主板POWER时序
电脑主板开机时序图[优质PPT]
• 4. 待CPU_VTT穩定後,輸出VTTPWRGD(0 to 1)信號至CPU VCORE的PWM DEVICE的EN引 腳,從而啟動VCC CORE﹔
• 5. 等VCC CORE穩定後,輸出VCORE_PWRGD (1)至CLOCK DEVICE的控制腳,啟動 CLOCK﹔
• 6. 而後ATX POWER發出Power Supply Power OK信號PWROK
MAIN POWER OFF
• 1. POWER BUTTON被按下時,開機信號 PWRBTN-被拉低
• 2. SB在接收到此信號後(PWRBTN- = 0),發出 PS_ON-信號(PS_ON- = 0),送入ATX POWER﹔
• 3. ATX POWER在接收到PS_ON-信號後,輸出 Main Power﹔
電腦主板開機時序圖
CQS
PWRSW# AC_IN# AUX POWER AUX OK S3 AUX SW# PSON# MAI POWER VID 1.2V VID-OK CPU CORE POWER OK
SUS#C
一.開機時序圖:
IF AC PLUG IN, ALAWYS TURB在檢測到此信號後發出PCIRST#,對PCI外 設﹑SIO﹑NB進行復位﹔
• 8. CPU發出CPUPWRGOOD信號,NB接收到此 信號後發了CPURST#信號對CPU進行復位﹔
畅想网络
Imagination Network
感谢观看!
文章内容来源于网络,如有侵权请联系我们删除。
Intel主板上电时序
时序是指主板在开机过程中电压及信号先后开启的顺序。
上电时序反映的是主板工作的内在规律,是区分故障部位的重要手段,是使维修工作事半功倍的前提。
按下开机按键,启动就开始了。
启动过程分为硬启动和软启动两步。
硬启动就是指给主板加电,产生各级芯片必须的时钟信号和复位信号的过程;而软启动部分就是指BIOS的POST自检过程,通过POST自检程序检测电脑的配置和能否正常工作,产生各种总线信号,形成硬件配置信息。
无论是台式机还是笔记本均先硬启动而后再软启动。
下面以神舟945PL天尊板为例,讲解主板的上电时序。
第一步:未插电源时主板准备上电的状态装入电池后首先送出实时时钟RTCRST#&V_3V_BAT给南桥。
晶体(Crystal)提供32.768KHz频率给南桥。
第二步:插上电源后的主板动作时序+5Vsb正常转换出+3VDUAL。
SIO(IT8712K)67脚Check电源是否正常提供+5VSB电压。
SIO(IT8712K)85脚发出RSMRST#信号通知南桥+5VSB已经准备OK。
南桥正常送出待机时钟SUSCLK (32KHZ)。
第三步:按下电源按钮后的动作时序使用者按下电源控制面板上电源按钮后,送出一个低电平触发脉冲给SIO (IT8712K)75脚。
SIO(IT8712K)收到后由72脚发出一个低电平触发脉冲给南桥。
SB送出SLP_S3#和SLP_S4#两个休眠信号给SIO(IT8712K)的71脚和77脚。
SIO(IT8712K)76脚发出PS_ON#(Low)开机信号给ATX Power的14脚。
当ATX Power接收到PSON#由High变Low后,ATX Power即送出±12V,+3.3V,±5V数组主要电压.一般当电源送出的+3.3Vand +5V正常后,SIO(IT8712K)的95脚ATXPG信号由5V通过R450和R472两个8.2K的电阻分压提供侦测信号。
ICH7M PWROK时序要求
ICH7M主板对PWROK信号时序要求
1、ATX电源时序要求:
下图是ATX电源规范中对电源时序的要求,其中目前能影响到主板时序的关键是T6这个时间,即从PWROK无效到系统电源下降到95%时的时间间隔要求大于等于1ms
2、主板时序要求:
以下是南桥芯片ICH7M的时序图,其中对系统有影响的关键时间是T290,系统要求在掉电过程,PWROK信号要在系统电源下降之前至少20ns先无效。
3、PWROK信号不满足要求时的影响
主板上的PWROK信号使用了ATX电源的PWROK信号,即主板上的PWROK信号与ATX 电源的PWROK信号是相关联的。
目前仅在南桥为ICH7M的平台上发现,如果主板上的PWROK信号不满足以上时序要求,将会导致系统CMOS值被修改,此现象为随机性出现。
因此,针对南桥为ICH7M的平台,必须要求无论是断AC电还是正常关机,PWROK信号必须满足以上时序要求。
电脑上电时序
