+2k,所以A,B(0,1+2k).⼜-<0且1+2k>0,所以k>0.故S=|OA||OB|=×(1+2k)=≥(4+4)=4,当且仅当4k=,即k=时,取等号.故S的最⼩值为4,此时直线l的⽅程为x-2y+4=0.。
2019届高考数学(文)一轮复习课件-第八章 解析几何 8.1
解析几何
解析几何
5.已知直线 l:ax+y-2-a=0 在 x 轴和 y 轴上的截距相等, 则实数 a=________.
解析:令 x=0,则 l 在 y 轴的截距为 2+a;令 y=0,得直线 l 2 2 在 x 轴上的截距为 1+a.依题意 2+a=1+a,得 a=1 或 a=-2. 答案:1 或-2
m-4 解析:∵kMN= =1,∴m=1. -2-m 答案:A
解析几何
解析几何
3.倾斜角为 135° ,在 y 轴上的截距为-1 的直线方程是( A.x-y+1=0 B.x-y-1=0 C.x+y-1=0 D.x+y+1=0
)
解析:直线的斜率为 k=tan135° =-1,所以直线方程为 y=- x-1,即 x+y+1=0. 答案:D
解析几何
解析几何
[小题热身] 1.直线 3x+y-1=0 的倾斜角是( A.30° B.60° C.120° D.150°
)
解析:因为直线 3x+y-1=0 的斜率为- 3, 直线的倾斜角为 α. 所以 tanα=- 3, α=120° . 答案:C
解析几何
解析几何
(
2.过点 M(-2,m),N(m,4)的直线的斜率等于 1,则 m 的值为 ) A .1 B.4 C.1 或 3 D.1 或 4
解析几何
解析几何
解析几何
[知识重温] 一、必记 2●个知识点 1.直线的倾斜角和斜率 (1)直线的倾斜角的定义 当直线 l 与 x 轴相交时,我们取 x 轴作为基准,x 轴正向与直 线 l 向上方向之间所成的最小正角 α 叫做直线的倾斜角.当直线和 x 轴平行或重合时,我们规定它的倾斜角为 0° ,因此,直线倾斜角 α 的取值范围是 0° ≤α<180° .
2019年高考数学总复习核心突破第8章平面解析几何8.1.1直线的倾斜角与斜率课件
(一)知识归纳
1.直线的倾斜角
(1)倾斜角的定义:在平面直角坐标系中,对于一条与x轴相
交的直线l,把x轴所在的直线绕交点按逆时针方向旋转到与直线
l重合时所转过的最小正角叫做直线l的倾斜角,通常用希腊字母
如α,β,γ,…等表示(如图8-1).并规定:与x轴平行或重合的直线,
其倾斜角为0.
图8-1
倾斜角
斜率 k 的值
0
0
1
不存在 -
.
-1
-
5.已知直线 l 的倾斜角 α 满足
k=
.
cosα= ,则直线
l 的斜率
6.若向量 a=(3,-2)为直线 m 的方向向量,则直线 m 的斜率
为
-
.
7.若直线 m 与向量 n=(- ,1)垂直,则直线 m 的倾斜角大小
为
60°
.
二、探究提高
【例 1】 (1)已知直线的倾斜角为 ,则该直线的斜率为
A.1
B.-1
C.
D.-
(
)
(
)
【解】 (1)由直线的斜率公式可得:k=tan =-1,∴选 B.
(2)若经过点 A(2,-3),B(1,m)的直线的倾斜角为 45°,则 m=
A.-4 B.4
C. -3
即可判定三点共线,否则不共线.
