实验11 用MATLAB设计FIR数字滤波器
matlabfir滤波器设计
matlabfir滤波器设计MATLAB是一个高级编程语言和交互式环境,被广泛应用于各种科学和工程问题的数值分析、数据可视化和编程开发等领域。
FIR滤波器是数字信号处理中经常使用的一种滤波器,它是基于有限长冲激响应的滤波器。
在MATLAB平台上,我们可以使用fir1函数来设计FIR滤波器。
一、FIR滤波器设计基础1.1 什么是FIR滤波器FIR滤波器是有限长冲激响应滤波器,由于其具有线性相位特性和可控阶数等优点,在数字信号处理中得到了广泛的应用。
一般来说,FIR滤波器的频率响应特性由滤波器的系数函数确定。
FIR滤波器的设计一般采用窗函数法、最小二乘法、频率抽取法等方法。
窗函数法是最常见的一种方法,大部分情况下选择的是矩形窗、汉宁窗、布莱克曼窗等。
1.3 fir1函数介绍fir1函数是MATLAB中用于FIR滤波器设计的函数,用法为:h = fir1(N, Wn, type)N为滤波器的阶数,Wn是用于指定滤波器截止频率的参数,type指定滤波器类型,可以是低通、高通、带通、带阻等。
二、使用fir1函数设计FIR滤波器2.1 设计要求采样率为300Hz;滤波器阶数为50;截止频率为50Hz。
2.2 实现步骤(1)计算规范化截止频率规范化截止频率是指在数字滤波器设计中使用的无单位量,通常范围为0到1。
在本例中,我们需要将50Hz的截止频率转化为规范化截止频率。
Wn = 2*50/300 = 1/3根据计算出的规范化截止频率和滤波器阶数,我们可以使用fir1函数来进行滤波器设计。
此处滤波器的阶数为50,规范化截止频率为1/3,类型为低通。
(3)绘制滤波器的幅频响应图为了验证设计的低通FIR滤波器是否符合要求,我们需要绘制其幅频响应图。
freqz(h,1,1024,300)经过上述步骤后,我们就得到了一张低通FIR滤波器的幅频响应图,如下图所示:图1.低通FIR滤波器的幅频响应图三、总结通过上述例子,我们可以看出在MATLAB中与fir1函数可以非常方便的进行FIR滤波器的设计。
使用MATLAB设计FIR滤波器
使⽤MATLAB设计FIR滤波器1. 采⽤fir1函数设计,fir1函数可以设计低通、带通、⾼通、带阻等多种类型的具有严格线性相位特性的FIR滤波器。
语法形式:b = fir1(n, wn)b = fir1(n, wn, ‘ftype’)b = fir1(n, wn, ‘ftype’, window)b = fir1(n, wn, ‘ftype’, window, ‘noscale’)参数的意义及作⽤:b:返回的FIR滤波器单位脉冲响应,脉冲响应为偶对称,长度为n+1;n:滤波器的介数;wn:滤波器的截⽌频率,取值范围为0<wn<1,1对应信号采样频率⼀半。
如果wn是单个数值,且ftype参数为low,则表⽰设计截⽌频率为wn的低通滤波器,如果ftype参数为high,则表⽰设计截⽌频率为wn的⾼通滤波器;如果wn是有两个数组成的向量[wn1wn2],ftype为stop,则表⽰设计带阻滤波器,ftype为bandpass,则表⽰设计带通滤波器;如果wn是由多个数组成的向量,则根据ftype的值设计多个通带或阻带范围的滤波器,ftype为DC-1,表⽰设计的第⼀个频带为通带,ftype为DC-0,表⽰设计的第⼀个频带为阻带;window:指定使⽤的窗函数,默认为海明窗;noscale:指定是否归⼀化滤波器的幅度。
⽰例:N=41; %滤波器长度fs=2000; %采样频率%各种滤波器的特征频率fc_lpf=200;fc_hpf=200;fp_bandpass=[200 400];fc_stop=[200 400];%以采样频率的⼀半,对频率进⾏归⼀化处理wn_lpf=fc_lpf*2/fs;wn_hpf=fc_hpf*2/fs;wn_bandpass=fp_bandpass*2/fs;wn_stop=fc_stop*2/fs;%采⽤fir1函数设计FIR滤波器b_lpf=fir1(N-1,wn_lpf);b_hpf=fir1(N-1,wn_hpf,'high');b_bandpass=fir1(N-1,wn_bandpass,'bandpass');b_stop=fir1(N-1,wn_stop,'stop');%求滤波器的幅频响应m_lpf=20*log(abs(fft(b_lpf)))/log(10);m_hpf=20*log(abs(fft(b_hpf)))/log(10);m_bandpass=20*log(abs(fft(b_bandpass)))/log(10);m_stop=20*log(abs(fft(b_stop)))/log(10);%设置幅频响应的横坐标单位为Hzx_f=0:(fs/length(m_lpf)):fs/2;%绘制单位脉冲响应%绘制单位脉冲响应subplot(421);stem(b_lpf);xlabel('n');ylabel('h(n)');subplot(423);stem(b_hpf);xlabel('n');ylabel('h(n)');subplot(425);stem(b_bandpass);xlabel('n');ylabel('h(n)');subplot(427);stem(b_stop);xlabel('n');ylabel('h(n)');%绘制幅频响应曲线subplot(422);plot(x_f,m_lpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(424);plot(x_f,m_hpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(426);plot(x_f,m_bandpass(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(428);plot(x_f,m_stop(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);2. 采⽤fir2函数设计,函数算法是:⾸先根据要求的幅频响应向量形式进⾏插值,然后进⾏傅⾥叶变换得到理想滤波器的单位脉冲响应,最后利⽤窗函数对理想滤波器的单位脉冲响应激进型截断处理,由此得到FIR滤波器系数。
基于MATLAB设计FIR滤波器
基于MATLAB设计FIR滤波器FIR(Finite Impulse Response)滤波器是一种数字滤波器,它具有有限的冲激响应长度。
基于MATLAB设计FIR滤波器可以使用signal工具箱中的fir1函数。
fir1函数的语法如下:b = fir1(N, Wn, window)其中,N是滤波器的阶数,Wn是截止频率,window是窗函数。
要设计一个FIR低通滤波器,可以按照以下步骤进行:步骤1:确定滤波器的阶数。
阶数决定了滤波器的截止频率的陡峭程度。
一般情况下,阶数越高,滤波器的陡峭度越高,但计算复杂度也会增加。
步骤2:确定滤波器的截止频率。
截止频率是指在滤波器中将信号的频率限制在一定范围内的频率。
根据应用的需求,可以选择适当的截止频率。
步骤3:选择窗函数。
窗函数是为了在时域上窗口函数中心增加频率衰减因子而使用的函数。
常用的窗函数有Hamming、Hanning等。
窗函数可以用来控制滤波器的幅度响应特性,使得它更平滑。
步骤4:使用fir1函数设计滤波器。
根据以上步骤确定滤波器的阶数、截止频率和窗函数,可以使用fir1函数设计FIR滤波器。
具体代码如下:N=50;%设定阶数Wn=0.5;%设定截止频率window = hanning(N + 1); % 使用Hanning窗函数步骤5:使用filter函数对信号进行滤波。