台式主板上电时序1.装入主板电池后首先送出RTCRST#(3V的复位信号)给南桥,2.南桥边的晶振提供32.768KHZ频率给南桥3.I/O芯片检测电源是否正常提供+5VSB电压4.+5VSB电压正常转换出+3VSB5.I/O发出RSMRST#信号通知南桥+5VSB已经准备好了6.南桥正常送出SUSCLK(32KHZ)7.当用户按下电源按钮后,将送出PWRBTN#给I/O和南桥8.I/O收到后发出PWRBTN#信号给南桥9.南桥送出SLP_S3#和SLP_S4#给I/O10.I/O发出PS_ON#(低电平)给主机电源11.当电源接收到PSON#(由高电平向低电平跳变),电源开关立即送出+12,-12V,+3.3V,+5V,-5V这些主电源电压12.当主机电源送出+12V,-12V,+3.3V,+5V,-5V主电源电压后,其他主板转换后的工作电压如:+VTT_CPU,+1.5V,+2.5V_DAC,+5V_DUAL,+3V_DUAL,+1.8V_DUAL也将随后全部送出13.当+VTT_CPU送给CPU后,CPU会送出VTT_PWRGD电源好信号(高电平)给CPU、时钟芯片、CPU电源管理芯片。
14.时钟芯片开始给各个功能性芯片电路提供同步时钟,(此时侦测卡的CLK指示灯亮)15.时钟芯片同时给南桥提供时钟。
16.CPU用VTT_PWRGD信号确认VTT_CPU(供CPU电压)稳定在安全范围内,接到VTT_PWRGD信号后CPU会发出VID17.CPU电源管理芯片收到VTT_PWRGD后会根据VID组合送出VCORE(CPU 核心供电)18.在VCORE正常发出后,CPU电源管理芯片立即送出VRMPWRGD信号给南桥,来通知南桥现在VCORE电压已经正常发出。
19.当提供给南桥的工作电压和时钟都好了后,由南桥发出PLTRST#和PCIRST#给各个功能性芯片电路(此时侦测卡的RST指示灯亮)20.在北桥接收到南桥发出的PLTRST#大约1ms后,(此时北桥的各个工作电压和时钟应正常)北桥送出CUPRST#给CPU,来通知CPU可以开始执行第一个指令动作21.CPU开始寻址,调用BIOS程序开始自检。
主板开机部分时序
主板开机部分时序以MS01 MB_DVT(SONY 915)为例一,静态(当电源适配器插到笔记本在未按开关之前,主板已有一部分电路在工作,为按开关做准备)。
具体上电时序:①主板供电DCBATOUT产生插入适配器到主板后经过保险丝送给MOS管,经过转换后将电源适配器的电转化为笔记本的主供电,主板各单元电路的供电都由主供电产生。
主供电会首先供给待机电源IC,电源IC会先产生EC和BIOS的主供电。
当EC和BIOS获得供电后发出触发信号给待机电源IC产生3V,5V待机电压(AIW/ON)供给南桥内部的待机电路,此时EC 发出静态OK(PM-RESMRST)信号告诉南桥静态OK。
此信号发出即标志着静态上电OK。
SONY915 详细过程:DC-IN经过电感PL1,PL2后再经过保险丝PF1和稳压二极管PD4送给MAX1909第1PIN,然后由第四PIN产生参考电压REF(标准电压4V),再由第27PIN输出一个低电平信号MAX109_PDS(9.0V),送给PQ51的第四PIN控制极,控制PQ51导通,把DC_IN转换成DC_IN_MOS送给PQ50的1,2,3PIN等待控制极的控制,同事由MAX1909第27PIN产生的低电平信号MAX1909_PDS经过一个电阻延时后送给PQ50的第四PIN控制极,控制PQ50导通,吧DC_IN_MOS转换成为DC_IN_R后送给电流传感器(PR155),由PR155侦测其通过本身的电流大小载反馈给MAX1909,由MAX1909根据此信息再调节第27PIN输出一个标准的低电平信号,从而控制PQ51,PQ50的导通状态,最终输出一个标准的DCBATOUT(18.6V)电压(此时主板主供电DCBATOUT已经标准的产生,电压电流够标准)MAX1909在给27PIN发出低电平的同时,就会由第28PIN输出一个高电平,控制PU1不导通。
为什么不让PQ1导通?是由于当同时插上直流电源与电池供电的时候,MAX1909就会主动优先选择直流电源供电,此时电池就不工作。
必备主板上电时序图,强烈推荐
POWER_CHARGER
输出低电平信号CHG_PDS开启A/D_DOCK_IN转化AC_BAT_SYS 输出低电平信号CHG_PDL开启BAT_CON转化AC_BAT_SYS
ACIN
输入电压
DCIN
ProTek MQC.
