2019年高考数学一轮复习极坐标系
人教A版高考总复习一轮文科数学精品课件 选修4—4 坐标系与参数方程 第1节 极坐标方程与参数方程
π
θ=4代入 ρ2-2ρcos
+1=0,得 ρ2-3 2ρ+1=0,∴ρ1+ρ2=3 2,ρ1ρ2=1,∴|AB|=|ρ1-ρ2|
= (1 + 2 )2 -41 2 =
(3 2)2 -4 × 1 = 14.
θ-4ρsin θ
考向2参数方程和极坐标方程化为直角坐标方程
例2(2022全国甲,文22)在直角坐标系xOy中,曲线C1的参数方程为
(1)极坐标系:如图所示,在平面内取一个 定点
叫做极点;自极点O引一条 射线
再选定一个 长度
(通常取 弧度
O,
Ox,叫做极轴;
单位、一个 角度
)及其正方向(通常取
单位
逆时针 方
向),这样就建立了一个极坐标系.
|OM|
(2)极坐标:设M是平面内一点,极点O与点M的距离
叫做点M
的极径,记为 ρ ;以极轴Ox为始边,射线OM为终边的角 xOM 叫做点
选修4—4 第1节 极坐标方程与参数方程
内
容
索
引
01
强基础 固本增分
02
研考点 精准突破
课标解读
1.了解在直角坐标系伸缩变换作用下平
面图形的变化情况.
2.能用极坐标表示点的位置,理解在两个
坐标系中表示点的位置的区别,能进行极
坐标和直角坐标的互化.
3.能在极坐标系中给出简单图形的方程,
通过比较这些图形在两个坐标系中的方
程,理解用方程表示平面图形时选择适当
坐标系的意义.
4.了解参数方程及参数的意义.
5.能选择适当的参数写出直线、圆和圆
锥曲线的参数方程.
衍生考点
核心素养
极坐标系与参数方程一轮复习
极坐标系与参数方程♦知识梳理 、极坐标在象限确定.二、常见曲线的极坐标方程 1、圆的极坐标方程(1) 圆心在极点,半径为r 的圆的极坐标方程是 _____ ;(2) ______________________________________________________________ 圆心在极轴上的点(a,0)处,且过极点0的圆的极坐标方程是 _________________________ (3)圆心在点(a,处且过极点的圆0的极坐标方程是 ___________ 。
2、直线的极坐标方程(1) 过极点且倾斜角为 的直线的极坐标方程是 __________ ;(2) _______________________________________________________ 过点(a,0),且垂直于极轴的直线的极坐标方程是 ___________________________________ 三、常见曲线的参数方程1、极坐标定义:M 是平面上一点,表示0M 的长度,是MOx ,则有序实数实数对(,),叫极径,叫极角;一般地,2、极坐标和直角坐标互化公式:COS2 2 x 2y sin或t tany (x 0)的象限由点(x, y )所[0,2 ), 0x y第一节 平面直角坐标系中的伸缩、平移变换知识点】点P(x,y)的对应点为P'(x',y')。
称 为平面直角坐标系中的伸缩变换 定义 2: 在平面内,将图形 F 上所有点按照同一个方向,移动同样长度,称为图形F 的平移。
若以向量a 表示移动的方向和长度,我们也称图形 F 按向量a 平移. F 上任意一点P 的坐标为(x, y),向量a (h, k),平移后因为平移变换仅改变图形的位置,不改变它的形状和大小.所以,在 平移变换作用下,曲线上任意两点间的距离保持不变。
【典例1】(2014年高考辽宁卷(文))将圆x 2 + /= 1上每一点的横坐标保持不变,纵坐 标变为原来的 2 倍,得曲线 C. (I) 写出 C 的参数方程;(II )设直线1: 2x + y - 2二0与C 的交点为P i ,P 2,以坐标原点为极点,x 轴正半轴为极 轴建立极坐标系,求过线段 P i P 2的中点且与I 垂直的直线的极坐标方程.练习:定义 1:设 P(x, y) 是平面直角坐标系中的任意一点,在变换x' x( y' y(00))的作用下,在平面直角坐标系中,设图形 的对应点为P(x, y )则有:即有:x x h, y y k在平面直角坐标系中,由 (x,y) (h,k) (x,y)xh x h 所确定的变换是一个平移变换。
高中数学一轮总复习文科基础复习题及解析(二)
高中数学一轮总复习文科基础复习题及解析第二部分 选考部分第十二讲 选考内容第一节 选修4-4 坐标系与参数方程1.在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. 解析:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3,故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一,(2)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t ≤ 3.2.已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A ,B ,求点P 到A ,B 两点的距离之积.解析:(1)直线的参数方程为⎩⎨⎧x =1+t cos π6,y =1+t sin π6(t 为参数),即⎩⎨⎧x =1+32t ,y =1+12t (t 为参数).(2)把直线的参数方程⎩⎨⎧x =1+32t ,y =1+12t (t 为参数)代入x 2+y 2=4得(1+32t )2+(1+12t )2=4,t 2+(3+1)t -2=0, ∴t 1t 2=-2,则点P 到A ,B 两点的距离之积为2.3.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴、y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解析:(1)由ρcos ⎝⎛⎭⎫θ-π3=1 得ρ⎝⎛⎭⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)因为M 点的直角坐标为(2,0), N 点的直角坐标为⎝⎛⎭⎫0,233.所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).4.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α,y =cos 2 α,α∈[0,2π),曲线D 的极坐标方程为ρsin(θ+π4)=- 2. (1)将曲线C 的参数方程化为普通方程;(2)曲线C 与曲线D 有无公共点?试说明理由.解析:(1)由⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π)得x 2+y =1,x ∈[-1,1].(2)由ρsin(θ+π4)=-2得曲线D 的普通方程为x +y +2=0.⎩⎪⎨⎪⎧x +y +2=0,x 2+y =1得x 2-x -3=0.解得x =1±132∉[-1,1],故曲线C 与曲线D 无公共点.5.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α是参数),直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π6=2 3. (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值. 解析:(1)∵直线l 的极坐标方程为 ρcos ⎝⎛⎭⎫θ+π6=23, ∴ρ⎝⎛⎭⎫cos θcos π6-sin θsin π6=23, ∴32x -12y =2 3. 