设计好FIR滤波器后,可以使用filter函数对信号进行滤波。
具体代码如下:filtered_signal = filter(b, 1, input_signal);其中,input_signal是输入信号,filtered_signal是滤波后的信号。
以上,便是基于MATLAB设计FIR滤波器的简要步骤和代码示例。
根据具体需求和信号特性,可以进行相应的调整和优化。
用Matlab设计FIR滤波器的三种方法
用MATLAB信号处理工具箱进行FIR滤波器设计的三种方法摘要介绍了利用MATLAB信号处理工具箱进行FIR滤波器设计的三种方法:程序设计法、FDATool设计法和SPTool设计法,给出了详细的设计步骤,并将设计的滤波器应用到一个混和正弦波信号,以验证滤波器的性能。
关键词 MATLAB,数字滤波器,有限冲激响应,窗函数,仿真1 前言数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。
根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。
与IIR滤波器相比,FIR的实现是非递归的,总是稳定的;更重要的是,FIR滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。
因此,它在高保真的信号处理,如数字音频、图像处理、数据传输、生物医学等领域得到广泛应用。
2 FIR滤波器的窗函数设计法 FIR滤波器的设计方法有许多种,如窗函数设计法、频率采样设计法和最优化设计法等。
窗函数设计法的基本原理是用一定宽度窗函数截取无限脉冲响应序列获得有限长的脉冲响应序列,主要设计步骤为:(1) 通过傅里叶逆变换获得理想滤波器的单位脉冲响应hd(n)。
(2) 由性能指标确定窗函数W(n)和窗口长度N。
(3) 求得实际滤波器的单位脉冲响应h(n), h(n)即为所设计FIR滤波器系数向量b(n)。
(4) 检验滤波器性能。
本文将针对一个含有5Hz、15Hz和30Hz的混和正弦波信号,设计一个FIR带通滤波器,给出利用MATLAB实现的三种方法:程序设计法、 FDATool设计法和SPTool设计法。
参数要求:采样频率fs=100Hz,通带下限截止频率fc1=10 Hz,通带上限截止频率fc2=20 Hz,过渡带宽6 Hz,通阻带波动0.01,采用凯塞窗设计。
2 程序设计法MATLAB信号处理工具箱提供了各种窗函数、滤波器设计函数和滤波器实现函数。
FIR滤波器的MATLAB设计与实现
FIR滤波器的MATLAB设计与实现FIR滤波器(Finite Impulse Response Filter)是一种数字滤波器,其特点是其响应仅由有限长度的序列决定。
在MATLAB中,我们可以使用信号处理工具箱中的函数来设计和实现FIR滤波器。
首先,需要明确FIR滤波器的设计目标,包括滤波器类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的增益等。
这些目标将决定滤波器的系数及其顺序。
在MATLAB中,我们可以使用`fir1`函数来设计FIR滤波器。
该函数的使用方式如下:```matlabh = fir1(N, Wn, type);```其中,`N`是滤波器长度,`Wn`是通带边缘频率(0到0.5之间),`type`是滤波器的类型('low'低通、'high'高通、'bandpass'带通、'stop'带阻)。
该函数会返回一个长度为`N+1`的滤波器系数向量`h`。
例如,如果要设计一个采样频率为10kHz的低通滤波器,通带截止频率为2kHz,阻带频率为3kHz,可以使用以下代码:```matlabfc = 2000; % 通带截止频率h = fir1(50, fc/(fs/2), 'low');```上述代码中,`50`表示滤波器的长度。
注意,滤波器的长度越大,滤波器的频率响应越陡峭,但计算成本也更高。
在设计完成后,可以使用`freqz`函数来分析滤波器的频率响应。
例如,可以绘制滤波器的幅度响应和相位响应曲线:```matlabfreqz(h);```除了使用`fir1`函数外,MATLAB还提供了其他函数来设计FIR滤波器,如`fir2`、`firpm`、`firls`等,具体使用方式可以参考MATLAB的文档。
在实际应用中,我们可以将FIR滤波器应用于音频处理、图像处理、信号降噪等方面。
例如,可以使用FIR滤波器对音频信号进行去噪处理,或者对图像进行锐化处理等。
基于matlab的FIR滤波器设计(处理加噪音频-窗函数法)
基于matlab的FIR滤波器设计(处理加噪音频,窗函数法) 一、录制音频二、利用窗函数法设计的低通滤波器处理加有噪声的音频波形f3=7000;%所加噪声正弦函数的频率[Y,fs,bits]=wavread('D:\yinpin\nihao01.wav');%利用wavread产生音频的函数及采样频率L=length(Y);t=0:1/fs:(L-1)/fs;%定义时间的范围及步长y=0.005*sin(2*pi*f3*t); n1=floor(L/2);%所加噪声f1=(0:n1)*fs/L;Y=Y(:,1);sound(Y,fs);%输出加噪前音频Y1=y+Y';%给音频加噪声FY1=abs(fft(Y1,L));FY=abs(fft(Y,L));sound(Y1,fs);%输出加噪后的音频figure(1)subplot(211)plot(t(1:1000),Y(1:1000)); grid on;%加噪前音频的时域图xlabel('时间(t)');ylabel('幅度(Y)');title('加噪前录音波形的时域图');subplot(212)plot(f1,FY(1:n1+1)); grid on;%加噪前音频的频域图xlabel('频率(f)');ylabel('幅度(FY)');title('加噪前录音波形的频域图');figure(2)subplot(211)plot(t(1:1000),Y1(1:1000)); grid on;%加噪后音频的时域图xlabel('时间(t)');ylabel('幅度(Y1)');title('加噪声后录音波形的时域图');subplot(212)plot(f1,FY1(1:n1+1)); grid on;%加噪后音频的频域图xlabel('频率(f)');ylabel('幅度(FY1)');title('加噪声后录音波形的频域图');m=0.03; M=round(8/m);N=M-1;%定义滤波器的阶数b=fir1(N,0.6);figure(3)[h,f]=freqz(b,1,512);%滤波器的幅频特性图plot(f*fs/(2*pi),20*log10(abs(h)))%参数分别是频率与幅值xlabel('频率/赫兹');ylabel('增益/分贝');title('滤波器的增益响应');figure(4)sf=filter(b,1,Y1);%使用filter函数对信号进行滤波Fsf=abs(fft(sf,L));subplot(211)plot(t(1:1000),sf(1:1000)); grid on;%滤波后音频的时域图xlabel('时间(t)');ylabel('幅度(sf)');title('滤波后录音波形的时域图');axis([0.01 0.05 -0.002 0.002])subplot(212)plot(f1,Fsf(1:n1+1)); grid on;%滤波后音频的频域图xlabel('频率(f)');ylabel('幅度(Fsf)');title('滤波后录音波形的频域图');sound(sf,fs);三、运行结果加噪前录音波形的时域图和频域图加噪后录音波形的时域图和频域图窗函数法设计低通滤波器的增益响应滤波后录音波形的时域图和频域图。