POWER PATH A/D_DOCK_IN→AC_BAT_SYS
EC-工作电压
+3VS是SB工作后由 SUSB#_PWR开启
ProTek MQC.
EC-RESET
+3VA_EC输入给芯片U3001产生EC_RST# 从pin19输入 ECProTΒιβλιοθήκη k MQC.EC-CLOCK
当EC接收到工作电压后就开始从pin160发出EC_XOUT 给晶振提供电压使其产生 32.768KHz的频率给EC工作
ProTek MQC.
返回南桥
PM_PWRBTN#
按下SW5605,则PWR_SW# 瞬间拉低
ProTek MQC.
+3VA_EC经过电阻到PWR_SW#,给 PWR_SW#一个高电平
南桥开机最后一个条件 返回南桥
南桥开机条件
+3VSUS PM_RSMRST# +VCC-RTC CLK(32.768KHz) PM_PWRBTN#
ProTek MQC.
PM_RSMRST
南桥开机条件之一 当EC pin54接收到SUS_PWRGD后从pin105发出PM_RSMRST#
ProTek MQC.
返回南桥
+VCC_RTC
南桥开机条件之一
C-MOS电池
+RTCBAT经过电阻R2001经过D2000产生+VCC_RTC
ASUS笔记本主板上电时序
ASUS上电时序。
ASUS攻略篇。
前端时间专门学习研究一张A8T/M,为此还专门到新华书店查了查可控触发器,单稳触发器的基础知识如有误,请指正!9 u, V4 [8 C1 w& R% ^74LV74--D型上升沿触发器,带置1置0功能。
初次插上适配器:置1端、置0端、数据输入端D均接3VA(实测中+3VA一插适配器就有);11脚时钟输入端处于低电位(实测中:Q106在初次插上适配器时处于导通状态)! `, n' a& Y" }! {! X! ^6 u开机时:按下开关---PWRBTN#有一个低电平跳变---由C699耦合到Q106的G极(实际测量中,Q106G极在按下开关时有一个很快的低电平跳变)----于是U21 11脚产生一个上升沿脉冲----U21 Q端输出等于D端的值-----VSUS_ON高电平-----5VO 3VO VSUS开启, U$ _+ l4 m3 Y* s2 F, Z关机时:按下开关----PWRBTN#有一个低电平跳…………后面的变化同上。
' L! B( I9 X* m0 ~. T+ B7 k- K关机后:5VO 3VO 5VSUS 3VSUS存在,但此如果将脚置0端强制端接到地,则VO电压SUS电压均消失。
0 I+ ]:h4 v( \+ \# u,S- Q* l! ]. B, H- y }关于U21A,也好理解。
虽然起数据输入端D接了地,但是其输出用的是-Q(顶上横杠不会打,呵呵!)。
所以当触发时还是输出的是高电平5 N% E1 F, _# M4 ~/ j6 {0 H2 [; w) D8 T" w& i4 Z3 C8 Z7 L# W) Y% d首先分两个部分的讲解,1。
按POWER-BUTTON之前产生的电压,A.先看看有的信号和电压:A/D DOCK IN.BAT-CONTS1#,SMBO-DAT,SMBO-CLKCHG-PDS,CHG-PDLAC-BAT-SYS+5VAOBAT-S+3VAO+5VA,+3VA+3VA-EC,+3PLL,+3VACCEC-RST32.768KHZVSUS-ONENBL+12VSUS+3VSUS,+5VSUS,SUS-PWRGDPM-RSMRSTRTC-BAT, RTC-VCC,32.768KHZ,RTC-RST" y. p:i% A5}/ N1P7 o)_4 p下面我们就来分析待机前的上电动作:当电源插入时通过ADAPTER,产生A/D DOCK-IN 19V电压,则电池通过接口产生BAT-CON,那么电池插入时,拉低TS1#为低电平,TSI#主要是侦察电池是不是插进来了,SMBO-DAT,CLK这个两个信号主要是侦察电池电量。
主板的上电时序及维修思路
一般插上ATX电源后,先不要直接去将主板通电试机,而是要量测主板在待机状态下的一些重要工作条件是否是正常的。
在这里我们要引入“Power Sequencing”——上电时序这个概念,主板对于上电的要求是很严格的,各种上电的必备条件都要有着先后的顺序,也就是我们所说的“Power Sequencing”,一项条件满足后才可以转到下一步,如果其中的某一个环节出现了故障,则整个上电过程不能继续下去,当然也就不能使主板上电了。
