八年级数学第一章《勾股定理》练习_4

合集下载

(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》检测题(包含答案解析)(4)

(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》检测题(包含答案解析)(4)

一、选择题1.如图,动点P 从点A 出发,沿着圆柱的侧面移动到BC 的中点S ,若8BC =,点P 移动的最短距离为5,则圆柱的底面周长为( )A .6B .4πC .8D .102.一根竹竿插到水池中离岸边1.5m 远的水底,竹竿高出水面0.5m ,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( ) A .2m B .2.5cm C .2.25m D .3m3.如图,有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个水池的深度是( )尺.A .26B .24C .13D .12 4.如图,在Rt △ABC 中,∠BCA =90°,点D 是BC 上一点,AD =BD ,若AB =8,BD =5,则CD =( )A .2.1B .1.4C .3.2D .2.4 5.在下列四组数中,属于勾股数的是( ) A .0.3,0.4,0.5 B .9,40,41 C .2,3,4 D .123 6.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D .122CD BC AB =+ 7.下列各组数中是勾股数的是( ) A .4,5, 6B .1.5,2, 2.5C .11,60, 61D .1,3,2 8.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,下列条件不能判断△ABC 是直角三角形的是( )A .∠B =∠C +∠AB .a 2=(b +c )(b ﹣c )C .∠A :∠B :∠C =3:4:5D .a :b :c =3:4:5 9.一个直角三角形的两条边分别是9和40,则第三边的平方是( )A .1681B .1781C .1519或1681D .1519 10.如图所示的是2002年在北京召开的国际数学家大会的会标,这个图案是由“弦图”演变而来.“弦图”最早是由三国时期数学家赵爽在注解一部数学著作时给出的,它标志着中国古代的数学成就.这部中国古代数学著作是( )A .《周髀算经》B .《几何原本》C .《九章算术》D .《孙子算经》 11.如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为3,大正方形边长为15,则一个直角三角形的面积等于( )A .36B .48C .54D .108 12.下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12 二、填空题13.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.14.如图在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,点D 是AB 的中点,过点D 作DE 垂直AB 交BC 的延长线于点E ,则CE 的长是_______.15.如图,在ABC 中,90C =∠,AB 的中垂线DE 交AB 于E ,交BC 于D ,若5AB =,3AC =,则ACD △的周长为__________.16.已知一个直角三角形的两边长为3和5,则第三边长为______.17.一根长16cm 牙刷置于底面直径为5cm 、高为12cm 的圆柱形水杯中.牙刷露在杯子外面的长度为hcm ,则h 的取值范围是___.18.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.19.如图,为修通铁路凿通隧道AC ,量出40A ∠=︒,50B ∠=︒,5AB =公里,4BC =公里,若每天凿通隧道0.3公里,问_________天才能把隧道AC 凿通.20.如图,圆柱形玻璃板,高为12cm ,底面周长为18cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的A 处,则蚂蚁到达蜂蜜的最短距离______cm .三、解答题21.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.22.如图,某斜拉桥的主梁AD 垂直于桥面MN 于点D ,主梁上两根拉索AB 、AC 长分别为13米、20米.(1)若拉索AB ⊥AC ,求固定点B 、C 之间的距离;(2)若固定点B 、C 之间的距离为21米,求主梁AD 的高度.23.已知:如图,一块R t △ABC 的绿地,量得两直角边AC =8cm ,BC =6cm.现在要将这块绿地扩充成等腰△ABD ,且扩充部分(△ADC )是以8cm 为直角边长的直角三角形,求扩充等腰△ABD 的周长.(1)在图1中,当AB =AD =10cm 时,△ABD 的周长为 .(2)在图2中,当BA =BD =10cm 时,△ABD 的周长为 .(3)在图3中,当DA =DB 时,求△ABD 的周长.24.如图,已知AB=CD ,∠B=∠C ,AC 和BD 交于点O ,OE ⊥AD 于点E .(1)△AOB 与△DOC 全等吗?请说明理由;(2)若OA=3,AD=4,求△AOD 的面积.25.如图,已知Rt △ABC 中,∠C =90°,点D 是AC 上一点,点E 、点F 是BC 上的点,且∠CDF =∠CEA ,CF =CA .(1)如图1,若AE 平分∠BAC ,∠DFC =25°,求∠B 的度数;(2)如图2,若过点F 作FG ⊥AB 于点G ,连结GC ,求证:AG +GF =2GC . 26.如图,在长方形纸片ABCD 中,9,3AD AB ==.将其折叠,使点D 与点B 重合,点C 落在点C '处,折痕EF 交AD 于点E ,交BC 于点F .(1)求线段BE的长.(2)求线段BF的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据圆柱的侧面展开图,利用勾股定理求出AB即可求解.【详解】解:圆柱的侧面展开图如图,点P移动的最短距离为AS=5,根据题意,BS=12BC=4,∠ABS=90°,∴AB=22AS BS-=2254-=3,∴圆柱的底面周长为2AB=6,故选:A.【点睛】本题考查圆柱的侧面展开图、最短路径问题、勾股定理,熟练掌握圆柱的侧面展开图,得出点P移动的最短距离是AS是解答的关键.2.A解析:A【分析】设水池的深度BC=xm,则AB=(0.5+x)m,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC中,AC=1.5m.AB﹣BC=0.5m.设水池的深度BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2,∴1.52+x2=(x+0.5)2,解得:x=2.故选:A.【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键. 3.D解析:D【分析】找到题中的直角三角形,设水深为x 尺,根据勾股定理列方程可解答.【详解】解:由题意可知:BC=12×10=5(尺) 设水深x 尺,则芦苇长(x+1)尺, 由勾股定理得:2225(1),x x +=+解得:x=12,∴这个水池的深度是12尺.故选D .【点睛】本题考查正确运用勾股定理.善于观察题目的信息建立数学模型是解题的关键. 4.B解析:B【分析】设CD=x ,在Rt △ACD 和Rt △ABC 中,利用勾股定理列式表示出AC 2,然后解方程即可.【详解】解:设CD=x ,则BC=5+x ,在Rt △ACD 中,AC 2=AD 2-CD 2=25-x 2,在Rt △ABC 中,AC 2=AB 2-BC 2=64-(5+x )2,所以,25-x 2=64-(5+x )2,解得x=1.4,即CD=1.4.故答案为:B .【点睛】本题考查了勾股定理,熟记定理并在两个三角形列出等式表示出AC 2,然后列出方程是解题的关键.5.B解析:B【分析】根据勾股数的定义:满足222+=a b c 的三个正整数,成为勾股数,据此可判断.【详解】A .0.3、0.4、0.5,不是正整数,所以不是勾股数,选项错误;B .9、40、41,是正整数,且满足22294041+=,是勾股数,选项正确;C .2、3、4,是正整数,但222234+≠,所以不是勾股数,选项正确;D .1、2、3,不是正整数,所以不是勾股数,选项错误;故选:B .【点睛】本题考查了勾股数的判定方法,解题关键是要看这组数是否为正整数,且满足最小两个数的平方和等于最大数的平法.6.B解析:B【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【详解】解:如图,连接BD 、AD ,过点D 作DM ⊥BC 于M ,DN ⊥CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∴60BAC ∠=︒.故此选项说法正确;B 、∵DM ⊥BC ,DN ⊥CA∴∠DNC =∠DMC =90°,∵CD 平分∠ACB ,∴∠DCN =∠DCM =45°.∴∠DCN =∠CDN =45°.∴CN=DN .则△CDN 是等腰直角三角形.同理可证:△CDM 也是等腰直角三角形,∴222DN CN DN +=.222DM CM DM +,∴DM=DN= CM=CN ,∠MDN =90°.∵DE 垂直平分AB ,∴BD=AD ,AB=2BE .∴Rt △BDM ≌△ADN ,∴∠BDM=∠AND .∴∠BDM+∠ADM =∠AND+∠ADM =∠MDN .∴∠ADB=90°.∴=.即.∵在Rt △AND 中,AD 是斜边,DN 是直角边,∴AD >DN.∴2BE >CD .故此选项说法错误.C 、∵BD=AD ,∠ADB=90°,∴△ABD 是等腰直角三角形.∴DE=12AB . 在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∴AC=12AB . ∴DE=AC .故此选项说法正确.D 、∵Rt △BDM ≌△ADN ,∴BM=AN .∴CN=AC+AN=AC+BM=CM .∴BC=BM+CM=AC+2BM .∵, ∴.∵AC=12AB , ∴12AB+BC .故此选项说法正确. 故选:B .【点睛】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.7.C解析:C【分析】根据勾股数的定义判断即可.【详解】解:A 、42+52≠62,不是勾股数,故此选项不合题意;B 、1.5, 2.5不是正整数,不是勾股数,故此选项不合题意;C 、112+602=612,三个数都是正整数,是勾股数,故此选项符合题意;D 不是正整数,不是勾股数,故此选项不合题意;故选:C .【点睛】此题主要考查了勾股数,关键是掌握满足a 2+b 2=c 2的三个正整数,称为勾股数. 8.C解析:C【分析】由三角形的内角和定理求解B 可判断,A 由勾股定理的逆定理可判断,B 由三角形的内角和定理求解 ,C ∠ 可判断,C 设()30,a k k =≠ 则4,5,b k c k == 利用勾股定理的逆定理可判断.D【详解】解:,180,B C A A B C ∠=∠+∠∠+∠+∠=︒2180B ∴∠=︒,90B ∴∠=︒,故A 不符合题意; ()()222,a b c b c b c =+-=-222,a c b ∴+=90B ∴∠=︒,故B 不符合题意; ::3:4:5,A B C ∠∠∠=51807512C ∴∠=⨯︒=︒, ABC ∴不是直角三角形,故C 符合题意,::3:4:5,a b c =设()30,a k k =≠ 则4,5,b k c k ==()()()222222234255,a b k k k k c ∴+=+===90C ∴∠=︒,故D 不符合题意, 故选:.C【点睛】本题考查的是三角形的内角和定理,勾股定理的逆定理的应用,掌握以上知识是解题的关键. 9.C解析:C【分析】由题意可分当第三边为直角边时和当第三边为斜边时,然后利用勾股定理进行求解即可.【详解】解:当第三边是直角边时,第三边的平方是402﹣92=1519;当第三边是斜边时,第三边的平方是402+92=1681;故选:C .【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.10.A解析:A【分析】根据在《周髀算经》中赵爽提过“赵爽弦图”即可解答.【详解】解:根据在《周髀算经》中赵爽提过“赵爽弦图”,故选:A .【点睛】本题考查勾股定理,知道“赵爽弦图”是赵爽在《周髀算经》提到过是解答的关键. 11.C解析:C【分析】根据图形的特征先算出4个三角形的面积之和,再除以4,即可求解.【详解】由题意得:15×15-3×3=216,216÷4=54,故选C .【点睛】本题主要考查“赵爽弦图”的相关计算,理清图形中的面积关系,是解题的关键. 12.C解析:C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,熟记勾股数的概念是解题的关键.二、填空题13.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD ∴=-=,则正方形丁的面积为229AD =,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.14.【分析】连接AE 设CE =x 由线段垂直平分线的性质可知AE =BE =BC +CE 在Rt △ACE 中利用勾股定理即可求出CE 的长度【详解】解:如图连接AE 设∵点D 是线段AB 的中点且∴DE 是AB 的垂直平分线∴∴ 解析:76【分析】连接AE ,设CE =x ,由线段垂直平分线的性质可知AE =BE =BC +CE ,在Rt △ACE 中,利用勾股定理即可求出CE 的长度.【详解】解:如图,连接AE ,设CE x =,∵点D 是线段AB 的中点,且DE AB ⊥,∴DE 是AB 的垂直平分线,∴3AE BE BC CE x ==+=+,∴在Rt ACE 中,222AE AC CE =+,即()22234x x +=+, 解得76x =. 故答案为:76. 【点睛】 本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并利用勾股定理求解线段的长度是解题的关键.15.7【分析】先根据勾股定理求出BC 的长再由线段垂直平分线的性质得出AD=BD 即AD+CD=BC 再由AC=6即可求出答案【详解】解:∵△ABC 中∠C=90°AB=5AC=3∴BC==4∵DE 是线段AB 的解析:7【分析】先根据勾股定理求出BC 的长,再由线段垂直平分线的性质得出AD=BD ,即AD+CD=BC ,再由AC=6即可求出答案.【详解】解:∵△ABC 中,∠C=90°,AB=5,AC=3,∴222253AB AC --=4,∵DE 是线段AB 的垂直平分线,∴AD=BD ,∴AD+CD=BD+CD ,即AD+CD=BC ,∴△ACD 的周长=AC+CD+AD=AC+BC=3+4=7.故答案为:7.【点睛】本题考查了勾股定理及线段垂直平分线的性质,能根据线段垂直平分线的性质求出AD+CD=BC 是解题的关键.16.4或【分析】分5是斜边和5是直角边两种情况再分别利用勾股定理即可得【详解】由题意分以下两种情况:(1)当5是斜边时则第三边长为;(2)当5是直角边时则第三边长为;综上第三边长为4或故答案为:4或【点解析:4或34【分析】分5是斜边和5是直角边两种情况,再分别利用勾股定理即可得.【详解】由题意,分以下两种情况:(1)当5是斜边时,则第三边长为22-=;534(2)当5是直角边时,则第三边长为22+=;5334综上,第三边长为4或34,故答案为:4或34.【点睛】本题考查了勾股定理,依据题意,正确分两种情况讨论是解题关键.17.3≤h≤4【分析】先根据题意画出图形再根据勾股定理解答即可【详解】解:当牙刷与杯底垂直时h最大h最大=16-12=4cm当牙刷与杯底及杯高构成直角三角形时h最小如图所示:此时AB==13cm故h=1解析:3≤h≤4【分析】先根据题意画出图形,再根据勾股定理解答即可.【详解】解:当牙刷与杯底垂直时h最大,h最大=16-12=4cm.当牙刷与杯底及杯高构成直角三角形时h最小,如图所示:此时,2222+=+=13cm,125AC BC故h=16-13=3cm.故h的取值范围是3≤h≤4.故答案是:3≤h≤4.【点睛】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.18.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴15BC ==同理6CD ===∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.19.10【分析】根据勾股定理可求出BC 的长度然后除以每天凿隧道的长度可求出需要的天数【详解】解:∵∠A=40°∠B=50°∴∠C=90°即△ABC 为直角三角形∵AB=5kmAC=4km ∴故:所需天数==解析:10【分析】根据勾股定理可求出BC 的长度,然后除以每天凿隧道的长度,可求出需要的天数.【详解】解:∵∠A=40°,∠B=50°,∴∠C=90°,即△ABC 为直角三角形∵AB=5km ,AC=4km∴3BC km ==,故:所需天数=30.3=10天. 故答案为:10.【点睛】 本题主要是运用勾股定理求出所需凿隧道的长度.20.15【分析】在侧面展开图中过C 作CQ ⊥EF 于Q 作A 关于EH 的对称点A′连接A′C 交EH 于P 连接AP 则AP+PC 就是蚂蚁到达蜂蜜的最短距离求出A′QCQ 根据勾股定理求出A′C 即可【详解】解:沿过A 的圆解析:15【分析】在侧面展开图中,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A′,连接A′C 交EH 于P ,连接AP ,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,求出A′Q ,CQ ,根据勾股定理求出A′C 即可.【详解】解:沿过A 的圆柱的高剪开,得出矩形EFGH ,过C 作CQ ⊥EF 于Q ,作A 关于EH 的对称点A′,连接A′C 交EH 于P ,连接AP , 则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E ,A′P=AP ,∴AP+PC=A′P+PC=A′C ,∵CQ=12×18cm=9cm ,A′Q=12cm -3cm+3cm=12cm , 在Rt △A′QC 中,由勾股定理得:2222A'Q CQ 129+=+=15(cm),故答案为:15.【点睛】本题考查了平面展开-最短路径问题,勾股定理的应用,同时也考查了学生的空间想象能力.将图形侧面展开,利用轴对称的性质和勾股定理进行计算是解题的关键.三、解答题21.224cm .【分析】连接AC ,勾股定理计算222234AD CD +=+形ABC 是直角三角形,计算两个直角三角形的面积差即可.【详解】解:连接AC∵AD DC ⊥∴∠ADC=90°,在Rt △ADC 中,根据勾股定理,得 222234AD CD +=+=5,在△ABC 中,∴22222251213AC BC AB +=+==,△ABC 是直角三角形,∴=-ABC ACD ABCD S S S 四边形 =51234-22⨯⨯ =242m ().【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.22.(1)5692)12米.【分析】(1)用勾股定理可求出BC 的长;(2)设BD=x 米,则BD=(21-x )米,分别在Rt ABD ∆中和Rt ACD ∆中表示出2AD ,于是可列方程22221320(21)x x -=--,解方程求出x,然后可求AD 的长.【详解】解:(1)∵AB ⊥AC∴22221320569AB AC +=+(2)设BD=x 米,则BD=(21-x )米,在Rt ABD ∆中,2222213AD AB BD x =-=-在Rt ACD ∆中,2222220(21)AD AC CD x =-=--,∴22221320(21)x x -=--,∴x=5,∴2213512AD -=(米).【点睛】本题考查了勾股定理的应用,根据勾股定理列出方程是解题关键.23.(1)32m ;(2)(5m ;(3)803m 【分析】(1)利用勾股定理得出DC 的长,进而求出△ABD 的周长;(2)利用勾股定理得出AD 的长,进而求出△ABD 的周长;(3)首先利用勾股定理得出DC 、AB 的长,进而求出△ABD 的周长.【详解】:(1)如图1,∵AB=AD=10m ,AC ⊥BD ,AC=8m ,∴6()DC m ==则△ABD 的周长为:10+10+6+6=32(m ).故答案为32m ;(2)如图2,当BA=BD=10m 时,则DC=BD-BC=10-6=4(m ),故AD =则△ABD 的周长为:(m ;故答案为(m ;(3)如图3,∵DA=DB ,∴设DC=xm ,则AD=(6+x )m ,∴DC 2+AC 2=AD 2,即x 2+82=(6+x )2,解得;x=73∵AC=8m ,BC=6m ,∴AB=10m ,故△ABD 的周长为:AD+BD+AB=2780610()33m ⎛⎫++= ⎪⎝⎭【点睛】此题主要考查了勾股定理的应用,根据题意熟练应用勾股定理是解题关键.24.(1)△AOB ≌△DOC ,理由见解析;(2)△AOD 的面积为【分析】(1)根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AO=DO ,根据等腰三角形的性质得到AE=12AD=2,由勾股定理得到OE ==【详解】(1)证明:在△AOB 和△DOC 中, AOB COD B CAB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以△AOB ≌△DOC (AAS );(2)因为△AOB ≌△DOC ,所以AO=DO,因为OE⊥AD于点E.所以AE12=AD=2,所以OE225AO AE=-=,所以S△AOD1452=⨯⨯=25.【点睛】本题考查了全等三角形的判定和性质,勾股定理,三角形的面积的计算,熟练掌握全等三角形的判定和性质是解题的关键.25.(1)∠B=40°;(2)见解析.【分析】(1)先利用SAS证明△AEC≌△FDC,得出∠EAC=∠DFC=25°,从而得出∠BAC=50°,再根据直角三角形的两个锐角互余即可得出结论(2)过点C作GC的垂线交GF的延长线于点P,根据同角的余角得出∠PCF =∠GCA,再根据ASA得出△AGC≌△FPC,从而得出△GCP是等腰直角三角形,即可得出答案【详解】(1)在△AEC和△FDC中,∵∠CDF=∠CEA CE=CD ∠C=∠C,∴△AEC≌△FDC,∴∠EAC=∠DFC=25°∵AE平分∠BAC,∴∠BAC=2∠EAC=50°∵∠C=90°,∴在Rt△ABC中,∠B=90°-∠BAC=40°.(2)如答图,过点C作GC的垂线交GF的延长线于点P∴∠GCP = 90°∴∠GCF+∠PCF = 90°,∵∠ACB = 90°∴∠GCF +∠GCA = 90°,∴∠PCF =∠GCA .∵∠ACB=90°,GF ⊥AB∴∠B +∠BAC=∠B +∠BFG= 90°,∴∠BAC=∠BFG .又∵∠PFC=∠BFG∴∠GAC=∠PFC .由(1)知,△AEC ≌△FDC ,∴CA=CF ,∴△AGC ≌△FPC ,∴GC=PC ,AG=FP .又∵PC ⊥GC ,∴△GCP 是等腰直角三角形,∴GF +FP=GP=2GC ,∴AG +GF =2GC【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等知识,正确作出辅助线构造全等三角形是解题的关键.26.(1)5;(2)5.【分析】(1)设BE 长为x ,则,9DE BE x AE x ===-,在Rt ABE △中由勾股定理列方程,解方程即可求得BE 的长;(2)由//AD BC 得出DEF BFE ∠=∠,由折叠的性质得出DEF BEF ∠=∠,所以BEF BFE ∠=∠,得出BF BE =【详解】(1)设BE 长为x ,则,9DE BE x AE x ===-.在Rt ABE △中,90A ∠=︒, 222AB AE BE +=,即2223(9)x x +-=.解得5x =,所以BE 的长为5.(2)∵四边形ABCD 是长方形,//AD BC ∴.DEF BFE ∴∠=∠.由折叠,得DEF BEF ∠=∠,BEF BFE ∴∠=∠.5BF BE ∴==.【点睛】本题考查了折叠的性质和应用,勾股定理的性质,解题的关键是灵活运用平行的性质、勾股定理等几何知识来解答.。

(必考题)初中数学八年级数学上册第一单元《勾股定理》检测题(有答案解析)(4)

(必考题)初中数学八年级数学上册第一单元《勾股定理》检测题(有答案解析)(4)