即直线l 的直角坐标方程为3x -y -43=0.由⎩⎪⎨⎪⎧x =2cos α,y =3sin α 得x 24+y 23=1. 即曲线C 的普通方程为x 24+y 23=1.(2)设点P (2cos α,3sin α), 则点P 到直线l 的距离 d =|23cos α-3sin α-43|2=|15cos (α+φ-43)|2,其中tan φ=12.当cos(α+φ)=-1时,d max =15+432,即点P 到直线l 的距离的最大值为15+432. 6.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解析:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos(θ-π4)=2,所以ρ2-22ρ(cos θcos π4+sin θ·sin π4)=2.所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin(θ+π4)=22.7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1) 求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解析:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1,所以⎩⎨⎧b2=1,-ab2+1=2,解得a =-1,b =2.8.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解析:(1)由题意知,M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝⎛⎭⎫1,33,故直线OP 的平面直角坐标方程为y =33x .(2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233,所以直线l 的平面直角坐标方程为3x +3y -23=0.(2)又圆C 的圆心坐标为(2,-3),半径r =2, 圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.第二节 选修4-5 不等式选讲1.已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.(1)若当g (x )≤5时,恒有f (x )≤6,求a 的最大值; (2)若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围. 解析:(1)g (x )≤5⇔|2x -1|≤-5⇔2x -1≤5⇔-2≤x ≤3;f (x )≤6⇔|2x -a |≤6-a ⇔a -6≤2x -a ≤6-a ⇔a -3≤x ≤3. 依题意有,a -3≤-2,a ≤1. 故a 的最大值为1.(2)f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时符号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).2.已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. 解析:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a ,得a =2.(2)记h (x )=f (x )-2f (x2),则h (x )=⎩⎨⎧1(x ≤-1),-4x -3⎝⎛⎭⎫-1<x <-12,-1(x ≥-12)所以|h (x )|≤1,因此k ≥1.3.已知函数f (x )=|2x +2|+|2x -3|.(1)若∃x 0∈R ,使得不等式f (x 0)<m 成立,求m 的取值范围; (2)求使得不等式f (x )≤|4x -1|成立的x 的取值范围. 解析:(1)∵f (x )=|2x +2|+|2x -3|≥|(2x +2)-(2x -3)|=5,∴∃x 0∈R ,使得不等式f (x 0)<m 成立的m 的取值范围是(5,+∞). (2)∵f (x )=|2x +2|+|2x -3|≥|2x +2+2x -3|=|4x -1|, ∴|2x +2|+|2x -3|≥|4x -1|,当且仅当(2x +2)(2x -3)≥0时取等号, ∴x 的取值范围是(-∞,-1]∪⎣⎡⎭⎫32,+∞. 4.已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{x |-1≤x ≤5},求实数a ,m 的值; (2)当a =2且t ≥0时,解关于x 的不等式f (x )+t ≥f (x +2t ).解析:(1)由|x -a |≤m ,得a -m ≤x ≤a +m ,所以⎩⎪⎨⎪⎧ a -m =-1,a +m =5,解得⎩⎪⎨⎪⎧a =2,m =3.(2)当a =2时,f (x )=|x -2|,f (x )+t ≥f (x +2t ),即 |x -2+2t |-|x -2|≤t .①当t =0时,不等式①恒成立,即x ∈R ;当t >0时,不等式等价于⎩⎪⎨⎪⎧x <2-2t ,2-2t -x -(2-x )≤t或⎩⎪⎨⎪⎧2-2t ≤x <2,x -2+2t -(2-x )≤t 或⎩⎪⎨⎪⎧x ≥2,x -2+2t -(x -2)≤t ,解得x <2-2t 或2-2t ≤x ≤2-t 2或x ∈∅,即x =2-t 2.综上,当t =0时,原不等式的解集为R ; 当t >0时,原不等式的解集为{x |x ≤2-t2}.5.已知a ,b ,c 为实数,且a +b +c =2m -2,a 2+14b 2+19c 2=1-m .(1)求证:a 2+b 24+19c 2≥(a +b +c )214; (2)求实数m 的取值范围.解析:(1)由柯西不等式得:⎣⎡⎦⎤a 2+⎝⎛⎭⎫12b 2+⎝⎛⎭⎫13c 2·(12+22+32)≥(a +b +c )2, 即⎝⎛⎭⎫a 2+14b 2+19c 2·14≥(a +b +c )2,所以a 2+14b 2+19c 2≥(a +b +c )214,当且仅当|a |=14|b |=19|c |时,取等号. (2)由已知得(a +b +c )2=(2m -2)2,结合(1)的结论可得:14(1-m )≥(2m -2)2,即2m 2+3m -5≤0,所以-52≤m≤1,又a2+14b2+19c2=1-m≥0,所以m≤1,故m的取值范围为-52≤m≤1.6.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因为a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b+c+d,②若a+b>c+d则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.7.设f(x)=|x-1|-2|x+1|的最大值为m.(1)求m;(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.解析:(1)当x≤-1时,f(x)=3+x≤2;当-1<x<1时,f(x)=-1-3x<2;当x ≥1时,f (x )=-x -3≤-4. 故当x =-1时,f (x )取得最大值m =2.(2)a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ), 当且仅当a =b =c =22时,等号成立. 此时,ab +bc 取得最大值1.8.