【解】 由直线的斜率公式可得
−
−
高考数学一轮总复习 第八章 平面解析几何 第一节 直线
第一节 直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α≠90°,则斜率k =tan_α.(2)点P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式1.(质疑夯基)判断下列结论的正误.(正确的打“√”错误的打“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( )(3)过定点P 0(x 0,y 0)的直线都可用方程y -y 0=k(x -x 0)表示.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案:(1)√ (2)× (3)× (4)√2.直线3x -y +a =0(a 为常数)的倾斜角为( ) A .30° B .60° C .150° D .120° 解析:直线的斜率为k =tan α=3, 又因为0°≤α<180°, 所以α=60° 答案:B3.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13 C .-32 D.23解析:(1)设P(x ,1),Q(7,y),则x +72=1,y +12=-1,∴x =-5,y =-3,即P(-5,1),Q(7,-3), 故直线l 的斜率k =-3-17+5=-13.答案:B4.(2014·福建卷)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程是( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=0解析:圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.答案:D5.直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. 解析:令x =0,则l 在y 轴上的截距为2+a ; 令y =0,得直线l 在x 轴上的截距为1+2a .依题意2+a =1+2a ,解得a =1或a =-2.答案:1或-2一条规律斜率k 是一个实数,当倾斜角α≠90°时,k =tan α.直线都有倾斜角,但并不是每条直线都存在斜率.由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界线,遇到斜率要谨记,存在与否需讨论”.两种方法求直线方程的两种常见方法:1.直接法:根据已知条件选择恰当的直线方程形式,直接求出直线方程.2.待定系数法:先根据已知条件设出直线方程,再根据已知条件构造关于待定系数的方程(组).求出待定系数,从而求出直线方程.三点注意1.应用“点斜式”和“斜截式”方程时,要注意讨论斜率是否存在. 2.应用截距式方程时要注意讨论直线是否过原点,截距是否为0.3.由一般式Ax +By +C =0确定斜率k 时,易忽视判定B 是否为0.当B =0时,k 不存在;当B≠0时,k =-AB .一、选择题1.直线xsin π7+yc os π7=0的倾斜角α是( )A .-π7 B.π7 C.5π7 D.6π7解析:∵tan α=-sinπ7cosπ7=-tan π7=tan 67π,∵α∈[0,π],∴α=67π.答案:D2.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足( ) A .a +b =1 B .a -b =1 C .a +b =0 D .a -b =0解析:由sin α+cos α=0,得sin αcos α=-1,即tan α=-1.又因为tan α=-a b ,所以-ab =-1,则a =b.答案:D5.设A ,B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|,若直线PA 的方程为x -y +1=0,则直线PB 的方程为( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0解析:由条件得点A 的坐标为(-1,0),点P 的坐标为(2,3),因为|PA|=|PB|,根据对称性可知,点B 的坐标为(5,0),从而直线PB 的方程为y -3-3=x -25-2,整理得x +y -5=0.故选B.答案:B二、填空题6.直线l 与两直线y =1,x -y -7=0分别交于P 、Q 两点,线段PQ 中点是(1,-1),则l 的斜率是________.