一、选择题1.如图所示,数轴上的点A 所表示的数为a ,则a 的值是( )A .51+B .51-+C .51-D .52.如图,在Rt △ABC 中,∠BAC =90°,以Rt △ABC 各边为斜边分别向外作等腰Rt △ADB 、等腰Rt △AFC 、等腰Rt △BEC ,然后将等腰Rt △ADB 和等腰Rt △AFC 按如图方式叠放到等腰Rt △BEC 中,其中BH =BA ,CI =CA ,已知,S 四边形GKJE =1,S 四边形KHCJ =8,则AC 的长为( )A .2B .52C .4D .63.用梯子登上20m 高的建筑物,为了安全要使梯子的底面距离建筑物15m ,至少需要( )m 长的梯子.A .20B .25C .15D .54.毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是2,3,1,2,则△正方形E 的边长是( )A .18B .8C .2D .2 5.如图,图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若6,5AC BC ==,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是( )A .24B .52C .61D .766.如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )A .25B .16C .50D .417.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .1548.已知Rt ABC 中,A ∠,B ,C ∠的对边分别为a 、b 、c ,若90B ∠=︒,则( ).A .222b a c =+B .222c a b =+C .222a b c =+D .a b c +=9.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺 10.如图,分别以直角三角形ABC 的三边为斜边向外作直角三角形,且AD CD =,CE BE =,AF BF =,这三个直角三角形的面积分别为1S ,2S ,3S ,且19S =,216S =,则S 3S =( )A .25B .32C .7D .1811.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地 送行二步与人齐,五尺人高曾记. 仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB 长度为1尺.将它往前水平推送10尺时,即A C '=10尺,则此时秋千的踏板离地距离A D '就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 长为( )A .13.5尺B .14尺C .14.5尺D .15尺 12.若实数m 、n 满足340m n --=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ).A .5B 7C .57D .以上都不对二、填空题13.将五个边长为2的正方形按如图所示放置,若A ,B ,C ,D 四点恰好在圆上,则这个圆的面积为________.(结果保留π)14.如图,一只蚂蚁从长、宽都是2,高是5的长方体纸盒的A 点沿纸盒面爬到B 点,那么它所行的最短路线的长是________.15.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等______. 16.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾6a =,弦10c =,则小正方形ABCD 的面积是____.17.在平面直角坐标系中,若点M (2,4)与点N (x ,4)之间的距离是3,则x 的值是_____.18.如图,两个正方形的面积分别是118S =,212S =,则第三个正方形的面积3S =_________.19.如图,一个蚂蚁要在一个长、宽、高分别为2、3、1分米的长方体的表面从A 点爬到B 点,那么最短的路径是_______________分米.(结果保留根号)20.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.三、解答题21.如图,ABC 中,∠C=90°,BC=5厘米,AB=55厘米,点P 从点A 出发沿AC 边以2厘米/秒的速度向终点C 匀速移动,同时,点Q 从点C 出发沿CB 边以1厘米/秒的速度向终点B 匀速移动,P 、Q 两点运动几秒时,P 、Q 两点间的距离是210厘米?22.已知:如图,四边形ABCD 中,AB ⊥BC ,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.23.如图,一棵小树在大风中被吹歪,用一根棍子把小树扶直,已知支撑点到地面的距离10 5.5米,求棍子和地面接触点C 到小树底部B 的距离是多少?24.在如图所示的方格纸中,每个小正方形的边长为1个单位长度,我们称每个小正方形的顶点为“格点”.(1)若格点C 在线段AB 右侧,且满足AC BC =,则当ABC ∆的周长最小时,ABC ∆的面积等于 .(2)若格点D 在线段AB 左侧,且满足AD BD ⊥,则ABD ∆的面积等于 (以上两问均直接写出结果即可).25.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,求这个风车的外围周长.26.如图,在四边形ABCD 中, 45,ABC ADC ∠=∠=︒将BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)求证:AE BD ⊥;(2)若1,2AD CD ==,试求四边形ABCD 的对角线BD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据勾股定理求出直角三角形的斜边,即可得出选项.【详解】解:BC =BA =22125+=,∵数轴上点A 所表示的数为a ,∴a =51-故选:C .【点睛】本题考查了数轴和实数,勾股定理的应用,能读懂图象是解此题的关键.2.D解析:D【分析】设AD =DB =a ,AF =CF =b ,BE =CE =c ,由勾股定理可求a 2+b 2=c 2,由S 四边形GHCE =S 四边形GKJE +S 四边形KHCJ =9,可求b =2,即可求解.【详解】解:设AD =DB =a ,AF =CF =b ,BE =CE =c ,∴AB2=c,=a,AC2=b,BC2∵∠BAC=90°,∴AB2+AC2=BC2,∴2a2+2b2=2c2,∴a2+b2=c2,∵将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC,∴BG=GH=a,∵S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,∴1(a+c)(c﹣a)=9,2∴c2﹣a2=18,∴b2=18,∴b=32,∴AC2=b=6,故选:D.【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.3.B解析:B【分析】可依据题意作出简单的图形,结合图形利用勾股定理进行求解,即可.【详解】解:如图所示:∵AC=20m,BC=15m,∴在Rt△ABC中,22+m,152025故选:B.【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.4.D解析:D根据勾股定理分别求出正方形E 的面积,进而即可求解.【详解】解:由勾股定理得,正方形E 的面积=正方形A 的面积+正方形B 的面积+正方形C 的面积+正方形D 的面积=22+32+12+22=18,∴正方形E 的边长=32.故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.5.D解析:D【分析】由题意∠ACB 为直角,AD=6,利用勾股定理求得BD 的长,进一步求得风车的外围周长.【详解】解:依题意∠ACB 为直角,AD=6,∴CD=6+6=12,由勾股定理得,BD 2=BC 2+CD 2,∴BD 2=122+52=169,所以BD=13,所以“数学风车”的周长是:(13+6)×4=76.故选:D .【点睛】本题是勾股定理在实际情况中应用,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.6.C解析:C【分析】由勾股定理解得2AB 、22CD BD +,再根据正方形边长相等的性质得到222225CD BD BC AB +===,据此解题即可.解:由勾股定理得,222131225AB =-=222BC CD BD =+222225CD BD BC AB ∴+===∴阴影部分的面积是222252550CD BD BC ++=+=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键. 7.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°, ∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.8.A解析:A【分析】先根据题意画出图形,再根据勾股定理即可得.【详解】由题意,画出图形如下:由勾股定理得:222b a c =+,故选:A .【点睛】本题考查了勾股定理,依据题意,正确画出图形是解题关键.9.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺, ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键.10.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =, ∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB , ∵∠ACB=90︒,∴222AB AC BC =+,即312111444S S S =+, ∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.11.C解析:C【分析】设绳索有x 尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x 尺长,则102+(x+1-5)2=x 2,解得:x=14.5.故绳索长14.5尺.故选:C .【点睛】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.12.C解析:C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】∵30m -=,30m -≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.二、填空题13.【分析】根据题意得到圆心O 的位置设MO=x 根据AO2=DO2得到方程求出x 得到圆O 的半径从而求出面积【详解】解:由题意可得:多个小正方形排成轴对称图形∴圆心O 落在对称轴MN 上设MO=x ∵AO=DO ∴ 解析:1309π 【分析】根据题意得到圆心O 的位置,设MO=x ,根据AO 2=DO 2,得到方程,求出x ,得到圆O 的半径,从而求出面积.【详解】解:由题意可得:多个小正方形排成轴对称图形,∴圆心O 落在对称轴MN 上,设MO=x ,∵AO=DO ,∴AO 2=DO 2,即()2222163x x +=-+,解得:x=113,∴圆O的半径为21x+=1303,∴圆O的面积为21303π⎛⎫⎪⎪⎝⎭=1309π,故答案为:1309π.【点睛】本题考查了勾股定理,轴对称的性质,圆的性质,解题的关键是根据半径相等得到方程.14.【解析】如图(1)所示:AB=;如图(2)所示:AB=∵>∴最短路径为答:它所行的最短路线的长是故答案为点睛:本题考查了平面展开---最短路径问题解题的关键是将长方体展开构造直角三角形然后利用勾股定解析:41【解析】如图(1)所示:222(25)=53++如图(2)所示:2245=41+,∵5341∴414141点睛:本题考查了平面展开---最短路径问题,解题的关键是将长方体展开,构造直角三角形,然后利用勾股定理解答.15.10或6【解析】试题解析:10或6【解析】试题根据题意画出图形,如图所示,如图1所示,AB =10,AC 10,AD =6,在Rt △ABD 和Rt △ACD 中,根据勾股定理得:BD 22AB AD -,22AC AD -=2,此时BC =BD +CD =8+2=10;如图2所示,AB =10,AC 10,AD =6,在Rt △ABD 和Rt △ACD 中,根据勾股定理得:BD 22AB AD -,CD 22AC AD -=2,此时BC =BD -CD =8-2=6,则BC 的长为6或10. 16.4【分析】应用勾股定理和正方形的面积公式可求解【详解】∵勾弦∴股b=∴小正方形的边长=∴小正方形的面积故答案为4【点睛】本题运用了勾股定理和正方形的面积公式关键是运用了数形结合的数学思想解析:4【分析】应用勾股定理和正方形的面积公式可求解.【详解】∵勾a 6=,弦c 10=,∴股221068-=,∴小正方形的边长=862-=,∴小正方形的面积224==故答案为4【点睛】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想. 17.﹣1或5【分析】根据点M (24)与点N (x4)之间的距离是3可以得到|2-x|=3从而可以求得x 的值【详解】解:∵点M (24)与点N (x4)之间的距离是3∴|2﹣x|=3解得x=﹣1或x=5故答案为解析:﹣1或5【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2-x|=3,从而可以求得x的值.【详解】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为﹣1或5.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.18.6【分析】根据题意和图形可以得到AB2和AC2再根据△ABC是直角三角形和勾股定理可以得到BC2【详解】解:∵两个正方形的面积分别是S1=18S2=12∴AB2=18AC2=12∵△ABC是直角三角解析:6【分析】根据题意和图形,可以得到AB2和AC2,再根据△ABC是直角三角形和勾股定理,可以得到BC2.【详解】解:∵两个正方形的面积分别是S1=18,S2=12,∴AB2=18,AC2=12,∵△ABC是直角三角形,∴BC2=AB2-AC2=18-12=6,故答案为:6.【点睛】本题考查了正方形的性质,解题的关键是明确题意,利用数形结合的思想解答.19.【分析】有三种展开方式一种是正面和右侧面展开如图(1)一种是正面和上面展开如图(2)另外一种是底面和右侧面展开如图(3)分别根据勾股定理求AB的长度即可判断【详解】正面和右侧面展开如图(1)根据勾股解析:【分析】有三种展开方式,一种是正面和右侧面展开如图(1),一种是正面和上面展开如图(2),另外一种是底面和右侧面展开如图(3),分别根据勾股定理求AB的长度即可判断.【详解】正面和右侧面展开如图(1)根据勾股定理()2223126AB =++=;正面和上面展开如图(2)根据勾股定理()2213225AB =++=;底面和右侧面展开如图(3)根据勾股定理()2212332AB =++= ∵322526<<∴最短的路径是32故答案为32【点睛】本题考察了几何图形的展开图形,勾股定理的实际应用,容易漏掉正面和上面的展开图是本题的易错点,在做题的过程中要注意考虑全面.20.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.∵90C ∠=︒∴15BC ==同理6CD ===∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.三、解答题21.2秒【分析】设P 、Q 两点运动x 秒时,P 、Q 两点间的距离是厘米,先利用勾股定理求出AC 的长度,得到AP=2x 厘米,CQ=x 厘米,CP=(10﹣2x )厘米,再利用勾股定理得到(10﹣2x )2+x 2=()2求出x 的值.【详解】解:设P 、Q 两点运动x 秒时,P 、Q 两点间的距离是厘米.在△ABC 中,∠C=90°,BC=5厘米,∴=(厘米),∴AP=2x 厘米,CQ=x 厘米,CP=(10﹣2x )厘米,在Rt △CPQ 内有PC 2+CQ 2=PQ 2,∴(10﹣2x )2+x 2=()2,整理得:x 2﹣8x+12=0,解得:x=2或x=6,当x=6时,CP=10﹣2x=﹣2<0,∴x=6不合题意舍去.∴P 、Q 两点运动2秒时,P 、Q 两点间的距离是厘米.【点睛】此题考查勾股定理,动点问题与几何图形,熟练掌握勾股定理的计算公式并运用解决问题是关键.22.36【分析】连接AC ,在直角三角形ABC 中,根据勾股定理计算得到AC 的长度,继而由勾股定理的逆定理求出∠ACD 为90°,计算得到四边形的面积即可.【详解】在Rt△ABC中,有AC2=AB2+BC2=4²+3²=25,又AC>0,∴AC=5∵AC2+CD²=52+12²=169=13²=AD²∴∠ACD=90°,S四边形ABCD= 12AB×BC+12AC×CD=36.【点睛】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD 的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.23.5米【分析】利用勾股定理计算即可.【详解】由题意知:10米,AC=5.5米,∵∠ABC=90°,∴2222(5.5)(10)BC AC AB=-=-米,答:棍子和地面接触点C到小树底部B的距离是4.5米.【点睛】此题考查勾股定理的实际应用,根据实际问题构建直角三角形利用勾股定理来解决问题是解题的关键.24.(1)2.5;(2)2或2.5或1.5【分析】(1)根据格点C在线段AB右侧,且满足AC=BC,画出周长最小的格点△ABC,即可求出△ABC的面积;(2)根据格点D在线段AB左侧,且满足AD⊥BD,分别画出格点△ABD,即可得三角形的面积.【详解】解:(1)如图,△ABC 即为所求;△ABC 的面积为:1552⨯⨯=2.5, 故答案为:2.5;(2)如图点D 1,D 2,D 3 即为所求;△ABD 的面积分别为:12222⨯⨯=2, 1552⨯⨯=2.5, 1132⨯⨯=1.5, 故答案为:2或2.5或1.5.【点睛】此题主要考查了格点图形的性质,把握格点图形的定义,正确画出格点三角形是解决问题的关键.25.76【分析】根据题意可知∠ACB 为直角,利用勾股定理求得外围中一条边,又由AC 延伸一倍,从而求得风车的一个轮子,进一步求得四个即风车的外围周长.【详解】解:解:依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则222125169x =+=所以x=13所以“数学风车”的外围周长是:(13+6)×4=76.【点睛】本题考查勾股定理在实际情况中的应用,注意掌握运用隐含的已知条件来解答此类题. 26.(1)见解析;(2)3BD =.【分析】()1证明:由BCD 绕点C 顺时针旋转到ACE △,利用旋转性质得BC=AC ,12∠=∠,由∠ABC =45º,可知∠ACB=90º,由1390∠+∠=︒,可证2490∠+∠=︒ 即可,()2解:连DE ,由BCD ∆绕点C 顺时针旋转到ACE ∆,得BCD ACE ∠=∠,CD=CE=2,BD=AE ,利用等式性质得90DCE ACB ∠=∠=︒,∠CDE=45º,利用勾股定理DE=22,由∠ADC=45º可得∠ADE=90º,由勾股定理可求AE 即可.【详解】()1证明:BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △, ,12BC AC ∴=∠=∠,45,ABC BAC ∴∠=∠=︒18090,ACB ABC BAC ∴∠=︒∠∠=︒--1390,∴∠+∠=︒又34,∠=∠241390,∴∠+∠=∠+∠=︒1802490,ANM ∴∠=︒-∠-∠=︒即AE BD ⊥,()2解:连DE ,BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到,ACEBCD ACE ∴∠=∠,即,2,ACB ACD DCE ACD CD CE BD AE ∠+∠=∠+∠===,90,DCE ACB ∴∠=∠=︒2222228,DE CD CE ∴=+=+=又90,2,DCE CD CE ∠=︒==45,CDE ∴∠=︒90,ADE ADC CDE ∴∠=∠+∠=︒∴===,3AE∴=.BD3【点睛】本题考查旋转的性质和勾股定理问题,关键是掌握三角形旋转的性质与勾股定理知识,会利用三角形旋转性质结合∠ABC=45º证∠ACB=90º,利用余角证AE⊥BD,利用等式性质证∠DCE=90º,利用勾股定理求DE,结合∠ADC=45º证Rt△ADE,会用勾股定理求AE使问题得以解决.。

第1章勾股定理 单元练习题 2022-2023学年北师大版八年级数学上册

第1章勾股定理   单元练习题  2022-2023学年北师大版八年级数学上册

2022-2023学年度北师大版八年级数学上册《第1章勾股定理》单元综合练习题(附答案)一.选择题1.如图,在Rt△ABC中,∠CAB=90°,AB=8,AC=3,两顶点A,B在y轴、x轴上滑动,点C在第一象限内,连接OC,则OC的最大值为()A.7B.8C.9D.2.已知直角三角形纸片的两条直角边分别为m和n(m<n),过此三角形锐角的顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则有()A.m2+2mn+n2=0B.m2﹣2mn+n2=0C.m2+2mn﹣n2=0D.m2﹣2mn﹣n2=03.如图,在四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,若S1+S4=125,S3=46,则S2=()A.171B.79C.100D.814.如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理.已知小正方形的面积是1,直角三角形的两直角边分别为a、b且ab=6,则图中大正方形的边长为()A.5B.C.4D.35.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90B.100C.110D.1216.满足下列条件的三角形中,是直角三角形的是()A.三个内角度数之比是3:4:5B.三边长的平方比为5:12:13C.三边长度是1::D.三个内角度数比为2:3:47.分别以下列各组数为一个三角形的三边长:①6,8,10;②13,5,12;③2,2,3;④7,24,25;其中能构成直角三角形的有()组.A.2B.3C.4D.58.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为()A.x2=(x﹣4)2+(x﹣2)2B.2x2=(x﹣4)2+(x﹣2)2C.x2=42+(x﹣2)2D.x2=(x﹣4)2+229.如图,是我校的长方形水泥操场,如果一学生要从A角走到C角,至少走()A.80米B.90米C.100米D.110米10.有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8m B.10m C.12m D.14m二.填空题11.如图,在四边形ABCD中,∠B=∠D=90°,分别以四边向外作正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为.12.如图,在正方形网格中,每个小正方形的边长为1,△ABC是网格上的格点三角形,则它的边AC上的高等于.13.若一直角三角形两直角边长分别为6和8,则斜边长为.14.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么a+b的值为.15.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.16.三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三边长是.17.如图,△ABC中,AC=3,BC=4,AB=5,AB上的高CD=.18.观察下面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;…根据你发现的规律,请你写出有以上规律的第⑤组勾股数:.19.一根长16cm牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中.牙刷露在杯子外面的长度为hcm,则h的取值范围是20.有一块直角三角形的绿地,量得两直角边分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,扩充后等腰三角形绿地的周长.21.放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为.22.如图所示,一个梯子AB长5m,顶端A靠在墙AC上,这时梯子下端B与墙角C间的距离为3m梯子滑动后停在DE位置上,如图,测得DB的长为1m,则梯子顶端A下落了m.三.解答题23.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图中画一条线段MN,使MN=;(2)在图中画一个三边长均为无理数,且各边都不相等的直角△DEF.24.在△ABC中,点D是直线BC上的一点,已知AB=15,AD=12,AC=13,BD=9.求BC的长.25.如图,在△ABC中.D是AB边的中点,DE⊥AB于点D,交AC于点E,且AE2﹣CE2=BC2,(1)试说明:∠C=90°;(2)若DE=6,BD=8,求CE的长.26.如图,在四边形ABCD中,AB=BC=3,CD=,DA=5,∠B=90°,求∠BCD的度数.27.若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5);(5,12,13);(7,24,25);…第二类(a是偶数):(6,8,10);(8,15,17);(10,24,26);…(1)请再写出两组勾股数,每类各写一组;(2)分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.28.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.29.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.参考答案一.选择题1.解:取AB中点P,连接OP、CP,则OP=AP=AB=4,由勾股定理得,CP=5,利用三角形两边之和大于第三边可知:OC≤OP+PC=9,OC的长的最大值为9,故选:C.2.解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.3.解:由题意可知:S1=AB2,S2=BC2,S3=CD2,S4=AD2,连接BD,在直角△ABD和△BCD中,BD2=AD2+AB2=CD2+BC2,即S1+S4=S3+S2,因此S2=125﹣46=79,故选:B.4.解:∵ab=6,∴直角三角形的面积是ab=3,∵小正方形的面积是1,∴大正方形的面积=1+4×3=13,∴大正方形的边长为,故选:B.5.解:如图,延长AB交KF于点O,延长AC交GM于点P,易得△CAB≌△BOF≌△FLG,∴AB=OF=3,AC=OB=FL=4,∴OA=OL=3+4=7,∵∠CAB=∠BOF=∠L=90°,所以四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.8.解:当三个内角度数之比是3:4:5时,最大的角的度数是:180°×=75°<90°,故选项A不符合题意;当三边长的平方比为5:12:13时,因为()2+()2≠()2,故该三角形不是直角三角形,故选项B不符合题意;当三边长度是1::时,12+()2=()2,故该三角形不是直角三角形,故选项C符合题意;三个内角度数比为2:3:4时,最大的角的度数是:180°×=80°<90°,故选项D不符合题意;7.解:①62+82=100=102,符合勾股定理的逆定理;②52+122=132,符合勾股定理的逆定理;③22+22≠32,不符合勾股定理的逆定理;④72+242=252,符合勾股定理的逆定理.故选:B.8.解:根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,故选:A.9.解:因为两点之间线段最短,所以AC为从A到B的最短距离,根据矩形的对边相等,得,BC=AD=80米,再根据勾股定理,得,AC=100米.故选:C.10.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC=10m.故选:B.二.填空题11.解:连接AC,由勾股定理得AB2+BC2=AC2,AD2+CD2=AC2,∴甲的面积+乙的面积=丙的面积+丁的面积,∵甲的面积为30,乙的面积为16,丙的面积为17,∴丁的面积为30+16﹣17=29.故答案为:29.12.解:S△ABC=4×5﹣﹣=,根据勾股定理得:AC=5,设△ABC边AC边上的高为h,则,解得h=,故答案为.13.解:在直角三角形中,斜边的平方等于两条直角边平方和,故斜边长=10,故答案为10.14.解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,则a+b=5.故答案为:5.15.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.16.解:当第三边是直角边时,根据勾股定理,第三边的长=4,三角形的边长分别为3,4,5能构成三角形;当第三边是斜边时,根据勾股定理,第三边的长=,三角形的边长分别为3,5,亦能构成三角形;综合以上两种情况,第三边的长应为4或.17.解:∵△ABC中,AC=3,BC=4,AB=5,∴AB2=AC2+BC2,即52=32+42,∴△ABC是直角三角形,∵CD⊥AB,∴AC•BC=AB•CD,即3×4=5×CD,解得CD=.故答案为:.18.解:通过观察得:第①组勾股数分别为:2×1+1=3,2×12+2×1=4,2×12+2×1+1=5;第②组勾股数分别为:2×2+1=5,2×22+2×2=12,2×22+2×2+1=13;第③组勾股数分别为:2×3+1=7,2×32+2×3=24,2×32+2×3+1=25;第④组勾股数为:2×4+1=9,2×42+2×4=40,2×42+2×4+1=41;所以第⑤组勾股数为:2×5+1=11,2×52+2×5=60,2×52+2×5+1=61.故答案为:11,60,61.19.解:当牙刷与杯底垂直时h最大,h最大=16﹣12=4cm.当牙刷与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB=13cm,故h=16﹣13=3cm.故h的取值范围是3≤h≤4.故答案是:3≤h≤4.20.解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理有:AB=10,应分以下三种情况:①如图1,当AB=AD=10时,∵AC⊥BD,∴CD=CB=6m,∴△ABD的周长=10+10+2×6=32m.②如图2,当AB=BD=10时,∵BC=6m,∴CD=10﹣6=4m,∴AD===4m,∴△ABD的周长=10+10+4=(20+4)m.③如图3,当AB为底时,设AD=BD=x,则CD=x﹣6,由勾股定理得:AD==x解得,x=,∴△ABD的周长为:AD+BD+AB=m.④如图4中,倍长AC后,因为AC=8,所以扩充部分就是以8m为直角边的直角三角形,此时△ABD的周长为36m,故答案为:32m或(20+4)m或m或36m.21.解:所示题意如下图:OA=40×20=800m,OB=40×15=600m.在直角△OAB中,AB==1000米.故答案为:1000米.22.解:在Rt△ABC中,AB=5m,BC=3m,根据勾股定理得AC==4米,Rt△CDE中,ED=AB=5m,CD=BC+DB=3+1=4米,根据勾股定理得CE==3,所以AE=AC﹣CE=1米,即梯子顶端下滑了1m.三.解答题23.解:如图所示:24.解:∵AB=15,AD=12,BD=9,∴AD2+BD2=AB2,∴△ABD是直角三角形,AD⊥BC,在Rt△ADC中,DC==5,则BC=BD+DC=14.当C′在线段BD上时,BC′=9﹣5=4,综上所述,BC的长为14或4.25.解:(1)如图所示,连接BE,∵D是AB边的中点,DE⊥AB于点D,∴DE垂直平分AB,∴AE=BE,又∵AE2﹣CE2=BC2,∴BE2﹣CE2=BC2,∴△BCE是直角三角形,且∠C=90°;(2)Rt△BDE中,BE===10,∴AE=10,设CE=x,则AC=10+x,而AB=2BD=16,Rt△ABC中,BC2=AB2﹣AC2=162﹣(10+x)2,Rt△BCE中,BC2=EB2﹣EC2=102﹣x2,∴162﹣(10+x)2=102﹣x2,解得x=2.8,∴CE=2.8.26.解:∵在Rt△ABC中,AB=BC=3,∠B=90°,∴由勾股定理得:AC2=AB2+BC2=32+32=18,∵CD=,DA=5,∴CD2+AC2=DA2,∴∠ACD=90°,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∴∠BCD=∠ACB+∠ACD=45°+90°=135°.27.解:(1)第一组(a是奇数):9,40,41(答案不唯一);第二组(a是偶数):12,35,37(答案不唯一);(2)当a为奇数时,,;当a为偶数时,,;证明:当a为奇数时,a2+b2=,∴(a,b,c)是“勾股数”.当a为偶数时,a2+b2=∴(a,b,c)是“勾股数”.28.解:(1)11,60,61;(2)后两个数表示为和,∵,,∴.又∵n≥3,且n为奇数,∴由n,,三个数组成的数是勾股数.故答案为:11,60,61.29.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m 在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.。