已知函数f (x )=|x -2|+|x -4|的最小值为m ,实数a ,b ,c ,n ,p ,q 满足a 2+b 2+c 2=n 2+p 2+q 2=m .(1)求m 的值;(2)求证:n 4a 2+p 4b 2+q 4c2≥2.解析:(1)f (x )=|x -2|+|x -4|≥|(x -2)-(x -4)|=2,当且仅当2≤x ≤4时,等号成立,故m =2.(2)因为[(n 2a )2+(p 2b )2+(q 2c )2]·(a 2+b 2+c 2)≥(n 2a ·a +p 2b ·b +q 2c ·c )2,即(n 4a 2+p 4b 2+q 4c 2)×2≥(n 2+p 2+q 2)2=4, 所以n 4a 2+p 4b 2+q 4c2≥2.9.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. 解析:(1)f (x )=|x +1|+|x -1| =⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1.2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2. ∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0, ∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.10.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M . (1)试证明|1+b |≤M ; (2)试证明M ≥12;(3)当M =12时,试求出f (x )的解析式.解析:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴M ≥|1+b |.(2)依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|,又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |,∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2.∴M ≥12.(3)当M =12时,|f (0)|=|b |≤12,-12≤b ≤12.①同理-12≤1+a +b ≤12.②-12≤1-a +b ≤12.③ ②+③得-32≤b ≤-12.④由①④得b =-12,当b =-12时,分别代入②③得⎩⎨⎧-1≤a ≤0,0≤a ≤1⇒a =0,因此f (x )=x 2-12. 11.已知函数f (x )=|2x +1|+|2x -3|.(1)若关于x 的不等式f (x )<|1-2a |的解集不是空集,求实数a 的取值范围; (2)若关于t 的一元二次方程t 2+26t +f (m )=0有实根,求实数m 的取值范围. 解析:(1)∵f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|1-2a |>4, ∴a <-32或a >52,∴实数a 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫52,+∞. (2)Δ=24-4(|2m +1|+|2m -3|)≥0.即|2m +1|+|2m -3|≤6,∴不等式等价于⎩⎪⎨⎪⎧ m >32,(2m +1)+(2m -3)≤6或 ⎩⎪⎨⎪⎧ -12≤m ≤32,(2m +1)-(2m -3)≤6或 ⎩⎪⎨⎪⎧m <-12,-(2m +1)-(2m -3)≤6.∴32<m ≤2或-12≤m ≤32或-1≤m <-12, ∴实数m 的取值范围是[-1,2].12.已知函数f (x )=|3x +2|.(1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n(a >0)恒成立,求实数a 的取值范围. 解析:(1)不等式f (x )<4-|x -1|.即|3x +2|+|x -1|<4.当x <-23时,即-3x -2-x +1<4, 解得-54<x <-23: 当-23≤x ≤1时,即3x +2-x +1<4, 解得-23≤x ≤12; 当x >1时,即3x +1+x -1<4,无解.综上所述,x ∈⎝⎛⎭⎫-54,12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n≥4, 令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎨⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.。
2019高考数学(全国、理科)一轮复习课件:第67讲 坐标系
栏目 导引
专题一
集合、常用逻辑用语、函数与导数、不等式
[总结反思]
课堂考点探究 (1)平面上的曲线y=f(x)在变换φ:
的作用下 =f ,
的方程的求法是将
代入y=f(x),得
整理之后得到y′=h(x′),即为所求变换之后的方程.平面
图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变 换 下,直线仍然变成直线,抛物线仍然变
知识聚焦
1.平面直角坐标系中的伸缩变换
x′=λx,λ>0, 设点 P(x,y)是平面直角坐标系中的任意一点,在变换 φ: 的作用下,点 y ′ = μy , μ > 0
P(x,y)对应到点 P′(x′,y′),称 φ 为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系 (1)设 M 是平面内一点,极点 O 与点 M 的距离|OM|叫作点 M 的________ 极径 ,记为 ρ.以极轴 Ox 为始边,射线 OM 为终边的角 xOM 叫作点 M 的________ 极 ,记为 θ.有序数对(ρ,θ)叫 作点 M 的极坐标,记作 M(ρ,θ). 角 (2)极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴, 并在两种坐标系中取相同的长度单位,设 M 是平面内任意一点,它的直角坐标是(x y) , 2, x + ρcos θ,y=ρsin θ ,由此得 ρ2=________ 极坐标为(ρ,θ),则它们之间的关系为 x=________ , y2 tan θ =________(x≠0).
课堂考点探究
探究点二 极坐标与直角坐标的互化
[思路点拨] (1)首先按两角差 的正弦公式展开,然后两边 同时乘 ρ,利用转化公式 ρ2 =x2+y2, x=ρcos θ , y= ρsin θ ,转化为直角坐标方 程;(2)圆外一点与圆上一点 距离的最小值为圆心与圆外 这点的距离减半径.
2019届高三数学一轮复习:第67讲 坐标系
|2
+|������1������
|2
的值.
解:(1)由
ρ2=co
s2
������
9 +9si
n
2
������
,得
ρ2cos2θ+9ρ2sin2θ=9,
将 x=ρcos θ,y=ρsin θ 代入,
得曲线
C
的直角坐标方程是������ 2
9
+y2=1.
(2)因为
ρ2=co
s 2 ������
9 +9si
[总结反思] (1)直角坐标方程化为极坐标方 程时,将 x=ρcos θ 及 y=ρsin θ 直接代入并化简 即可;(2)极坐标方程化为直角坐标方程时常 先通过变形,构造形如 ρcos θ,ρsin θ,ρ2 的形式, 再进行整体代换.其中方程的两边同乘(或同 除以)ρ 及方程两边同时平方是常用的变形方 法.但对方程进行变形时,方程必须同解,因此 应注意对变形过程的检验.
