详细解析电源滤波电容的选取与计算

合集下载

滤波电容的选型与计算(详解)

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。

电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。

电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容和电感的很多特性是恰恰相反的。

一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。

一般前面那个越大越好,两个电容值相差大概100倍左右。

电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。

大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少? 就算我知道SFR 值,我如何选取不同SFR值的电容值呢? 是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:/s/blog_545edca401000ax6.html我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

(整理)电源滤波电容大小的计算方法

(整理)电源滤波电容大小的计算方法

电源滤波电容大小的计算方法滤波电容工程粗略计算公式:按RC时间常数近似等于3~5倍电源半周期估算。

给出一例:负载情况:直流1A,12V。

其等效负载电阻12欧姆。

桥式整流(半波整流时,时间常数加倍):RC = 3 (T/2)C = 3 (T/2) / R = 3 x (0.02 / 2 ) /12 = 2500 (μF)工程中可取2200 μF,因为没有2500 μF这一规格。

若希望纹波小些,按5倍取。

这里,T是电源的周期,50HZ时,T = 0.02 秒。

时间的国际单位是S。

仅供参考C=Q/U----------Q=C*UI=dQ/dt---------I=d(C*U)/dt=C*dU/dtC=I*dt/dU从上式可以看出,滤波电容大小与电源输出电流和单位时间电容电压变化率有关系,且输出电流越大电容越大,单位时间电压变化越小电容越大我们可以假设,单位时间电容电压变化1v(dV=1)(可能有人说变化也太大了吧,但想下我们一般做类似lm886的时候用的电压是30v左右,电压下降1v,电压变化率是96.7%,我认为不算小了,那如果您非认为这个值小了,那你可以按照你所希望的值计算一下,或许你发现你所需要的代价是很大的),则上式变为C=I*dt。

那么我们就可以按照一个最大的猝发大功率信号时所需要的电流和猝发时间来计算我们所需要的最小电容大小了,以lm3886为例,它的最大输出功率是125W,那么我么可以假设需要电源提供的最大功率是150W,则电源提供的最大电流是I=150/(30+30)=2.5A(正负电源各2.5A),而大功率一般是低频信号,我们可以用100Hz信号代替,则dt=1/100=0.01s,带上上式后得到C=2.5×0.01=0.025=25000uF。

以上计算是按照功放的最大功率计算的,如果我们平时是用小音量听的话,电容不需要这么大的,我认为满足一定的纹波系数就可以了,4700u或许就已经够用了。

电容滤波的计算方法及电源滤波电容选用技巧

电容滤波的计算方法及电源滤波电容选用技巧

电容滤波的计算方法及电源滤波电容选用技巧
本文主要是关于电容滤波的相关介绍,并着重对电容滤波的计算方法及电源滤波电容选用技巧进行了详尽的阐述。

电容滤波安装在整流电路两端用以降低交流脉动波纹系数提升高效平滑直流输出的一种储能器件,通常把这种器件称其为滤波电容。

由于滤波电路要求储能电容有较大电容量。

所以,绝大多数滤波电路使用电解电容。

电解电容由于其使用电解质作为电极(负极)而得名。

电解电容的一端为正极,另一端为负极,不能接反。

正极端连接在整流输出电路的正端,负极连接在电路的负端。

在所有需要将交流电转换为直流电的电路中,设置滤波电容会使电子电路的工作性能更加稳定,同时也降低了交变脉动波纹对电子电路的干扰。

滤波电容在电路中的符号一般用“C“表示,电容量应根据负载电阻和输出电流大小来确定。

当滤波电容达到一定容量后,加大电容容量反而会对其他一些指标产生有害影响。

滤波电容的特点
1、温升低
谐波滤波器回路由电容器串联电抗器组成,在某一谐波阶次形成最低阻抗,用以吸收大量谐波电流,电容器的质量会影响谐波滤波器的稳定吸收效果,电容器的使用寿命跟温度有很大的关系,温度越高寿命越低,滤波全膜电容器具有温升低等特点,可以保证其使用寿命。