初二勾股定理练习题电子版

初二勾股定理练习题电子版

初二勾股定理练习题电子版1. 已知直角三角形的两条直角边长分别为3cm和4cm,请问斜边长多少?解答:根据勾股定理,斜边的平方等于两直角边的平方和。

设斜边长为c,根据公式可得:c² = 3² + 4²c² = 9 + 16c² = 25所以,斜边长c为5cm。

2. 在直角三角形ABC中,已知斜边长为10cm,一条直角边长为6cm,请问另一条直角边长多少?解答:同样根据勾股定理,设另一条直角边长为a,可得:a² + 6² = 10²a² + 36 = 100a² = 100 - 36a² = 64所以,另一条直角边长a为8cm。

3. 已知直角三角形的两条直角边分别为5cm和12cm,请问斜边长多少?解答:根据勾股定理,设斜边长为c,可得:c² = 5² + 12²c² = 25 + 144c² = 169所以,斜边长c为13cm。

4. 在直角三角形XYZ中,已知斜边长为15cm,一条直角边长为9cm,请问另一条直角边长多少?解答:根据勾股定理,设另一条直角边长为b,可得:b² + 9² = 15²b² + 81 = 225b² = 225 - 81b² = 144所以,另一条直角边长b为12cm。

5. 若直角三角形的两条直角边分别为xcm和ycm,斜边长为zcm,根据勾股定理,我们可以得到一个关系式,即x² + y² = z²。

请用这个关系式回答以下问题:(1) 如果x=5cm,y=12cm,求z的值。

解答:根据关系式x² + y² = z²,代入x、y的值可得:5² + 12² = z²25 + 144 = z²169 = z²所以,z的值为13cm。

初二上册数学第一章勾股定理练习题及答案

初二上册数学第一章勾股定理练习题及答案
二、选择题(每小题3分,共15分)
6. 在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( )
A. 5、4、3、 B. 13、12、5 C. 10、8、6 D. 26、24、10
7.如图,在同一平面上把三边为BC=3,AC=4、AB=5的三角形沿最长边AB翻折后得到△ABC′,则CC′的长等于( )
处的食物,需要爬行的最短路程大约( )
A. 10cm B. 12cm C. 19cm D. 20cm
三、 解答题 (每小题10分, 共50分)
21. 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)
22. 如图, 在△ABC中, AD⊥BC于D,AB=3,BD=2,DC=1, 求AC2的值.
A. 15° B. 30° C. 45° D. 60°
19. 在△ABC中,AB=12cm,BC=16cm,,AC=20cm,,则△ABC的面积是( )
A. 96cm2 B. 120cm2 C. 160cm2 D. 200cm2
20. 如图:有一圆柱,它的高等于8cm,底面直径等于4cm( )
在圆柱下底面的 点有一只蚂蚁,它想吃到上底面与 相对的 点
A. 4 B. 8 C. 10 D. 12
12. 小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )
A. 小丰认为指的是屏幕的长度
B. 小丰的妈妈认为指的是屏幕的宽度
C. 小丰的爸爸认为指的是屏幕的周长
D. 售货员认为指的是屏幕对角线的长度
13. 如图中字母A所代表的正方形的面积为( )
25. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积.

八年级数学 第一单元勾股定理练习题 试题

八年级数学 第一单元勾股定理练习题 试题

轧东卡州北占业市传业学校大田县第四八年级数学 第一单元勾股定理练习题一、课堂小测〔一〕填空题1、要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯 ____米。

2、如图:在等腰△ABC 中,AB=AC=13,BC=1O,那么高AD 的长为__________3、在Rt △ABC 中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,那么这个三角形三边长分别__________4、直角三角形的两直角边分别为5、12,那么斜边上的高为__________5、如图,在正方形ABCD 中,对角线为22,那么正方形边长为 。

〔二〕选择题6、以下各组数中以a ,b,c 为边的三角形不是Rt△的是 〔 〕 A 、a=2,b=3,c=4B 、a=7,b=24,c=25C 、a=6,b=8,c=107、如图:a ,b ,c 表示以直角三角形三边为边长的正方形的面积 那么以下结论正确的选项是 ( )A. a 2 + b 2=c 2B. ab=cC. a+b=cD. a+b=c 28、,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,那么△ABE 的面积为〔 〕A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 29、在△ABC 中,AB=2k ,AC=2k-1,BC=3,当k=__________时,∠C=90° A 、3 B 、4 C 、5D 、10、在△ABC 中,∠A=90°,∠A 、∠B 、∠C 的对边长分别为a 、b 、c ,那么以下结论错误的选项是〔 〕 〔A 〕a 2+b 2=c 2〔B 〕b 2+c 2=a 2〔C 〕a 2-b 2=c 2〔D 〕a 2-c 2=b 22、观察以下各式,你有什么发现?32=4+5,52=12+13,72=24+25 92=40+41……这到底是巧合,还是有什么规律蕴涵其中呢?ACDBDCB A第8题图〔1〕填空:132= +〔2〕请写出你发现的规律:〔3〕结合勾股定理有关知识,说明你的结论的正确性。

2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合练习题(附答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合练习题(附答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合练习题(附答案)一.选择题1.在△ABC中,已知AB=1,AC=2,要使∠B是直角,则BC的长度是()A.1B.C.D.2.在△ABC中,∠A所对的边为a,∠B所对的边为b,∠C所对的边为c,下列选项中不能判定△ABC为直角三角形的是()A.a2+b2=c2B.∠A+∠B=∠CC.a=6,b=8,c=10D.∠A:∠B:∠C=3:4:53.如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC上有一点D,且BC=10cm,DC=2cm.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是()cm.A.14B.12C.10D.84.如图,在Rt△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1,S2,S3分别表示这三个正方形的面积,若S1=3,S2=11,则S3=()A.5B.8C.14D.165.如图,有一个正方体盒子,棱长为1cm,一只蚂蚁要从盒底点A沿盒的表面爬到盒顶的点B,蚂蚁爬行的最短路程是()A.cm B.3cm C.cm D.2cm6.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为()A.2B.4C.8D.167.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm8.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积是()A.48B.20C.24D.609.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A.23B.24C.25D.2610.有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上“生长”出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图所示的形状图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了888次后形成的图形中所有的正方形的面积和是()A.445B.887C.888D.88911.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,如果大正方形的面积为16,直角三角形的面积为3,直角三角形的两直角边分别为a 和b,那么(a+b)2的值为()A.18B.22C.28D.3612.各组数中,是勾股数的是()A.9,16,25B.0.3,0.4,0.5C.1,,2D.8,15,1713.下列结论中,正确的有()①△ABC的三边长分别为a,b,c,若b2+c2=a2,则△ABC是直角三角形;②在Rt△ABC中,已知两边长分别为6和8,则第三边的长为10;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为1:2:,则该三角形是直角三角形.A.3个B.2个C.1个D.0个14.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若ab=8,大正方形的边长为5,则小正方形的边长为()A.1B.2C.3D.415.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm二.填空题16.如图,在Rt△ABC中,∠BCA=90°,AC=10,BC=24,分别以它的三边为直径作三个半圆,则阴影部分面积为.17.如图,△ABC的顶点在正方形网格的格点上,若每个小正方形的边长为1,则BC边上的高为.18.“赵爽弦图”是我国古代数学的骄傲,它巧妙利用面积关系证明了勾股定理.如图所示的“弦图”,是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较短直角边长为a,较长直角边长为b.若ab=6,小正方形的面积为9,则大正方形的面积为.19.直角三角形两直角边长分别为5和12,则它斜边上的高为.20.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=9,两正方形的面积和S1+S2=51,则图中阴影部分面积为.三.解答题21.如图,旗绳AC自由下垂时,比旗杆AB长2米,如果将旗绳斜拉直,下端在地面上,距旗杆底部的距离BC=6米,求旗杆AB的高度.22.如图,有一台环卫车沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,环卫车周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若环卫车的行驶速度为每分钟50米,环卫车噪声影响该学校持续的时间有多少分钟?23.我校要对如图所示的一块地进行绿化,已知AD=8米,CD=6米,AD⊥CD,AB=26米,BC=24米,求这块地的面积.24.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C处,过了2秒后,小汽车行驶到B处,测得小汽车与车速检测仪间距离为50米,(1)求BC的长;(2)这辆小汽车超速了吗?26.(1)如图1,长方体的长为4cm、宽为3cm,高为12cm,现有一只蚂蚁从点A处沿长体表面爬到点G处,求它爬行的最短路程;(2)如图2,将题中长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处,求蚂蚁吃到饭粒需要爬行的最短路程是多少?27.做4个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,再做一个边长为c的正方形,把它们按如图的方式拼成正方形,请用这个图证明勾股定理.28.为了积极宣传防疫知识,某地政府采用了移动车进行广播.如图,小明家在一条笔直的公路MN的一侧点A处,且到公路MN的距离AB为600m.若广播车周围1000m以内都能听到广播宣传,则当广播车以250m/min的速度在公路MN上沿MN方向行驶时,在小明家是否能听到广播宣传?若能,请求出在小明家共能听到多长时间的广播宣传.29.如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为ts.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.30.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)参考答案一.选择题1.解:∵∠B是直角,故AC为△ABC的斜边,AB为直角边,∴BC==.故选:D.2.解:A、∵a2+b2=c2,∴能判定△ABC为直角三角形,故A不符合题意;B、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴能判定△ABC为直角三角形,故B不符合题意;C、∵a2+b2=62+82=100,c2=102=100,∴a2+b2=c2,∴能判定△ABC为直角三角形,故C不符合题意;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=180°×=75°,∴不能判定△ABC为直角三角形,故D符合题意;故选:D.3.解:圆柱侧面展开图如图所示,∵圆柱的底面周长为12cm,∴AB=6cm.∵BD=8cm,在Rt△ABD中,AD2=AB2+BD2,∴AD==10(cm),即蚂蚁从A点出发沿着圆柱体的表面爬行到点D的最短距离是10cm.故选:C.4.解:∵S1=3,S2=11,S1,S2,S3分别表示三个正方形的面积,∴BC2=3,AB2=11,∵∠ACB=90°,∴AC2+BC2=AB2,∴AC2=11﹣3=8,∴S3=AC2=8,故选:B.5.解:如图,将正方体展开,则线段AB即为最短的路线,∵这个正方体的棱长为1cm,∴AB==(cm),∴蚂蚁爬行的最短路程是cm.故选:A.6.解:第一个正方形的面积是64;第二个正方形的面积是32;第三个正方形的面积是16;…第n个正方形的面积是,∴正方形⑤的面积是4.故选:B.7.解:将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故选:C.8.解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB==10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π++﹣=24.故选:C.9.解:∵大正方形的面积是13,小正方形的面积是2,∴m2+n2=13,2mn=13﹣2=11,∴(m+n)2=13+11=24,故选:B.10.解:根据勾股定理以及正方形的面积公式,可以发现:经过n次生长后,所有正方形的面积和等于第一个正方形的面积的(n+1)倍,∴生长n次后,变成的图中所有正方形的面积S n=n+1,∴生长”了888次后形成的图形中所有的正方形的面积和是888+1=889,故选:D.11.解:大正方形的面积为16,得到它的边长为4,即得a2+b2=42=16,ab=3,由题意4×3+(a﹣b)2=16,ab=6,所以(a﹣b)2=4,所以(a+b)2=(a﹣b)2+4ab=4+4×6=28,故选:C.12.解:A、∵62+92≠252,不能组成直角三角形,故本选项不符合题意;B、∵0.32+0.42=0.52,能组成直角三角形,但0.3,0.4,0.5不是正整数,故本选项不符合题意;C、∵12+2=22,能组成直角三角形,但不是正整数,故本选项不符合题意;D、∵82+152=172,能组成直角三角形,故本选项符合题意;故选:D.13.解:①△ABC的三边长分别为a,b,c,若b2+c2=a2,则△ABC是直角三角形,选项说法正确;②在Rt△ABC中,已知两边长分别为6和8,则第三边的长为10或2,选项说法错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,选项说法正确;④若三角形的三边长之比为1:2:,则该三角形是直角三角形,选项说法正确;故选:A.14.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=52,∴(a﹣b)2=25﹣16=9,∵正方形的边长a﹣b>0,∴a﹣b=3,故选:C.15.解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.二.填空题16.解:∵∠ACB=90°.AC=10,BC=24,∴AB==26,∴S阴影=π×()2+π×()2+×BC×AC﹣π×()2=π×()2++×24×10﹣π()2=120,故答案为:120.17.解:设BC边上的高为h,由勾股定理得:BC==,∵S△ABC=BC•h=4×4﹣×4×3﹣×4×2﹣×2×1=5,∴h===2,即BC边上的高为2,故答案为:2.18.解:由题意可知:中间小正方形的边长为:b﹣a,∵每一个直角三角形的面积为:ab=×6=3,∴大正方形的面积为:4×ab+(b﹣a)2=12+9=21,故答案为:21.19.解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.20.解:设AC=m,CF=n,∵AB=9,∴m+n=9,又∵S1+S2=51,∴m2+n2=51,由完全平方公式可得,(m+n)2=m2+2mn+n2,∴92=51+2mn,∴mn=15,∴S阴影部分=mn=,即:阴影部分的面积为.故答案是:.三.解答题21.解:设旗杆的高度为xm,根据题意可得:(x+2)2=x2+62,解得:x=8.答:旗杆AB的高度为8米.22.解:(1)学校C会受噪声影响.理由:如图,过点C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵环卫车周围130m以内为受噪声影响区域,∴学校C会受噪声影响.(2)当EC=130m,FC=130m时,正好影响C学校,∵ED=(m),∴EF=100(m),∵环卫车的行驶速度为每分钟50米,∴100÷50=2(分钟),即环卫车噪声影响该学校持续的时间有2分钟.23.解:如右图所示,连接AC,∵∠D=90°,∴AC2=AD2+CD2,∴AC=10,又∵AC2+BC2=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=×(24×10﹣6×8)=96.答:这块地的面积是96平方米.24.解:(1)在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.25.解:(1)在直角△ABC中,已知AC=30米,AB=50米,且AB为斜边,则BC==40米.答:小汽车在2秒内行驶的距离BC为40米;(2)小汽车在2秒内行驶了40米,所以平均速度为20米/秒,20米/秒=72千米/时,因为72>70,所以这辆小汽车超速了.答:这辆小汽车的平均速度大于70千米/时,故这辆小汽车超速了.26.解:(1)分三种情况:把我们看到的左面与上面组成一个长方形,则蚂蚁吃到饭粒需要爬行的最短路程是AG==(cm);把我们所看到的前面和上面组成一个平面,则蚂蚁吃到饭粒需要爬行的最短路程是AG==(cm);把我们所看到的前面和右面组成一个长方形,则蚂蚁吃到饭粒需要爬行的最短路程是AG ==(cm);<,所以蚂蚁吃到饭粒需要爬行的最短路程是cm;(2)如图,将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+3=12(cm),A′B===13(cm).27.证明:根据题意得,(a+b)2=4×ab+c2整理,得a2+2ab+b2=2ab+c2.所以a2+b2=c2.28.解:小明能听到宣传,理由:∵村庄A到公路MN的距离为600米<1000米,∴小明能听到宣传;如图:假设当宣讲车行驶到P点开始小明听到广播,行驶到Q点小明听不到广播,则AP=AQ=1000米,AB=600米,∴BP=BQ==800(米),∴PQ=1600米,∴小明听到广播的时间为:1600÷250=6.4(分钟),∴他总共能听到6.4分钟的广播.29.解:(1)在Rt△ABC中,由勾股定理得:BC2=AB2﹣AC2=52﹣32=16,∴BC=4cm.(2)由题意得:BP=tcm.①当∠APB为直角时,如图①,点P与点C重合,BP=BC=4cm,∴t=4;②当∠BAP为直角时,如图②,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即52+32+(t﹣4)2=t2,解得t=.答:当△ABP为直角三角形时,t=4或.30.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.。

北师大版八年级数学上册 第一章《勾股定理》复习练习(有简单答案)

北师大版八年级数学上册 第一章《勾股定理》复习练习(有简单答案)

八年级数学第一章《勾股定理》复习练习一、选择题:1、下列每一组数据中的三个数值分别为三角形的三边长,能构成直角三角形的是()A.3,5,6 B.2,4,5 C.6,7,8 D.1.5,2,2.52、如梯子的底端离建筑物5米,那么13 米长的梯子可以达到建筑物的高度是( ) A.12 米 B.13 米 C.14 米 D.15 米3、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米4、若△A B C的三边长 a ,b ,c满足(a-b )2+|a 2+b2-c2|=0,则△ABC是( ) A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形5、如图,有一个圆锥,高为8cm,底面直径为12cm.在圆锥的底边B点处有一只蚂蚁,它想吃掉圆锥顶部A处的食物,则它需要爬行的最短路程是( )A.8cmB.9cmC. 10cmD. 11cm6、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题:7、测得一块三角形稻田的三边长分别是30m,40m,50m,则这块稻田的面积为______.8、《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.9、在一棵树的10米高B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高________米.10、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是 .11、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为 .12、如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为 .三、解答题:13、设一个直角三角形的两条直角边长为a、b,斜边上的高为h,斜边长为c,试判断以c+h,a+b,h为边的三角形的形状14、已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,求BC的长15、已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,求离开港口2小时后,两船相距多少海里?16、已知:如图,在四边形ABCD中,AD∥BC,AB=4,BC=6,CD=5,AD=3.求四边形ABCD的面积.17、如图,小丽荡秋千,秋千架高2.4m,秋千座位离地0.4m,小红荡到最高时,座位离地0.8m.此时小红荡出的水平距离是多少?(荡到秋千架两边的最高点之间的距离)参考答案一、选择题:1、D2、 A3、A4、C5、 C6、 D二、填空题:7、600m28、x2+32=(10﹣x)29、1510、10 cm11、1.512、40m三、解答题:13、直角三角形14、2或215、40海里16、1817、2.4m。