例 2 在平面直角坐标系 xOy 中,曲线 C1 的直 角坐标方程为(x- 3)2+(y-2)2=4,直线 C2 的直 角坐标方程为 y= 33x,以 O 为极点,x 轴非负半 轴为极轴建立极坐标系. (1)求曲线 C1 和直线 C2 的极坐标方程; (2)若直线 C2 与曲线 C1 交于 P,Q 两点,求 |OP|·|OQ|的值.
x'2+y'2=1,则曲线 C 的方程为
���' 2
,代入
������ = ������'
曲线
C
的方程得������ '2
4
+y'2=1;
(2)根据题意,将
极坐标和参数方程-一轮复习
教学内容【知识结构】知识点一:极坐标1.极坐标系平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。
2.极坐标系内一点的极坐标平面上一点到极点的距离称为极径,与轴的夹角称为极角,有序实数对就叫做点的极坐标。
3. 极坐标与直角坐标的互化当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;③长度单位相同),平面上一个点的极坐标和直角坐标有如下关系:直角坐标化极坐标:;极坐标化直角坐标:.此即在两个坐标系下,同一个点的两种坐标间的互化关系.知识点三:参数方程1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数:,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。
知识点四:常见曲线的参数方程1.直线的参数方程(1)经过定点,倾斜角为的直线的参数方程为:(为参数);其中参数的几何意义:,有,即表示直线上任一点M到定点的距离。
(当在上方时,,在下方时,)。
(2)过定点,且其斜率为的直线的参数方程为:(为参数,为为常数,);其中的几何意义为:若是直线上一点,则。
2.圆的参数方程(1)已知圆心为,半径为的圆的参数方程为:(是参数,);特别地当圆心在原点时,其参数方程为(是参数)。
(2)参数的几何意义为:由轴的正方向到连接圆心和圆上任意一点的半径所成的角。
(3)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。
3. 椭圆的参数方程(1)椭圆()的参数方程(为参数)。
(2)参数的几何意义是椭圆上某一点的离心角。
如图中,点对应的角为(过作轴,交大圆即以为直径的圆于),切不可认为是。
2019年高考数学(理)一轮复习精品资料专题66坐标系(教学案)含解析
2019年高考数学(理)一轮复习精品资料1.了解在平面直角坐标系下的伸缩变换。
2.理解极坐标的概念,能进行极坐标和直角坐标的互化。
3.能在极坐标系中给出简单图形(直线、过极点或圆心在极点的圆)的方程。
一、平面直角坐标系下的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,λ>,y ′=μ·y ,μ>的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换⎩⎪⎨⎪⎧x ′=λ·x ,λy ′=μ·y ,μ下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.二、极坐标与直角坐标的互化设M 为平面上的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面的关系式成立:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x (θ与(x ,y )所在象限一致).【特别提醒】(1)在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置). (2)在极坐标系下,点的极坐标不惟一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π),(-ρ,π+θ+2k π)(k ∈Z )表示同一点的坐标. 三、曲线的极坐标方程 1.圆的极坐标方程(1)圆心在极点,半径为R 的圆的极坐标方程为ρ=R .(2)圆心在极轴上的点(a,0)处,且过极点O 的圆的极坐标方程为ρ=2a cos θ.(3)圆心在点⎝⎛⎭⎪⎫a ,π2处,且过极点O 的圆的极坐标方程为ρ=2a sin θ.2.直线的极坐标方程(1)过点(a,0)与极轴垂直的直线的极坐标方程为ρcos θ=a .(2)过点⎝⎛⎭⎪⎫a ,π2与极轴平行的直线的极坐标方程为ρsin θ=a . 【特别提醒】(1)确定极坐标方程时要注意极坐标系的四要素:极点、极轴、长度单位、角度单位及其正方向,四者缺一不可. (2)研究曲线的极坐标方程往往要与直角坐标方程进行相互转化.当条件涉及“角度”和“到定点距离”时,引入极坐标系将会给问题的解决带来很大的方便.高频考点一 平面直角坐标系中的伸缩变换【例1】 将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12, 于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.【方法规律】(1)解答该类问题应明确两点:一是根据平面直角坐标系中的伸缩变换公式的意义与作用;二是明确变换前的点P (x ,y )与变换后的点P ′(x ′,y ′)的坐标关系,用方程思想求解.(2)求交点坐标,得直线方程,最后化为极坐标方程,其实质是将x =ρcos θ,y =ρsin θ代入转化.【变式探究】 在平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .(1)求点A ⎝ ⎛⎭⎪⎫13,-2经过φ变换所得点A ′的坐标;(2)求直线l :y =6x 经过φ变换后所得直线l ′的方程.(2)设P ′(x ′,y ′)是直线l ′上任意一点.由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x =x ′3,y =2y ′.代入y =6x ,得2y ′=6·x ′3=2x ′,∴y ′=x ′为所求直线l ′的方程. 高频考点二 极坐标与直角坐标的互化【例2】 (2016·北京卷改编)在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ.(1)求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状; (2)若曲线C 1,C 2交于A ,B 两点,求两交点间的距离. 解 (1)由C 1:ρcos θ-3ρsin θ-1=0, ∴x -3y -1=0,表示一条直线.由C 2:ρ=2cos θ,得ρ2=2ρcos θ. ∴x 2+y 2=2x ,即(x -1)2+y 2=1. 