如何利用Matlab技术进行数字滤波
如何利用Matlab技术进行数字滤波数字滤波是一种广泛应用于信号处理和图像处理中的技术。
而Matlab作为一种强大的数学软件工具,在数字滤波方面也有很高的应用价值。
本文将介绍如何利用Matlab技术进行数字滤波,从概念到具体实现,帮助读者更好地掌握这一技术。
一、数字滤波的基本概念数字滤波是一种对数字信号进行处理的技术,通过改变信号的频率特性或时域特性,达到去除或强调信号中某些成分的目的。
数字滤波可以分为无限长脉冲响应(IIR)滤波器和有限长脉冲响应(FIR)滤波器两种。
二、Matlab中数字滤波的基本函数在Matlab中,数字滤波可以使用一些基本函数实现。
其中最常用的是fir1和filter函数。
fir1函数用于设计FIR滤波器的滤波器系数,而filter函数用于对信号进行滤波处理。
三、设计FIR滤波器FIR滤波器是一种非递归滤波器,其系统函数是有限长的。
在Matlab中,可以使用fir1函数对FIR滤波器的系数进行设计。
fir1函数的输入参数包括滤波器阶数、截止频率以及窗函数类型等。
通过调节这些参数,可以设计出不同的FIR滤波器。
四、对信号进行滤波处理在得到FIR滤波器的系数后,可以使用filter函数对信号进行滤波处理。
filter函数的输入参数包括滤波器系数和待滤波的信号等。
通过调用filter函数,可以对信号进行低通滤波、高通滤波或带通滤波等操作。
五、实例演示为了更好地理解如何利用Matlab进行数字滤波,下面将通过一个实例对其进行演示。
假设有一个包含高频噪声的信号,我们希望去除这些噪声,得到清晰的信号。
首先,我们使用fir1函数设计一个低通滤波器。
假设我们希望截止频率为1kHz,滤波器阶数为100。
通过调用fir1函数,得到该滤波器的系数。
接下来,我们生成一个包含高频噪声的信号,并加上一些正弦波成分。
我们将这个信号输入到filter函数中,利用之前得到的滤波器系数进行滤波处理。
最终,我们可以得到去除了噪声的清晰信号。
matlab频率采样法设计fir滤波器
matlab频率采样法设计fir滤波器频率采样法是一种常用的数字滤波器设计方法,可以用于设计FIR (有限脉冲响应)滤波器。
本文将介绍频率采样法的基本原理、设计步骤和实例应用。
我们来了解一下频率采样法的基本原理。
频率采样法的思想是将模拟滤波器的频率响应与数字滤波器的频率响应进行匹配。
具体地说,我们通过对模拟滤波器的单位样值响应进行频率采样,得到离散的样值序列。
然后,通过对这些样值进行离散傅里叶变换(DFT),得到数字滤波器的频率响应。
最后,根据所需的滤波器规格和设计要求,对数字滤波器的频率响应进行优化,得到滤波器的系数。
接下来,我们来介绍频率采样法的设计步骤。
首先,确定所需的滤波器规格,包括截止频率、通带衰减和阻带衰减等。
然后,选择合适的采样频率,通常要大于等于滤波器的最高频率分量的两倍。
接下来,根据所需的滤波器类型(如低通、高通、带通或带阻),选择相应的模拟滤波器原型。
然后,通过对模拟滤波器的单位样值响应进行频率采样,得到离散的样值序列。
再然后,对这些样值进行DFT,得到数字滤波器的频率响应。
最后,根据设计要求和优化准则,对数字滤波器的频率响应进行优化,得到滤波器的系数。
下面,我们以一个具体的实例来说明频率采样法的应用。
假设我们需要设计一个低通滤波器,截止频率为1kHz,通带衰减为0.5dB,阻带衰减为40dB。
我们选择采样频率为10kHz,并选择巴特沃斯滤波器作为模拟滤波器原型。
首先,我们根据通带衰减和阻带衰减的要求,确定模拟滤波器的阶数和截止频率。
然后,通过对模拟滤波器的单位样值响应进行频率采样,得到离散的样值序列。
接下来,对这些样值进行DFT,得到数字滤波器的频率响应。
最后,根据设计要求和优化准则,对数字滤波器的频率响应进行优化,得到滤波器的系数。
通过这些系数,我们可以实现一个满足要求的低通滤波器。
总结一下,频率采样法是一种常用的数字滤波器设计方法,可以用于设计各种类型的FIR滤波器。
通过对模拟滤波器的单位样值响应进行频率采样,得到离散的样值序列,然后通过DFT得到数字滤波器的频率响应,最后根据设计要求和优化准则对频率响应进行优化,得到滤波器的系数。
fir数字滤波器设计实验报告
fir数字滤波器设计实验报告FIR数字滤波器设计实验报告概述数字滤波器是数字信号处理中的重要组成部分,广泛应用于音频、图像、视频等领域。
其中,FIR数字滤波器是一种常见的数字滤波器,具有线性相位、稳定性好、易于实现等优点。
本实验旨在设计一种基于FIR数字滤波器的信号处理系统,实现对信号的滤波和降噪。
实验步骤1. 信号采集需要采集待处理的信号。
本实验采用的是模拟信号,通过采集卡将其转换为数字信号,存储在计算机中。
2. 滤波器设计接下来,需要设计FIR数字滤波器。
为了实现对信号的降噪,我们选择了低通滤波器。
在设计滤波器时,需要确定滤波器的阶数、截止频率等参数。
本实验中,我们选择了8阶低通滤波器,截止频率为500Hz。
3. 滤波器实现设计好滤波器后,需要将其实现。
在本实验中,我们采用MATLAB 软件实现FIR数字滤波器。
具体实现过程如下:定义滤波器的系数。
根据滤波器设计的公式,计算出系数值。
利用MATLAB中的filter函数对信号进行滤波。
将采集到的信号作为输入,滤波器系数作为参数,调用filter函数进行滤波处理。
处理后的信号即为滤波后的信号。
4. 结果分析需要对处理后的信号进行分析。
我们可以通过MATLAB绘制出处理前后的信号波形图、频谱图,比较它们的差异,以评估滤波器的效果。
结果显示,经过FIR数字滤波器处理后,信号的噪声得到了有效的降低,滤波效果较好。
同时,频谱图也显示出了滤波器的低通特性,截止频率处信号衰减明显。
结论本实验成功设计并实现了基于FIR数字滤波器的信号处理系统。
通过采集、滤波、分析等步骤,我们实现了对模拟信号的降噪处理。
同时,本实验还验证了FIR数字滤波器的优点,包括线性相位、稳定性好等特点。
在实际应用中,FIR数字滤波器具有广泛的应用前景。
基于MATLAB与CCS的FIR滤波器的C语言实现
基于MATLAB与CCS的FIR滤波器的C语言实现在开始之前,我们需要了解FIR滤波器的工作原理。
FIR滤波器是通过使用一组固定的权重系数来完成滤波操作的。
这些权重系数称为滤波器的冲击响应或脉冲响应。
当输入信号通过FIR滤波器时,每个输入样本都会与滤波器的系数进行加权,并求和得到输出样本。
因此,滤波器的输出是输入信号和滤波器冲击响应的加权和。
首先,我们需要在MATLAB中设计一个FIR滤波器。
MATLAB提供了一些用于设计FIR滤波器的函数,如fir1和fir2、我们可以使用这些函数来生成滤波器的系数,并将其导出为C语言代码。
假设我们要设计一个低通FIR滤波器,满足以下条件:-采样率为Fs=8000Hz-截止频率为Fc=1000Hz-通带最大衰减为0.5dB-阻带最小衰减为50dB在MATLAB中,我们可以使用fir1函数来设计滤波器,具体代码如下:```MATLABFs=8000;%采样率Fc=1000;%截止频率N=50;%滤波器阶数%计算归一化的截止频率Wn=Fc/(Fs/2);% 使用fir1函数设计滤波器h = fir1(N, Wn, 'low', kaiser(N + 1, 5.65));%导出滤波器系数为C语言代码codegen -config:lib FIRFilter -args {coder.Constant(h)} -report```上述代码中,我们通过fir1函数设计了一个50阶的低通滤波器,该滤波器的截止频率为1000Hz,并且使用了kaiser窗函数进行窗口设计。