2、损耗低
介质损耗角正切值(tgδ):≤0.0003
3、安全性
符合GB、IEC标准,内部单体电容器均附装保护装置;当线路或单体电容器发生异常时,该保护装置将会立即动作,自动切断电源,以防二次灾害的发生。

附装放电电阻,可确保用电及维护保养之安全。

外壳采用钢板冲压而成,内外部涂上耐候性良好之高温烤漆安全性特高。

详细解析电源滤波电容的选取与计算

详细解析电源滤波电容的选取与计算

电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。

电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。

电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容和电感的很多特性是恰恰相反的。

一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。

一般前面那个越大越好,两个电容值相差大概100倍左右。

电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。

大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。

详解滤波电容的选择及计算

详解滤波电容的选择及计算

详解滤波电容的选择及计算电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。

电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。

电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容和电感的很多特性是恰恰相反的。

一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。

一般前面那个越大越好,两个电容值相差大概100倍左右。

电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。

大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10n H左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少? 就算我知道SFR 值,我如何选取不同SFR值的电容值呢? 是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率电容值DIP(MHz) STM(MHz)1.0μF2.5 50.1μF8 160.01μF25 501000pF 80 160100pF 250 50010pF 800 1.6(GHz) 不过仅仅是参考而已,老工程师说主要靠经验. 更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:/s/blog_545edca401 000ax6.html我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

详解滤波电容的选择及计算

详解滤波电容的选择及计算

详解滤波电容的选择及计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。

电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。

电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容和电感的很多特性是恰恰相反的。

一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

电源滤波电容的大小,平时做设计,前级用,用于滤低频,二级用,用于滤高频,的电容作用是减小输出脉动和低频干扰,的电容应该是减小由于负载电流瞬时变化引起的高频干扰。

一般前面那个越大越好,两个电容值相差大概100倍左右。

电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。

大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少就算我知道SFR值,我如何选取不同SFR值的电容值呢是选取一个电容还是两个电容电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

电源滤波电容大小的计算方法

电源滤波电容大小的计算方法

问题: 请问电源的滤波电容的通常是一个大的并联一个小的,两个相差100倍,但是那个大的电容有的用10u,有的用47u,还有的用,这是怎么回事,应该怎么选择啊?大的是电解电容,滤波用的,选择的话,我感觉是看输入的电压质量的,如果本身纹波很大,或者对纹波要求很严格,那就用大的电容。

小一些的是去耦电容,我感觉和滤波差不多意思,就是防止电压波动的。

容值要小一些,高频时候作用大。

电源滤波电容大小的计算方法电源滤波电容大小的计算方法(有人说:没有仔细看,但结论似乎不正确)C=Q/U----------Q=C*UI=dQ/dt---------I=d(C*U)/dt=C*dU/dtC=I*dt/dU从上式可以看出,滤波电容大小与电源输出电流和单位时间电容电压变化率有关系,且输出电流越大电容越大,单位时间电压变化越小电容越大我们可以假设,单位时间电容电压变化1v(dV=1)(可能有人说变化也太大了吧,但想下我们一般做类似lm886的时候用的电压是30v左右,电压下降1v,电压变化率是%,我认为不算小了,那如果您非认为这个值小了,那你可以按照你所希望的值计算一下,或许你发现你所需要的代价是很大的),则上式变为C=I*dt。

那么我们就可以按照一个最大的猝发大功率信号时所需要的电流和猝发时间来计算我们所需要的最小电容大小了,以lm3886为例,它的最大输出功率是125W,那么我么可以假设需要电源提供的最大功率是150W,则电源提供的最大电流是I=150/(30+30)=(正负电源各),而大功率一般是低频信号,我们可以用100Hz信号代替,则dt=1/100=,带上上式后得到C=×==25000uF。