主板上最基本的Power Sequencing可以理解为这样一个过程,RTCRST#-VSB 待机电压-RTCRST#-SLP_S3#-PSON#,掌握了Power Sequencing的过程,我们就可以一步的来进行反查,找到没有正常执行的那一个步骤,并加以排除。
下面具体介绍一下整个Power Sequencing的详细过程:1.在未插上ATX电源之前,由主板上的电池产生VBAT电压和CMOS跳线上的RTCRST#来供给南桥,RCTRST#用来复位南桥内部的逻辑电路,因此我们应首先在未插上ATX电源之前量测电池是否有电,CMOS跳线上是否有2.5V-3V的电压。
2.检查晶振是否输出了32.768KHz的频率给南桥(在nFORCE芯片组的主板上,还要量测25MHz的晶振是否起振)3.插上ATX电源之后,检查5VSB、3VSB、1.8VSB、1.5VSB、1.2VSB等待机电压是否正常的转换出来(5VSB和3VSB的待机电压是每块主板上都必须要有的,其它待机电压则依据主板芯片组的不同而不同,具体请参照相关芯片组的DATASHEET中的介绍)4.检查RSMRST#信号是否为3.3V的高电平,RSMRST#信号是用来通知南桥5VSB和3VSB待机电压正常的信号,这个信号如果为低,则南桥收到错误的信息,认为相应的待机电压没有OK,所以不会进行下一步的上电动作。
RSMRST#可以在I/O 、集成网卡等元件上量测得到,除了量测RSMRST#信号的电压外,还要量测RSMRST#信号对地阻值,如果RSMRST#信号处于短路状态也是不行的,实际维修中,多发的故障是I/O或网卡不良引起RMSRST#信号不正常。
主板上电时序
ACPI---高级电源管理Advanced Configuration and Power Interface`六种状态:AS0--Working Status,所有设备全开,功耗一般会超过80WS1--POS(Power on Suspend),这时除了通过CPU时钟控制器将CPU关闭之外,其他的部件仍然正常工作,这时的功耗一般在30W以下(有些CPU降温软件就是利用这种工作原理)S2--这时CPU处于停止运作状态,总线时钟也被关闭,但其余的设备仍然运转;S3--STR(Suspend to RAM), 这时的功耗不超过10W;S4--STD(Suspend to Disk),这时系统主电源关闭,但是硬盘仍然带电并可以被唤醒S5--Soft Off,电源在内的所有设备全部关闭,功耗为0以华硕P5GD1为例的上电时序如下:;第一阶段该阶段的电源有battery电源和standby电源RSMRST#:当SB电压OK时由IO发出的触发南桥内SB电路的RST信号第二阶段准备上电阶段PWRBTN# IO_PWRBTN# S3#,S4# PSON# 各信号无误后到第三阶段第三阶段主板上的所有main POWER都在POWER OK以前达到稳定状态Intel平台和AMD平台在这个阶段的上电时序是不一样不同的chipset在这阶段的要求也不一样AMD需要一个专门的电源控制芯片控制来控制其CPU的电源时序AMD的时序:1、VDIMM_STR_EN:Memory voltage enable2、VDDA_EN:CPU PLL power enable,3、VCORE_EN:Vcore power enable4、VLDT_EN:Hyper Transport I/O powerIntel的时序:VTT OK(VTT_CPU) 2、Vcore Enable 3、VRMPWRGD(Vcore_PG):VTT OK ----早期主板上电压为Vocre电压;较新的主板为1.2V的VTT_CPU;VRMPWRGD----部分主板连接南桥(3v)和CPU Socket(1.2V)下图是754与939的CPU工作时序:1、主板上电后先发出1.8V_Dual, 2.5VDDA和VTT_DDR;2、在Vcore电压会升高到自身的10%之前Group A应该达到标准值;3、在1.2V_HT电压会升高到自身的10%之前,Vcore应该达到标准值;4、当1.2V_HT产生后1ms后产生Power OK ;5、当Power OK产生后,Vcore会根据VID表升高到标准值。