然后,我们使用MATLAB的代码生成工具将滤波器系数导出为C语言代码。
导出的C语言代码可以被CCS进行编译和运行。
将导出的C语言代码复制到CCS的工程目录中,并添加相应的文件引用。
然后,我们可以在CCS中编写FIR滤波器的C语言实现代码。
下面是一个简单的C语言实现示例:```C#define FILTER_LENGTH 51 // 滤波器的阶数//定义滤波器系数数组float h[FILTER_LENGTH] =//填充滤波器系数};//定义滤波器的状态变量数组float delayLine[FILTER_LENGTH] = {0};//定义FIR滤波器函数float firFilter(float x)float y = 0;//将输入样本加入延迟线中for (int i = FILTER_LENGTH - 1; i > 0; --i)delayLine[i] = delayLine[i - 1];}delayLine[0] = x;//计算加权和for (int i = 0; i < FILTER_LENGTH; ++i)y += h[i] * delayLine[i];}return y;int maifloat inputSignal = ; // 输入信号float outputSignal = firFilter(inputSignal); // 使用滤波器处理输入信号//处理输出信号```在上述代码中,我们首先定义了滤波器的系数数组h和状态变量数组delayLine。
matlabfir滤波器设计
matlabfir滤波器设计由于滤波器设计的复杂性,在matlab中完成滤波器设计过程可以减少大量的计算工作,下面将介绍在matlab中的FIR滤波器的设计。
一、matlab入口1. matlab工作环境:(1)安装matlab软件,在matlab中运行“dspstart”,启动数字信号处理的工作环境,包括了一些常用处理的函数和示例程序,在这种环境下可以进行滤波器设计的研究。
(2)matlab可以完成离散时间信号处理,因此,滤波器的设计需要在离散时间信号领域完成,即用离散时间信号的算法来完成滤波器设计。
2. matlab工具箱:(1)安装滤波器设计工具箱,这是一个专门用于滤波器设计的matlab库,包括了四种基本滤波器:抗谐波滤波器(notched filter),低通滤波器(low pass filter),带阻滤波器(band stop filter),以及带通滤波器(band pass filter)。
(2)安装滤波器设计高级工具箱,这是一个高级的matlab 库,可以支持滤波器的更复杂的设计,包括滤波器的参数优化,非线性滤波器,以及多种滤波器结构的数字滤波器。
3. matlab辅助性的工具:(1)安装滤波器设计助手,这是一个滤波器设计的可视化工具,可以帮助滤波器的初学者快速上手,了解滤波器设计的基本思想,并运行滤波器的例子及示例程序。
(2)安装滤波器设计指南,这是一个matlab脚本文件,可以帮助滤波器的更高级的使用者了解滤波器设计的原理,以及各种滤波器的不同之处,可以大大提高滤波器的设计效率。
二、 matlab 滤波器设计思路1. FIR滤波器的设计:(1)首先要明确滤波器的工作频率范围,记录滤波器的输入信号精度以及输出精度。
(2)设计滤波器的类型,选择适用于该频率范围内的滤波器类型,如低通滤波器,带阻滤波器等。
(3)定义滤波器的功率频谱,根据滤波器的类型,定义滤波器的功率频谱,包括最大值,超调因数以及滤波器的边带幅度。
FIR数字滤波器的MATLAB详细程序
%FIR-DF hd=ideal_lp(wc,M);Fs=32000;a=2*pi*6500;b=2*pi*7000;c=2*pi*9000;n1=0:4096;t=n1/Fs;xa=cos(a*t)+cos(b*t)+cos(c*t);%+cos(d*t);figure(1);y=fft(xa);plot(abs(y));title('fft(xa)变换');grid;Rp=0.25;As=52;%ws=pi*6600*2/Fs;wp=pi*6700*2/Fs;%gao tong%ws=pi*6700*2/Fs;wp=pi*6600*2/Fs;%di tongws=[pi*6600*2/Fs,pi*7400*2/Fs];wp=[pi*6800*2/Fs,pi*7200*2/Fs];%dai tong%ws=[pi*6600*2/Fs,pi*7400*2/Fs,pi*8600*2/Fs,pi*9400*2/Fs];wp=[pi*6800*2/Fs,pi*7200*2/Fs, pi*8800*2/Fs,pi*9200*2/Fs];%dai tong%ws=[pi*6800*2/Fs,pi*7200*2/Fs];wp=[pi*6600*2/Fs,pi*7400*2/Fs];%dai zuDB=abs(ws(1)-wp(1));%DB=abs(ws-wp);M0=ceil((As-8)/(2.285*DB));%阶数M=M0+mod(M0,2);%确保阶数为偶数N=M+1;%长度为奇数%0.112*(As-8.7);As>50;%0.5842*(As-21)^0.4+0.07886*(As-21);21<=As<=50;%0;As<21;if As>50beta=0.112*(As-8.7);elseif21<=As&&As<=50beta=0.5842*(As-21)^0.4+0.07886*(As-21);elsebeta=0;endwn=kaiser(N,beta);wc=(wp+ws)/2/pi;%fir1使用wc归一化%hn=fir1(M,wc,'high',wn);%gao tonghn=fir1(M,wc,wn);%dai tong,di tong%hn=fir1(M,wc,'stop',wn);%dai zufigure(2);plot(abs(wn));title('窗函数');grid;figure(3);[hh,w]=freqz(hn,1);freqzplot(hh,w,'linear');title('幅频/相频特性');%Hn=fft(hn);%plot(abs(Hn));title('FFT(Hn)');%freqz(hn,1);title('幅频特性');y=filter(hn,1,xa);figure(4);y1=fft(y);plot(abs(y1));title('高通滤波器滤波之后');grid;%=========验证=====================%验证%w_kai=wn';%hd=hn;%h=hd.*w_kai;%freqz_mN1=1000;[H,W]=freqz(hn,1,N1,'whole');%[H,W]=freqz(B,A,N1,'whole');delta_w=2*pi/N1;db=20*log10(abs(H)/max(abs(H))+eps);%通带波纹db数%rp1=-(min(db(wp/delta_w+1:1:501)))%gao tong yan zheng%as1=-round(max(db(1:1:ws/delta_w+1)))%rp1=-(min(db(1:1:wp/delta_w+1)))%di tong yan zheng%as1=-round(max(db(ws/delta_w+1:1:501)))rp1=-(min(db(wp(1)/delta_w+1:1:wp(2)/delta_w+1)))%dai tong yan zhengas1=round(max(-max(db(1:1:ws(1)/delta_w+1)),-max(db(ws(2)/delta_w+1:1:501))))%rp1=-min(min(db(1:1:wp(1)/delta_w+1)),min(db(wp(2)/delta_w+1:1: 501)))%dai zu yan zheng%as1=-round(max(db(ws(1)/delta_w+1:1:ws(2)/delta_w+1)))%N1=4096;%Hw=fft(h,N1);%wk=2*pi*[0:N1-1]/N1;%hgw=Hw.