以上计算是按照功放的最大功率计算的,如果我们平时是用小音量听的话,电容不需要这么大的,我认为满足一定的纹波系数就可以了,4700u或许就已经够用了。

喜欢大音量的同志那就必须要用大水塘了,10000u 也不算大。

ps:如果按照dV=计算,则C=25万uF,可以想像在电源上你要花多少钱,而且对音质的影响有多大还很难说。

滤波电容的选择

滤波电容的选择

滤波电容的选择经过整流桥以后的是脉动直流,波动范围很大。

后面一般用大小两个电容大电容用来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑小电容是用来滤除高频干扰的,使输出电压纯净电容越小,谐振频率越高,可滤除的干扰频率越高1、容量选择:(1)大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大(2)小电容,凭经验,一般104即可1)电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

2)电源滤波中电容对地脚要尽可能靠近地。

3)理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波。

4)可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.具体案例: AC220-9V再经过全桥整流后,需加的滤波电容是多大的? 再经78LM05后需加的电容又是多大?前者电容耐压应大于15V,电容容量应大于2000微发以上。

后者电容耐压应大于9V,容量应大于220微发以上。

2、有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,要求:(1)选择整流二极管;(2)选择滤波电容;(3)另:电容滤波是降压还是增压?(1)因为桥式是全波,所以每个二极管电流只要达到负载电流的一半就行了,所以二极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输入交流电压有效值的1.2倍,所以你的电路输入的交流电压有效值应是20V,而二极管承受的最大反压是这个电压的根号2倍,所以,二极管耐压应大于28.2V。

(2)选取滤波电容:1、电压大于28.2V;2、求C的大小:公式RC≥(3--5)×0.1秒,本题中R=24V/0.5A=48欧所以可得出C≥(0.00625--0.0104)F,即C的值应大于6250μF。

(3)电容滤波是升高电压。

滤波电容的选用原则在电源设计中,滤波电容的选取原则是:C≥2.5T/R其中: C为滤波电容,单位为UF;T为频率, 单位为HzR为负载电阻,单位为Ω当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R3、滤波电容的大小的选PCB制版电容选择印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用RC吸收电路来吸收放电电流。

滤波电容的选型与计算

滤波电容的选型与计算

电源滤波电容得选择与计算电感得阻抗与频率成正比,电容得阻抗与频率成反比、所以,电感可以阻扼髙频通过,电容可以阻扼低频通过、二者适当组合,就可过滤各种频率信号、如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波、。

电容滤波属电压滤波,就是直接储存脉动电压来平滑输岀电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。

电感滤波属电流滤波,就是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容与电感得很多特性就是恰恰相反得。

一般情况下,电解电容得作用就是过滤掉电流中得低频信号,但即使就是低频信号,苴频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容与低频电容(这里得髙频就是相对而言)。

低频滤波电容主要用于市电滤波或变压器整流后得滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后得滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容髙频特性不好,它在髙频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液得频繁极化而产生较大得热量。

而较髙得温度将使电容内部得电解液气化,电容内压力升髙,最终导致电容得鼓包与爆裂。

电源滤波电容得大小,平时做设讣,前级用4、7u,用于滤低频,二级用0、lu,用于滤髙频,4、7uF得电容作用就是减小输出脉动与低频干扰,0、luF得电容应该就是减小由于负载电流瞬时变化引起得高频干扰。