笔记本主板开机时序
笔记本主板开机时序当没有任何设备供电时(也就是说没有接上电源适配器或着电池的时候)主板RTC电路由CMOS电池提供3.3V电压来供电,它主要是保障时间的正常运行和CMOS信息。
当我们插上电源的时候19V电压会经过两个MOS管给主板输入一个PWR_SRC(也就是19V电压)和一组待机的3/5V电压(我们就叫他3/5V ALW电压当然各品牌的主板给电压的命名也不一样比如像ASUS的叫它3/5V PCU),在这同时KBC里面的EC也复位了,随后KBC会发一个RSMRST#信号给南桥,南桥内部一部分功能开始初始化等待着开机命令(也就是PWRBTN#信号你今天跟我说的应该就是这个信号吧)同时KBC会发出一个也就是开关PWR_SW#信号(#号代表电压是由高到低再到高才有效的),当我们按下开关键的时候KBC里面的EC检测到一个电平的变化(就是PWR_SW#由高到低再到高这样一个变化),然后送出一个PWRBTN#(开机信号)给南桥,南桥收到这个信号后会先后拉高SLP_S5#, SLP_S4#, SLP_S3#信号给KBC,KBC会相继发出SUSON DIMMON 1.2VSUSON RUNON等等,给各电压芯片(这些都是外围设备电压的开启电压信号),各组电压芯片相继收到这些开启电压信号后会送出相应的电压例如3/5VSUS 1.2VSUS 1.5VSUS 1.8VDIMM 3/5VRUN VTT等这一系列电压,(注意这些电压是有先后顺序的),我上述排列的这些电压顺序是不对的在这里只是给你做一个参考,你只有在以后的实践中慢慢去摸索,(当然想要后一个电压正常发出得有一个条件那就是上一组电压发出了以后该电压芯片会发出一个PWR_OK给KBC,KBC才会发出下一组电压的开启信号给下一组电压芯片),当这些电压都有了的时候他们的PWR_OK信号会聚集到一起汇组成一个PM_PWROK 或者是ALLSYSPWROK信号这表示外围设备电压和南北桥供电电压均已正常开启,这个信号是发给KBC的,KBC接收到这个信号的时候会送出最后一个电压的开机信号也就是CPU电压的开启信号VR_ON给CPU电压芯片同时CPU电压芯片送出CPU电压(到这时整板的电压都以开启),CPU电压正常输出后CPU电压芯片会送出时钟的开启信号VR_PERGD_CLKEN#信号给时钟芯片,时钟芯片收到这个开启信号后会向整板送出时钟包括南桥,南桥收到时钟信号了这时南桥会发出PCI_RST#给PCI总线,于是总线上的所有设备开始初始化等待复位(包括北桥),并同时发出H_PWRGD来通知CPU告诉CPU自己的核心电压已被开启,然后北桥会发出H_CPURST#给CPU, CPU开始复位这时主板才正式开机跑码了。
主板上电时序
+2.5V
文档仅供参考,如有不当之处,请联系改正。
+2.5V旳电压直接由+2.5V_Dual经过一种MOS开关提供,用 +12V作为MOS旳gate控制.从而确保进入S3时+2.5V能够被 关闭.防止漏电.
+2.5V_DUAL =-> +2.5V
+2.5V_DAUL
Q23 NDS351N
+2.5V
主板上此PIN一般空接
文档仅供参考,如有不当之处,请联系改正。
主板上电时序
Intel架构上电时序 AMD架构上电时序
文档仅供参考,如有不当之处,请联系改正。
Intel架构上电时序
P5+Intel915G (P5GD2-VM为例).
1.未插电源时旳主板准备上电状态. 2.插上电源后旳主板动作时序. 3.按下Power Buttom后旳动作时序.
文档仅供参考,如有不当之处,请联系改正。
+5VSB: Standby power提供power down state下主板需 要旳多种电压,涉及:Standby and Dual power.
ATX要求提供旳电流不低于10mA.但是目前旳主板为了提 供USB设备开启,网罗唤醒等功能,需要很大旳电流.一般 旳Power supply都能够提供2A左右.
主板旳上旳电压有+12V、-12V、+5V、(-5V)、+3V、+5VSB、 +3VSB、+1.5VSB、+1.5V、+5V_Dual、+3V_DUAL、+2.5V_DUAL、+ 2.5V_DAC、1.8V_Dual、VCORE、VTT_DDR、VTT+_CPU ect.