*exp(j*wk*N/2);%rp=max(20*log10(abs(hgw)))%%hgmin=min(real(hgw));%rs=20*log10(abs(hgmin))%w_kai=wn';%hd=hn;%h=hd.*w_kai;%d_w=2*pi/1000;%[db,w0]=freqz(h,1);%rp1=-(min(db(wp/d_w+1:1:501))) %as1=-round(max(db(1:1:ws/d_w+1)))。
matlab窗函数法设计数字滤波器
matlab窗函数法设计数字滤波器窗函数法是一种常用的数字滤波器设计方法,它通过选择合适的窗函数来实现滤波器的频域响应。
在数字滤波器设计中,需要确定滤波器的截止频率和滤波器响应的形状。
一种常用的方法是设计滤波器的频率响应为矩形形状,然后通过应用窗函数来实现所需的频率响应。
窗函数是一种在有限时间内将信号置零的函数,它在频域上对应于信号的频谱的卷积操作。
首先,我们需要确定所需滤波器的频率响应。
通常情况下,我们会选择一种频率响应的形状,例如低通、高通、带通或带阻。
然后可以通过将这些形状变换到规范化的频率范围来设计出具体的频率响应。
接下来,选择合适的窗函数。
常用的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
每种窗函数具有不同的性质,例如,矩形窗将信号置零,并且光谱泄漏较大,而汉宁窗和汉明窗具有较小的主瓣宽度和旁瓣衰减。
然后,通过将所选择的窗函数应用于设定的频率响应,可以得到滤波器的时域响应。
通过计算窗函数和所需频率响应的卷积,可以获得数字滤波器的单位样本响应。
其中,卷积可以通过使用快速傅里叶变换(FFT)来高效地计算。
最后,根据所需的滤波器长度,可以对单位样本响应进行截断,从而得到最终的数字滤波器。
通常情况下,滤波器的长度越长,其频域响应和时域响应的性能都越好,但也会导致计算复杂度的增加。
使用MATLAB进行数字滤波器设计是非常方便的。
MATLAB提供了一系列的函数用于滤波器设计,例如fir1、fir2、firpm等。
这些函数可以直接输入截止频率和滤波器类型,然后使用窗函数法来计算滤波器的系数。
在MATLAB中,设计数字滤波器的一般流程如下:1.确定所需滤波器的频率响应,例如低通、高通、带通或带阻。
2.选择合适的窗函数,例如矩形窗、汉宁窗、汉明窗或布莱克曼窗。
3.计算窗函数和所需频率响应的卷积,得到单位样本响应。
4.根据所需的滤波器长度截断单位样本响应,得到最终的数字滤波器。
MATLAB提供了丰富的函数和工具箱,用于数字滤波器设计和滤波器性能分析。
matlab滤波器设计命令
matlab滤波器设计命令Matlab滤波器设计命令滤波器是数字信号处理中常用的工具,用于去除信号中的噪声、频率干扰或其他不需要的成分。
Matlab提供了一系列有用的滤波器设计命令,使用户能够轻松设计并应用各种类型的滤波器。
在本文中,我们将详细介绍Matlab中常用的滤波器设计命令,包括滤波器设计函数、滤波器类型和设计过程。
I. Matlab中常用的滤波器设计函数在Matlab中,有几种函数可用于设计滤波器,其中最常用的函数是`designfilt`函数和`fir1`函数。
1. designfilt函数`designfilt`函数是Matlab中最灵活和功能强大的滤波器设计函数之一,可用于设计各种类型的IIR和FIR滤波器。
它的基本语法如下:`filt = designfilt(FilterType, 'PropertyName', PropertyValue, ...)`其中,`FilterType`代表滤波器类型,包括低通滤波器(Lowpass)、高通滤波器(Highpass)、带通滤波器(Bandpass)、带阻滤波器(Bandstop)等。
`PropertyName`和`PropertyValue`是可选的参数,用于设置滤波器的各种属性,如阶数(Order)、截止频率(CutoffFrequency)、通带和阻带的最大衰减(MaximumAttenuation)等。
下面是一个使用`designfilt`函数设计低通滤波器的例子:Fs = 1000; 采样频率Fpass = 20; 通带截止频率Fstop = 30; 阻带截止频率designfilt('lowpassiir', 'FilterOrder', 4, 'PassbandFrequency', Fpass, 'StopbandFrequency', Fstop, 'SampleRate', Fs)该命令将设计一个4阶的低通IIR滤波器,其通带截止频率为20Hz,阻带截止频率为30Hz,采样频率为1000Hz。
用MATLAB设计FIR数字滤波器
实验八 用MATLAB 设计FIR 数字滤波器(二)一、实验目旳:1、加深对窗函数法设计FIR 数字滤波器旳基本原理旳理解。
2、学习用MATLAB 语言旳窗函数法编写设计FIR 数字滤波器旳程序。
3、理解MATLAB 语言有关窗函数法设计FIR 数字滤波器旳常用函数用法。
二、实验原理:1、用窗函数法设计FIR 数字滤波器 FIR 数字滤波器旳系统函数为N-1-n n=0H(z)=h(n)z ∑这个公式也可以当作是离散LSI 系统旳系统函数M-m -1-2-mmm=0012m N -1-2-k-k12k k k=1bz b +b z +b z ++b z Y(z)b(z)H(z)====X(z)a(z)1+a z +a z ++a z1+a z ∑∑ 分母a 0为1,其他a k 全都为0时旳一种特例。
由于极点所有集中在零点,稳定和线性相位特性是FIR 滤波器旳突出长处,因此在实际中广泛使用。
FIR 滤波器旳设计任务是选择有限长度旳h(n),使传播函数H(e j ω)满足技术规定。
重要设计措施有窗函数法、频率采样法和切比雪夫等波纹逼近法等。
本实验重要简介窗函数法。
用窗函数法设计FIR 数字滤波器旳基本环节如下:(1)根据过渡带和阻带衰减指标选择窗函数旳类型,估算滤波器旳阶数N 。
(2)由数字滤波器旳抱负频率响应H(e j ω)求出其单位脉冲响应h d (n)。
可用自定义函数ideal_lp实现抱负数字低通滤波器单位脉冲响应旳求解。
程序清单如下:function hd=ideal_lp(wc,N) %点0到N-1之间旳抱负脉冲响应%wc=截止频率(弧度)%N=抱负滤波器旳长度tao=(N-1)/2;n=[0:(N-1)];m=n-tao+eps; %加一种小数以避免0作除数hd=sin(wc*m)./(pi*m);其他选频滤波器可以由低通频响特性合成。
如一种通带在ωc1~ωc2之间旳带通滤波器在给定N值旳条件下,可以用下列程序实现:Hd=ideal_lp(wc2,N)-ideal_lp(wc1,N)(3)计算数字滤波器旳单位冲激响应h(n)=w(n)h d(n)。
Matlab中的滤波器设计方法详解