解析:设P(m ,1),则Q(2-m ,-3), ∴(2-m)+3-7=0,∴m =-2,∴P(-2,1), ∴k =1+1-2-1=-23.答案:-237.过点A(2,3),且将圆x 2+y 2-2x -4y +1=0平分的直线方程为________. 解析:圆x 2+y 2-2x -4y +1=0的圆心C(1,2),依题意知,点A(2,3),C(1,2)在所求直线上,由两点式得y -23-2=x -12-1,即x -y +1=0.答案:x -y +1=08.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线的倾斜角的取值范围是________.解析:∵直线l 恒过定点(0,-3). 作出两直线的图象,如图所示,从图中看出,直线l 的倾斜角的取值范围应为⎝ ⎛⎭⎪⎫π6,π2.答案:⎝⎛⎭⎪⎫π6,π2三、解答题9.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a<2时,直线l 1,l 2与两坐标轴围成一个四边形,则当a 为何值时,四边形的面积最小?解:直线l 1与l 2交于点A(2,2), 易知|OB|=a 2+2,|OC|=2-a ,则S 四边形OBAC =S △AOB +S △AOC=12×2(a 2+2)+12×2(2-a) =a 2-a +4=(a -12)2+154,a ∈(0,2).∴当a =12时,四边形OBAC 的面积最小.10.设直线l 的方程为(a +1)x +y +2-a =0(a∈R). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围. 解:(1)当直线过原点时,在x 轴和y 轴上的截距为零. ∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.因此直线l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧-(a +1)>0,1-2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0.∴a ≤-1. 综上可知a 的取值范围是a≤-1.。
全国近年高考数学一轮复习第8章平面解析几何第1讲直线的倾斜角与斜率学案(2021年整理)
(全国版)2019版高考数学一轮复习第8章平面解析几何第1讲直线的倾斜角与斜率学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第8章平面解析几何第1讲直线的倾斜角与斜率学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第8章平面解析几何第1讲直线的倾斜角与斜率学案的全部内容。
第1讲直线的倾斜角与斜率、直线的方程板块一知识梳理·自主学习[必备知识]考点1 直线的倾斜角与斜率1。
直线的倾斜角(1)定义:x轴正向与直线向上的方向所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°。
(2)倾斜角的范围为0°≤α〈180°.2。
直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=tanα,倾斜角是90°的直线斜率不存在.(2)过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=错误!.考点2 直线方程的几种形式[必会结论]直线的斜率k与倾斜角θ之间的关系牢记口诀:“斜率变化分两段,90°是分界线;遇到斜率要谨记,存在与否要讨论”.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线的倾斜角越大,其斜率越大.( )(2)斜率公式k=错误!,不适用于垂直于x轴和平行于x轴的直线.()(3)当直线的斜率不存在时,其倾斜角存在.()(4)过点P(x1,y1)的直线方程一定可设为y-y1=k(x-x1).()(5)直线方程的截距式xa+错误!=1中,a,b均应大于0。
2019年高考数学(理)一轮复习第8章平面解析几何第1节直线的倾斜角与斜率、直线的方程学案.docx