主板上电时序
电时序首先是RTC电源,这部分电力是永远不关闭的,除非电池(纽扣电池)没电并且没接任何外部电源(比如电池和电源适配器)。
RTC用以保持机器内部时钟的运转和保证CMOS配置信息在断电的情况下不丢失;其次,在你插上电池或者电源适配器,但还没按power键的时候(S5),机器内部的开启的电称为ALWAYS电,主要用以保证EC的正常运行;再次,你开机以后,所有的电力都开启,这时候,我们称为MAIN电(S0),以供整机的运行;在你进待机的时候(S3),机器内部的电成为SUS电,主要是DDR的电力供应,以保证RAM内部的资料不丢失;而休眠(S4)和关机(S5)的电是一样的,都是Always电。
其中,上文中括号内的是表示计算机的状态(S0-开机,S3-待机,S4-休眠,S5-关机)。
根据前面的Power Status,我们来分析一下开机的过程。
在插上电池或者电源的时候,机器内部的单片机EC就Reset并开始工作,等待用户按下Power键。
在此期间的时序是:ALWAYS电开启以后,EC Reset并开始运行,随后发给南桥一个称为‘RSMRST#’的信号(南桥就收到SUSPWROK信号<南桥复位>,32.768时钟开始工作,此时处在待机状态)。
这时候南桥的部分功能开始初始化并等待开机信号。
这里要注意,这时候的南桥并没有打开全部电源,只有很少一部分的功能可用,比如供检测开机信号的PWRBTN#信号。
在按下Power键的时候,EC检测到一个电平变化(一般时序是:高-低-高),然后发送一个开机信号(PWRBTN#)给南桥,南桥收到PWRBTN#信号后依次拉高SLP_S5#,SLP_S4#,SLP_S3#信号(他们的作用参看上页的图),开启了所有的外围电压,主要是+3V,+5V以及DDR1.8V等,VTT_PWRGD、+1_8VDIMM_PG、+1_5VRUN_PG相与并发送ALLSYSPG信号,这信号表明外围电源正常开启。
主板通电,复位时序
VCC_VIDVID0~5通電時序注解:(1).ATX電源給出5VSB (2).5VSB經MS-7轉出3VSB (3).3VSB經線路供給南橋﹑I/O作起動電壓,供給轉換電路用來替換 電池,供給JFP1插針作開關控制電壓 (4).觸發開關產生PWRBTIN信號送給I/O (5).I/O收到PWRBTIN信號後送出PWRBTIN#信號給南橋(6).南橋得到PWRBTIN#信號後送出SLP_S3信號給I/O (7).I/O得到SLP_S3後送出PS_ON#信號給電源復位時序注解:(1).電源通電後,各組電壓(+3.3V﹑±5V﹑±12V等)開始上升,各組電壓正常後電源送出PWR_OK信號 (2).MS-7得到PWR_OK信號後送出ICH_PWRGD給南北橋,送出FP_RST#信號給復位開關作復位控制電壓,送出VCC_VID給CPU後得到VID0~5給VRM,送出VID_GD給VRM,VRM得到VID_GD﹑VID0~5後送出CPU電壓,當CPU電壓正常後VRM送出VRM_PWRGD給CLOCK和南橋,CLOCK得到VRM_PWRGD後開始工作送出各組頻率給南北橋﹑I/O等部分 (3).南橋得到時鐘﹑VRM_PWMGD﹑ICH_PWRGD﹑FP_RST#﹑32.768KHz信號後產生PCI_RST#信號給MS-7,送出CPU_PWRGD給CPU (4).MS-7得到PCI_RST#信號後給出各芯片的RESET信號,送出NB_PCIRST#信號給北橋 (5).北橋得到NB_PCIRST#﹑ICH_PWRGD﹑時鐘後產生CPU_RST#信號給CPU (6).CPU得到CPU_RST#﹑CPU_PWRGD﹑時鐘﹑CPU電壓後產生MEMORY_READ信號去讀BIOS引導主板開機注:因主板上各芯片之工作電壓不同,芯片工作電壓請根據實際線路圖為准。
笔记本上电时序概述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
附:比较器 比较器
比较器工作原理: 正极 负极 1:当正极大于负极时,输出电 压VCC OUT就等于输入电压VCC IN 2当正极小于负极电压时,输出 电压VCC OUT就等于接地GND + > - VCC OUT=VCC IN GND + < - VCC OUT=GND 比较器一般用于电路中都是固定正 极(或负极)电压电压,利用VCC OUT 来控制负极(或正极)电压
PM_DPRSLPVR,H_DPRSTP#,CPU与 南桥进入降频模式时通知VCORE调 低电压分别进入S3和S4模式. CLK_EN#在此板上没用上,而是使 用EC发出.