八年级数学上册(第一章 勾股定理)专题练习 试题

八年级数学上册(第一章 勾股定理)专题练习 试题

轧东卡州北占业市传业学校<第一章勾股定理>专题练习〔一〕双解问题例1 一个三角形的两边长是5和12,要使其成为一个直角三角形,那么第三边长应为多少?变式:1.小强家有一块三角形菜地,量得两边长分别为41m,15m,第三边上的高为9m,请你帮小强计算这块菜地的面积.2.在△ABC中,AB=15,AC=13,高CD=12,求三角形的周长.〔二〕折叠问题中利用勾股定理建立方程例2 如图,在长方形ABCD中,AD=10cm,AB=8cm,E是CD上一点,假设以AE为折痕,将△ADE翻折,点D 恰与BC边上的点F重合,求△AEF的面积.变式:1.如图,在△ABC中,AB=3,AC=4,BC=5,现将它折叠,使点B与点C重合,折痕DE的长为.2.长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合,折痕为EF,那么DE= cm.2题 3题3.如下列图,在长方形纸片ABCD中,AB=3,BC=4,现将顶点A、C重合,使纸片折叠压平,设折痕为EF,那么重垒局部△AEF的面积为.例3 把图一的矩形纸片ABCD折叠,B,C两点愉好重合落在AD边上的点P处〔如图二〕,∠MPN=90°,PM=3,PN=4,〔1〕求△PMN的周长;〔2〕求矩形纸片ABCD的面积.变式:如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD的边AB上取一点M,在CD上取一点N ,将纸片沿MN 折叠,使MB 与DN 交于点K ,得到△MNK.〔1〕假设∠1=70°,求∠MKN 的度数.〔2〕△MNK 的面积能否小于12?假设能,求出此时∠1的度数;假设不能,试说明理由. 〔三〕勾股定理逆定理的应用例4 在△ABC 中,a=22mn -,b=2mn ,c=22m n +,其中m, n 是正整数,且m>n ,试判断△ABC 是不是直角三角形.变式:1.以下各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a 〔a>0〕; ⑤m 2-n 2、2mn 、m 2+n 2〔m 、n 为正整数,且m>n 〕其中可以构成直角三角形的有〔 〕 A .5组 B .4组 C .3组 D .2组2. 设一个直角三角形两直角边分别为a 、b ,斜边上的高为h ,斜边长为c ,那么以c h +、a b +、h为边的三角形的形状是 三角形.3.四边形ABCD 中,∠C=90°,AB=4,BC=3,CD=12,AD=13,求四边形ABCD 的面积〔四〕勾股定理及逆定理与图形面积的整体计算例5 直角三角形的周长为92,斜边长为2,求它的面积. 变式:1.如图,△ABC 中,AB=AC ,AD=4,AD 为高,△ABC 的周长为16,S △ABC = .2.假设三角形的三边a 、b 、c 满足a +b =10,ab =18,c =8,那么此三角形是三角形.3..如图,△ABC 中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,那么这个距离是〔 〕A. 1B. 3C. 4D. 5(五)勾股定理及逆定理的综合应用例6 如下列图,一根旗杆在离地面5米处断裂,旗杆顶部落承离杆底12米的A处,旗杆断裂前有多高?变式:现有一长25cm的云梯,架靠在一面墙上,梯子底端离墙7m,那么梯子可以到达墙的高度为m,假设梯子顶端下滑了4m,那么梯子底部在水平方向滑动了m.例7 如下列图,一圆柱油罐底面积的周长为24m,高为6m,一只壁虎从距底面1m的A处爬行到对角B处去捕食,它爬行的最短路线长为多少?例8 如下列图,高速公路的同侧有A、B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,且A1B1=8km.现在在高速公路的A1B1之间设一个出口P,使A、B两个村庄到P的距离之和最短,那么这个最短距离是多少?变式:1. 如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C 5 cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点B,需要爬行的最短距离是多少?2.公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所,AP=160米,假设拖拉机在行驶时,周围100米内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行使时,是否会受到影响?请说明理由,如果受到影响,拖拉机的速度是18千米/小时,那么受影响的时间为多少?例9 如图,四边形ABCD、EFGH、NHMC都是正方形,边长分别为1,2,c;A,B,N,E,F五点在同一直线上,正方形NHMC的面积=变式:如图,四边形ABCD,EFGH,NHMC都是正方形,边长分别为a、b、c,A、B、N、E、F五点在同一直线上,那么c= 〔用含有a,b的代数式表示〕.例10 某公司的大门如下列图,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.8m,宽为1.6m,问这辆车能否通过公司大门?并说明你的理由.变式:,如图△ABC中,∠C=90°,M为AB中点,∠PMQ=90°,求证PQ2=AP2+BQ2.。

(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》测试题(包含答案解析)(4)

(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》测试题(包含答案解析)(4)

一、选择题1.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC =∠BPC =120°时,P 就是△ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD +PE +PF =( )A .6B .()326+C .63D .92.如图,图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若6,5AC BC ==,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是( )A .24B .52C .61D .763.《九章算术》奠定了中国传统数学的基本框架,是中国古代最重要的数学著作之一.其中第九卷《勾股》章节中记载了一道有趣的“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”.意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子底部3尺远,问原处还有多高的竹子?(备注:1丈10=尺)这个问题的答案是( )A .4尺B .4.5尺C .4.55尺D .5尺4.如图,用64个边长为1cm 的小正方形拼成的网格中,点A ,B ,C ,D ,E ,都在格点(小正方形顶点)上,对于线段AB ,AC ,AD ,AE ,长度为无理数的有( ).A .4条B .3条C .2条D .1条5.如图,分别以Rt ABC 的三边为斜边向外作等腰直角三角形,若斜边6AB =,则图中阴影部分的面积为( ).A .6B .12C .16D .18 6.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .457.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC 17cmD .94cm8.我国古代著名的“赵爽弦图”的示意图如图所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图所示“数学风车”,则这个风车的外围周长是( )A .413B .810C .41312+D .81012+ 9.如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为3,大正方形边长为15,则一个直角三角形的面积等于( )A .36B .48C .54D .10810.如图,有一长方体容器,3,2,'4AB BC AA ===,一只蚂蚁沿长方体的表面,从点C 爬到点'A 的最短爬行距离是( )A .29B .41C .7D .53 11.下列各组数是勾股数的是( ) A .4,5,6 B .5,7,9 C .6,8,10 D .10,11,12 12.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .169二、填空题13.如图,ACB △和DCE 都是等腰直角三角形,若90ACB DCE ∠=∠=︒,2AC =,3CE =,则22AD BE +=______.14.如图,折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知CD =1,∠B =30°,则AC 的长是__________.15.“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x 轴,星海街所在的直线为y 轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为4(6,)A -,小明所在位置的坐标为(2,2)B -,则小明与东方之门的实际距离为___________米.16.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.17.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______cm.18.如图是一株美丽的勾股树,其作法为:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作两个正方形,计为②.依此类推…若正方形①的面积为16,则正方形③的面积是_____.19.如图,一架长2.5m的梯子斜靠在垂直的墙AO上,这时AO为2m.如果梯子的顶端A沿墙下滑0.5m,那么梯子的底端B向外移动_________m.20.如图,圆柱的底面半径为24,高为7π,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是_____.三、解答题21.如图,在△ABC 中,∠C=90°,M 是BC 的中点,MD ⊥AB 于D ,求证:222AD AC BD =+.22.如图,在一条东西走向河流的一侧有一村庄,C 河边原有两个取水点,A ,B 其中,AB AC =由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H A H B (、、在同一条直线上),并新修一条路,CH 测得 1.5CB =千米,1.2CH =千米,0.9HB =千米.(1)问CH 是否为从村庄C 到河边的最近路.请通过计算加以说明;(2)求新路CH 比原路CA 少多少千米.23.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中夹,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其底面是边长是10尺的正方形,一根芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?24.如图,小区有一块三角形空地ABC ,为响应沙区创文创卫,美化小区的号召,小区计划将这块三角形空地进行新的规划,过点D 作垂直于AB 的小路DE .经测量,15AB =米,13AC =米,12AD =米,5DC =米.(1)求BD 的长;(2)求小路DE 的长.25.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b ,斜边长为c 的4个直角三角形,请根据图2利用割补的方法验证勾股定理.26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意画出图形,根据勾股定理可得EF ,由过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°就可以得到满足条件的点P ,易得EM =DM =MF =32,根据勾股定理列方程求出PM 、PE 、PF ,继而求出PD 的长即可求解. 【详解】 解:如图:等腰Rt △DEF 中,DE =DF =6,∴22226662EF DE DF =+=+=,过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°,则∠EPF=∠FPD=∠DPE=120°,点P 就是马费点,∴EM =DM =MF =32,设PM =x ,PE =PF=2x ,在Rt △EMP 中,由勾股定理可得:222PM EM PE +=,即()22182x x +=, 解得:16x =,26x =-(负数舍去),即PM =6,∴PE =PF =26故DP =DM -PM =326-,则PD +PE +PF =32646-+=3236+=()326+. 故选B .【点睛】此题主要考查了等腰直角三角形的性质、勾股定理的应用,正确画出做辅助线构造直角三角形进而求出PM 的长是解题关键.2.D解析:D【分析】由题意∠ACB 为直角,AD=6,利用勾股定理求得BD 的长,进一步求得风车的外围周长.【详解】解:依题意∠ACB 为直角,AD=6,∴CD=6+6=12,由勾股定理得,BD 2=BC 2+CD 2,∴BD 2=122+52=169,所以BD=13,所以“数学风车”的周长是:(13+6)×4=76.故选:D.【点睛】本题是勾股定理在实际情况中应用,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.3.C解析:C【分析】竹子折断后刚好构成一直角三角形,设原处还有x尺的竹子,则斜边为(10−x)尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x尺,则斜边为(10−x)尺,根据勾股定理得:x2+32=(10−x)2,解得:x=4.55故选C.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.4.C解析:C【分析】先根据勾股定理求出AB,AC,AD,AE这4条线段的长度,即可得出结果.【详解】根据勾股定理计算得:22+275322+=,34522+=555222+=,8610长度为无理数的有2条,故选:C .【点睛】本题主要考查了勾股定理及无理数.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.5.D解析:D【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【详解】解:在Rt △AHC 中,AC 2=AH 2+HC 2,AH=HC ,∴AC 2=2AH 2,∴2, 同理:22, 在Rt △ABC 中,AB 2=AC 2+BC 2,AB=6, S 阴影=S △AHC +S △BFC +S △AEB =12HC•AH+12CF•BF+12AE•BE , 即22211112224222++=(AC 2+BC 2+AB 2) 14=(AB 2+AB 2) 12=AB 2 2162=⨯ 18=.故选:D .本题考查了勾股定理的知识,难度适中,解题关键是运用勾股定理证明三个等腰直角三角形的面积之间的关系.6.D解析:D【分析】在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果.【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2,在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2,∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2)=AC 2−AB 2=45.故选:D .【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC 2和MB 2是本题的难点,重点还是在于勾股定理的熟练掌握.7.A解析:A【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE 的长求出,再根据勾股定理列方程求解,即可得到CD 的长.【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =,,根据折叠的性质可知:AE=AB=15cm ,∵AC=12cm ,∴CE=AE-AC=3cm ,设CD=xcm ,则BD=9-x=DE ,在Rt △CDE 中,根据勾股定理得CD 2+CE 2=DE 2,即x 2+32=(9-x )2,解得x=4,即CD 长为4cm .故选:A .本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.8.D解析:D【分析】将CB 延长至点D ,使CB BD =,利用勾股定理求出AD 的长,即可求出结果.【详解】解:如图,将CB 延长至点D ,使CB BD =,∵2AC =,26CD BC ==, ∴22436210AD AC CD =+=+=,2103AD BD +=+,一共有4个这样的长度,∴这个风车的外围周长是:()4210381012⨯+=+.故选:D .【点睛】本题考查勾股定理,解题的关键是利用勾股定理求直角三角形边长.9.C解析:C【分析】根据图形的特征先算出4个三角形的面积之和,再除以4,即可求解.【详解】由题意得:15×15-3×3=216,216÷4=54,故选C .【点睛】本题主要考查“赵爽弦图”的相关计算,理清图形中的面积关系,是解题的关键. 10.B解析:B画出展开图,从点C 爬到点'A 的最短爬行距离为'CA 的长度,根据勾股定理即可求解.【详解】解:如图,当从正面和右侧面爬行时,从点C 爬到点'A 的最短爬行距离为'CA 的长度,,在Rt 'CAA 中,5AC AB BC =+=,'4AA =, ∴22''41CA AC AA =+=;如图,当从上面和右侧面爬行时,从点C 爬到点'A 的最短爬行距离为'CA 的长度,,在Rt ''A BD 中,''''7A B A B BB =+=,''2A D =,∴22''53CA A B BC =+=;如图,当从后面和上面爬行时,从点C 爬到点'A 的最短爬行距离为'CA 的长度,,在Rt ''A B C 中,''''6B C B C CC =+=,''3A B =,∴22''''35CA B C A B =+=∵413553故选:B .【点睛】本题考查勾股定理的应用,画出展开图找到最短路径是解题的关键.11.C解析:C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,熟记勾股数的概念是解题的关键.12.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】 解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力.二、填空题13.26【分析】利用手拉手模型证明根据八字形证明角相等进而可证明再利用勾股定理解答即可【详解】和为等腰直角三角形在和中在中在中在中在中在中在中故答案为:【点睛】本题考查了全等三角形的判定和性质等腰直角三 解析:26【分析】利用手拉手模型证明ACE BCD △≌△,根据八字形证明角相等,进而可证明AE BD ⊥,再利用勾股定理解答即可.【详解】ACB △和DCE 为等腰直角三角形∴,,90AC BC CD CE ACB DCE ==∠=∠=︒ACB ACD DCE ACD ∴∠+∠=∠+∠BCD ACE ∴∠=∠∴在ACE △和BCD △中AC BC ACE BCD CD CE =⎧⎪∠=∠⎨⎪=⎩ACE BCD ∴≌CEA CDB ∴∠=∠CDB EOD CEA DCE ∠+=∠+∠90EOD DCE ∴∠=∠=︒AE BD ∴⊥∴在Rt AOD △中,222AD OA OD =+,在Rt OBE 中,222BE OB OE =+, 222222AD BE OA OB OD OE ∴+=+++在Rt AOB 中,222AB OA OB =+,在Rt DOE 中,222DE OD OE =+222222AB DE OA OB OD OE ∴+=+++2222AD BE AB DE ∴+=+在Rt ACB 中,222AB AC BC =+,在Rt DCE 中,222CD E DE C =+2,3,AC BC CD CE ====∴222228,218AB AC DE CE ====2281826AD BE ∴+=+=故答案为:26.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,证ACE BCD △≌△,AE BD ⊥得到直角三角形,再结合勾股定理的运用是解题关键. 14.【分析】由折叠的性质可得CD=DE=1∠C=∠AED=90°由直角三角形的性质可求BD 的长再运用勾股定理可求解【详解】解:∵将△ABC 折叠使点C 落在斜边AB 上的点E 处∴CD=DE=1∠C=∠AED=【分析】由折叠的性质可得CD=DE=1,∠C=∠AED=90°,由直角三角形的性质可求BD 的长,再运用勾股定理可求解.【详解】解:∵将△ABC 折叠使点C 落在斜边AB 上的点E 处,∴CD=DE=1,∠C=∠AED=90°,∵∠B=30°,∴BD=2DE=2,AB=2AC ,∴BC=BD+CD=2+1=3,由勾股定理得,222=+AB BC AC∴4222AC BC AC=+∴3AC=.故答案为:3.【点睛】本题考查了勾股定理与折叠问题,熟练掌握折叠的性质是本题关键.15.【分析】运用勾股定理可求出平面直角坐标系中AB的长度再根据个单位长度表示的实际距离为米求出结果即可【详解】解:如图AC=6-(-2)=8BC=2-(-4)=6∴∴小明与东方之门的实际距离为10×10解析:1000【分析】运用勾股定理可求出平面直角坐标系中AB的长度,再根据1个单位长度表示的实际距离为100米求出结果即可.【详解】解:如图,AC=6-(-2)=8,BC=2-(-4)=6∴2222+AB BC AC=6+8=10∴小明与东方之门的实际距离为10×100=1000(米)故答案为:1000.【点睛】此题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解答此题的关键.16.【分析】设在中利用勾股定理求出x值即可得到AC和CD的长再求出AB 的长再用勾股定理求出BC的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌1【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =, ∴2AB =,∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.17.13【分析】如图将容器侧面展开建立A 关于的对称点根据两点之间线段最短可知的长度即为所求【详解】将圆柱沿A 所在的高剪开展平如图所示则作A 关于的对称点连接则此时线段即为蚂蚁走的最短路径过B 作于点则在中由 解析:13【分析】如图,将容器侧面展开,建立A 关于MM '的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】将圆柱沿A 所在的高剪开,展平如图所示,则10cm MM NN '='=,作A 关于MM '的对称点A ',连接A B ',则此时线段A B '即为蚂蚁走的最短路径,过B 作BD A A ⊥'于点D ,则5,''123312cm BD NE cm A D MN A M BE ===+-=+-=,在Rt A BD '中,由勾股定理得13cm A B '==,故答案为:13.【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理的应用等,正确利用侧面展开图、熟练运用相关知识是解题的关键.18.【分析】根据勾股定理可得两条直角边的平方和等于斜边的平方即第①个正方形的面积=第②个正方形面积的两倍;同理第③个正方形面积是第②个正方形面积的一半依此类推即可解答【详解】解:第①个正方形的面积为16 解析:【分析】根据勾股定理可得两条直角边的平方和等于斜边的平方,即第①个正方形的面积=第②个正方形面积的两倍;同理,第③个正方形面积是第②个正方形面积的一半,依此类推即可解答.【详解】解:第①个正方形的面积为16,由分析可知:第②个正方形的面积为8,第③个正方形的面积为4,故答案为:4.【点睛】本题是图形类的变化规律题,考查了勾股定理与面积的关系及等腰直角三角形的性质,熟练掌握勾股定理是解答本题的关键.19.5【分析】由题意先根据勾股定理求出OB的长再根据梯子的长度不变求出OD的长根据BD=OD-OB即可得出结论【详解】解:∵Rt△OAB中AB=25mAO=2m∴;同理Rt△OCD中∵CD=25mOC=解析:5【分析】由题意先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.【详解】解:∵Rt△OAB中,AB=2.5m,AO=2m,∴2222--=.=;OB AB AO m252 1.5同理,Rt△OCD中,∵CD=2.5m,OC=2-0.5=1.5m,∴222225152OD CD OC m =--=..=,∴BD=OD-OB=2-1.5=0.5(m ).答:梯子底端B 向外移了0.5米.故答案为:0.5.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,解题的关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.20.25π【分析】沿过A 点和过B 点的母线剪开展成平面连接AB 则AB 的长是蚂蚁在圆柱表面从A 点爬到B 点的最短路程求出AC 和BC 的长根据勾股定理求出斜边AB 即可【详解】解:如图所示:沿过A 点和过B 点的母线剪解析:25π【分析】沿过A 点和过B 点的母线剪开,展成平面,连接AB ,则AB 的长是蚂蚁在圆柱表面从A 点爬到B 点的最短路程,求出AC 和BC 的长,根据勾股定理求出斜边AB 即可.【详解】解:如图所示:沿过A 点和过B 点的母线剪开,展成平面,连接AB ,则AB 的长是蚂蚁在圆柱表面从A 点爬到B 点的最短路程,AC =12×2π×24=24π,∠C =90°,BC =7π, 由勾股定理得:AB =()()2222274AC BC ππ+=+=25π.故答案为:25π.【点睛】考核知识点:勾股定理.把问题转化为求线段长度是关键.三、解答题21.见解析【分析】连接AM 得到三个直角三角形,运用勾股定理分别表示出AD²、AM²、BM²进行代换就可以最后得到所要证明的结果.【详解】证明:连接MA ,∵MD⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M为BC中点,∴BM=MC.∴AD2=AC2+BD2【点睛】本题考查了勾股定理,三次运用勾股定理进行代换计算即可求出结果,另外准确作出辅助线也是正确解出的重要因素.22.(1)是,理由见解析;(2)0.05千米【分析】(1)根据勾股定理的逆定理验证△CHB为直角三角形,进而得到CH⊥AB,再根据点到直线的距离垂线段最短即可解答;(2)在△ACH中根据勾股定理解答即可.【详解】解:(1)是,理由如下:在△CHB中,∵CH2+BH2=1.22+0.92=2.25=1.52=BC2,即CH2+BH2=BC2,∴△CHB为直角三角形,且∠CHB=90°,∴CH⊥AB,由点到直线的距离垂线段最短可知,CH是从村庄C到河边AB的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x-0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x-0.9)2+1.22,解得x=1.25,即AC=1.25,故AC-CH=1.25-1.2=0.05(千米)答:新路CH比原路CA少0.05千米.【点睛】此题考查勾股定理及勾股定理的逆定理的应用,熟练掌握勾股定理及逆定理是解决本题的关键.23.水深12尺,芦苇长13尺【分析】依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,利用勾股定理求出x 的值即可得到答案.【详解】解:依题意画出图形,如下图,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt △ACB '中,52+(x -1)2=x 2,解得:x =13,即水深12尺,芦苇长13尺.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.24.(1)9米;(2)365米. 【分析】(1)先由13125AC AD CD ===,,,证明90,ADC ∠=︒ 可得90,ADB ∠=︒ 再由勾股定理可求BD 的长;(2)由,,DE AB AD BC ⊥⊥ 可得,AB DE AD BD =代入数据从而可得答案.【详解】解:(1)13125AC AD CD ===,,, 22222212516913,AD CD AC ∴+=+===90ADC ∴∠=︒,90ADB ∴∠=︒,15AB =,22221512273819.BD AB AD ∴=-=-⨯==BD ∴为9米.(2),,DE AB AD BC ⊥⊥11,22ABD S AB DE AD BD ∴== ,AB DE AD BD ∴= 15129DE ∴=⨯,36.5DE ∴=DE ∴为365米. 【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,利用等面积法求解直角三角形斜边上的高,掌握以上知识是解题的关键.25.见解析【分析】根据总面积=以c 为边的正方形的面积+2个直角边长为,a b 的三角形的面积=以b 为上底、(a+b)为下底、高为b 的梯形的面积+以a 为上底、(a+b)为下底、高为a 的梯形的面积,据此列式求解.【详解】证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键. 26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。