北师大版 2019 届高考数学一轮复习学案第一节 直线的倾斜角与斜率、直线的方程[ 考纲传真 ]( 教师用书独具 )1. 在平面直角坐标系中,结合具体图形掌握确定直线位置的几掌握过两点的直线斜率的计算公式 ( 点斜式、 两点式及一般式( 对应学生用书第 130 页 )[ 基础知识填充 ]1.直线的倾斜角(1) 定义:在平面直角坐标系中,对于一条与 x 轴相交的直线 l ,把 x 轴 ( 正方向 ) 按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角,当直线l 和 x 轴平行时,它的倾斜角为0.(2) 倾斜角的范围是 [0 , π) .2.直线的斜率(1) 定义:当 α ≠90°时,一条直线的倾斜角 α 的正切值叫作这条直线的斜率,斜率常用小写字母 k 表示,即 k = tan_ α,倾斜角是 90°的直线斜率不存在.(2) 过两点的直线的斜率公式y 2- y 1经过两点 P 1( x 1, y 1) , P 2( x 2, y 2)( x 1≠ x 2) 的直线的斜率公式为 k = x 2- x 1.3.直线方程的五种形式名称 方程点斜式y - y 0= k ( x - x 0) 斜截式y = kx +b 两点式 y - y 1 x - x 1 y - y = x -x1 12 2 x y截距式 a + b =1 一般式 + + =0, 2+ 2 ≠0Ax By C A B[ 基本能力自测适用范围不含直线 x = x 0不含垂直于 x 轴的直线不含直线 x =x 1( x 1≠ x 2) 和直线 y = y 1( y 1≠y 2)不含垂直于坐标轴和过原点的直线平面内所有直线都适用]1. ( 思考辨析 ) 判断下列结论的正误. ( 正确的打“√”,错误的打“×”)(1) 根据直线的倾斜角的大小不能确定直线的位置. ( ) (2) 坐标平面内的任何一条直线均有倾斜角与斜率.()(3) 直线的倾斜角越大,其斜率就越大. () (4) 过定点 P ( x , y ) 的直线都可用方程 y - y = k ( x - x) 表示. ()何要素 .2. 理解直线的倾斜角和斜率的概念,直线的几何要素, 掌握直线方程的三种形式函数的关系.北师大版 2019 届高考数学一轮复习学案(5)经过任意两个不同的点P1( x1,y1), P2( x2, y2)的直线都可以用方程( y-y1)( x2-x1)=( x- x1)( y2- y1)表示.()[ 答案 ](1) √(2) ×(3) ×(4) × (5) √2.直线 3x -y+= 0的倾斜角为 () aA.30°B.60°C.150°D.120°B[ 设直线的倾斜角为α,则 tan α= 3,∵α ∈[0 ,π ) ,∴α=π .] 33.过点 ( - 2, ) , (4) 的直线的斜率等于1,则的值为 ()M m N m,mA. 1B. 4C. 1 或 3D. 1 或 44-mA[ 由题意知m+2= 1( m≠- 2) ,解得m= 1.]4.( 教材改编 ) 直线l:ax+y- 2-a=0 在x轴和y轴上的截距相等,则实数a=________.1 或-2 [ 令x= 0,则l在y轴上的截距为2+a;令y= 0,得直线l在x轴上的2截距为 1+a.2依题意 2+a= 1+a,解得a= 1 或a=- 2.]5.过点 (3 ,-4) ,且在两坐标轴上的截距相等的直线的方程为________.M4+ 3= 0 或++ 1= 04=-4,即 4+ 3x x [ 若直线过原点,则=-,所以3xy y k3y x y = 0.x y若直线不过原点,设a+a= 1,即x+y=a,则a= 3+ ( -4) =- 1,所以直线方程为 x+ y+1=0.]( 对应学生用书第130 页 )直线的倾斜角与斜率(1) 直线x sinα+ y+2=0的倾斜角的范围是()A. [0 ,π ) B. 0,π34∪4π,πC. 0,πD. 0,π∪π,π442(2)若直线 l 过点 P(-3,2),且与以 A(-2,-3),B(3,0)为端点的线段相交,则直线l 的斜率的取值范围是________.(1) B (2) - 5,-1[(1) 设直线的倾斜角为θ,则有 tan θ=- sin α,又 sin 3π3πα ∈ [ - 1,1] ,θ ∈ [0 ,π) ,所以 0≤θ ≤或≤ θ<π .(2) 因为P( - 3,2) ,A( - 2,- 3) ,B(3,0) ,-3- 2则k PA=-2-(-3)=-5,0- 21k PB=3-(-3)=-3.1如图所示,当直线l 与线段 AB相交时,直线l 的斜率的取值范围为-5,-3.][ 规律方法 ] 1. 倾斜角α与斜率k的关系π当α∈ 0,2时,k∈[0,+π当α=2时,斜率 k 不存在.π ,π时, k-∞,当α∈ 22. 斜率的两种求法定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k=tanα 求斜率.y2- y1公式法:若已知直线上两点 A x1, y1, B x2, y2,一般根据斜率公式k=x2- x1x1≠ x2求斜率.3. 