返回
放大2 附: VCORE IC-放大 放大
CPU通过这7组数据线 改变VCORE电压大小
VID6 0 0 0 0 0 0 1 1
SUS_PWRGD
High-Low Side
ENBL信号从 pin9,pin10输入 U8101
点击 分压反 馈线路
当输出电压+3VSUS +5VSUS正 常时芯片就输出SUS_PWRGD
返回南桥
返回POWER GOOD DETECTER
+3VSUS 南桥开机条件之一
2.5VREF
+5VO经过电阻R9000和稳压二极管 U9000产生+2.5VREF 电阻R9000的作用:①分压, ②限流 稳压二极管的工作原理:利用二极管的 反向击穿特性,在端处会产生一个稳定 的电压(+2.5VREF),常作为参考电压;稳 压二极管电流越大则稳压效果越好,但 电流过大超过额定功率则会使二极管损 坏,所以必须串连一个电阻(R9000)做限 流作用.
FORCE_OFF#为低电平时,控制 U3001工作,而无法发出 EC_RST#,使得EC不工作,而导 致关机,但在此处电阻R3001没 上,而是利用右图控制关机.
放大点击
FORCE_OFF#
与门工作原理:只要有输 入低电平则输出为低电平, 如果PWRGD有问题输出 低电平,则FORCE_OFF# 拉低,则会关机. FOREC_OFF点击
END
附:High-Low Side
原理:芯片先给High Side的栅极一个高电平,使其打开电压下来,同时给Low Side的 栅极一个低电平使其关闭,产生电压经过电感给电容充电,当电压过高时,则HighLow Side相反工作使电压拉低,维持一个稳定的电压输出. 特点:提高电流,稳定电压 返回
低电平信号 开启P-MOS管
+3VAO
这是一个线性稳压芯片,+5VAO从pin1输入,在pin3做一个 shut_down#信号,从pin5输出+3VAO 反馈回路:+3VAO经过电阻R8121,R8130分压反馈给 U8102 pin4,使芯片pin5输出一个稳定的+3V 反馈电压Vref= 100K × 3V=1.094V
ALL_SYSTEM_PWRGD
二极管在这里的作用:保护SUS_PWRGD,当其他PWRGD有 问题时不会拉低SUS_PWRGD,因为只有SUS_PWRGD工作 正常后南桥才能工作,来开启其他电压
这时VRM_PWRGD还没有 产生
PWR_OK_VGA 由显卡接口发出
这里是个保护电路,上面四个PWRGD为高电平,才会有ALL_SYSTEM_PWR. 发送到EC
PM_RSMRST
南桥开机条件之一 当EC pin54接收到SUS_PWRGD后从pin105发出PM_RSMRST#
返回南桥
+VCC_RTC
南桥开机条件之一
C-MOS电池 C-MOS +RTCBAT经过电阻R2001经过D2000产生+VCC_RTC D2000的作用:相当是一个比较器,当有电源工作时则+VCC_RTC由+3VA 来提供.没有则由C-MOS电池提供 电阻R2001的作用:侦测电流大小,便于计算电池寿命 电池使用年数=电池总容量/流经电阻R2001的电流/24小时/365天 +VCC_RTC的作用:①用于南桥CLOCK起振电压(南桥作开机条件) 返回南桥 ②维持C-MOS信息
VSUS_ON
当EC工作正常后会产生VSUS_ON高电平信号 VSUS_ON将作为后面开启电压的Enable信号 VSUS_ON理论上是EC产生,但是它要与BIOS进行正确的AD交换 后才会产生.
VSUS_ON→ENBL →
VSUS_ON是高电平导通Q8105A使Q8105B关闭,VSUS_ON经过电阻 R8106产生ENBL信号 FORCE_OFF#是强制关机信号当为低电平时D8103导通拉底 VSUS_ON,使其无法开启后面电压.(FORE_OFF#产生)
SB-CLOCK
+VCC_RTC经过三个电阻输入给南桥,则输出RTC-X1,RTC_X2给晶振 X2000产生32.768KHz的频率 反馈给南桥 RTC_RST:复位C-MOS信息.