所以C 2是圆心为(1,0),半径r =1的圆. (2)由(1)知,点(1,0)在直线x -3y -1=0上, 所以直线C 1过圆C 2的圆心.因此两交点A ,B 的连线段是圆C 2的直径. 所以两交点A ,B 间的距离|AB |=2r =2.【方法规律】 (1)进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0).(2)进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧.【变式探究】在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.高频考点三 直线与圆的极坐标方程的应用【例3】 (2016·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解 (1)消去t ,得C 1的普通方程x 2+(y -1)2=a 2, ∴曲线C 1表示以点(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.【方法规律】(1)第(1)题将曲线C 1的参数方程先化成普通方程,再化为极坐标方程,考查学生的转化与化归能力.第(2)题中关键是理解极坐标方程的含义,消去ρ,建立与直线C 3:θ=α0的联系,进而求a .(2)由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.【变式探究】 在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1.(1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.1. (2018年全国I卷理数) [选修4—4:坐标系与参数方程]在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)的方程为.【解析】(1)由,得的直角坐标方程为.2. (2018年全国Ⅱ卷理数)[选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2)3. (2018年全国Ⅲ卷理数) [选修4—4:坐标系与参数方程]在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是.(2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,.4. (2018年江苏卷) [选修4—4:坐标系与参数方程]在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为1.【2017江苏,21】在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22,x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值. 45【解析】直线l 的普通方程为280x y -+=. 因为点P 在曲线C 上,设()22,22P s s ,从而点P 到直线l 的的距离()()22222242428512s s s d +-+==-+-,当s =min 55d =. 因此当点P 的坐标为()4,4时,曲线C上点P 到直线l2. 【2017课标II ,理22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。
「精品」高考数学一轮复习第十六章选修4 第15课 极坐标方程与直角坐标方程的互化-精品
1. 了解曲线的极坐标方程的求法.1. 阅读:选修44第10~12页.基础诊断1. 点M 的直角坐标为(3,-1),在ρ≥0,0≤θ<2π的要求下,它的极坐标为________.2. 极坐标方程ρ2cos θ-ρ=0转化为直角坐标方程为________________.3. 在极坐标系中,定点A ⎝⎛⎭⎫1,π2,点B 在直线 ρcos θ+ρsin θ=0上运动,当线段AB 最短时,点B 的极坐标是________.4. 在极坐标系中,直线ρsin ⎝⎛⎭⎫θ+π4=2被圆ρ=4截得的弦长为________.考向例1 (1) 化直角坐标方程x +y -8y =0为极坐标方程; (2) 化极坐标方程ρ=6cos ⎝⎛⎭⎫θ-π3为直角坐标方程.(1) 在极坐标系中,曲线C 1:ρsin 2θ=cos θ和曲线C 2:ρsin θ=1.求曲线C 1和曲线C 2交点的直角坐标; (2) 在极坐标系中,求圆ρ=2cos θ垂直于极轴的两条切线方程.考向例2 在极坐标系中,已知圆C 经过点P(2,π4), 圆心为直线ρsin ⎝⎛⎭⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1) 写出曲线C 的方程;(2) 设直线l :2x +y -2=0与曲线C 的交点为P 1,P 2,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与直线l 垂直的直线的极坐标方程.考向例3 已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k·cos ⎝⎛⎭⎫θ+π4(k ≠0).若直线l 上的点到圆C 的最小距离等于2.求实数k 的值和圆心C 的直角坐标.自测反馈1. 将下列直角坐标方程化为极坐标方程. (1) x +2y -3=0; (2) x 2+()y -22=9.2. 将下列极坐标方程转化为直角坐标方程. (1) θ=π4;(2) ρcos ⎝⎛⎭⎫θ-π6=1; (3) ρ=5sin ⎝⎛⎭⎫θ-π6.3. 在极坐标系中,点(1,0)到直线ρ(cos θ+sin θ)=2的距离为________.4. 在极坐标系中,设圆ρ=3上的点到直线ρ(cos θ+3sin θ)=2的距离为d ,则d 的最大值为________.1. 直角坐标方程化为极坐标方程比较容易,只要运用公式直接代入即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.2. 对于在极坐标系下不便处理的问题,可考虑将其转化为直角坐标下的问题,但要注意转化的等价性.3. 你还有哪些体悟,写下来:第15课 极坐标方程与直角坐标方程的互化基础诊断1. ⎝⎛⎭⎫2,11π6 解析:由题意得⎩⎨⎧ρcos θ=3,ρsin θ=-1,又因为ρ≥0,0≤θ<2π,所以解得⎩⎪⎨⎪⎧ρ=2,θ=11π6,则点M 的极坐标为⎝⎛⎭⎫2,11π6. 2. x 2+y 2=0或x =1 解析:ρ2cos θ-ρ=0,即为ρ=ρ2cos θ,若ρ>0,则ρcos θ=1,化为直角坐标方程为x =1;若ρ=0,则ρ2cos θ-ρ=0化为直角坐标方程为x 2+y 2=0.3. ⎝⎛⎭⎫22,3π4 解析:直线ρcos θ+ρsin θ=0化为直角坐标方程为x +y =0,点A ⎝⎛⎭⎫1,π2化为直角坐标为(0,1).