一般前而那个越大越好,两个电容值相差大概100倍左右。

电源滤波,开关电源,要瞧您得ESR(电容得等效串联电阻)有多大,而高频电容得选择最好在其自谐振频率上。

大电容就是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容得串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容得等效模型为一电感L, 一电阻R与电容C得串联, 电感L为电容引线所至,电阻R代表电容得有功功率损耗,电容C .因而可等效为串联L C回路求英谐振频率,串联谐振得条件为WL二l/WC, W二2*PI*f,从而得到此式子f二l/(2pi*LC).,串联L C回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果•引线电感得大小因英粗细长短而不同,接地电容得电感一般就是1 MM 为lOnll左右,取决于需要接地得频率、采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,苴实也不难1)理论上理想得电容其阻抗随频率得增加而减少(1/jwc),但由于电容两端引脚得电感效应,这时电容应该瞧成就是一个LC串连谐振电路,自谐振频率即器件得FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰得抑制就大打折扣,所以需要一个较小得电容并联对地、原因在于小电容,SFR值大,对髙频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本得原因在于SFR(自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了、 2)那么在实际得设计中,我们常常会有疑问,我怎么知道电容得SFR就是多少?就算我知道SFR值,我如何选取不同SFR值得电容值呢?就是选取一个电容还就是两个电容?电容得SFR值与电容值有关,与电容得引脚电感有关,所以相同容值得0102, 0603,或直插式电容得SFR值也不会相同,当然获取SFR值得途径有两个:1)器件Datasheet,如22pf0402电容得SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容得SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于您所供电电路得工作频带就是否有足够得噪声抑制比、仿真完后,那就就是实际电路试验,如调试手机接收灵敏度时,LNA得电源滤波就是关键,好得电源滤波往往可以改善几个dB、电容得本质就是通交流,隔直流,理论上说电源滤波用电容越大越好、但由于引线与PCB布线原因,实际上电容就是电感与电容得并联电路,(还有电容本身得电阻,有时也不可忽略)这就引入了谐振频率得槪念:=1/(LC) 1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性、因而一般大电容滤低频波,小电容滤髙频波、这也能解释为什么同样容值得STM封装得电容滤波频率比DIP封装更髙、至于到底用多大得电容,这就是一个参考电容谐振频率更可靠得做法就是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大得滤波频段、文章来源:我瞧了这篇文章,也做个粗略得总结吧:1、电容对地滤波,需要一个较小得电容并联对地,对髙频信号提供了一个对地通路。

滤波电容及计算选取

滤波电容及计算选取

一、什么是滤波电容安装在整流电路两端用以降低交流脉动波纹系数提升高效平滑直流输出的一种储能器件,通常把这种器件称其为滤波电容。

由于滤波电路要求储能电容有较大电容量。

所以,绝大多数滤波电路使用电解电容。

电解电容由于其使用电解质作为电极(负极)而得名。

电解电容的一端为正极,另一端为负极,不能接反。

正极端连接在整流输出电路的正端,负极连接在电路的负端。

在所有需要将交流电转换为直流电的电路中,设置滤波电容会使电子电路的工作性能更加稳定,同时也降低了交变脉动波纹对电子电路的干扰。

滤波电容在电路中的符号一般用“C“表示,电容量应根据负载电阻和输出电流大小来确定。

当滤波电容达到一定容量后,加大电容容量反而会对其他一些指标产生有害影响。

二、滤波电容的特点1、温升低谐波滤波器回路由电容器串联电抗器组成,在某一谐波阶次形成最低阻抗,用以吸收大量谐波电流,电容器的质量会影响谐波滤波器的稳定吸收效果,电容器的使用寿命跟温度有很大的关系,温度越高寿命越低,滤波全膜电容器具有温升低等特点,可以保证其使用寿命。

2、损耗低介质损耗角正切值(tgδ):≤0.0003。

3、安全性符合GB、IEC标准,内部单体电容器均附装保护装置;当线路或单体电容器发生异常时,该保护装置将会立即动作,自动切断电源,以防二次灾害的发生。

附装放电电阻,可确保用电及维护保养之安全。

外壳采用钢板冲压而成,内外部涂上耐候性良好之高温烤漆安全性特高。

4、便捷性体积小且重量轻,搬运安装极为方便。

三、滤波电容的作用滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更平滑。

而且对于精密电路而言,往往这个时候会采用并联电容电路[1]的组合方式来提高滤波电容的工作效果。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