返回南桥
PM_PWRBTN#
按下SW5605,则PWR_SW# 瞬间拉低
+3VA_EC经过电阻到PWR_SW#,给 PWR_SW#一个高电平
南桥开机最后一个条件 返回南桥
南桥开机条件
+3VSUS PM_RSMRST# +VCC-RTC CLK(32.768KHz) PM_PWRBTN#
PM_SUSB# PM_SUSC#
南桥满足上面5个条件后开始工作发出PM_SUSB#,PM_SUSC# PM_SUSC#比PM_SUSB#,先出来
SUSC_EC# SUSB_EC1#
1.电源进入 电源进入(adapter) 电源进入
adapter
当adapter插入时产生A/D_DOCK_IN(19V)
1.电源进入 电源进入(Battery) 电源进入
Battery
当Battery插入时产生BAT_CON.(16.8V) TS1# 侦测电池插入.此信号为高电平,当插入电池时为低电位. SMB0_DAT SMB0_CLK 这两个信号主要是侦测电池电量
VID5 0 0 0 0 1 1 1 1
VID4 0 0 0 1 1 1 0 1
VID3 0 0 0 1 0 1 0 1
VID2 0 0 1 1 1 0 0 1
返回
VID1 0 0 0 0 0 1 0 1
VID0 0 0 1 0 1 1 0 1
Vout 1.5000 1.4875 1.4375 1.1500 0.8375 0.7625 0.3000 0.0S是SB工作后由 SUSB#_PWR开启
EC-RESET
+3VA_EC输入给芯片U3001产生EC_RST#
从pin19输入 EC
EC-CLOCK
当EC接收到工作电压后就开始从pin160发出EC_XOUT
给晶振提供电压使其产生 32.768KHz的频率给EC工作
CPU_VRON
输入电压+3VS,其他电压是已 经输入了的,+3VS是南桥工作 后才产生的.
放大点击
CPU_VRON Enable信号
VCORE
放大点击
输入电 压+3VS
反馈线路
输入电压 +5VSUS,AC_BAT_SYS 使用4组H-L side的作用: 因为CPU工作功率比较 大,根据P=UI,这里就 是为了产生高电流35A
附: VCORE IC-放大3
CPU侦测VCORE 输出电压大小 侦测负载线 (for load line) Close to pin18
这两个电容的作用 瞬态响应(for transient
response) 返回
接近阶段1的感应器 (Close to Phase 1 Inductor)
附:FORCE_OFF#关机原理
返回
放大1 附: VCORE IC-放大 放大
CPU_VRON=1 :EC发出给VCORE IC的Enable信号 PM_DPRSLPVR=1:CPU深度休眠模式的Enable 信号 H_DPRSTP#=0:CPU正在深度休眠模式 给CLOCK芯片的Enable VRM_PWRGD=1:VCORE POWER OK. PM_PSI#=0:CPU 降频时通知VCORE 调低电压
+12V +5V +3V
并联N-MOS管作用: ①保护②提供高电流 3.65A
+12VS +5VS +3VS
并联N-MOS管 作用:①保护 ②提供高电流 4.135A
DDR_PWRGD
Enable信号 输入电压 返回WER GOOD DETECTER
反馈线路
“除二”运算线 路
集成H-L side 点击
返回
附:集成High-Low Side
pin1 pin2接电压相当于H side pin5~8 Pin3 Low side的栅极相当于L side pin4 Pin4接地相当于L side pin1~3 Pin5~7输出相当与H side pin1~3,L side pin5~8 Pin8 High side的栅极相当于 H side pin4 L side H side
附:休眠方式 休眠方式
S3休眠动作流程:利用键盘(FN+F1)→EC,透过LPC_AD[0..3] 发送到南桥,南桥将SUSB#拉低,SUSB#所控制的电源全部拉 低,(SUSC#控制电源还在)开始进行休眠 S4休眠动作流程:在WINDOWS状态下按开始菜单,再选择休 眠,HDD通过传输信号线到南桥,南桥再把SUSB#和SUSC#拉 低,SUSB#,SUSC#控制的电压全部拉低,开始进行休眠 休眠后唤醒(不分S3或S4)可分为两种(1)由键盘按任一键经EC 发KBCRSMKBCRSM 透过切换线路将PM_PWRBTN# 拉LO 发送 到南桥南桥将SUSB# 或SUSB#&SUSC 发高,SUSB# SUSC# 将后续电压开启完成唤醒动作 (2)由PWR_SW#透过切换线路将PM_PWRBTN# 拉LO 发送到南桥,南桥将SUSB# 或SUSB#&SUSC 发高,SUSB# SUSC# 将后续电压开启,完成唤醒动作