八年级数学第一章《勾股定理》练习题

八年级数学第一章《勾股定理》练习题

八年级数学第一章?勾股定理?练习题一、选择题〔12×3′=36′〕1.一个Rt△的两边长分别为3和4,那么第三边长的平方是〔〕A、25B、14C、7D、7或252.以下各组数中,以a,b,c为边的三角形不是Rt△的是〔〕A、a=1.5,b=2,c=3B、a=7,b=24,c=25C、a=6,b=8,c=10D、a=3,b=4,c=53.假设线段a,b,c组成Rt△,那么它们的比为〔〕A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶74.Rt△一直角边的长为11,另两边为自然数,那么Rt△的周长为〔〕A、121B、120C、132D、不能确定5.如果Rt△两直角边的比为5∶12,那么斜边上的高与斜边的比为〔〕A、60∶13B、5∶12C、12∶13D、60∶1696.如果Rt△的两直角边长分别为n2-1,2n〔n>1〕,那么它的斜边长是〔〕A、2nB、n+1C、n2-1D、n2+17.Rt△ABC中,∠C=90°,假设a+b=14cm,c=10cm,那么Rt△ABC的面积是〔〕A、24cm2B、36cm2C、48cm2D、60cm28.等腰三角形底边上的高为8,周长为32,那么三角形的面积为〔〕A、56B、48C、40D、329.三角形的三边长为〔a+b〕2=c2+2ab,那么这个三角形是()A. 等边三角形;B. 钝角三角形;C. 直角三角形;D. 锐角三角形.10.某市在旧城改造中,方案在市内一块如下列图的三角形空地上种植草皮以美化环境,这种草皮每平方米售价a元,那么购置这种草皮至少需要〔〕A、450a元B、225a 元C、150a元D、300a元11.,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,那么△ABE的面积为〔〕A、6cm2B、8cm2C、10cm2D、12cm212.,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,那么两船相距〔〕A、25海里B、30海里C、35海里D、40海里二、填空题〔8×3′=24′〕13.在Rt△ABC中,∠C=90°,①假设a=5,b=12,那么c=___________;②假设a=15,c=25,那么b=___________;③假设c=61,b=60,那么a=__________;④假设a∶b=3∶4,c=10那么SRt△ABC=________。

北师大版八年级上册数学第一章 勾股定理 单元练习

北师大版八年级上册数学第一章 勾股定理 单元练习

第一章勾股定理一、选择题1. 以下列各组数为边长,能构成直角三角形的是( )A.√3,√5,2B. 1,2,√7C. 1,√2,√3D. 4,5,62. 若Rt△ABC 的两边长为5和12,则第三边长为( )A. 13B. 26C.√ 119D. 13 或√1193. 下列条件中,能判定△ABC为直角三角形的是( )A. ∠A=30°B. ∠B+ ∠C=120°C. ∠A: ∠B: ∠C=1:1:2D.AB=AC=1,BC=√34. 如图,将一根长20cm 的铅笔放入底面直径为9cm, 高为12cm 的圆柱形笔筒中,设铅笔露在笔筒外面的长度为xcm, 则x 的最小值是( )A. 5B.7C. 12D. 135. 如图,在直角△ABC 中,AB=9,BC=6, ∠B=90°, 将△ABC折叠,使A点与BC的中点D 重合,折痕为MN, 则线段AN 的长为( )A.6B. 5C. 4D.36. 如图,有一个绳索拉直的木马秋千,绳索AB 的长度为5米.若将它往水平方向向前推进3米(即DE=3米),且绳索保持拉直的状态,则此时木马上升的高度为( )A.1 米B.√2米C.2 米D. 4 米7. 如图,长方体的高为9dm, 底面是边长为6dm 的正方形,一只蚂蚁从顶点A开始爬向顶点B, 那么它爬行的最短路程为( )A. 10dmB. 12dmC. 15dmD.20dm8. 如图,AB, BC, CD, DE 是四根长度为5cm 的火柴棒,点A,C,E 共线,CD ⊥BC, 若AC=6cm, 则线段CE 的长度是( )A. 6cmB. 8cmC.6√2cmD.8√2cm二、填空题9. 三角形的三边之比为3:4;5,周长为36,则它的面积是10. 如图,四边形ABCD, 连接BD,AB ⊥AD,CE ⊥BD,AB=CE,BD=CD. 若AD=5,CD=7, 则BE=11. 已知如图:小正方形边长为1,连接小正方形的三个顶点,可得△ABC, 则△ABC的周长为·12. 如图,校园内有一块长方形草地,为了满足人们的多样化品求,在草地内拐角位置开出了一条路,走此路可以省m 的路.13. 如图,BD 是△ABC 的角平分线,AB=15,BC=9,AC=12, 则BD的长为·三、解答题14. 在△ABC中,D 是BC 上一点,AC=10,CD=6,AD=8,AB=17, 求BC的长.15. 如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C 处吹折,竹子的顶端A 刚好触地,且与竹子底端的距离AB 是4米.求竹子折断处与根部的距离CB.16. 如图,已知在Rt△ABC 中,∠ACB=90°,AC=9,BC=12,AB点E, 连结AE, 求BE 的长.的垂直平分线交AB 于点D, 交 BC 于17. 如图,在Rt△ABC中,∠B=90°,AB=9,BC=12,D使点B 恰好落在边AC上的点B 处,求DB 的长度.为BC上一点,连接AD, 将△ABC沿AD折叠,18. 已知,如图,在△ABC 中, D 是BC 的中点, DE⊥BC, 垂足为D, 交AB 于点E, 且BE²-EA²= AC²,(1)求证:∠A=90°, (2)若DE=3,BD=4,求AE 的长.参考答案1. C2. D3. C4. A5. B6.A7. C8.B9. 5410.211.2 √5+√212.213.14. 解:∵CD=6,AD=8,∴CD²+AD²=6²+8²=100,∵AC²=10²=100,∴CD²+AD²=AC²,∴∠ADC=90°,∴∠ADB=90°,∴BD=√AB²-AD2=√ 172-82=15,∴BC=BD+CD=15+6=21.15. 解:由题意知BC+AC=8, ∠CBA=90°,∴设BC 长为x 米,则AC长为 ( 8 -x) 米,∴在Rt△CBA 中,有BC²+AB²=AC²,即:x²+16=(8-x)²,解得:x =3,∴竹子折断处C 与根部的距离CB 为3 米. 16. 解:在Rt△ABC 中,由勾股定理得,AB=√AC²+BC2=√9²+122=15,∵DE 垂直平分线AB,∴AE=BE,设BE=AE=x, 则 CE=12-x, 在Rt △ACE 中,由勾股定理得, AE²=AC²+CE², 即x²=9²+(12-x)², 解得 ,即 BE 的长17. 解:由折叠的性质可得 AB′=AB=9,∴∠CB'D=180°- ∠AB'D=90°∵∠B=90°,AB=9,BC=12, ∴AC=√AB²+BC2=15,∴B'C=AC-AB′=6,DB′=DB=9,∠AB'D= ∠B=90°,设 DB'=DB=x,在直角三角形 B'CD ∴(12-x)²=x²+6²,解得 ,则 DC=BC-BD=12-x,中 : CD²=DB²+B'c²,18. (1)证明:连接CE, 如图,∵D 是BC 的中点, DE ⊥BC,∴CE=BE, ∵BE²-EA²=AC²,∴CE²-EA²=AC²,∴EA²+AC²=CE²,∴△CAE是直角三角形,即∠A=90°;(2)解:∵DE=3,BD=4,∴BE=√DE2+BD2=5=CE,∴AC²=EC²-AE²=25-EA²,∵BC=2BD=8,∴在Rt△BAC中由勾股定理可得:BC²-BA²=64-(5+EA)²=AC², :64- (5+AE)²=25-EA²,解得。

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试(答案解析)

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试(答案解析)

一、选择题1.如图是由4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,大正方形面积为48,小正方形面积为6,若用x ,y 表示直角三角形的两直角边长(x>y ),则()2x y +的值为( )A .60B .79C .84D .902.如图,动点P 从点A 出发,沿着圆柱的侧面移动到BC 的中点S ,若8BC =,点P 移动的最短距离为5,则圆柱的底面周长为( )A .6B .4πC .8D .10 3.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有( )A .1 条B .2条C .3条D .4条 4.下列各组数中,不能作为直角三角形的三边长的是( ) A .1,23B .3,4,5 C .5,12,13 D 5,7,32 5.如图,已知正方体纸盒的高为1,已知一只蚂蚁从其中一个顶点A ,沿着纸盒的外部表面爬行至另一个顶点B ,则蚂蚁爬行的最短距离是( )A .3B .2C .5D .21+ 6.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D .122CD BC AB =+ 7.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC 17cmD .94cm 8.在Rt ABC 中,90C ∠=︒,且4c =,若3a =,那么b 的值是( ) A .1 B .5 C 7 D 59.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A .73厘米B .10厘米C .82厘米D .8厘米 10.在Rt △ABC 中,∠ACB =90°,AC =BC =1.点Q 在直线BC 上,且AQ =2,则线段BQ 的长为( )A .3B .5C .31+或31-D .51+或51- 11.如图,在矩形OABC 中,点B 的坐标是(2,5),则,A C 两点间的距离是( )A .26B .33C .29D .512.如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为3,大正方形边长为15,则一个直角三角形的面积等于( )A .36B .48C .54D .108二、填空题13.将五个边长为2的正方形按如图所示放置,若A ,B ,C ,D 四点恰好在圆上,则这个圆的面积为________.(结果保留π)14.已知ABC 中,90C ∠=︒,2cm,6cm AB AC BC =+=,则ABC 的面积为_______. 15.已知一个直角三角形的两边长分别为3和4,则斜边上的高是_________. 16.如图,长方体的长5BE cm =,宽3AB cm =,高6BC cm =,一只小蚂蚁从长方体表面由A 点爬到D 点去吃食物,则小蚂蚁走的最短路程是__________cm .17.在Rt△ABC中,∠C=90°,如果AB=15,AC=12,那么Rt△ABC的面积是_____.18.如图,一个蚂蚁要在一个长、宽、高分别为2、3、1分米的长方体的表面从A点爬到B点,那么最短的路径是_______________分米.(结果保留根号)19.直角三角形的两边长分别为5和3,该三角形的第三边的长为________.20.有两根木棒,分别长6cm、5cm,要再在7cm的木棒上取一段,用这三根木棒为边做成直角三角形,则第三根木棒要取的长度是__________.三、解答题21.如图,在△ABC中,∠ABC的角平分线与外角∠ACD的角平分线相交于点E.(1)设∠A=α,用含α的代数式表示∠E的度数;(2)若EC∥AB,AC=4,求线段CE的长;(3)在(2)的条件下,过点C作∠ACB的角平分线交BE于点F,若CF=3,求边AB的长.22.如图,是一块四边形绿地的示意图,其中AB长为24米,BC长15米,CD长为20米,DA长7米,∠C=90°,求绿地ABCD的面积.23.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求AB的长.24.如图,在△ABC 中,∠B=30°,∠C=45°,AC=22.求 BC 边上的高及△ABC 的面积.25.如图,在△ABC中,AD⊥BC于点D,且AC+AD=32,BD=5,CD=16,试确定AB的长.26.如图,在锐角△ABC中,AD⊥BC于点D,点E在AD上,DE=DC,BE=AC,点F为BC 的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)求证:△BDE≌△ADC;(2)求证:AC⊥MC;(3)若AC=m,则点A、点M之间的距离为(用含m的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据勾股定理流出方程,进而利用完全平方公式解答即可.【详解】解:∵大正方形的边长是直角三角形的斜边长,∴根据勾股定理可得:2248x y +=,根据小正方形面积可得()26x y -=,∴2xy +6=48,∴2xy =42,则()222290x y x y xy +=++=,故选:D .【点睛】本题考查勾股定理、完全平方公式,解题的关键是利用方程的思想解决问题,学会整体恒等变形的思想. 2.A解析:A【分析】根据圆柱的侧面展开图,利用勾股定理求出AB 即可求解.【详解】解:圆柱的侧面展开图如图,点P 移动的最短距离为AS=5,根据题意,BS=12BC=4,∠ABS=90°, ∴AB=22AS BS -=2254-=3,∴圆柱的底面周长为2AB=6, 故选:A .【点睛】本题考查圆柱的侧面展开图、最短路径问题、勾股定理,熟练掌握圆柱的侧面展开图,得出点P 移动的最短距离是AS 是解答的关键.3.B解析:B【分析】由勾股定理求出a 、b 、c 、d ,即可得出结果.【详解】 ∵221417+=22345+=,223213+=d=2,∴长度是无理数的线段有2条,故选B .【点睛】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.4.D解析:D【分析】根据勾股定理的逆定理分别进行判断,即可得出结论.【详解】解:A 、∵2221(3)42+==,∴1,2,3能作为直角三角形的三边长.故此选项不符合题意;B 、∵22234255+==,∴3,4,5能作为直角三角形的三边长.故此选项不符合题意;C 、∵22251216913+==,∴5,12,13能作为直角三角形的三边长.故此选项不符合题意;D 、∵22(5)(7)12+=,23218=(),1218≠,∴5,7,32不能作为直角三角形的三边长.故此选项符合题意.故选:D .【点睛】本题考查了勾股定理的逆定理的应用,掌握勾股定理逆定理用法是解题的关键. 5.C解析:C【分析】从正方体外部可分三类走法直接走AB 对角线,先走折线AD-DB ,或走三条棱,求出其长度,比较大小即可【详解】方法一:走两个正方形两接的面展开成日字形的对角线在三角形ABC 中,由勾股定理AB=2222AC +BC =2+1=5;方法二:走一面折线AD-BD ,由勾股定理221+1=22+1;方法三折线AE-ED-DB 即AE+ED+DB=3;在正方体外部表面走有这三类走法,∵5<9,∴53<, ∵2>1, ∴21>,∴222>,∴22+32+3>,∴()22+15>, ∴2+15>,蚂蚁爬行的最短距离是5.故选择:C .【点睛】本题考查蚂蚁爬行最短路径问题是考查勾股定理的应用,掌握勾股定理的应用方法,会利用图形分析行走路径是解题关键.6.B解析:B【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【详解】解:如图,连接BD 、AD ,过点D 作DM ⊥BC 于M ,DN ⊥CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∴60BAC ∠=︒.故此选项说法正确;B 、∵DM ⊥BC ,DN ⊥CA∴∠DNC =∠DMC =90°,∵CD 平分∠ACB ,∴∠DCN =∠DCM =45°.∴∠DCN =∠CDN =45°.∴CN=DN .则△CDN 是等腰直角三角形.同理可证:△CDM 也是等腰直角三角形,∴222DN CN DN +=.222DM CM DM +,∴DM=DN= CM=CN ,∠MDN =90°.∵DE 垂直平分AB ,∴BD=AD ,AB=2BE .∴Rt △BDM ≌△ADN ,∴∠BDM=∠AND .∴∠BDM+∠ADM =∠AND+∠ADM =∠MDN .∴∠ADB=90°.∴=.即.∵在Rt △AND 中,AD 是斜边,DN 是直角边,∴AD >DN.∴2BE >CD .故此选项说法错误.C 、∵BD=AD ,∠ADB=90°,∴△ABD 是等腰直角三角形.∴DE=12AB . 在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∴AC=12AB . ∴DE=AC .故此选项说法正确.D 、∵Rt △BDM ≌△ADN ,∴BM=AN .∴CN=AC+AN=AC+BM=CM .∴BC=BM+CM=AC+2BM .∵, ∴.∵AC=12AB , ∴12AB+BC .故此选项说法正确. 故选:B .【点睛】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.7.A解析:A【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE的长求出,再根据勾股定理列方程求解,即可得到CD 的长.【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =,,根据折叠的性质可知:AE=AB=15cm ,∵AC=12cm ,∴CE=AE-AC=3cm ,设CD=xcm ,则BD=9-x=DE ,在Rt △CDE 中,根据勾股定理得CD 2+CE 2=DE 2,即x 2+32=(9-x )2,解得x=4,即CD 长为4cm .故选:A .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.8.C解析:C【分析】根据勾股定理计算,即可得到答案.【详解】在Rt △ABC 中,∠C =90°,由勾股定理得,b =故选:C .【点睛】本题考查的是勾股定理,关键是掌握“如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2”.9.B解析:B【分析】把圆柱沿着点A 所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A 所在母线展开,如图所示,作点A 的对称点B ,连接PB ,则PB 为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【点睛】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.10.C解析:C【分析】分Q 在CB 延长线上和Q 在BC 延长线上两种情况分类讨论,求出CQ 长,根据线段的和差关系即可求解.【详解】解:如图1,当Q 在CB 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ-BC=31-;如图2,当Q 在BC 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ+BC=31+;∴BQ11.故选:C【点睛】本题考查了勾股定理,根据题意画出图形,分类讨论是解题关键.11.C解析:C【分析】根据矩形的性质可得OB=AC,根据勾股定理即可求出答案.【详解】在矩形OABC中,OB=AC,∵B(2,5),∴OB==AC OB==故选:C.【点睛】本题考查矩形的性质,解题的关键是熟练运用矩形的性质以及勾股定理.12.C解析:C【分析】根据图形的特征先算出4个三角形的面积之和,再除以4,即可求解.【详解】由题意得:15×15-3×3=216,216÷4=54,故选C.【点睛】本题主要考查“赵爽弦图”的相关计算,理清图形中的面积关系,是解题的关键.二、填空题13.【分析】根据题意得到圆心O的位置设MO=x根据AO2=DO2得到方程求出x得到圆O的半径从而求出面积【详解】解:由题意可得:多个小正方形排成轴对称图形∴圆心O落在对称轴MN上设MO=x∵AO=DO∴解析:130 9π【分析】根据题意得到圆心O 的位置,设MO=x ,根据AO 2=DO 2,得到方程,求出x ,得到圆O 的半径,从而求出面积.【详解】解:由题意可得:多个小正方形排成轴对称图形,∴圆心O 落在对称轴MN 上,设MO=x ,∵AO=DO ,∴AO 2=DO 2,即()2222163x x +=-+,解得:x=113, ∴圆O 的半径为21x +=130, ∴圆O 的面积为2130π⎛⎫ ⎪ ⎪⎝⎭=1309π, 故答案为:1309π.【点睛】本题考查了勾股定理,轴对称的性质,圆的性质,解题的关键是根据半径相等得到方程. 14.cm2【分析】设BC=acmAC=bcm 则a+b=即可得到根据勾股定理得到进而得到根据三角形面积公式即可求解【详解】解:设BC=acmAC=bcm 则a+b=∴即∵∠C=90°∴∴∴cm2故答案为:c解析:12cm 2 【分析】 设BC=acm ,AC=bcm ,则6,即可得到()26a b +=,根据勾股定理得到22=4a b +,进而得到22ab =,根据三角形面积公式即可求解.【详解】解:设BC=acm ,AC=bcm ,则6,∴()26a b +=, 即2226a b ab ++=,∵∠C=90°,∴222=4a b AB +=,∴22ab =, ∴11=22ABC S ab =△cm 2. 故答案为:12cm 2 【点睛】本题考查了完全平方公式,勾股定理等知识,准确掌握两个知识点并建立联系是解题关键.15.或【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3利用勾股定理求得第三边再利用等面积法即可得出斜边上的高【详解】解:分为两种情况:①3和4都是直角边由勾股定理得:第三边长∴斜边上解析:125 【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3.利用勾股定理求得第三边,再利用等面积法即可得出斜边上的高.【详解】解:分为两种情况:①3和4都是直角边,由勾股定理得:第三边长5==∴斜边上的高为341255⨯=; ②斜边是4有一条直角边是3,由勾股定理得:第三边长=,∴斜边上的高为344=;故答案为:125或4. 【点睛】本题考查勾股定理解直角三角形.注意分类讨论和等面积法(在本题中主要用到直角三角形的面积等于两直角边乘积的一半也等于斜边与斜边高的乘积的一半)的运用. 16.10【分析】将长方体展开可分三种情况求出其值最小者即为最短路程【详解】如图①:AD=;如图②:AD=;如图③:AD=;∴AD 的最小值为故答案为:【点睛】本题依据两点之间线段最短考查了长方体的侧面展开解析:10【分析】将长方体展开,可分三种情况,求出其值最小者,即为最短路程.【详解】如图①:AD=22311130+=;如图②:228610010+=;如图③:2295106+=∴AD 的最小值为10.故答案为:10.【点睛】本题依据“两点之间,线段最短”,考查了长方体的侧面展开图,解答时利用勾股定理进行分类讨论是解题的关键.17.54【分析】在Rt △ABC 中利用勾股定理可求出BC 的长度即可解决问题【详解】解:∵在Rt △ABC 中∠C =90°AB =15AC =12∴BC ===9∴S △ABC =×9×12=54故答案为:54【点睛】本解析:54【分析】在Rt △ABC 中,利用勾股定理可求出BC 的长度,即可解决问题.【详解】解:∵在Rt △ABC 中,∠C =90°,AB =15,AC =12,∴BC 22AB AC -221512-=9.∴S △ABC =12×9×12=54 故答案为:54.【点睛】本题考查勾股定理的知识,属于基础题,解题关键是掌握勾股定理的形式.18.【分析】有三种展开方式一种是正面和右侧面展开如图(1)一种是正面和上面展开如图(2)另外一种是底面和右侧面展开如图(3)分别根据勾股定理求AB 的长度即可判断【详解】正面和右侧面展开如图(1)根据勾股 解析:32 【分析】 有三种展开方式,一种是正面和右侧面展开如图(1),一种是正面和上面展开如图(2),另外一种是底面和右侧面展开如图(3),分别根据勾股定理求AB 的长度即可判断.【详解】 正面和右侧面展开如图(1)根据勾股定理()2223126AB =++=;正面和上面展开如图(2)根据勾股定理()2213225AB =++=;底面和右侧面展开如图(3)根据勾股定理()2212332AB =++= ∵322526<<∴最短的路径是32故答案为32【点睛】本题考察了几何图形的展开图形,勾股定理的实际应用,容易漏掉正面和上面的展开图是本题的易错点,在做题的过程中要注意考虑全面.19.或【分析】本题已知直角三角形的两边长但未明确这两条边是直角边还是斜边因此两条边中的较长边5既可以是直角边也可以是斜边所以求第三边的长必须分类讨论即5是斜边或直角边的两种情况然后利用勾股定理求解【详解解析:4【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为x,①若5是直角边,则第三边x是斜边,由勾股定理得:②若5是斜边,则第三边x为直角边,由勾股定理得:所以第三边的长为4故答案为:4【点睛】本题考查勾股定理,熟练掌握勾股定理,并且分情况讨论是解题关键.20.【分析】分2种情况:①是直角边;②是斜边;根据勾股定理求出第三根木棒的长即可求解【详解】解:①是直角边第三根木棒要取的长度是(舍去);②是斜边第三根木棒要取的长度是故答案为:【点睛】考查了勾股定理的【分析】分2种情况:①6cm是直角边;②6cm是斜边;根据勾股定理求出第三根木棒的长即可求解.【详解】解:①6cm是直角边,>(舍去);7cm②6cm是斜边,..【点睛】考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.三、解答题21.(1)12α;(2)4;(3)5625【分析】(1)设∠ABE=∠CBE=x,∠ACE=∠ECD=y,利用三角形的外角的性质,构建方程组求解即可.(2)证明CA=CB=CE,可得结论.(3)如图,连接AF,过点C作CT⊥BE于T.解直角三角形求出EF,BE,BF,再利用相似三角形的性质求解即可.【详解】解:(1)设∠ABE=∠CBE=x,∠ACE=∠ECD=y,则有22y x Ay x E=+∠⎧⎨=+∠⎩,可得∠E=12∠A=12α.(2)∵EC∥AB,∴∠ABE=∠E,∵∠ABC=2∠ABE,∠A=2∠E,∴∠A=∠ABC,∠E=∠CBE,∴CA=CB=4,CE=CB=4.(3)如图,连接AF,过点C作CT⊥BE于T,延长CF交AB于R.∵CF平分∠ACB,CE平分∠ACD,∴∠FCE=12(∠ACB+∠ACD)=90°,∵CF=3,CE=4,∴EF5,∵S△CEF=12•EC•CF=12•EF•CT,∴CT=125,在Rt△BCT中,BT=165,∵CB=CE,CT⊥BE,∴BT=TE,∴BE=2BT=325,∴BF=BE﹣EF=325﹣5=75,∵CA=CB,CF平分∠ACB,∴CR ⊥AB ,BR =AR ,设BR =x ,RF =y , 则有2222227()5(3)4x y x y ⎧+=⎪⎨⎪++=⎩, 解得2825215x y ⎧=⎪⎪⎨⎪=⎪⎩(不符合题意的解已经舍弃). ∴AB =2BR =5625.【点睛】本题考查三角形的外角的性质,平行线的性质,勾股定理解直角三角形等知识,解题的关键是学会利用参数构建方程组解决问题,题目有一定的难度. 22.绿地ABCD 的面积为234平方米.【分析】连接BD ,先根据勾股定理求出BD 的长,再由勾股定理的逆定理判定△ABD 为直角三角形,则四边形ABCD 的面积=直角△BCD 的面积+直角△ABD 的面积.【详解】连接BD .如图所示:∵∠C=90°,BC=15米,CD=20米,∴22BC CD +221520+(米);在△ABD 中,∵BD=25米,AB=24米,DA=7米,242+72=252,即AB 2+BD 2=AD 2,∴△ABD 是直角三角形.∴S 四边形ABCD =S △ABD +S △BCD =12AB•A D+12BC•CD =12×24×7+12×15×20 =84+150=234(平方米);即绿地ABCD 的面积为234平方米.23.【分析】由题意可知三角形CDB 是直角三角形,利用已知数据和勾股定理直接可求出DC 的长,再利用勾股定理求出AD 的长,进而求出AB 的长.【详解】∵CD ⊥AB 于D ,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt △CDB 中,CD 2+BD 2=CB 2,∴CD 2+92=152∴CD=12;在Rt △CDA 中,CD 2+AD 2=AC 2∴122+AD 2=202∴AD=16,∴AB=AD+BD=16+9=25.24.2,.【分析】先根据AD ⊥BC ,∠C=45°得出△ACD 是等腰直角三角形,再由 得出AD 及CD 的长,由∠B=30°求出BD 的长,根据三角形的面积公式即可得出结论.【详解】∵AD ⊥BC,∠C=45°,∴△ACD 是等腰直角三角形,∵AD=CD.∵,∴2AD 2=AC 2,即2AD 2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴,∴,∴SABC =12 BC ⋅AD=12 【点睛】此题考查勾股定理,解题关键在于求出BD 的长.25.13【分析】设AD =x ,则AC =32﹣x ,根据勾股定理可求出x 的值,在直角三角形ABD 中,再利用勾股定理即可求出AB 的长.【详解】解:设AD =x ,则AC =32﹣x ,∵AD ⊥BC 于点D ,∴△ADC 和△ADB 是直角三角形,∵CD =16,∴x 2+162=(32﹣x )2,解得:x =12,∴AD =12,在直角三角形ABD 中,AB =13.【点睛】本题考查了勾股定理解直角三角形,解题的关键是设出未知数,利用勾股定理列出方程求解.26.(1)证明见解析;(2)证明见解析;(3.【分析】(1)先根据垂直的定义可得BDE 和ADC 都是直角三角形,再利用HL 定理证明三角形全等即可;(2)先根据(1)中的全等三角形可得DBE DAC ∠=∠,再根据三角形全等的判定定理与性质可得DBE FCM ∠=∠,从而可得DAC FCM ∠=∠,然后根据角的和差、等量代换即可得证;(3)先根据(2)中的全等三角形可得BE CM =,从而可得CM AC m ==,再在Rt ACM △中,利用勾股定理即可得.【详解】(1)AD BC ⊥,90BDE ADC ∠∴∠==︒,∴BDE 和ADC 都是直角三角形,在BDE 和ADC 中,DE DC BE AC =⎧⎨=⎩, ()BDE ADC HL ∴≅;(2)BDE ADC ≅,DBE DAC ∠=∠∴,点F 为BC 的中点,BF CF ∴=,由对顶角相等得:BFE CFM ∠=∠,在BEF 和CMF 中,BF CF BFE CFM EF MF =⎧⎪∠=∠⎨⎪=⎩,()BEF CMF SAS ∴≅,FBE FCM ∴∠=∠,即DBE FCM ∠=∠,DAC FCM ∠=∠∴, 又在Rt ACD △中,90DAC ACD ∠+∠=︒,90FCM ACD ∴∠+∠=︒,即90ACM ∠=︒,AC MC ∴⊥;(3)如图,连接AM ,BEF CMF ≅,BE CM ∴=,,BE AC AC m ==,CM AC m ∴==,AC MC ⊥,ACM ∴是直角三角形,222AM AC CM m ∴+,即点A 、点M 2m .【点睛】本题考查了直角三角形全等的判定定理与性质、直角三角形的性质、勾股定理等知识点,熟练掌握三角形全等的判定方法是解题关键.。