倾斜角α范围与直线斜率范围互求时,要充分利用y=tanα的单调性 .[ 跟踪训练 ](1)(2017 ·九江一中 ) 若平面内三点A(1,- a),B(2, a2),C(3, a3)共线,则a=()A.1±2或 02- 5B.2或 0C .2± 5 D.2+ 5 22 或 0(2) 直线 l 经过 A (3,1) 2l 的倾斜角 α 的取值范围, B (2 ,- m )( m ∈ R) 两点,则直线 是 ________.(1) Aππ [(1) ∵平面内三点 (1 ,-) , (2 ,2, 3(2),a) , (3a) 共线,∴ k42ABAC= k ,a 2+ a a 3+ a即 2- 1 = 3- 1 ,即 a ( a 2- 2a -1) = 0,解得 a = 0 或 a =1±2. 故选 A .21+ m2(2) 直线 l 的斜率 k = 3- 2 = 1+ m ≥1,所以 k = tan α ≥1.又 y =tan α 在 0, ππ ≤α < π .] 上是增函数,因此24 2 求直线方程根据所给条件求直线的方程:10(1) 直线过点 ( - 4,0) ,倾斜角的正弦值为 10 ;(2) 直线过点 ( - 3,4) ,且在两坐标轴上的截距之和为12.【导学号: 79140262】[ 解 ](1) 由题设知,该直线的斜率存在,故可采用点斜式.10设倾斜角为 α,则 sinα = 10 (0 ≤ α < π ) ,3 10 1 从而 cos α =±,则 k = tan α =± .1031故所求直线方程为 y =± 3( x + 4) .即 x +3 + 4= 0 或 x - 3 + 4= 0.y yx y(2) 由题设知纵横截距不为0,设直线方程为 a +12- a =1,又直线过点 ( - 3,4),-34从而 a + 12- a = 1,解得 a =- 4 或 a = 9.故所求直线方程为4x - y + 16= 0 或 x + 3y - 9= 0.[ 规律方法 ]求直线方程应注意以下三点在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.对于点斜式、截距式方程使用时要注意分类讨论思想的运用若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零截距可正、可负、可为0,因此在解与截距有关的问题时,一定要注意“截距为0”的情况,以防漏解.[ 跟踪训练 ]求适合下列条件的直线方程:(1)过点 P(2,3),并且在两坐标轴上的截距互为相反数;(2) 过点A( - 1,- 3) ,倾斜角等于直线y=3x 的倾斜角的2 倍.[ 解 ] (1) 当直线过原点时,方程为3y= x,即3x-2y=0.2x y当直线 l 不过原点时,设直线方程为a-a=1.将P(2,3)代入方程,得 a=-1,所以直线 l 的方程为 x-y+1=0.综上,所求直线l 的方程为3x-2y=0或 x-y+1=0.(2)设直线 y=3x 的倾斜角为α,则所求直线的倾斜角为 2α .因为 tanα= 3,2tanα3所以 tan 2 α=1-tan2α=-4.又直线经过点A(-1,-3),3因此所求直线方程为y+3=-( x+ 1) ,即 3x+ 4y+15= 0.4直线方程的综合应用过点 P(4,1)作直线 l 分别交 x 轴, y 轴正半轴于 A, B 两点, O为坐标原点.(1)当△ AOB面积最小时,求直线l 的方程;(2)当 | | + || 取最小值时,求直线l 的方程.OA OB[ 解 ]设直线l :x+y= 1(a> 0,> 0) ,a b b因为直线 l 经过点P(4,1),4 1所以a+b= 1.(1)4141=4a+=1≥2a·,b b ab所以 ab≥16,当且仅当a=8, b=2时等号成立,所以当 a = 8, b = 2 时,△ AOB 的面积最小,x y此时直线 l 的方程为 8+2= 1,即 x +4y - 8= 0.4 1(2) 因为 a + b = 1, a > 0, b > 0,4 1a 4ba 4b所以 | OA | + | OB | = a + b = ( a + b ) · a +b = 5+ b + a ≥5+ 2 b · a = 9,当且仅当 a = 6, = 3 时等号成立,b所以当 || + || 取最小值时,直线l 的方程为 x + y=1,即x +2y - 6= 0.OAOB6 3[ 规律方法 ]与直线方程有关问题的常见类型及解题策略求解与直线方程有关的最值问题. 