线段AB 最短时,即过点A 作直线的垂线,交点为B.由此可求得直线AB 方程为x -y +1=0,所以交点B 的直角坐标为⎝⎛⎭⎫-12,12,化成极坐标为⎝⎛⎭⎫22,3π4. 4. 43 解析:由题意可得直线与圆的交点是⎝⎛⎭⎫4,-π12和⎝⎛⎭⎫4,7π12,所以弦长为42+42-2×4×4×cos ⎣⎡⎦⎤7π12-⎝⎛⎭⎫-π12=4 3. 范例导航例1 解析:(1) 因为直角坐标方程为x 2+y 2-8y =0,所以该方程表示以(0,4)为圆心,4为半径的圆,故该方程化为极坐标方程为ρ=8sin θ.(2) 在ρ=6cos ⎝⎛⎭⎫θ-π3中,可化简为ρ=3cos θ+33sin θ,两边同时乘以ρ得ρ2=3ρcos θ+33ρsin θ,化为直角坐标方程为x 2+y 2-3x -33y =0.解析:(1) 曲线C 1:ρsin 2θ=cos θ化为直角坐标方程为y 2=x , 曲线C 2:ρsin θ=1化为直角坐标方程为y =1,联立方程组⎩⎪⎨⎪⎧y 2=x ,y =1,解得⎩⎪⎨⎪⎧x =1,y =1,故交点的直角坐标为(1,1).(2) 由题可得该圆的圆心为(1,0),半径为1,所以该圆垂直于极轴的两条切线方程为x =2或x =0,化为极坐标方程为θ=π2或ρcos θ=2.【注】 两种形式的方程互化的前提条件:(1) 以直角坐标系中的原点为极点,x 轴的正半轴为极轴且在两坐标系中取相同的长度单位.(2) 先将方程两边同乘以ρ,化成直角坐标方程.例2 解析:在ρsin ⎝⎛⎭⎫θ-π3=-32中,令θ=0得ρ=1,因为圆C 经过点P ⎝⎛⎭⎫2,π4,所以圆C 的半径PC =(2)2+12-2×1×2×cos π4=1,于是圆C 过极点,所以极坐标方程为ρ=2cos θ.解析:(1) x 2+y24=1.(2) 由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设点P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,则所求直线斜率为k =12,所求直线的直角坐标方程为y -1=12⎝⎛⎭⎫x -12,化为极坐标方程为2ρcos θ-4ρsin θ=-3, 即ρ=34sin θ-2cos θ.【注】 (1) 建立适当的极坐标系,设点P(ρ,θ)是曲线上的任意一点,直接列出极径ρ和极角θ之间的关系式,再进行整理、化简. (2) 在极坐标系下不能处理的问题,将它转化到直角坐标系下来处理.例3 解析:因为ρ=2k cos θ-2k sin θ,ρ2=2kρcos θ-2kρsin θ,所以圆C 的直角坐标为x 2+y 2-2kx +2ky =0,即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2. 故圆心C 的直角坐标为⎝⎛⎭⎫22k ,-22k .因为22ρsin θ-22ρcos θ=4,所以直线l 的直角坐标方程为x -y +42=0,即|k +4|=2+|k|,两边平方,得||k =2k +3,解得k =-1,实数k 的值为-1.【注】 主要考查把点的极坐标化为直角坐标的方法,直线和圆的位置关系,点到直线的距离公式的综合应用.自测反馈1. 解析:(1) 将x =ρ cos θ,y =ρ sin θ代入x +2y -3=0,得ρ cos θ+2ρsin θ-3=0,即ρ(cos θ+2sin θ)=3.(2) x 2+(y -2)2=9即为x 2+y 2-4y =5,将x =ρ cos θ,y =ρ sin θ代入得ρ2-4ρsin θ=5.2. 解析:(1) 因为θ=π4,所以x =ρ cos θ=22ρ,y =ρ sin θ=22ρ,故θ=π4化为直角坐标方程为y =x.(2) ρ cos ⎝⎛⎭⎫θ-π6=1可化为32ρ cos θ+12ρ sin θ=1,即3ρ cos θ+ρ sin θ-2=0. 又x =ρ cos θ,y =ρ sin θ,所以ρ cos ⎝⎛⎭⎫θ-π6=1化为直角坐标方程为3x +y -2=0. (3) ρ=5sin ⎝⎛⎭⎫θ-π6可化为ρ=532sin θ-52cos θ,两边同乘以ρ,得ρ2=532ρ sin θ-52ρ cos θ. 则ρ=5sin ⎝⎛⎭⎫θ-π6化为直角坐标方程为x 2+y 2+52x -532y =0. 3.22解析:因为ρ(cos θ+sin θ)=2,所以直线的直角坐标方程为x +y =2,故点(1,0)到直线的距离d =|1+0-2|2=22.4. 4 解析:由题意可知圆的圆心为(0,0),半径为3,又因为ρ(cos θ+3sin θ)=2,所以直线的直角坐标方程为x +3y -2=0,所以圆心到直线的距离为|0+0-2|1+(3)2=1,所以 d max =1+3=4.。
公开课一轮复习:极坐标与参数方程
即sin������34π =
1 sin π4-������
,所以 ρsin
π 4
-������
= 22,
即
ρ
sin
π 4
cos������-cos
π 4
sin������
= 22,
化简,得ρ(cos θ-sin θ)=1,经检验点
A(1,0)的坐标适合上述方程,所以
满足条件的直线的极坐标方程为
ρ(cos θ-sin θ)=1.
(2)由题意知,圆经过极点O,设OA为其一条直径,设点
M(ρ,θ)为圆上除点O,A以外的任意一点,如图,则|OA|=2r,连
接AM,则OM⊥MA.
在即Rρt=△2rOcoAsM32中π -���,���O,M即=ρO=-A2rcsoins∠θ,AOM,
经验证,点
O(0,0),A
2������,
3π 2
圆锥曲线统一的极坐标方程是
,
当0<e<1时,它表示椭圆;
当e=1时,它表示抛物线;
当e>1时,它表示双曲线.
曲线的直角坐标方程与极坐标方程互化 【例1】 将下列式子进行直角坐标方程与极 坐标方程之间的互化. (1)x2+y2=4;(2)ρ=3cos θ;(3)ρ=cos 分析:利用公式x=ρcos θ,y=ρsin θ,ρ2=x2+y2 进行直角坐标方程与极坐标方程的互化.
3 能在极坐标系中给出简单图形(如过极点的 直线、过极点或圆心在极点的圆)表示的极 坐标方程.
高考中只考一道题 选做题23题(10分)
基础知识
1.直角坐标与极坐标的互化
把直角坐标系的原点作为极点,x 轴
正半轴作为极轴,且在两坐标系中取
高考数学一轮总复习-第73讲-极坐标系及简单的极坐标方程课件-理-新人教A版
【点评】求解与极坐标有关的问题,主要有两种方法:一 是直接利用极坐标求解,求解时可与数形结合思想结合在一起 应用;二是转化为直角坐标后,用直角坐标求解,使用后一种 时应注意若结果要求是极坐标,还应将直角坐标化为极坐标.
需注意等价性,特别是两边同乘以r n时,方程增 了一个n重解r 0,要判断它是否是方程的解,若 不是要去掉该解.