北师大版八年级数学上册 第一章 勾股定理--动点问题 练习(含答案)

北师大版八年级数学上册 第一章 勾股定理--动点问题  练习(含答案)

《勾股定理--动点问题》一、单选题1.如图,在△ABC 中,AB =6,BC =8,∠B =90°,若P 是AC 上的一个动点,则AP+BP+CP 的最小值是( )A .14.8B .15C .15.2D .162.如图,Rt △ACB 中,∠ACB =90°,AB =25cm ,AC =7cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为ts ,当△APB 为等腰三角形时,t 的值为( )A .62596或252B .252或24或12C .62596或24或12D .62596或252或243.如图,在四边形ABCD 中,∠B =∠D =90°,连接AC ,∠BAC =45°,∠CAD =30°,CD =2,点P 是四边形ABCD 边上的一个动点,若点P 到AC 的距离为3,则点P 的位置有( )A .4处B .3处C .2处D .1处4.如图,在等腰三角形ABC 中,AC =BC =5,AB =8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF =( )A .5B .8C .13D .4.85.已知Rt △BCE 和Rt △ADE 按如图方式摆放,∠A =∠B =90°,A 、E 、B 在一条直线上,AD =3,AE =4,EB =5,BC =12,M 是线段AD 上的动点,N 是线段BC 上的动点,MN 的长度不可能是( )A .9B .12C .14D .16二、填空题6.如图,已知∠AOM=45°,OA=2,点B是射线OM上的一个动点.当△AOB为等腰三角形时,线段OB的长度为 .7.如图,在△ABC中,已知AB=AC=6,BC=8,P是BC边上的一动点(P不与点B、C重合),∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB的长为 .8.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是 .9.如图,在三角形△ABC中,∠A=45°,AB=8,CD为AB边上的高,CD=6,点P为边BC上的一动点,P1,P2分别为点P关于直线AB,AC的对称点,连接P1P2,则线段P1P2长度的取值范围是 .三、解答题10.如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C 点相遇,求BC的长度?11.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A出发沿AB方向以1cm/s 的速度向终点B运动,点Q从点B出发沿BC方向以6cm/s的速度向终点C运动,P,Q两点同时出发,设点P的运动时间为t秒.(1)求BC的长;(2)当t=2时,求P,Q两点之间的距离;(3)当AP=CQ时,求t的值?12.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发,设运动时间为t秒.(1)求BC的长;(2)运动几秒后,△PBQ是等腰三角形;(3)运动过程中,直线PQ能否平分△ABC的周长,若能,求出t的值,若不能,请说明理由.13.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发,以2cm/秒的速度沿BC移动至点C,设运动时间为t秒.(1)求BC的长;(2)在点P的运动过程中,是否存在某个时刻t,使得点P到边AB的距离与点P到点C的距离相等?若存在,求出t的值;若不存在,请说明理由.14.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,同时停止.(1)P、Q出发4秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,出发几秒钟后,△CQB能形成直角三角形?15.某校机器人兴趣小组在如图所示的三角形场地上开展训练.已知:△ABC中,∠C=90°,AB=5,BC=3;机器人从点C出发,沿着△ABC边按C→B→A→C的方向匀速移动到点C停止;机器人移动速度为每秒1个单位,移动至拐角处调整方向需要0.5秒(即在B、A处拐弯时分别用时0.5秒).设机器人所用时间为t秒时,其所在位置用点P表示(机器人大小不计).(1)点C到AB边的距离是 ;(2)是否存在这样的时刻,使△PBC为等腰三角形?若存在,求出t的值;若不存在,请说明理由.16.如图1,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.(1)如图2,过点D作DE⊥AB交CB于点E,连接AE,当AE平分∠CAB时,求CE;(2)如图3,在点D的运动过程中,连接CD,若△ACD为等腰三角形,求AD.17.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C 的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长;(2)当t为几秒时,BP平分∠ABC;(3)问t为何值时,△BCP为等腰三角形?18.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?个单位长度的速度运动.设点P的运动时间为t秒(t>0).(1)求AC的长及斜边AB上的高;(2)①当点P在AC延长线上运动时,CP的长为 ;(用含t的代数式表示)②若点P在∠ABC的角平分线上,则t的值为 ;(3)在整个运动中,直接写出△ABP是等腰三角形时t的值.度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求AC的长.(2)求斜边AB上的高.(3)①当点P在BC上时,PC的长为 .(用含t的代数式表示)②若点P在∠BAC的角平分线上,则t的值为 .(4)在整个运动过程中,直接写出△PBC是等腰三角形时t的值.答案一、单选题1.【思路点拨】利用勾股定理求出AC,根据垂线段最短,求出BP的最小值即可解决问题.【解题过程】解:∵∠B=90°,AB=6,BC=8,∴AC=AB2+BC2=62+82=10,∵AP+BP+PC=BP+AC=BP+10,根据垂线段最短可知,当BP⊥AC时,BP的值最小,最小值BP=AB⋅BCAC =245= 4.8,∴AP+BP+CP的最小值=10+4.8=14.8,故选:A.2.【思路点拨】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【解题过程】解:∵∠C=90°,AB=25cm,AC=7cm,∴BC=24cm.①当BP=BA=25时,∴t=252.②当AB=AP时,BP=2BC=48cm,∴t=24.③当PB=PA时,PB=PA=2t cm,CP=(24﹣2t)cm,AC=7cm,在Rt△ACP中,AP2=AC2+CP2,∴(2t)2=72+(24﹣2t)2,解得t=62596.综上,当△ABP为等腰三角形时,t=252或24或62596,3.【思路点拨】根据勾股定理,可以求得AC、AD、BC和AB的长,然后即可得到点D到AC的距离和点B到AC 的距离,从而可以得到满足条件的点P有几处,本题得以解决.【解题过程】解:∵∠CAD=30°,CD=2,∠D=90°,∴AC=4,AD=AC2−C D2=42−22=23,∴在Rt△ADC中,斜边AC上的高是:AD⋅CDAC =23×24=3,∵AC=4,∠B=90°,∠BAC=45°,∴AB=BC=22,∴在Rt△ABC中,斜边AC上的高是:BC⋅ABAC =22×224=2,∵3<2,点P是四边形ABCD边上的一个动点,点P到AC的距离为3,∴点P的位置在点D处,或者边BC上或者边AB上,即满足条件的点P有3处,故选:B.4.【思路点拨】连接CD,过C点作底边AB上的高CG,根据S△ABC=S△ACD+S△DCB不难求得DE+DF的值.【解题过程】解:连接CD,过C点作底边AB上的高CG,∵AC=BC=5,AB=8,∴BG=4,CG=BC2−B G2=52−42=3,∵S△ABC=S△ACD+S△DCB,∴AB•CG=AC•DE+BC•DF,∴8×3=5×(DE+DF)∴DE+DF=4.8.故选:D.5.【思路点拨】根据已知条件易求AB=9,AD∥BC,再确定MN的最大值及最小值可求出MN的取值范围,进而可求解.【解题过程】解:∵AE=4,EB=5,∴AB=AE+EB=4+5=9,∵∠DAE=∠B=90°,∴∠DAE+∠B=180°,∴AD∥BC,当M点与A点重合,N点与C点重合时,如图,∵∠B=90°,BC=12,∴MN=AB2+BC2=92+122=15;当M点与A点重合,N点与B点重合时,如图,MN=AB=9,∴9≤MN≤15,∴MN的长度不可能是16,故选:D.二、填空题6.【思路点拨】分三种情况,当OB=AB,OA=AB,OA=OB时,由等腰三角形的性质可求出答案.【解题过程】解:当△AOB为等腰三角形时,分三种情况:①如图,OB=AB,∴∠O=∠OAB,∵∠AOM=45°,∴∠ABO=90°,∴OB=1;②如图,OA=OB=2;③如图,OA=AB,∴∠O=∠ABO=45°,∴∠A=90°,∴OB=OA2+AB2=2+2=2.综上所述,OB的长为1或2或2.故答案为:1或2或2.7.【思路点拨】需要分类讨论:①当AP=PD时,易得△ABP≌△PCD.②当AD=PD时,根据等腰三角形的性质,勾股定理以及三角形的面积公式求得答案.③当AD=AP时,点P与点B重合.【解题过程】解:①当AP=PD时,则△ABP≌△PCD,则PC=AB=6,故PB=2.②当AD=PD时,∴∠PAD=∠APD,∵∠B=∠APD=∠C,∴∠PAD=∠C,∴PA=PC,过A作AG⊥BC于G,∴CG=4,∴AG=AC2−C G2=62−42=25,过P作PH⊥AC于H,∴CH=3,设PC=x,∴S△APC=12AG•PC=12AC•PH,∴5x=3×PH,x,∴PH=53∵PC2=PH2+CH2,∴x2=(5x)2+9,3(负值舍去),解得:x=92∴PC=9,2∴PB=7;2③当AD=AP时,点P与点B重合,不合题意..综上所述,PB的长为2或72故答案为:2或7.28.【思路点拨】分为三种情况:①PQ=BP,②BQ=QP,③BQ=BP,由等腰三角形的性质和勾股定理即可求解.【解题过程】解:∵OA=8,OB=6,C点与A点关于直线OB对称,∴BC=AB=42+32=5,分为3种情况:①当PB=PQ时,∵C点与A点关于直线OB对称,∴∠BAO=∠BCO,∵∠BPQ=∠BAO,∴∠BPQ=∠BCO,∵∠APB=∠APQ+∠BPQ=∠BCO+∠CBP,∴∠APQ=∠CBP,在△APQ与△CBP中,{∠QAP=∠PCB∠APQ=∠CBP,QP=PB∴△APQ≌△CBP(AAS),∴PA=BC,此时OP=5﹣4=1;②当BQ=BP时,∠BPQ=∠BQP,∵∠BPQ=∠BAO,∴∠BAO=∠BQP,根据三角形外角性质得:∠BQP>∠BAO,∴这种情况不存在;③当QB=QP时,∠QBP=∠BPQ=∠BAO,∴PB=PA,设OP=x,则PB=PA=4﹣x,在Rt△OBP中,PB2=OP2+OB2,∴(4﹣x)2=x2+32,解得:x=7;8∵点P在AC上,∴点P在点O左边,此时OP=7.8.∴当△PQB为等腰三角形时,OP的长度是1或78故答案为:1或7.89.【思路点拨】如图,连接AP1,AP,AP2,作AH⊥BC于H.证明△P1AP2是等腰直角三角形,推出P1P2=2 PA,求出PA的取值范围即可解决问题.【解题过程】解:如图,连接AP1,AP,AP2,作AH⊥BC于H.∵P1,P2分别为点P关于直线AB,AC的对称点,∴AP=AP1=AP2,∠PAB=∠BAP1,∠PAC=∠CAP2,∵∠BAC=45°,∴∠P1AP2是等腰直角三角形,∴P1P2=2AP2=2PA.∵CD⊥AB,∴∠ADC=90°,∠DAC=∠DCA=45°,∴AD=DC=6,∴AC=62>AB,∵AB=8,∴BD=2,BC=BD2+CD2=4+36=210,∵S△ABC=12•BC•AH=12•AB•CD,∴AH=8×6210=12510,∵12105≤PA≤62,∴2455≤P1P2≤12.故答案为2455≤P1P2≤12.三、解答题10.解:∵点P、Q同时出发,且速度相同,∴BC=CA,设BC=xcm,则CA=xcm,∵OA=36cm∴OC=(36﹣x)cm,∵∠AOB=90°∴OB2+OC2=BC2,∴122+(36﹣x)2=x2,解得:x=20,∴BC=20cm.11.解:(1)在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm,∴BC=AC2−A B2=24cm.(2)如图,连接PQ,BP=7﹣2=5,BQ=6×2=12,在直角△BPQ中,由勾股定理得到:PQ=BP2+BQ2=13(cm);(3)设t秒后,AP=CQ.则t=24﹣6t,.解得 t=247秒,AP=CQ.答:P、Q两点运动24712.解:(1)由勾股定理得,BC=AC2−A B2=252−72=24(cm);(2)∵△PBQ是等腰三角形,∠B=90°,∴BP=BQ,则7﹣1×t=6t,解得t=1,∴运动1秒后,△PBQ是等腰三角形;(3)假设直线PQ能平分△ABC的周长,则BP+BQ=12(AB+BC+AC)=12(7+24+25)=28(cm),则7﹣1×t+6t=28,解得t=215,当t=215时,点Q的运动路程为6×215=25.2>24,∴直线PQ不能平分△ABC的周长.13.解:(1)在Rt△ABC中,由勾股定理得:BC=AB2−A C2=102−62=8(cm);(2)存在,理由如下:如图,当点P恰好运动到∠BAC平分线上时,点P到直线AB的距离与点P到点C的距离相等,由已知可得:BP=2tcm,PC=BC﹣BP=(8﹣2t)cm,连接AP,过点P作PE⊥AB于E,如图所示:则PE=PC=(8﹣2t)cm,在△AEP与△ACP中,{∠PAE=∠PAC∠AEP=∠C=90°AP=AP,∴△AEP≌△ACP(AAS),∴AE=AC=6cm,∴BE=AB﹣AE=10﹣6=4(cm),在Rt△BEP中,由勾股定理得:BP2=BE2+PE2,即(2t)2=42+(8﹣2t)2,解得:t=52,即当t的值为52时,点P到边AB的距离与点P到点C的距离相等.14.解:(1)∵运动时间为4秒,∴BQ=2×4=8(cm),BP=AB﹣AP=16﹣1×4=12(cm),在Rt△PQB中,根据勾股定理得:PQ=BQ2+BP2=82+122=413(cm);(2)设运动时间为t秒,则BQ=2t(cm),BP=(16﹣t)(cm),根据题意得:2t=16﹣t,解得:t=163,即出发163秒钟后,△PQB能形成等腰三角形;(3)当点Q在CA边上,且△CQB形成直角三角形时,过点B作CA的垂线,垂足即为点Q.在Rt△ABC中,根据勾股定理得:AC=AB2+BC2=162+122=20(cm),根据三角形面积公式可得:BQ=AB⋅BCAC =12×1620=485(cm),在Rt△BCQ中,根据勾股定理得:CQ=BC2−B Q2=122−(485)2=365(cm),(12+365)÷2=9.6(秒),当点Q运动到点A时,△CQB也形成直角三角形,(12+20)÷2=16(秒).∴当点Q在边CA上运动时,出发9.6或16秒钟后,△CQB能形成直角三角形.15.解:(1)△ABC中,∠C=90°,∴AB2=AC2+BC2,∵AB=5,BC=3,∵52=AC2+32,∴AC=4,∴点C到AB边的距离=AC⋅BCAB =3×45= 2.4;故答案为:2.4;(2)存在,使△PBC为等腰三角形时,P在AB上或在AC上,当P在AB上时,①BC=BP,如图1,∵BP=t﹣0.5﹣3,∴t﹣0.5﹣3=3,解得:t=6.5;②CB=CP,如图2,过点C作CD⊥AB于D,则BD=PD,由(1)知:CD=2.4,∵BC=3,∴BD=32−2.42=1.8,∴BP=3.6,∴t=3.6+3+0.5=7.1;③PB=CP,如图3,∴∠B=∠PCB,∵∠ACP+∠PCB=∠A+∠B=90°,∴∠ACP=∠A,∴AP=CP=BP=2.5,∴t=2.5+0.5+3=6;当P在AC上,如图4,CB=CP=3,∴t=3+5+0.5+0.5+4﹣3=10.综上所述,t的值为6.5或7.1或6或10.16.解:(1)∵AC⊥CB,AC=15,AB=25∴BC=20,∵AE平分∠CAB,∴∠EAC=∠EAD,∵AC⊥CB,DE⊥AB,∴∠EDA=∠ECA=90°,∵AE=AE,∴△ACE≌△ADE(AAS),∴CE=DE,AC=AD=15,设CE=x,则BE=20﹣x,BD=25﹣15=10在Rt△BED中∴x2+102=(20﹣x)2,∴x=7.5,∴CE=7.5.(2)①当AD=AC时,△ACD为等腰三角形∵AC=15,∴AD=AC=15.②当CD=AD时,△ACD为等腰三角形∵CD=AD,∴∠DCA=∠CAD,∵∠CAB+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,∴CD=BD=DA=12.5,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则12•AB•CH=12•AC•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH=AC2−C H2=9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.17.解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴由勾股定理得PB=210cm∴△ABP的周长为:AP+PB+AB=6+10+210=(16+210)cm;(2)如图2所示,过点P作PD⊥AB于点D,∵BP平分∠ABC,∴PD=PC.在Rt△BPD与Rt△BPC中,{PD=PCBP=BP,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.设PC=x cm,则PA=(8﹣x)cm在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,AP平分∠CAB;(3)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC ∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或 10.8s 时△BCP为等腰三角形.18.解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP=AC2+PC2=164=241.答:AP的长为241.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB=64+256=320=85若BA=BP,则 2t=85,解得t=45;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为45、16、5.(3)①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11;综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.19.解:(1)在△ABC中,∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4.设斜边AB上的高为h,∵12AB•h=12AC•BC,∴5h=3×4,∴h=2.4.∴AC的长为4,斜边AB上的高为2.4;(2)已知点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B﹣A运动,①当点P在CB上时,点P运动的长度为:AC+CP=2t,∵AC=4,∴CP=2t﹣AC=2t﹣4.故答案为:2t﹣4.②若点P在∠ABC的角平分线上,则:设PM=PC=y,则AP=4﹣y,在Rt△APM中,AM2+PM2=AP2,∴22+y2=(4﹣y)2,解得y=32,(4−32)÷2=54,即若点P在∠ABC的角平分线上,则t的值为54.故答案为:54.(3)当AB作为底边时,如图所示:∵APAM =AP2.5=54,∴AP=3.125,此时t=3.125÷2=1.5625;当AB作为腰时,如图所示:AP1=AB=5,此时t=5÷2=2.5;AP2=2AC=8,此时t=4,综上,t的值为1.5625或2.5或4.20.解:(1)∵在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=AB2−B C2=102−62=8;(2)设边AB上的高为h则S△ABC =12AC⋅BC=12AB⋅h,∴12×6×8=12×10⋅h,∴h=245,答:斜边AB上的高为245;(3)①当点P在BC上时,点P运动的长度为AB+BP=2t,则PC=BC﹣BP=6﹣(2t﹣10)=6﹣2t+10=16﹣2t;②当点P'在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC,有①知,PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,{AP=APPD=PC,∴Rt△ACP≌Rt△ADP(HL),∴AD=AC=8,又∵AB=10,∴BD=2,在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:t=20.3.故答案为:①16﹣2t;②203(4)由图可知,当△BCP是等腰三角形时,点P必在线段AB上,①当点P在线段AB上时,若BC=BP,则点P运动的长度为AP=2t,∵AP=AB﹣BP=10﹣6=4,∴2t=4,∴t=2;②若PC=BC,如图,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=10,BC=6,AC=8,∴AB•CH=AC•BC,∴10CH=8×6,∴CH=245,在Rt△BCH中,由勾股定理得:BH=BC2−C H2=62−(245)2=185= 3.6,∴BP=2BH=7.2,∴点P运动的长度为:AP=AB﹣BP=10﹣7.2=2.8,∴2t=2.8,∴t=1.4;③若PC=PB,如图所示,过点P作PQ⊥BC于点Q,则BQ=CQ=12×BC=3,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=12×AC=12×8=4,在Rt△BPQ中,由勾股定理得:BP=BQ2+PQ2=32+42=5,点P运动的长度为AP=2t,AP=AB﹣BP=10﹣5=5,∴2t=5,∴t=2.5.综上,t的值为1.4或2或2.5.。