滤波电容在开关电源中起著非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员十分关心的问题。

开关电源中滤波电容的选择方式

开关电源中滤波电容的选择方式

开关电源中滤波电容的选择方式、计算公式和注意事项
滤波电容在开关电源中非常重要,但是如何选择和使用滤波电容,特别是输出滤波电容的选择和使用特别关键。

开关电源中滤波电容的选择:
1. 一般情况下,滤波电容耐压越高越安全,但是意味着体积也就越大,同体积的话,耐压越高容量就越小。

所以,考虑实际情况发热话,滤波电容的耐压一般选取大于工作电压1.5倍左右就行。

2. 滤波电容的容量根据电源输出的电流大小,选择相应容量的电容。

理论上也是容量越大越好,但是实际上也不是这么回事(物极必反吧)。

a、电容容量越大,体积也就越大,开机冲击电流和冲击电压会很大,电源的待机功耗也就增加,
3. 开关电源波形更尖锐,对电容的容量要求要大些。

4. 滤波电容的通用选取原则是:C≥2.5T/R,其中: C为滤波电容,单位为UF; T为频率, 单位为Hz,R为负载电阻,单位为Ω;(这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R)
5. 现在有很多计算人员的做法是将一大一小两个电容并联,小电容滤高频波,大电容滤低配,大小电容一般要求相差两个数量级以上,这样的话可以获得更大的滤波效果。

6. 滤波电源一般为电解电容,比如说铝电解电容和钽电解电容,要求高的可选择钽电解电容。

电源滤波电容的选择

电源滤波电容的选择

详细解析电源滤波电容的选取与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。

电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。

电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容和电感的很多特性是恰恰相反的。

一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。

一般前面那个越大越好,两个电容值相差大概100倍左右。

电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。

大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。

滤波电容的选择

滤波电容的选择

在电源设计中,滤波电容的选取原则是: C≥2.5T/R其中: C为滤波电容,单位为UF;T为频率, 单位为HzR为负载电阻,单位为Ω当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R.电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过。

二者适当组合,就可过滤各种频率信号。

如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波。

电容滤波属电压滤波,是直接储存脉动电压(方向不变,大小随时间作周期性变化的电压,称为脉动电压.电视机电路中就存在脉动电压.脉动电压可以通过电容除去.)来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。

电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容和电感的很多特性是恰恰相反的。

一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。

一般前面那个越大越好,两个电容值相差大概100倍左右。

电容滤波的计算方法及电源滤波电容选用技巧

电容滤波的计算方法及电源滤波电容选用技巧

电容滤波的计算方法及电源滤波电容选用技巧本文主要是关于电容滤波的相关介绍,并着重对电容滤波的计算方法及电源滤波电容选用技巧进行了详尽的阐述。

电容滤波安装在整流电路两端用以降低交流脉动波纹系数提升高效平滑直流输出的一种储能器件,通常把这种器件称其为滤波电容。

由于滤波电路要求储能电容有较大电容量。

所以,绝大多数滤波电路使用电解电容。

电解电容由于其使用电解质作为电极(负极)而得名。

电解电容的一端为正极,另一端为负极,不能接反。

正极端连接在整流输出电路的正端,负极连接在电路的负端。

在所有需要将交流电转换为直流电的电路中,设置滤波电容会使电子电路的工作性能更加稳定,同时也降低了交变脉动波纹对电子电路的干扰。

滤波电容在电路中的符号一般用“C“表示,电容量应根据负载电阻和输出电流大小来确定。

当滤波电容达到一定容量后,加大电容容量反而会对其他一些指标产生有害影响。

滤波电容的特点1、温升低谐波滤波器回路由电容器串联电抗器组成,在某一谐波阶次形成最低阻抗,用以吸收大量谐波电流,电容器的质量会影响谐波滤波器的稳定吸收效果,电容器的使用寿命跟温度有很大的关系,温度越高寿命越低,滤波全膜电容器具有温升低等特点,可以保证其使用寿命。

2、损耗低介质损耗角正切值(tgδ):≤0.00033、安全性符合GB、IEC标准,内部单体电容器均附装保护装置;当线路或单体电容器发生异常时,该保护装置将会立即动作,自动切断电源,以防二次灾害的发生。

附装放电电阻,可确保用电及维护保养之安全。

外壳采用钢板冲压而成,内外部涂上耐候性良好之高温烤漆安全性特高。

4、便捷性体积小且重量轻,搬运安装极为方便滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更平滑。

而且对于精密电路而言,往往这个时候会采用并联电容电路[1]的组合方式来提高滤波电容的工作效果。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