先设出直线方程, 建立目标函数, 再利用基本不等式求解最值 .含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.求参数值或范围 . 注意点在直线上, 则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解 .[ 跟踪训练 ]已知直线 l :ax - 2y =2a - 4,l22, : 2x + a y = 2a + 4,当 0<a < 2 时,直线 l121l 2 与两坐标轴正半轴围成一个四边形,则当a 为何值时,四边形的面积最小?【导学号: 79140263】[ 解 ]ax -2y = 2 a - 4,得 x = y =2,由2 + 2 = 2 2+ 4,x a y a∴直线 l 1 与 l 2 交于点 A (2,2)(如图 ) .易知 | OB | = a 2+ 2,| OC |=2- a ,则 S四边 形 OBAC △ AOB △AOC1212= a - 1 215= S + S =2 ×2( a + 2) + 2 ×2(2 - a ) = a - a + 4 2 + 4 ,a ∈(0,2) ,1∴当 a = 2时,四边形 OBAC 的面积最小.。
近年高考数学一轮复习第8章平面解析几何8.1直线的倾斜角、斜率与直线的方程课后作业文(2021年整
2019版高考数学一轮复习第8章平面解析几何8.1 直线的倾斜角、斜率与直线的方程课后作业文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第8章平面解析几何8.1 直线的倾斜角、斜率与直线的方程课后作业文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第8章平面解析几何8.1 直线的倾斜角、斜率与直线的方程课后作业文的全部内容。
8.1 直线的倾斜角、斜率与直线的方程[重点保分两级优选练]A级一、选择题1.(2018·朝阳模拟)直线x+3y+1=0的倾斜角为()A.错误!B。
错误!C.错误!D.错误!答案D解析直线斜率为-错误!,即tanα=-错误!,0≤α〈π,∴α=错误!,故选D。
2.(2017·正定质检)直线x cos140°+y sin40°+1=0的倾斜角是( )A.40° B.50°C.130° D.140°答案B解析将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k=错误!=tan50°,倾斜角为50°。
故选B.3.(2018·哈尔滨模拟)函数y=a sin x-b cos x的一条对称轴为x=错误!,则直线l:ax-by+c=0的倾斜角为( )A.错误!B。
错误!C.错误!D。
错误!答案D解析由函数y=f(x)=a sin x-b cos x的一条对称轴为x=错误!知,f(0)=f错误!,即-b=a,∴直线l的斜率为-1,∴倾斜角为错误!.故选D.4.(2018·衡阳期末)已知直线PQ的斜率为-3,将直线绕点P顺时针旋转60°所得的直线的斜率为()A。
高考数学一轮第8章 平面解析几何 8-1
2019/8/9
缘份让你看到我在这里
13
5.已知直线 l:ax+y-2-a=0 在 x 轴和 y 轴上的截距
相等,则 a 的值是( )
A.1
B.-1
C.-2 或-1 D.-2 或 1
解析 由题意可知 a≠0.当 x=0 时,y=a+2;当 y=0 时,x=a+a 2,∴a+a 2=a+2,解得 a=-2 或 a=1.
2019/8/9
缘份让你看到我在这里
32
(3)依题意,直线 l 在 x 轴上的截距为-1+k2k,在 y 轴
上的截距为 1+2k,
∴A-1+k2k,0,B(0,1+2k). 又-1+k2k<0 且 1+2k>0, ∴k>0.故 S=12|OA||OB|=12×1+k2k×(1+2k)=21
(2)与方程、不等式相结合的问题:一般是利用方程、不 等式的有关知识(如方程解的个数、根的存在问题,不等式 的性质、基本不等式等)来解决.
2019/8/9
缘份让你看到我在这里
34
【变式训练 3】 已知直线 l 过点 M(1,1),且与 x 轴,y 轴的正半轴分别相交于 A,B 两点,O 为坐标原点.求:
y2-y1
式为 k= x2-x1 .
2019/8/9
缘份让你看到我在这里
5
考点 2 直线方程的几种形式
2019/8/9
缘份让你看到我在这里
6
2019/8/9
缘份让你看到我在这里
7
[必会结论] 直线的斜率 k 与倾斜角 θ 之间的关系
牢记口诀: “斜率变化分两段,90°是分界线; 遇到斜率要谨记,存在与否要讨论”.