北师大版八年级上册数学第一章 勾股定理 含答案

北师大版八年级上册数学第一章 勾股定理 含答案

北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图,后人称其为赵爽弦图(如图1).,图 2 为小明同学根据弦图思路设计的.在正方形 ABCD 中,以点 B 为圆心,AB 为半径作 AC,再以CD 为直径作半圆交 AC 于点E,若边长AB=10,则△CDE 的面积为()A.20B.C.24D.2、如图,在Rt△ABC中,AC=3,BC=5,阴影部分是以AB为边的一个正方形,则此正方形的面积为()A.4B.15C.16D.343、如图所示,折叠矩形,使点落在边的点处,为折痕,已知,,则的长等于()A. B. C. D.4、已知直角三角形的周长是2+ ,斜边长为 2,则它的面积是()A. B.1 C. D.5、如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为 .A. B. C. D.16、如图,在正方形ABCD中,AB=4,E是CD的中点,将BCE沿BE翻折至BFE,连接DF,则DF的长度是()A. B. C. D.7、下列四组线段中,能组成直角三角形的是()A.a=2,b=3,c=4B.a=3,b=4,c=5C.a=4,b=5,c=6 D.a=7,b=8,c=98、如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()A.(5,0)B.(8,0)C.(0,5)D.(0,8)9、在Rt△ABC中,斜边AB=1,则BC2+AC2的值是 ( )A.1B.4C.6D.810、尺规作图是初中数学学习中一个非常重要的内容.小明按以下步骤进行尺规作图:①将半径为的六等分,依次得到六个分点;②分别以点为圆心,长为半径画弧,两弧交于点;③连结.则的长是()A. B. C. D.11、如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是()A.3B.C.2D.212、如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.9B.35C.45D.无法计算13、年月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是,小正方形的面积是,直角三角形的较短直角边为,较长直角边为,那么的值为()A. B. C. D.14、直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是()A. ab=h2B. a2+b2=2 h2C. +=D. +=15、若△ABC的三边长分别为a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形二、填空题(共10题,共计30分)16、过⊙O内一点P,最长的弦为10cm,最短的弦长为8cm,则OP的长为________.17、如图,将矩形ABCD沿对角线AC折叠,E是点D的对称点,CE交AB于点F.若AB=16,BC=8,则BF的长为________.18、如图,ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.若BE=6,CF=8,则DEF的面积是________19、如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为________ cm.20、如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将∆ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为________.21、如图,在中,,点分别在上,且,点分别为的中点,则的长为________.22、直角三角形两直角边分别为a、b,斜边为c,已知:a=6,b=8,则c=________.23、平面直角坐标系内,A(-1,0),B(1,0),C(4,﹣3),P 在以 C 为圆心 1 为半径的圆上运动,连接 PA,PB,则的最小值是________ .24、如图,G为正方形ABCD的边AD上的一个动点,AE⊥BG,CF⊥BG,垂足分别为点E、F,已知AD=4,则AE2+CF2=________25、已知直角三角形两边长、满足,则第三边长为________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,点C在⊙O的直径BA的延长线上,AB=2AC,CD切⊙O于点D,连接CD,OD.(1)求角C的正切值:(2)若⊙O的半径r=2,求BD的长度.28、如图,每个小正方形的边长为1,A、B、C为小正方形的顶点,求证:∠ABC=45°.29、如图,在△ABC中,AC=6,BC=8,DE是△ABD的边AB上的高,且DE=4,AD=,BD=.求证:△ABC是直角三角形.30、如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面积.参考答案一、单选题(共15题,共计45分)1、A2、D3、A4、A5、B6、D7、B8、B9、A10、C11、B12、C13、C14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。

北师大版八年级(上)数学《勾股定理》专题复习(含答案)

北师大版八年级(上)数学《勾股定理》专题复习(含答案)

例1. (1)如图1是一个外轮廓为矩形的机器零件 平面示意图,根据图中的尺寸(单位: mm ),计算两圆孔中心A 和B 的距离为(2)如图2,直线I 上有二个正方形a, b, 的面积分别为5和11,则b 的面积为( C . 16D . 55点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一 起考查,在中考试卷中的常见题型为填空题、选择题和简单的解答题典例剖析分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90, BC=180-60=120,由勾股定理得:AB 2=902+1202=22500,所以 AB=150 (mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .60]15060c)图2三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求Z AE2A2 Z A4E2C4 Z A4E5C4 的度数.、图3解:连A3E2. Q A3A2A]A2, A2E2A2E2,A3A2E2 AA2E2 90o,Rt △ A3A2E2如Rt △ A1A2E2(SAS).5 A-I E2A3 E2 A2由勾股定理,得:C4E5 22 12 ,5 C3E2 , A4E5 、42 12 ,17 A3E2 ,2Q A4C4AC B 2 , △ A4C4E5◎△ A3C3E2 (SSS).A3 E2C3A4 E5C4A1E2 A2A4E2C4 A4 E5C4 A3E2C4 A4 E2C4 A3E2C3 A2E2C4 •由图可知△ E2C2C4为等腰直角三角形. A2E2C4 45o.即A,E2A2A4E2C4 A4E5C4 45° .点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如45°、90°、135°, 便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力.专练一:〔、△ ABC 中,/ A :/ B:/ C=2 : 1: 1, a,b,c分别是/ A、/ B、/ C 的对边,则下列各等式中成立的是( )(A) a2b2c2; (B) a22b2; (C) c22a2; (D) b22a22、若直角三角形的三边长分别为2, 4, X,则x的可能值有( )(A) 1 个;(B) 2 个;(C) 3个;(D) 4 个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A) 10.5 米; ( B) 7.5 米; (C) 12 米; (D) 8 米4、下列说法中正确的有( )(1)如果/ A+ / B+Z C=3: 4: 5,则厶ABC是直角三角形;(2) 如果/ A+Z B= Z C,那么△ ABC是直角三角形;(3)如果三角形三边之比为6: 8:10,则ABC是直角三角形;(4)如果三边长分别是n21,2n,n21(n 1),则ABC是直角三角形。

2023-2024学年八年级数学上册《第一章 勾股定理的应用》同步练习题附带答案-北师大版

2023-2024学年八年级数学上册《第一章 勾股定理的应用》同步练习题附带答案-北师大版

2023-2024学年八年级数学上册《第一章勾股定理的应用》同步练习题附带答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题1.梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是()A.6米B.7米C.8米D.9米2.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm3.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m4.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺5.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积41,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.25 B.41 C.62 D.816.如图,斜坡BC的长度为4米.为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4√3米,则原来斜坡的水平距离CD的长度是()米.A.2 B.4 C.2√3D.67.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=√2;再过点P,作P1P2⊥OP1且P1P2=1,得OP2=√3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=()A.√2023B.√2022C.√2021D.√2020二、填空题9.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距海里.10.如图是某路口处草坪的一角,当行走路线是A→C→B时,有人为了抄近道而避开路的拐角∠ACB(∠ACB=90°),于是在草坪内走出了一条不该有的捷径路AB.某学习实践小组通过测量可知,AC的长约为6米,BC的长约为8米,为了提醒居民爱护草坪,他们想在A,B处设立“踏破青白可惜,多行数步无妨”的提示牌.则提示牌上的“多行数步”是指多行米.11.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.12.如图,一个长方体铁盒的长,宽,高分别是8 cm,6 cm,24 cm,-根长28 cm的木棒完全装进这个盒子里.(填“能”或“不能”)13.如图,山坡上,树甲从点A处折断,其树顶恰好落在另一棵树乙的根部C处,已知AB=4m,BC =10m,已知两棵树的水平距离为6m,则树甲原来高.三、解答题14.如图,小旭放风筝时,风筝挂在了树上,他先拉住风筝线,垂直于地面,发现风筝线多出1米;把风筝线沿直线BC向后拉5米,风筝线末端刚好接触地面,求风筝距离地面的高度AB.15.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计).16.某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1).如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE点B在DE上,OE的长即为消防车的高3m)17.如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?18.台风是一种自然灾害,它在以台风中心为圆心,一定长度为半径的圆形区域内形成极端气候,有极强的破坏力.如图,监测中心监测到一台风中心沿监测点B与监测点A所在的直线由东向西移动,已知点C为一海港,且点C与A,B两点的距离分别为300km、400km,且∠ACB=90°,过点C作CE⊥AB于点E,以台风中心为圆心,半径为260km的圆形区域内为受影响区域,台风的速度为25km/h.(1)求监测点A与监测点B之间的距离;(2)请判断海港C是否会受此次台风的影响,若受影响,则台风影响该海港多长时间?若不受影响,请说明理由.参考答案1.C2.B3.C4.B5.D6.A7.D8.B9.3010.411.3.7512.不能13.(4+6√5)m14.解:设AB=x米,则AC=(x+1)米由图可得,∠ABC=90°,BC=5米在Rt△ABC中AB2+BC2=AC2即x2+52=(x+1)2解得x=12答:风筝距离地面的高度AB为12米.15.解:如图设旗杆高度为x米,则AC=AD=x(m),AB=(x−2)(m)而BC=8m 在Rt△ABC中AB2+BC2=AC2,即(x−2)2+82=x2解得:x=17(m)即旗杆的高度为17m.16.解:在 Rt △ABO 中∵∠AOB =90° AB =15m ,OB =12−3=9 (m ) ∴AO =√AB 2−OB 2=√152−92=12 (m )在 Rt △COD 中∵∠COD =90°,CD =15m ,OD =15−3=12 (m ) ∴OC =√CD 2−OD 2=√152−122=9 (m )∴AC =OA −OC =3 (m )答:消防车从原处向着火的楼房靠近的距离 AC 为 3m .17.(1)解:∵AC=15km ,BC=20km ,AB=25km152+202=252∴△ACB 是直角三角形,∠ACB=90°∵12AC ×BC=12AB ×CD∴CD=AC ×BC ÷AB=12(km ).故修建的公路CD 的长是12km ;(2)解:在Rt △BDC 中,BD= √BC 2−CD 2=16(km )一辆货车从C 处经过D 点到B 处的路程=CD+BD=12+16=28(km ). 故一辆货车从C 处经过D 点到B 处的路程是28km .18.(1)解:在RtΔABC 中,AC =300km ,BC =400km ∴AB =√AC 2+BC 2=√3002+4002=500(km )答:监测点A 与监测点B 之间的距离为500km ;(2)解:海港C 受台风影响理由:∵∠ACB =90°,CE ⊥AB∴S ΔABC =12AC ⋅BC =12CE ⋅AB ∴300×400=500CE∴CE =240km∵以台风中心为圆心周围260km 以内为受影响区域∴海港C 会受到此次台风的影响以C 为圆心,260km 长为半径画弧,交AB 于D ,F则DE =EF =260km 时,正好影响C 港口在RtΔCDE 中∵ED =√CD 2−CE 2=√2602−2402=100(km )∴DF =200km∵台风的速度为25千米/小时∴200÷25=8(小时).答:台风影响该海港持续的时间为8小时.。

北师大版2019-2020八年级数学上册第一章勾股定理单元测试题4(基础 附答案)

北师大版2019-2020八年级数学上册第一章勾股定理单元测试题4(基础 附答案)

北师大版2019-2020八年级数学上册第一章勾股定理单元测试题4(基础附答案)1.以下列各组数为边长,能构成直角三角形的是()A.5、6、7 B.10、8、4 C.7、24、25 D.9、15、17 2.如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,D为AB边上一动点,连接CD,△ACD与△A′CD关于直线CD轴对称,连接BA′,则BA′的最小值为()A.B.1 C.D.3.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=( )A.6 B.8 C.10 D.124.如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmC和BnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1与S2的大小关系为()A.S1>S2B.S1<S2C.S1=S2D.不能确定5.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,三个圆的面积分别记为S1,S2,S3,则S1,S2,S3之间的关系是()A.B.C.D.无法确定6.葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是50cm,当一段葛藤绕树干盘旋2圈升高为2.4m时,这段葛藤的长是()m.A.3 B.2.6 C.2.8 D.2.57.设三角形的三边长分别等于下列各组数,能构成直角三角形的是()A.,,B.,,C.,,D.4,5,68.如图,在中,AD⊥BC于D,AB=3,DB=2,DC=1,则AC等于()A.6 B.C.D.49.如图,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=_____.10.△ABC中,AB=10,BC=16,BC 边上的中线AD=6,则AC= ______.11.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图所示,撑脚长AB,DC为3 m,两撑脚间的距离BC为4 m,则AC=____m就符合要求.12.如图,已知直线a∥b,a,b之间的距离为4,点P到直线a的距离为4,点Q到直线b的距离为2,PQ=2.在直线a上有一动点A,直线b上有一动点B,满足AB⊥b,且P A+AB+BQ最小,此时P A+BQ=________.13.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有___________组.14.如图,正方体每个侧面的面积为平方米,用经过,,三点的平面截这个正方体,则所得的切面的周长是________米.15.如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为米.16.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),,,从三角板的刻度可知,小聪很快就知道了砌墙砖块的厚度的平方(每块砖的厚度相等)为________.17.一架长25米的云梯,斜靠在一面墙上,梯子底端离墙7米,(1)求梯子顶端到地面的距离;(2)如果梯子的顶端下滑4米,那么云梯的底端在水平方向将滑多少米?18.小烨在探究数轴上两点间距离时发现:若两点在轴上或与轴平行,两点的横坐标分别为,则两点间距离为;若两点在轴上或与轴平行,两点的纵坐标分别为,则两点间距离为.据此,小烨猜想:对于平面内任意两点,两点间的距离为.(1)请你利用下图,试证明:;(2)若,试在轴上求一点,使的距离最短,并求出的最小值和点坐标.19.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.(1)三角形三边长为4,3,;(2)平行四边形有一锐角为45°,且面积为6.20.4个全等的直角三角形的直角边分别为a,b,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.21.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方60米处的C点,过了5秒后,测得小汽车所在的B点与车速检测仪A 之间的距离为100米.求BC间的距离;这辆小汽车超速了吗?请说明理由.22.一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?23.如图,在△ABC中,AC=6,BC=8,DE是△ABD的边AB上的高,且DE=4,AD=,BD=,求△ABC的边AB上的高.24.如图,在5×5的方格纸中,每一个小正方形的边长都为1。

(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》检测卷(答案解析)(4)

(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》检测卷(答案解析)(4)