滤波电容大小计算公式与选择

滤波电容大小计算公式与选择

滤波电容大小计算公式与选择滤波电容大小计算公式桥式整流电路的滤波电容取值在工程设计中,一般由两个切入点来计算。

一是根据电容由整流电源充电与对负载电阻放电的周期,再乘上一个系数来确定的,另一个切入点是根据电源滤波输出的波纹系数来计算的,无论是采用那个切入点来计算滤波电容都需要依据桥式整流的最大输出电压和电流这两个数值。

通常比较多的是根据电源滤波输出波纹系数这个公式来计算滤波电容。

C≥0.289/{f×(U/I)×ACv}C,是滤波电容,单位为F。

0.289,是由半波阻性负载整流电路的波纹系数推演来的常数。

f,是整流电路的脉冲频率,如50Hz交流电源输入,半波整流电路的脉冲频率为50Hz,全波整流电路的脉冲频率为100Hz。

单位是Hz。

U,是整流电路最大输出电压,单位是V。

I,是整流电路最大输出电流,单位是A。

ACv,是波纹系数,单位是%。

例如,桥式整流电路,输出12V,电流300mA,波纹系数取8%,滤波电容为:C≥0.289/{100Hz×(12V/0.3A)×0.08}滤波电容约等于0.0009F,电容取1000uF便能满足基本要求。

电源滤波电容大小的计算方法C=Q/U----------Q=C*UI=dQ/dt---------I=d(C*U)/dt=C*dU/dtC=I*dt/dU从上式可以看出,滤波电容大小与电源输出电流和单位时间电容电压变化率有关系,且输出电流越大电容越大,单位时间电压变化越小电容越大我们可以假设,单位时间电容电压变化1v(dV=1)(可能有人说变化也太大了吧,但想下我们一般做类似lm886的时候用的电压是30v左右,电压下降1v,电压变化率是96.7%,我认为不算小了,那如果您非认为这个值小了,那你可以按照你所希望的值计算一下,或许你发现你所需要的代价是很大的),则上式变为C=I*dt。

那么我们就可以按照一个最大的猝发大功率信号时所需要的电流和猝发时间来计算我们所需要的最小电容大小了,以lm3886为例,它的最大输出功率是125W,那么我么可以假设需要电源提供的最大功率是150W,则电源提供的最大电流是I=150/(30+30)=2.5A(正负电源各2.5A),而大功率一般是低频信号,我们可以用100Hz信号代替,则dt=1/100=0.01s,带上上式后得到C=2.5×0.01=0.025=25000uF。

滤波电容的选型与计算(详解)

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。

电容滤波属电压滤波,是直接储存脉动电压来它在高频充放电时内阻较大,等效电感较高。

而较高的温度将使电容内部的电解液气化,电容内0.1u,用于滤高频,4.7uF100倍左右。

电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。

大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,其实也不难1)FSR参数,这表示频率大于FSR值时,FSR后,对干扰的抑制就大打折扣,,SFR值大,对高频信号提供了一个对地通路,,小电容滤高频,根本的原因在于SFR(自谐振频率)近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少?就算我知道SFR值,我如何选取不同SFR值的电容值呢?是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

电源滤波电容的选取

电源滤波电容的选取

电源滤波电容的选取
电源滤波电容的选取
 在电源设计中,滤波电容的选取原则是: C≥2.5T/R
 其中: C为滤波电容,单位为UF;T为频率, 单位为Hz;R为负载电阻,单位为Ω
 当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R.
 1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地。

 原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中:大电容虑低频,小电容虑高频,根本的原因在于SFR(自谐振频率)值不同。

 2)在实际的设计中,如何确定电容的SFR是多少?如何选取不同SFR值的电容值呢?是选取一个电容还是两个电容?。

滤波电容的选型与计算(详解)之欧阳歌谷创作

滤波电容的选型与计算(详解)之欧阳歌谷创作

电源滤波电容的选择与计算欧阳歌谷(2021.02.01)电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。

电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。

电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容和电感的很多特性是恰恰相反的。

一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

电源滤波电容的大小,平时做设计,前级用 4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。

一般前面那个越大越好,两个电容值相差大概100倍左右。

电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。

大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR 是多少? 就算我知道SFR值,我如何选取不同SFR值的电容值呢? 是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21?知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:/s/blog_545edca401000ax6.html我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