2 由极坐标方程给出的问题,若不好处理,
就直角坐标化;由直角坐标方程给出的问题, 若用极坐标方法处理较为简便,就极坐标化.
3慎用tan y ,如点M的直角坐标为1,1,
x
化为极坐标时,由tan 1不能确定的取值,
4.常用结论. 极坐标系内点的对称关系:
1点P(, )关于极点的对称点为P(, ); 2点P(, )关于极轴所在直线的对称点为P(, ); 3点P(, )关于直线 的对称点为P(, );
2
4点P(, )关于直线 的对称点为P(, );
4
5在极坐标下,A(1,1),B(2,2 )间的距离
素材2
在极坐标系中定点 A(1,π2),点 B 在直线 l:ρcosθ+ρsinθ=0 上运动,当线段 AB 最短时,求点 B 的极坐标.
【解析】 方法 1:ρcosθ+ρsinθ=0, 所以 cosθ=-sinθ,tanθ=-1, 所以直线的极坐标方程化为 θ=34π(直线如图). 过 A 作直线垂直于 l,垂足为 B, 所以|OB|= 22. 所以 B 点的极坐标为( 22,34π).
与有序数对就可以一一对应了.
2.极坐标与直角坐标的互化注意事项.
第一轮复习讲义知识点四十极坐标与参数方程
y - y 0 =tan ( x - x 0 )
x x0 t cos y y 0 t sin
x r cos x a r cos 或 y r sin y b r sin x a cos y b sin
M0( x 0 , y 0 ),倾斜角为 和参数方
x2 + y2 = r 2
圆 ( x - a ) +( y - b ) = r
2 2
2
椭圆
x2 y2 1 ( a > b >0) a2 b2
直线参数方程中参数 t 的几何意义:过定点
程为:
x x0 t cos y y 0 t sin
极 坐 标 与 参 数 方 程
考 点 知 识 梳 理
一、平面直角坐标系中的伸缩变换
' x x( 0) 设点 P( x , y )是平面直角坐标系中的任意一点,在变换式 的作用下,点 ' y y ( 0)
P( x , y )对应到点 Pˊ( x ' , y ' ),称为平面直角坐标系中的坐标伸缩 y 2 y'
【解析】 :C
x' 3 x B: y' 2 y
x' 3x C: 1 y' y 2
x 3x' D: 1 y y' 2
二、极坐标
(一)定义:在平面内取一定点 O,由点 O 引出一条射线 Ox,并选定一个长度单位,
(二) 、参数方程与普通方程的互化
2
曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数 而从参数 .... 方程得到普通方程。如果知道变数 x 、 y 中的一个参数 t 的关系,例如 x = f (t ) ,把它代入
高三一轮复习资料极坐标知识点汇总
xy
= =
√ −1 + 2 cos
√ 1 + 2 sin θ
θ, (θ为参数)
被直线
y
=
0
截得的劣弧长为
()
√ 2π
(A) 2
(B) π
√ (C) 2 2π
(D) 4π
3.
已知曲线 C
:
yx
= =
√ 2 2
a+
t
√ 2 2
(
)
t为参数 , A(−1, 0), B(1, 0). 若曲线 C
sin φ
其中 φ ∈ [0, 2π),注意 φ 不是椭圆上的点和原点连线的夹角,是椭圆对应的圆的离心角.
4. 双曲线的参数方程:
xy
= =
a b
sec tan
θ θ
(θ为参数)
5. 抛物线 y2 = 2px 的参数方程可表示为:
yx
= =
2 pt2 (t为参数)
(2) 若 C1 与 C2 相交于点 A, C1 与 C3 相交于点 B,求 |AB| 的最大值.
第 3 页 (共 7 页)
2 参数方程
2.1 参数方程的概念
在平面直角坐标系中,若曲线
C
上的点
P(x,
y)
满足
xy
= =
f (t), g(t).
该方程叫曲线
C
的参数方程,变量
t
是
参变数,简称参数.(在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数
上存在点
P
满足
A# P» ·
B# P»
=
0, 则实数
a 的取值范围是
()
(A) −
高三第一轮复习极坐标和参数方程
极坐标和参数方程【提纲挈领】请阅读下面文字,并在关键词下面记着重号 主干知识归纳1.坐标系(1)平面直角坐标系中的伸缩变换:设点P(x ,y)是平面直角坐标系中的任意一点,在变换 φ:⎩⎨⎧x′=λ·x λ>0,y′=μ·yμ>0的作用下,点P(x ,y)对应到P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. (2)直角坐标和极坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y),极坐标是(ρ,θ),则x =ρcosθ,y =ρsinθ且222,,0y x y tan x xρθ=+=≠.这就是直角坐标和极坐标的互化公式.(3)曲线的极坐标方程的概念:在极坐标系中,如果平面曲线C 上任意一点的极坐标至少有一个满足方程f(ρ,θ)=0,并且坐标适合f(ρ,θ)=0的点都在曲线C 上,那么方程f(ρ,θ)=0就叫做曲线C 的极坐标方程. 2.参数方程(1)参数方程的概念:一般地,在平面直角坐标中,如果曲线C 上任一点M 的坐标x ,y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩反过来,对于t 的每个允许值,由函数式()()x f t y g t =⎧⎨=⎩所确定的点M(x ,y)都在曲线C 上,那么方程()()x f t y g t =⎧⎨=⎩叫做曲线C 的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的叫普通方程.