等于 1,则 m 的值为( )
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 直线的倾斜角与斜率、直线的方程板块四 模拟演练·提能增分[A 级 基础达标]1.直线x +3y +1=0的倾斜角是( ) A.π6 B.π3 C.2π3 D.5π6答案 D解析 由直线的方程得直线的斜率k =-33,设倾斜角为α,则tan α=-33,所以α=5π6. 2.[2018·沈阳模拟]直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( )A.ab >0,bc <0 B .ab >0,bc >0 C.ab <0,bc >0 D .ab <0,bc <0答案 A解析 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-ab x -c b .易知-a b <0且-c b>0,故ab >0,bc <0.3.[2018·邯郸模拟]过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A.x =2 B .y =1 C .x =1 D .y =2 答案 A解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4.依题意,所求直线的倾斜角为3π4-π4=π2,斜率不存在,∴过点(2,1)的直线方程为x =2. 4.已知三点A (2,-3),B (4,3),C ⎝ ⎛⎭⎪⎫5,k 2在同一条直线上,则k 的值为( )A.12 B .9 C .-12 D .9或12 答案 A解析 由k AB =k AC ,得3--4-2=k2--5-2,解得k =12.故选A.5.[2018·荆州模拟]两直线x m -y n =a 与x n -y m=a (其中a 是不为零的常数)的图象可能是( )答案 B解析 直线方程x m -yn =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =m nx -ma ,由此可知两条直线的斜率同号.故选B.6.[2018·安徽模拟]直线l :x sin30°+y cos150°+1=0的斜率是( ) A.33 B. 3 C .- 3 D .-33答案 A解析 设直线l 的斜率为k ,则k =-sin30°cos150°=33.7.直线x cos α+3y +2=0的倾斜角的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π解析 设直线的倾斜角为θ,依题意知,θ≠π2,k =-33cos α,∵cos α∈[-1,1],∴k ∈⎣⎢⎡⎦⎥⎤-33,33,即tan θ∈⎣⎢⎡⎦⎥⎤-33,33.又θ∈[0,π),∴θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π8.已知实数x ,y 满足方程x +2y =6,当1≤x ≤3时,y -1x -2的取值范围为________. 答案 ⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫12,+∞解析y -1x -2的几何意义是过M (x ,y ),N (2,1)两点的直线的斜率,因为点M 在x +2y =6的图象上,且1≤x ≤3,所以可设该线段为AB ,且A ⎝ ⎛⎭⎪⎫1,52,B ⎝ ⎛⎭⎪⎫3,32,由于k NA =-32,k NB =12,所以y -1x -2的取值范围是⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫12,+∞.9.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________. 答案 y =-53x 或x -y +8=0解析 (1)当直线过原点时,直线方程为y =-53x ;(2)当直线不过原点时,设直线方程为x a +y-a=1,即x -y =a ,代入点(-3,5),得a =-8,即直线方程为x -y +8=0.10.[2018·衡阳模拟]一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x的倾斜角的2倍,则这条直线的一般式方程是________.答案3x -y -33=0解析 解法一:∵直线y =13x 的倾斜角为30°,所以所求直线的倾斜角为60°, 即斜率k =tan60°= 3. 又该直线过点A (2,-3),故所求直线为y -(-3)=3(x -2), 即3x -y -33=0. 解法二:设直线y =13x 的倾斜角为α,则所求直线的倾斜角θ=2α.tan θ=tan2α=2tan α1-tan 2α=231-⎝ ⎛⎭⎪⎫132= 3. 所求直线为3x -y -33=0.[B 级 知能提升]1.[2018·海南模拟]直线(1-a 2)x +y +1=0的倾斜角的取值范围是( )A.⎣⎢⎡⎭⎪⎫π4,π2 B.⎣⎢⎡⎦⎥⎤0,3π4C.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,πD.