一、选择题1.如图,在22⨯的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A 为圆心,AB长为半径作弧,交格线于点D.则CD的长为()A.12B.13C.23-D.32.如图,用64个边长为1cm的小正方形拼成的网格中,点A,B,C,D,E,都在格点(小正方形顶点)上,对于线段AB,AC,AD,AE,长度为无理数的有().A.4条B.3条C.2条D.1条3.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,AB的垂直平分线DE交BC的延长线于点E,则DE的长为()A.103B.256C.203D.1544.如图,在△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A .29B .32C .36D .455.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .102cmD .52cm 6.下列以a ,b ,c 为边的三角形,不是直角三角形的是( ) A .1,1,2a b c === B .1,3,2a b c ===C .3,4,5a b c ===D .2,2,3a b c === 7.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,下列条件不能判断△ABC 是直角三角形的是( )A .∠B =∠C +∠AB .a 2=(b +c )(b ﹣c )C .∠A :∠B :∠C =3:4:5D .a :b :c =3:4:58.如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A 73B .10厘米C .82D .8厘米 9.我国古代著名的“赵爽弦图”的示意图如图所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图所示“数学风车”,则这个风车的外围周长是( )A .413B .810C .41312+D .81012+10.在平面直角坐标系中,点P(1-,3)到原点的距离是( ) A .10 B .4 C .22D .2 11.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为( )A .2B .3C .5D .612.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .169二、填空题13.如图,已知正方形ABCD 的面积为4,正方形FHIJ 的面积为3,点D 、C 、G 、J 、I 在同一水平面上,则正方形BEFG 的面积为__________.14.如图,在Rt ABC △中,90ACB ︒∠=,10AB =,8AC =,D 是AB 的中点,M 是边AC 上一点,连接DM ,以DM 为直角边作等腰直角三角形DME ,斜边DE 交线段CM 于点F ,若2MDF MEF S S =,则CF 的长为________.15.如图,在三角形纸片ABC 中,∠ACB =90°,BC =6,AB =10,如果在AC 边上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,那么CE 的长为________.16.如图是“赵爽弦图”,ABH ,BCG ,CDF 和DAE △是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果10AB =,且:3:4AH AE =.那么AH 等于________.17.如图是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个半圆柱而成,中间可供滑行部分的斜面是半径为4m 的半圆,其边缘AB=CD=20m ,点E 在CD 上,CE=4m ,一滑行爱好者从A 点滑行到E 点,则他滑行的最短距离为____________m (π的值为3)18.如图,长方体的长5BE cm =,宽3AB cm =,高6BC cm =,一只小蚂蚁从长方体表面由A 点爬到D 点去吃食物,则小蚂蚁走的最短路程是__________cm .19.如图,已知点C 在点A 的北偏东19°,在点B 的北偏西71°,若CB=9,AC=12,则AB=_____.20.如图,为修通铁路凿通隧道AC ,量出40A ∠=︒,50B ∠=︒,5AB =公里,4BC =公里,若每天凿通隧道0.3公里,问_________天才能把隧道AC 凿通.三、解答题21.如图,这是一个供滑板爱好者使用的U 型池的示意图,该U 型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为40m π的半圆,其边缘20m ==AB CD ,点E 在CD 上,5m CE =,一滑板爱好者从A 点滑到E 点,则他滑行的最短距离为多少米?(边缘部分的厚度忽略不计)22.如图,已知Rt ABC △与Rt CDE △有一个公共点C ,其中90B D ︒∠=∠=,若3AB =,2BC =,6CD =,4DE =,65AE =.求证:90ACE ︒∠=.23.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?24.某校校门口有一个底面为等边三角形的三棱柱(如图),学校计划在三棱柱的侧面上,从顶点A 绕三棱柱侧面一周到顶点A '安装灯带,已知此三棱柱的高为4m ,底面边长为1m ,求灯带最短的长度.25.如图,在△ABC 中,∠C =90°,将△ACE 沿着AE 折叠以后C 点正好落在AB 边上的点D 处.(1)当∠B =28°时,求∠CAE 的度数;(2)当AC =6,AB =10时,求线段DE 的长.26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由勾股定理求出DE,即可得出CD的长.【详解】解:连接AD,如图所示:∵AD=AB=2,∴DE=22-=3,21∴CD=23-,故选:C.【点睛】本题考查了勾股定理;由勾股定理求出DE是解决问题的关键.2.C解析:C【分析】先根据勾股定理求出AB,AC,AD,AE这4条线段的长度,即可得出结果.【详解】根据勾股定理计算得: AB=222753+=, AC=22345+=,AD=225552+=,AE=228610+=,长度为无理数的有2条,故选:C .【点睛】本题主要考查了勾股定理及无理数.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.3.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°,∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.4.D解析:D【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2)=AC2−AB2=45.故选:D.【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握.5.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC=A'C,且点C为BB'的中点,∵AB=5cm,BC=1×10=5cm,2∴装饰带的长度=2AC=2222+=+=cm,AB BC2255102故选:C.【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.6.D解析:D【分析】根据勾股定理的逆定理对四个选项分别进行判定,则可得出结论.【详解】解:A 、因为12+12)2,所以此三角形是直角三角形,故此选项不符合题意;B 、因为122=22,所以此三角形是直角三角形,故此选项不符合题意;C 、因为32+42=52,所以此三角形是直角三角形,故此选项不符合题意;D 、因为22+22≠32,所以此三角形不是直角三角形,故此选项符合题意.故选:D .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.C解析:C【分析】由三角形的内角和定理求解B 可判断,A 由勾股定理的逆定理可判断,B 由三角形的内角和定理求解 ,C ∠ 可判断,C 设()30,a k k =≠ 则4,5,b k c k == 利用勾股定理的逆定理可判断.D【详解】解:,180,B C A A B C ∠=∠+∠∠+∠+∠=︒2180B ∴∠=︒,90B ∴∠=︒,故A 不符合题意; ()()222,a b c b c b c =+-=-222,a c b ∴+=90B ∴∠=︒,故B 不符合题意; ::3:4:5,A B C ∠∠∠=51807512C ∴∠=⨯︒=︒, ABC ∴不是直角三角形,故C 符合题意,::3:4:5,a b c =设()30,a k k =≠ 则4,5,b k c k ==()()()222222234255,a b k k k k c ∴+=+===90C ∴∠=︒,故D 不符合题意, 故选:.C【点睛】本题考查的是三角形的内角和定理,勾股定理的逆定理的应用,掌握以上知识是解题的关键. 8.B解析:B【分析】把圆柱沿着点A 所在母线展开,把圆柱上最短距离转化为将军饮马河型最短问题求解即可.【详解】把圆柱沿着点A 所在母线展开,如图所示,作点A 的对称点B ,连接PB ,则PB 为所求,根据题意,得PC=8,BC=6,根据勾股定理,得PB=10,故选B.【点睛】本题考查了圆柱上的最短问题,利用圆柱展开,把问题转化为将军饮马河问题,灵活使用勾股定理是解题的关键.9.D解析:D【分析】将CB 延长至点D ,使CB BD =,利用勾股定理求出AD 的长,即可求出结果.【详解】解:如图,将CB 延长至点D ,使CB BD =,∵2AC =,26CD BC ==, ∴22436210AD AC CD +=+=2103AD BD +=,一共有4个这样的长度,∴这个风车的外围周长是:()4210381012⨯=.故选:D .【点睛】本题考查勾股定理,解题的关键是利用勾股定理求直角三角形边长.10.A解析:A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离22(10)(30)10--+-=故选A .【点睛】本题主要考查平面直角坐标系中,两点间的距离公式,掌握“若A(x 1,y 1),B(x 2,y 2),则221212()()x x y y -+-”,是解题的关键.11.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.12.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】 解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩, 解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力. 二、填空题13.7【分析】根据已知利用全等三角形的判定可得到△BCG ≌△GJF 从而得到正方形BEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积【详解】解:∵∠BGC+∠FGJ=90°∠GFJ+∠FGJ=90解析:7【分析】根据已知利用全等三角形的判定可得到△BCG ≌△GJF ,从而得到正方形BEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积.【详解】解:∵∠BGC +∠FGJ =90°,∠GFJ +∠FGJ =90°∴∠BGC =∠GFJ∵∠BCG =∠GJF ,BG =GF∴△BCG ≌△GJF∴CG =FJ ,BC =GJ ,∴BG 2=BC 2+CG 2=BC 2+FJ 2∴正方形DEFG 的面积=正方形ABCD 的面积+正方形FHIJ 的面积=4+3=7.【点睛】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.14.3【分析】作DG ⊥AC 于GEH ⊥AC 于H 则∠DGM =∠MHE =90°DG ∥BC 由勾股定理得出BC =6证出DG 是△ABC 的中位线得出DG =BC =3AG =CG =AC =4证明△MDG ≌△EMH (ASA )得解析:3【分析】作DG ⊥AC 于G ,EH ⊥AC 于H ,则∠DGM =∠MHE =90°,DG ∥BC ,由勾股定理得出BC =6,证出DG 是△ABC 的中位线,得出DG =12BC =3,AG =CG =12AC =4,证明△MDG ≌△EMH (ASA ),得出MG =EH ,由三角形面积关系得出DG =2EH =3,得出MG=EH =32,再证明∆DGF~∆EHF ,从而求出GF ,进而即可得出答案. 【详解】作DG ⊥AC 于G ,EH ⊥AC 于H ,如图所示:则∠DGM =∠MHE =90°,DG ∥BC ,∵∠ACB =90°,AB =10,AC =8, ∴BC6=,∵DG ∥BC ,D 是AB 的中点,∴DG 是△ABC 的中位线,∴DG =12BC =3,AG =CG =12AC =4, ∵△DME 是等腰直角三角形,∴∠DME =90°,DM =ME ,∵∠DMG +∠GDM =∠DMG +∠EMH =90°,∴∠GDM =∠EMH ,在△MDG 和△EMH 中,DGM MHE DM MEGDM EMH ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△MDG ≌△EMH (ASA ),∴MG =EH ,∵S △MDF =2S △MEF ,∴DG =2EH =3,∴MG =EH =32, ∵DG ∥EH ,∴∆DGF~∆EHF ,∴21DG GF EH HF ==, ∵GH=MH-MG=DG-MG=3-32=32, ∴GF=32×221+=1, ∴CF=AC-AG-GF=8-4-1=3,故答案是:3..【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、相似三角形的判定和性质;添加辅助线,构造三角形全等是解题的关键.15.3【分析】利用勾股定理可求出AC=8根据折叠的性质可得BD=ABDE=AE 根据线段的和差关系可得CD 的长设CE=x 则DE=8-x 利用勾股定理列方程求出x 的值即可得答案【详解】∵∠ACB =90°BC =解析:3【分析】利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB ,DE=AE ,根据线段的和差关系可得CD 的长,设CE=x ,则DE=8-x ,利用勾股定理列方程求出x 的值即可得答案.【详解】∵∠ACB =90°,BC =6,AB =10,∴22AB BC -22106-,∵BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,∴BD=AB=10,DE=AE ,∠DCE=90°,∴CD=BD-BC=10-6=4,设CE=x ,则DE=AE=AC-CE=8-x ,∴在Rt △DCE 中,DE 2=CE 2+CD 2,即(8-x )2=x 2+42,解得:x=3,∴CE=3,故答案为:3【点睛】本题考查了翻折变换的性质及勾股定理的应用,根据翻折前后的两个图形能够重合得到相等的线段并转化到一个直角三角形中,利用勾股定理列出方程是解此类题目的关键. 16.6【分析】根据题意设则可得即可得由勾股定理列方程求出x 的值即可得出结论【详解】解:∵∴设则和是四个全等的直角三角形在中解得:故答案为:6【点睛】此题主要考查了勾股定理的应用熟练运用勾股定理是解答此题 解析:6【分析】根据题意设3AH x =,则可得4AE x =,HE x =,即可得4BH x =,由勾股定理列方程求出x 的值即可得出结论.【详解】解:∵:3:4AH AE =∴设3AH x =,则4AE x =,HE AE AH x =-=, ABH △,BCG ,CDF 和DAE △是四个全等的直角三角形,4BH AE x ∴==,在Rt ABH △中,222AB AH BH =+,22210(3)(4)x x ∴=+,解得:2x =.36AH x ∴==.故答案为:6.【点睛】此题主要考查了勾股定理的应用,熟练运用勾股定理是解答此题的关键.17.20【分析】要使滑行的距离最短则沿着AE 的线段滑行先将半圆展开为矩形展开后ADE 三点构成直角三角形AE 为斜边AD 和DE 为直角边求出AD 和DE 的长再根据勾股定理求出AE 的长度即可【详解】将半圆面展开可解析:20【分析】要使滑行的距离最短,则沿着AE 的线段滑行,先将半圆展开为矩形,展开后,A 、D 、E 三点构成直角三角形,AE 为斜边,AD 和DE 为直角边,求出AD 和DE 的长,再根据勾股定理求出AE 的长度即可.【详解】将半圆面展开可得,如图所示:∵滑行部分的斜面是半径为4m的半圆∴AD=4π米,∵AB=CD=20m,CE=4m,∴DE=DC-CE=AB-CE=16米,在Rt△ADE中,AE=2222+=+≈m.(4)1620AD DEπ故答案为:20.【点睛】考查了勾股定理的应用和两点之间线段最短,解题关键是把U型池的侧面展开成矩形,“化曲面为平面”,再勾股定理求解.18.10【分析】将长方体展开可分三种情况求出其值最小者即为最短路程【详解】如图①:AD=;如图②:AD=;如图③:AD=;∴AD的最小值为故答案为:【点睛】本题依据两点之间线段最短考查了长方体的侧面展开解析:10【分析】将长方体展开,可分三种情况,求出其值最小者,即为最短路程.【详解】如图①:AD=22+=;311130如图②:22+=;8610010如图③:2295106+=∴AD的最小值为10.故答案为:10.【点睛】本题依据“两点之间,线段最短”,考查了长方体的侧面展开图,解答时利用勾股定理进行分类讨论是解题的关键.19.15【分析】根据点C在点A的北偏东19°在点B的北偏西71°得出∠ACB=90°即得出△ABC是直角三角形根据勾股定理解答即可【详解】如图:∵点C在点A的北偏东19°在点B的北偏西71°∴∠ACD=解析:15【分析】根据点C在点A的北偏东19°,在点B的北偏西71°得出∠ACB=90°,即得出△ABC是直角三角形,根据勾股定理解答即可.【详解】如图:∵点C在点A的北偏东19°,在点B的北偏西71°,∴∠ACD=19°,∠BCD=71°,∴∠ACB=19°+71°=90°,∴AC2+CB2=AB2,∵CB=9,AC=12,∴122+92=AB2,∴AB=15,故答案为:15.【点睛】本题考查了方位角和勾股定理,解题的关键是根据题意得出直角三角形,再勾股定理求AB 的值.20.10【分析】根据勾股定理可求出BC的长度然后除以每天凿隧道的长度可求出需要的天数【详解】解:∵∠A=40°∠B=50°∴∠C=90°即△ABC为直角三角形∵AB=5kmAC=4km∴故:所需天数==解析:10【分析】根据勾股定理可求出BC的长度,然后除以每天凿隧道的长度,可求出需要的天数.【详解】解:∵∠A=40°,∠B=50°,∴∠C=90°,即△ABC为直角三角形∵AB=5km ,AC=4km ∴2222543BC AB AC km =-=-=,故:所需天数=30.3=10天. 故答案为:10.【点睛】 本题主要是运用勾股定理求出所需凿隧道的长度.三、解答题21.25米【分析】要求滑行的最短距离,需将该U 型池的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:如图是其侧面展开图:AD=π•20π=20,AB=CD=20.DE=CD-CE=20-5=15,在Rt △ADE 中,22AD DE +222015+.故他滑行的最短距离约为25米.【点睛】本题考查了平面展开-最短路径问题,U 型池的侧面展开图是一个矩形,此矩形的宽等于半径为20π的半圆的弧长,矩形的长等于AB=CD=20.本题就是把U 型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.22.见详解.【分析】先利用勾股定理求出AC 2和CE 2的值,再根据勾股定理的逆定理证明△ACE 为直角三角形.【详解】证明:∵90B ︒∠=,∴在Rt ABC △中,根据勾股定理222223213.AC AB BC =+=+=同理可求222226452CE CD DE =+=+=.在ACE ∆中∵22135265AC CE +=+=.22(65)65AE ==.∴222AC CE AE +=.∴ACE ∆为直角三角形90ACE ︒∠=.【点睛】本题考查勾股定理和勾股定理逆定理的综合运用,如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形为直角三角形,本题依次可证.23.6【分析】在吸管(杯内部分)、杯底直径、杯高构成的直角三角形中,由勾股定理可求出杯内吸管部分的长度,再加上外露部分的长度即可求出吸管的总长. 【详解】解:如图;杯内的吸管部分长为AC ,杯高AB=12cm ,杯底直径BC=5cm ;Rt △ABC 中,AB=12cm ,BC=5cm ;由勾股定理得:AC=13cm故吸管的长度最少要:13+4.6=17.6cm .24.5m【分析】先画出三棱柱的侧面展开图,再根据勾股定理求解.【详解】将三棱柱展开如图,连接A’A ,则A’A 的长度就是彩带的最短长度,如图,在Rt △AA'B 中AB=底面等边三角形的周长=3×1=3(m)∵AA'=4(m)由勾股定理得:22435AA '=+=(m).答:灯带的最短长度为5m.【点睛】本题考查学生对勾股定理的应用能力,熟练掌握勾股定理是解题的关键. 25.(1)31°;(2)3.【分析】(1)在Rt△ABC中,利用互余得到∠BAC=62°,再根据折叠的性质得∠CAE=12∠CAB=31°,然后根据互余可计算出∠AEC=59°;(2)Rt△ABC中,利用勾股定理即可得到BC的长;设DE=x,则EB=BC﹣CE=8﹣x,依据勾股定理可得,Rt△BDE中DE2+BD2=BE2,再解方程即可得到DE的长.【详解】解:(1)在Rt△ABC中,∠ABC=90°,∠B=28°,∴∠BAC=90°﹣28°=62°,∵△ACE沿着AE折叠以后C点正好落在点D处,∴∠CAE=12∠CAB=12×62°=31°;(2)在Rt△ABC中,AC=6,AB=10,∴BC22AB AC-22106-8,∵△ACE沿着AE折叠以后C点正好落在点D处,∴AD=AC=6,CE=DE,∴BD=AB﹣AD=4,设DE=x,则EB=BC﹣CE=8﹣x,∵Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.即DE的长为3.【点睛】本题考查了折叠问题,折叠是一种对称变换,它属于轴对称,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学第一章《勾股定理》练习题一.选择题(12³3′=36′)1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或252.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A 、a=1.5,b=2,c=3 B 、a=7,b=24,c=25C 、a=6,b=8,c=10D 、a=3,b=4,c=5 3.若线段a ,b ,c 组成Rt △,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶74.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121 B 、120 C 、132 D 、不能确定5.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A 、60∶13 B 、5∶12 C 、12∶13 D 、60∶1696.如果Rt △的两直角边长分别为n 2-1,2n (n>1),那么它的斜边长是( )A 、2nB 、n+1C 、n 2-1 D 、n 2+17.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、24cm 2 B 、36cm 2 C 、48cm 2 D 、60cm 28.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 9.三角形的三边长为(a+b )2=c 2+2ab,则这个三角形是( )A. 等边三角形;B. 钝角三角形;C. 直角三角形;D. 锐角三角形.10.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、450a 元 B 、225a 元 C 、150a 元 D 、300a 元11.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A 、6cm 2B 、8cm 2C 、10cm 2D 、12cm 212.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 、25海里 B 、30海里 C 、35海里 D 、40海里 二.填空题(8³3′=24′)13.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt△ABC =________。

14.在由小方格组成的网格中,用数格子的方法判断出给定的钝角三角形和锐角三角形的三边不满足两边平方和等于第三边的平方,由此可想到________________________________________________。

15.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。

16.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

17.已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.18.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 150°20m 30m第10题图第11题图北 南 A 东第12题图和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

20.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。

另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________________________米。

三.解答题(共60分) 21.(7分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗? 22.(7分)如图,铁路上A,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?23.(7分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度 24.(7分)已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,求四边形ABCD 的面积。

25.(8分)已知,如图,在Rt △ABC 中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求AC 的长.26.(8分)如图,在边长为c 的正方形中,有四个斜边为c 的全等直角三角形,已知其直角边长为a ,b.利用这个图试说明勾股定理? C O A B D E F 第18题图 A 第20题图 A BCD 第24题图 A DE B C 第22题图C D A B第25题图27.(8分)已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC是等腰三角形。

28.(8分)如图,在△ABC中,AB=AC,P为BC上任意一点,请用学过的知识说明:AB2-AP2=PB ³PC。

AB C第28题图分式方程应用题1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,已知第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量。

2、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。

某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。

3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。

已知B的速度是A的速度的3倍,求两车的速度。

4、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。

乙型拖拉机单独耕这块地需要几天?5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。

求A、B每小时各做多少个零件。

6、某工厂去年赢利25万元,按计划这笔赢利额应是去、今两年赢利总额的20%,今年的赢利额应是多少?7、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。

8、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。

9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。

已知水流的速度是3千米/时,求轮船在静水中的速度。

10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。

求先遣队和大队的速度各是多少?11、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。

12、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。

13、某商品的标价比成本高p%,当该商品降价出售,为了不亏本,降价幅度不得超过d%,请用p 表示d。

14、某人沿一条河顺流游泳l米,然后逆流游回出发点,设此人在静水中的游泳速度为xm/s,水流速度为nm/s,求他来回一趟所需的时间t。

(1)小芳在一条水流速度是0.01m/s的河中游泳,她在静水中游泳的速度是0.39m/s,而出发点与河边一艘固定小艇间的距离是60m,求她从出发点到小艇来回一趟所需的时间。

(2)志勇是小芳的邻居,也喜欢在该河中游泳,他记得有一次出发点与柳树间来回一趟大约用了2.5min,假设当时水流的速度是0.015m/s,而志勇在静水中的游泳速度是0.585m/s,那么出发点与柳树间的距离大约是多少?15、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。

16、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。

小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?17、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。

已知第一次捐款总额为4800元,第二次捐款为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额相等,如果设第一次捐款人数X人,那么X应满足怎样的方程?18、一个正多边形的每个内角都是172度,求它的边数N应满足的分式方程。

19、退耕还林还草是我国西部地区实施的一项重要生态工程,某地规划退耕面积69000公顷,退耕还林与退耕还草的面积比是5:3,设退耕还林的面积是X公顷,那么应满足的分式方程是什么?20、某运输公司需要装运一批货物,由于机械设备没有到位,只好先用人工装运,6小时后完成一半,后来机械装运和人工同时进行,1小时完成了后一半,如果设单独采用机械装运X小时可以完成后一半任务,那么应满足的方程是什么?21、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?22、某质检部门抽取甲、乙两厂相同数量的产品进行质量检查,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂的合格率乙厂高5%,求甲厂的合格率?23、某单位将沿街的一部分房屋出租,每年房屋的租金第二年比第一年要多500元,所有房屋的租金第一年为9。

相关文档
最新文档