Matlab中的滤波器设计方法详解滤波器在信号处理中起着至关重要的作用,能够对信号进行去噪、去除干扰、增强所需频谱等操作。
Matlab作为一种强大的数学计算工具,提供了丰富的滤波器设计方法。
本文将详细介绍Matlab中常用的滤波器设计方法,包括FIR和IIR滤波器的设计原理和实现步骤。
一、FIR滤波器的设计方法FIR滤波器全称为有限脉冲响应滤波器,其特点是具有线性相位和稳定性。
在Matlab中,常用的FIR滤波器设计方法有窗函数法、最小二乘法和频率抽取法。
1. 窗函数法窗函数法是最简单直观的FIR滤波器设计方法。
它的基本思想是,在频域上用一个窗函数乘以理想滤波器的频率响应,再进行频域到时域的转换,得到滤波器的冲激响应。
常用的窗函数有矩形窗、汉宁窗、汉明窗等。
Matlab中,我们可以使用fir1函数进行窗函数法滤波器设计。
该函数的输入参数包括滤波器阶数、归一化截止频率和窗函数类型。
通过设计不同阶数和不同窗函数的滤波器,可以得到不同性能的滤波器。
2. 最小二乘法最小二乘法是一种优化方法,通过最小化滤波器的输出与目标响应之间的均方误差来设计滤波器。
在Matlab中,我们可以使用fir2函数进行最小二乘法滤波器设计。
该函数的输入参数包括滤波器阶数、频率向量和响应向量。
通过调整频率向量和响应向量,可以实现对滤波器的精确控制。
3. 频率抽取法频率抽取法是一种有效的FIR滤波器设计方法,能够实现对特定频带的信号进行滤波。
在Matlab中,我们可以使用firpm函数进行频率抽取法滤波器设计。
该函数的输入参数包括滤波器阶数、频率向量、增益向量和权重向量。
通过调整频率向量、增益向量和权重向量,可以实现对滤波器的灵活控制。
二、IIR滤波器的设计方法IIR滤波器全称为无限脉冲响应滤波器,其特点是具有非线性相位和多项式系数。
在Matlab中,常用的IIR滤波器设计方法有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。
1. 巴特沃斯滤波器巴特沃斯滤波器是一种最常用的IIR滤波器,其特点是具有最平滑的通带和最陡峭的阻带。
matlab中fir数字滤波器常用函数
一、 fir数字滤波器概述fir数字滤波器是一种常用的数字信号处理工具,用于滤除特定频率成分或增强特定频率成分。
在信号处理领域,fir数字滤波器具有重要的应用价值,能够有效地对信号进行去噪、平滑或频率变换等处理。
在matlab中,有许多常用的fir数字滤波器函数,下面将对这些常用函数进行介绍。
二、 fir1函数fir1函数是matlab中用于设计一维fir滤波器的函数,它可以根据指定的滤波器类型、滤波器阶数和截止频率来生成fir数字滤波器。
该函数的调用格式为:h = fir1(n, wn, type)其中,n表示滤波器的阶数,wn为一个标量或长度为2的向量,用于指定截止频率,type为滤波器类型,可以是‘high’、‘low’、‘stop’或‘bandpass’。
三、 fir2函数fir2函数是matlab中用于设计二维fir滤波器的函数,它可以根据指定的滤波器类型、滤波器尺寸和频率响应来生成fir数字滤波器。
该函数的调用格式为:h = fir2(n, f, m, w)其中,n表示滤波器的尺寸,f表示频率响应,m表示频率响应对应的标量,w为设定的窗函数。
四、 fircls函数fircls函数是matlab中用于设计带通fir滤波器的函数,它可以根据指定的滤波器类型、通带和阻带的频率范围来生成fir数字滤波器。
该函数的调用格式为:h = fircls(n, f, a, dev)其中,n表示滤波器的阶数,f表示通带和阻带的频率范围,a表示通带和阻带的幅度响应值,dev表示通带和阻带的允许偏差。
五、 firpm函数firpm函数是matlab中用于设计带通fir滤波器的函数,它可以根据指定的滤波器类型、通带和阻带的频率范围以及频率响应来生成fir数字滤波器。
该函数的调用格式为:h = firpm(n, f, a, w)其中,n表示滤波器的阶数,f表示通带和阻带的频率范围,a表示通带和阻带的幅度响应值,w为设定的窗函数。
用MATLAB设计数字FIR低通滤波器(哈明窗)
用MATLAB设计数字FIR低通滤波器(哈明窗)设计数字FIR低通滤波器,技术指标如下:Wp=0.2pi.rp=0.25db;Ws=0.3pi,as=50db.求解,如下图:程序:wp=0.2*pi;ws=0.3*pi;trwidth=ws-wp;M=ceil(6.6*pi/trwidth)+1;%朝正无穷方向取整n=[0:1:M-1];wc=(ws+wp)/2%求的截止频率(弧度)hd=ideal_lp(wc,M) %调用计算理想低通滤波器的单位取样响应wham=(hamming(M))';%哈明窗函数h=hd.*wham;[H,w]=freqz(h,1,1000,'whole'); %求Z变换频率响应函数H=(H(1:1:501))';w=(w(1:1:501))'mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);grd=grpdelay(h,1,w);deltaw=2*pi/1000;Rp=-(min(db(1:1:wp/deltaw+1)))As=-round(max(db(ws/deltaw+1:1:501)))subplot(1,1,1)subplot(2,2,1),stem(n,hd);title('理想脉冲响应')axis([0 M-1 -0.1 0.3]);xlabel('N');ylabel('hd(n)');subplot(2,2,2),stem(n,wham);title('Hamming窗')axis([0 M-1 -0 1.1]);xlabel('N');ylabel('w(n)');subplot(2,2,3),stem(n,h);title('实际脉冲响应')axis([0 M-1 -0.1 0.3]);xlabel('N');ylabel('h(n)');subplot(2,2,4),plot(w/pi,db);title('相对标尺的幅度响应');grid on;axis([0 1 -100 10]);xlabel('frequency in pi units');ylabel('decibels');set(gca,'XTickMode','manual','XTick',[0,0.2,0.3,1])%设置或修改LTI对象的属性值set(gca,'XTickMode','manual','XTick',[-50,0])set(gca,'XTickLabelMode','manual','XTickLabels',['50';'0'])子程序:function hd=ideal_lp(wc,N);a=(N-1)/2;n=[0:1:(N-1)];m=n-a+eps;hd=sin(wc*m)./(pi*m);。
基于MATLAB与CCS的FIR滤波器的C语言实现
基于MATLAB与CCS的FIR滤波器的C语言实现FIR(Finite Impulse Response)滤波器是一种数字滤波器,其输出仅取决于有限长度的输入序列。
MATLAB和CCS都提供了强大的工具和函数来设计和实现FIR滤波器。
下面将以一个具体的例子来介绍如何使用MATLAB和CCS来实现FIR滤波器的C语言实现。