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎦⎥⎤π2,3π4 答案 C解析 直线的斜率k =-(1-a 2)=a 2-1,∵a 2≥0,∴k =a 2-1≥-1.由倾斜角和斜率的关系(如图所示),该直线倾斜角的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.2.已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为( ) A.y =3x +3或y =-3x - 3B.y =33x +33或y =-33x -33C.y =x +1或y =-x -1D.y =2x +2或y =-2x - 2 答案 B 解析 由|AB |=α+2+sin 2α=2+2cos α=3,得cos α=12,所以sin α=±32,所以直线AB 的斜率k AB =sin α-0cos α+1=3212+1=33或k AB =sin α-0cos α+1=-3212+1=-33,所以直线AB 的方程为y =±33(x +1),即直线AB 的方程为y =33x +33或y =-33x -33.选B.3.[2018·宁夏调研]若ab >0,且A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________.答案 16解析 根据A (a,0),B (0,b )确定直线的方程为x a +yb=1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号,即ab 的最小值为16.4.在△ABC 中,已知A (1,1),AC 边上的高线所在直线方程为x -2y =0,AB 边上的高线所在直线方程为3x +2y -3=0.求BC 边所在直线方程.解 k AC =-2,k AB =23.∴AC :y -1=-2(x -1),即2x +y -3=0,AB :y -1=23(x -1),即2x -3y +1=0.由⎩⎪⎨⎪⎧ 2x +y -3=0,3x +2y -3=0,得C (3,-3).由⎩⎪⎨⎪⎧2x -3y +1=0,x -2y =0,得B (-2,-1).∴BC :2x +5y +9=0.5.过点P (2,1)作直线l ,与x 轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)求直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程;(3)求|PA |·|PB |的最小值及此直线l 的方程.解 (1)解法一:设直线l 的方程为y -1=k (x -2),则可得A ⎝ ⎛⎭⎪⎫2k -1k ,0,B (0,1-2k ).∵与x 轴,y 轴正半轴分别交于A ,B 两点, ∴⎩⎪⎨⎪⎧2k -1k >0,1-2k >0⇒k <0.于是S △AOB =12·|OA |·|OB |=12·2k -1k ·(1-2k )=12⎝ ⎛⎭⎪⎫4-1k -4k≥12⎣⎢⎡⎦⎥⎤4+2⎝ ⎛⎭⎪⎫-1k -4k =4.当且仅当-1k =-4k ,即k =-12时,△AOB 面积有最小值为4,此时,直线l 的方程为y-1=-12(x -2),即x +2y -4=0.解法二:设所求直线l 的方程为x a +y b=1(a >0,b >0),则2a +1b=1.又∵2a +1b≥22ab ⇒12ab ≥4,当且仅当2a =1b =12,即a =4,b =2时,△AOB 面积S =12ab 有最小值为4.此时,直线l 的方程是x 4+y2=1,即x +2y -4=0.(2)解法一:∵A ⎝⎛⎭⎪⎫2k -1k ,0,B (0,1-2k )(k <0),∴截距之和为2k -1k+1-2k =3-2k -1k≥3+2-2k⎝ ⎛⎭⎪⎫-1k =3+2 2.当且仅当-2k =-1k ,即k =-22时,等号成立.故截距之和最小值为3+22,此时l 的方程为y -1=-22(x -2),即2x +2y -2-22=0.解法二:∵2a +1b=1,∴截距之和a +b =(a +b )⎝ ⎛⎭⎪⎫2a +1b =3+2b a +a b≥3+22b a ·ab=3+2 2.此时2b a =ab,求得b =2+1,a =2+ 2.此时,直线l 的方程为x 2+2+y2+1=1,即2x +2y -2-22=0. (3)解法一:∵A ⎝ ⎛⎭⎪⎫2k -1k ,0,B (0,1-2k )(k <0),∴|PA |·|PB |=1k2+1·4+4k 2=4k2+4k 2+8≥2·4k2·4k 2+8=4.当且仅当4k2=4k 2,即k =-1时上式等号成立,故|PA |·|PB |最小值为4,此时,直线l的方程为x +y -3=0.解法二:设∠OAB =θ, 则|PA |=1sin θ,|PB |=20°-θ=2cos θ, ∴|PA |·|PB |=2sin θcos θ=4sin2θ,当sin2θ=1,θ=π4时,|PA |·|PB |取得最小值4,此时直线l 的斜率为-1,又过定点(2,1),∴其方程为x +y -3=0.。