(2)参数方程与普通方程的互化:参数方程化为普通方程的过程就是消参过程,常见方法有三种: ①代入法:利用解方程的技巧求出参数t ,然后代入消去参数; ②三角法:利用三角恒等式消去参数;③整体消元法:根据参数方程本身的结构特征,从整体上消去参数.化参数方程为普通方程F(x ,y)=0:在消参过程中注意变量x 、y 取值范围的一致性,必须根据参数的取值范围,确定f(t)和g(t)的值域即x 、y 的取值范围. (3)常见曲线的参数方程:①圆222x y r += 的参数方程为:⎩⎨⎧x =rcosθ,y =rsinθ(θ为参数);②圆()()22200x x y y r -+-=的参数方程为:00cos sin x x r y y r θθθ=+⎧⎨=+⎩(为参数) , ③椭圆22221x y a b+=的参数方程为:⎩⎨⎧x =acosθ,y =bsinθ(θ为参数);④抛物线2y =2px 的参数方程为:222x pt y pt⎧=⎨=⎩ (t 为参数);⑤过定点P(00,x y ),倾斜角为α的直线的参数方程为:00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数)方法规律总结1.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题,这二者互化的前提条件是:(1)极点与原点重合;(2)极轴与x 轴正方向重合;(3)取相同的单位长度.2.参数方程化为普通方程常见方法有三种:(1)代入法:利用解方程的技巧求出参数t ,然后代入消去参数.(2)三角法:利用三角恒等式消去参数.(3)整体消元法:根据参数方程本身的结构特征,从整体上消去.化参数方程为普通方程F(x ,y)=0时,在消参过程中注意变量x 、y 取值范围的一致性.第119课时 极坐标及参数方程【指点迷津】【类型一】极坐标与曲线的极坐标方程【例1】:在极坐标系中,已知直线过点(1,0),且其向上的方向与极轴的正方向所成的最小正角为π3,则直线的极坐标方程为________.【解析】:根据直线的位置特点,设出所求直线上点的坐标为(ρ,θ),结合三角形的知识建立ρ和θ之间的等式,即可求出该直线的极坐标方程.设直线上任意一点的坐标是(ρ,θ),由正弦定理得ρsin 2π3=1sin⎝⎛⎭⎫π3-θ,即ρsin ⎝⎛⎭⎫π3-θ=sin 2π3=32,∴所求直线的极坐标方程为ρsin ⎝⎛⎭⎫π3-θ=32. 答案:ρsin ⎝⎛⎭⎫π3-θ=32【例2】:在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.设MN 的中点为P ,则直线OP 的极坐标方程为( ). 【解析】:P 的直角坐标为⎝⎛⎭⎫1,33,则点P 的极坐标为⎝⎛⎭⎫233,π6,所以直线OP 的极坐标方程为θ=π6,ρ∈R.答案:θ=π6,ρ∈R.【类型二】直线和曲线的参数方程【例1】:已知圆C :⎩⎨⎧x =1+cosθ,y =sinθ(θ为参数)和直线l :⎩⎨⎧x =2+tcosα,y =3+tsinα(其中t 为参数,α为直线l 的倾斜角).当直线l 与圆C 有公共点时,求α的取值范围.【解析】:圆C 的普通方程为:(x -1)2+y2=1,将直线l 的参数方程代入圆C 的普通方程,得t2+2(cosα+3sinα)t+3=0,直线与圆有公共点,则这个关于t 的一元二次方程有解, 故Δ=4(cosα+3sinα)2-12≥0,即sin2⎝⎛⎭⎫α+π6≥34,即sin ⎝⎛⎭⎫α+π6≥32或sin ⎝⎛⎭⎫α+π6≤-32.又0≤α<π,故只能sin ⎝⎛⎭⎫α+π6≥32,即π3≤α+π6≤2π3,即π6≤α≤π2. 答案:π6≤α≤π2【例2】:已知P 为半圆C :)0,(sin cos πθθθθ≤≤⎩⎨⎧==为参数y x 上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为3π。
高考数学中的坐标系与几何知识点
高考数学中的坐标系与几何知识点坐标系与几何是高考数学中的重要组成部分,主要考查考生对坐标系的理解与应用,以及平面几何、空间几何的基本知识。
以下是该知识点的主要内容:一、坐标系1. 直角坐标系直角坐标系是由两条互相垂直的坐标轴(横轴和纵轴)所围成的平面区域。
在直角坐标系中,每个点都可以用一对有序实数(横坐标,纵坐标)来表示。
2. 参数方程参数方程是另一种描述曲线的方法,它将曲线上的点与一个参数(通常为角度或弧长)联系起来。
参数方程通常分为两种:极坐标方程和参数方程。
3. 极坐标系极坐标系是由原点、半径和角度三个参数来描述一个点的位置。
在极坐标系中,一个点的坐标可以表示为(r,θ),其中r是点与原点的距离,θ是点与正半轴的夹角。
4. 空间坐标系空间坐标系是由三个互相垂直的坐标轴(x轴、y轴、z轴)所围成的空间区域。
在空间坐标系中,每个点都可以用三个有序实数(x坐标,y坐标,z坐标)来表示。
二、平面几何1. 点、线、面点、线、面是平面几何最基本的概念。
点是没有长度、宽度、高度的实体;线是由无数个点连成的,有方向但没有宽度的实体;面是由无数个线连成的,有长度和宽度的实体。
2. 直线方程直线方程是描述直线位置关系的一组式子。
在平面直角坐标系中,直线方程通常分为两种:点斜式和一般式。
3. 圆圆是由平面上所有与给定点(圆心)距离相等的点组成的。
圆的标准方程为(x−a)2+(y−b)2=r2,其中(a,b)是圆心的坐标,r是圆的半径。
4. 三角形三角形是由三个顶点、三条边和三个内角组成的。
三角形的性质包括:两边之和大于第三边,两边之差小于第三边;三角形的内角和为180度。
三、空间几何1. 点、线、面与平面几何类似,空间几何中的点、线、面也有类似的概念。
在空间几何中,点是没有长度、宽度、高度的实体;线是由无数个点连成的,有方向但没有宽度的实体;面是由无数个线连成的,有长度和宽度的实体。
2. 空间直线方程空间直线方程是描述空间直线位置关系的一组式子。