首先,在MATLAB中使用fir1函数进行FIR滤波器的设计:```matlabfs = 1000; % 采样频率fpass = 200; % 通带截止频率fstop = 250; % 阻带起始频率Rp=1;%通带最大纹波(dB)Rs=60;%阻带最小衰减(dB)%计算通带和阻带频率f1 = fpass / (fs / 2);f2 = fstop / (fs / 2);% 使用fir1函数设计FIR滤波器b = fir1(30, [f1 f2], 'stop', kaiser(31, 3));%输出滤波器系数```然后,使用MATLAB中的codegen函数将FIR滤波器系数转换为C代码:```matlabcodegen -config:dll FIRFilter -args {b} -report```这将生成一个名为FIRFilter.c的文件,在该文件中包含了FIR滤波器的C语言实现。
接下来,在CCS中创建一个新的project,并将FIRFilter.c文件添加到该project中。
在Source Files文件夹中右键单击,并选择“Add Existing Files to Project”,然后选择FIRFilter.c文件。
接着,点击Build按钮来编译并生成可执行文件。
最后,在CCS中使用FIR滤波器的C语言实现进行信号处理。
可以通过以下代码示例来实现:```c#include <stdint.h>#include "FIRFilter.h"#define BUFFER_SIZE 1000//输入信号int16_t inputSignal[BUFFER_SIZE];//输出信号int16_t outputSignal[BUFFER_SIZE];int main(void)//初始化输入信号//...//调用FIR滤波器实现函数FIRFilter(inputSignal, outputSignal, BUFFER_SIZE);//处理输出信号//...return 0;```上述代码中,首先定义了输入和输出信号的数组,然后在main函数中调用FIR滤波器实现函数,并传入输入和输出信号的数组以及信号的长度。
matlab的fir滤波器设计
matlab的fir滤波器设计FIR(Finite Impulse Response)滤波器是指响应有限长度序列输入的数字滤波器,它可以用于信号去噪、信号滤波和信号重构等领域。
MATLAB软件是目前应用广泛的数学软件工具箱,它可以实现数字信号处理、信号滤波和滤波器设计等功能。
下面我们来分步骤解析如何利用MATLAB完成FIR滤波器设计。
第一步,确定滤波器参数要设计FIR滤波器,需要明确设计的目的,例如信号去噪还是信号滤波。
同时,需要确定滤波器的参数,包括滤波器的采样率、通带边界、阻带边界等。
第二步,调用MATLAB工具箱并加载数据打开MATLAB软件,选择Digital Signal Processing Toolbox,调用fir1函数,该函数用于设计一般的低通、高通、带通和带阻FIR 滤波器。
加载需要滤波的数据,并将其存储在一个变量中。
第三步,进行滤波器设计在MATLAB命令行窗口中输入以下命令,来进行FIR滤波器的设计。
h = fir1(N, Wn, 'type');其中,N是滤波器的阶数,Wn是正规化的截止频率值,type是滤波器的类型,可以是低通、高通、带通和带阻滤波器。
例如,我们要设计一个30阶的低通滤波器,带通频带为0.3至0.7,采样率为1000Hz,输入以下命令:N = 30;Wn = [0.3 0.7];Btype = 'low';FIR_filter = fir1(N, Wn, Btype);第四步,使用FIR滤波器进行滤波使用filter函数,可以将设计好的FIR滤波器应用到加载的数据上,进行滤波操作。
Y_filtered = filter(FIR_filter, 1, X);其中,FIR_filter是设计好的FIR滤波器,X是加载的待滤波数据,Y_filtered是经过滤波器处理后的数据。
第五步,可视化输出结果通过绘制函数将滤波器的输入和输出信号进行可视化处理,观察滤波效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验11 用MATLAB 设计FIR 数字滤波器一、实验目的:1、加深对窗函数法设计FIR 数字滤波器的基本原理的理解。
2、学习用MATLAB 语言的窗函数法编写设计FIR 数字滤波器的程序。
3、了解MATLAB 语言有关窗函数法设计FIR 数字滤波器的常用函数用法。
二、实验内容及步骤2、选择合适的窗函数设计FIR 数字低通滤波器,要求: w p =0.2π,R p =0.05dB ; w s =0.3π,A s =40dB 。
描绘该滤波器的脉冲响应、窗函数及滤波器的幅频响应曲线和相频响应曲线。
分析:根据设计指标要求,并查表11-1,选择汉宁窗。
程序清单如下: function hd=ideal_lp(wc,N) wp=0.2*pi;ws=0.3*pi;deltaw=ws-wp; tao=(N-1)/2; n=[0:(N-1)];m=n-tao+eps; hd=sin(wc*m)./(pi*m);function[db,mag,pha,grd,w]=freqz_m(b,a); [H,w]=freqz(b,a,1000,'whole'); H=(H(1:501))';w=(w(1:501))'; mag=abs(H);db=20*log10((mag+eps)/max(mag)); pha=angle(H); grd=grpdelay(b,a,w);wp=0.2*pi;ws=0.3*pi;deltaw=ws-wp; wc=(ws+wp)/2;课程名称:数字信号处理 实验成绩: 指导教师:实 验 报 告院系: 信息工程学院 班级: 电信二班 学号: 姓名: 日期:N0=ceil(6.6*pi/deltaw);N=N0+mod(N0+1,2)windows=(hanning(N))';hd=ideal_lp(wc,N);b=hd.*windows;[db,mag,pha,grd,w]=freqz_m(b,1);n=0:N-1;dw=2*pi/1000;Rp=-(min(db(1:wp/dw+1))) %检验通带波动As=-round(max(db(ws/dw+1:501))) %检验最小阻带衰减subplot(2,2,1);stem(n,b);axis([0,N,1.1*min(b),1.1*max(b)]);title('实际脉冲响应');xlabel('n');ylabel('h(n)');subplot(2,2,2);stem(n,windows);axis([0,N,0,1.1]);title('窗函数特性');xlabel('n');ylabel('wd(n)');subplot(2,2,3);plot(w/pi,db);axis([0,1,-80,10]);title('幅度频率响应');xlabel('频率(单位:\pi)');ylabel('H(e^{j\omega})');set(gca,'XTickMode','manual','XTick',[0,wp/pi,ws/pi,1]);set(gca,'YTickMode','manual','YTick',[-50,-20,-3,0]);grid subplot(2,2,4);plot(w/pi,pha);axis([0,1,-4,4]);title('相位频率响应');xlabel('频率(单位:\pi)');ylabel('\phi(\omega)');set(gca,'XTickMode','manual','XTick',[0,wp/pi,ws/pi,1]);set(gca,'YTickMode','manual','YTick',[-3.1416,0,3.1416,4]);gridN =67Rp =0.0706As = 4420406000.10.2实际脉冲响应nh (n )20406000.51窗函数特性nw d (n)0.20.31-50-20-30幅度频率响应频率(单位:π)H (e j ω)0.20.31-3.14163.14164相位频率响应频率(单位:π)φ(ω)3、用凯塞窗设计一个FIR 数字高通滤波器,要求: w p =0.3π,R p =0.1dB ;w s =0.2π,A s =50dB 。
描绘该滤波器的脉冲响应、窗函数及滤波器的幅频响应曲线和相频响应曲线。
程序清单如下:function hd=ideal_lp(wc,N) tao=(N-1)/2; n=[0:(N-1)]; m=n-tao+eps;hd=sin(wc*m)./(pi*m);function[db,mag,pha,grd,w]=freqz_m(b,a); [H,w]=freqz(b,a,1000,'whole'); H=(H(1:501))';w=(w(1:501))'; mag=abs(H);db=20*log10((mag+eps)/max(mag)); pha=angle(H); grd=grpdelay(b,a,w);wp=0.3*pi;ws=0.2*pi;deltaw=wp-ws;N0=ceil(6.6*pi/deltaw);N=N0+mod(N0+1,2)windows=(kaiser(N,7.865))';wc=(ws+wp)/2;hd=ideal_lp(pi,N)-ideal_lp(wc,N);b=hd.*windows;[db,mag,pha,grd,w]=freqz_m(b,1);n=0:N-1;dw=2*pi/1000;Rp=-(min(db(wp/dw+1:501))) %检验通带波动As=-round(max(db(1:ws/dw+1))) %检验最小阻带衰减subplot(2,2,1);stem(n,b);axis([0,N,1.1*min(b),1.1*max(b)]);title('实际脉冲响应'); xlabel('n');ylabel('h(n)');subplot(2,2,2);stem(n,windows);axis([0,N,0,1.1]);title('窗函数特性');xlabel('n');ylabel('wd(n)');subplot(2,2,3);plot(w/pi,db);axis([0,1,-100,2]);title('幅度频率响应');xlabel('频率(单位:\pi)');ylabel('H(e^{j\omega})');set(gca,'XTickMode','manual','XTick',[0,ws/pi,wp/pi,1]); set(gca,'YTickMode','manual','YTick',[,-40-20,-3,0]);grid subplot(2,2,4);plot(w/pi,pha);axis([0,1,-4,4]);title('相位频率响应');xlabel('频率(单位:\pi)');ylabel('\phi(\omega)');set(gca,'XTickMode','manual','XTick',[0,ws/pi,wp/pi,1]); set(gca,'YTickMode','manual','YTick',[-pi,0,pi]);gridN =67Rp = 0.2321As =32204060-0.200.20.40.60.8实际脉冲响应nh (n )02040600.51窗函数特性nw d (n)0.20.31-60-30幅度频率响应频率(单位:π)H (e j ω)0.20.31-3.14163.1416相位频率响应频率(单位:π)φ(ω)4、选择合适的窗函数设计一个FIR 数字带通滤波器,要求:f p1=3.5kHz ,f p2=6.5kHz ,R p =0.05dB ;f s1=2.5kHz ,f s2=7.5kHz ,A s =60dB 。
滤波器采样频率Fs=20kHz 。
描绘该滤波器的脉冲响应、窗函数及滤波器的幅频响应曲线和相频响应曲线。
分析:根据设计指标应选择布莱克曼窗。
程序清单如下: function[db,mag,pha,grd,w]=freqz_m(b,a); [H,w]=freqz(b,a,1000,'whole'); H=(H(1:501))';w=(w(1:501))'; mag=abs(H);db=20*log10((mag+eps)/max(mag)); pha=angle(H); grd=grpdelay(b,a,w); fp1=3.5;fp2=6.5; fs1=2.5;fs2=7.5; Fs=20;ws1=fs1/(Fs/2)*pi;ws2=fs2/(Fs/2)*pi;wp1=fp1/(Fs/2)*pi;wp2=fp2/(Fs/2)*pi;deltaw=wp1-ws1;N0=ceil(11*pi/deltaw);N=N0+mod(N0+1,2) %为实现FIR类型1偶对称滤波器,应确保N为奇数windows=blackman(N);wc1=(ws1+wp1)/2/pi;wc2=(ws2+wp2)/2/pi;b=fir1(N-1,[wc1,wc2],windows);[db,mag,pha,grd,w]=freqz_m(b,1);n=0:N-1;dw=2*pi/1000;Rp=-(min(db(wp1/dw+1:wp2/dw+1))) %检验通带波动ws0=[1:ws1/dw+1,ws2/dw+1:501];%建立阻带频率样点数组As=-round(max(db(ws0))) %检验最小阻带衰减subplot(2,2,1);stem(n,b);axis([0,N,1.1*min(b),1.1*max(b)]);title('实际脉冲响应'); xlabel('n');ylabel('h(n)');subplot(2,2,2);stem(n,windows);axis([0,N,0,1.1]);title('窗函数特性');xlabel('n');ylabel('wd(n)');subplot(2,2,3);plot(w/pi,db);axis([0,1,-150,10]);title('幅度频率响应');xlabel('频率(单位:\pi)');ylabel('H(e^{j\omega})');set(gca,'XTickMode','manual','XTick',[0,fs1,fp1,fp2,fs2,500]); set(gca,'YTickMode','manual','YTick',[-150,-40,-3,0]);grid subplot(2,2,4);plot(w/pi,pha);axis([0,1,-4,4]);title('相位频率响应');xlabel('频率(单位:\pi)');ylabel('\phi(\omega)');set(gca,'XTickMode','manual','XTick',[0,fs1,fp1,fp2,fs2,500]); set(gca,'YTickMode','manual','YTick',[-pi,0,pi]);gridN =111Rp =0.0034As =7450100-0.200.20.4实际脉冲响应nh (n )5010000.51窗函数特性nw d (n )-150-40-30幅度频率响应频率(单位:π)H (e j ω)-3.14163.1416相位频率响应频率(单位:π)φ(ω)5、选择合适的窗函数设计一个FIR 数字带阻滤波器,要求:f p1=1kHz ,f p2=4.5kHz ,R p =0.1dB ;f s1=2kHz ,f s2=3.5kHz ,A s =40dB 。