滤波电容的选择

滤波电容的选择

一、一般是选择滤波电容在电路中的容抗(按需要滤除的杂波的基波频率计),是相应电路中负载电阻的(1/15左右)。

例如:电压24V、电流2A的电源中,负载电阻是12Ω,单相整流后的基波是100Hz,容抗应该在0.8Ω左右。

Xc=1/(2πfC)C选2000μF。

二、滤波电容的选择经过整流桥以后的是脉动直流,波动范围很大。

后面一般用大小两个电容大电容用来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑小电容是用来滤除高频干扰的,使输出电压纯净电容越小,谐振频率越高,可滤除的干扰频率越高容量选择:(1)大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大(2)小电容,凭经验,一般104即可2.别人的经验(来自互联网)1、电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

2、电源滤波中电容对地脚要尽可能靠近地。

3、理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波。

4、可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.具体案例: AC220-9V再经过全桥整流后,需加的滤波电容是多大的?再经78LM05后需加的电容又是多大?前者电容耐压应大于15V,电容容量应大于2000微发以上。

后者电容耐压应大于9V,容量应大于220微发以上。

2.有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,要求:(1)选择整流二极管;(2)选择滤波电容;(3)另:电容滤波是降压还是增压?(1)因为桥式是全波,所以每个二极管电流只要达到负载电流的一半就行了,所以二极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输入交流电压有效值的1.2倍,所以你的电路输入的交流电压有效值应是20V,而二极管承受的最大反压是这个电压的根号2倍,所以,二极管耐压应大于28.2V。

(2)选取滤波电容:1、电压大于28.2V;2、求C的大小:公式RC≥(3--5)×0.1秒,本题中R=24V/0.5A=48欧所以可得出C≥(0.00625--0.0104)F,即C的值应大于6250μF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
0.01μF 25 50
1000pF 80 160
100 pF 250 500
10 pF 800 1.6(GHz)
不过仅仅是参考而已,老工程师说主要靠经验.
更可靠的做法是将一大一小两个电容并联,
一般要求相差两个数量级以上,以获得更大的滤波频段.
文章来源:/s/blog_545edca401000ax6.html

具体电容的选择可以用公式C=4Pi*Pi /(R * f * f )
电源滤波电容如何选取,掌握其精髓与方法,其实也不难。
1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应
,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于
(2)选取滤波电容:1、电压大于28.2V;2、求C的大小:公式RC≥(3--5)×0.1秒,本题中R=24V/0.5A=48欧
所以可得出C≥(0.00625--0.0104)F,即C的值应大于6250μF。
(3)电容滤波是升高电压。
滤波电容的选用原则
贴子回复于:2007-3-25 21:24:28
采用电容滤波设计需要考虑参数:
ESR
ESL
耐压值
谐振频率
那么如何选取电源滤波电容呢?
电源滤波电容如何选取,掌握其精髓与方法,其实也不难
1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!
电容的等效模型为一电感L,一电阻R和电容C的串联,
电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.
因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为 10nH左右,取决于需要接地的频率。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
(2)小电容,凭经验,一般104即可
2.别人的经验(来自互联网)
1、电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
2、电源滤波中电容对地脚要尽可能靠近地。
3、理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波。
4、可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.
所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.
2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少?就算我知道SFR值,
1000pF 80 160
100 pF 250 500
10 pF 800 1.6(GHz)
不过仅仅是参考而已,用老工程师的话说——主要靠经验。
更可靠的做法是将一大一小两个电容并联,
一般要求相差两个数量级以上,以获得更大的滤波频段。
一般来讲,大电容滤除低频波,小电容滤除高频波。电容值和你要滤除频率的平方成反比

具体案例: AC220-9V再经过全桥整流后,需加的滤波电容是多大的? 再经78LM05后需加的电容又是多大?
前者电容耐压应大于15V,电容容量应大于2000微发以上。 后者电容耐压应大于9V,容量应大于220微发以上。
2.有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,要求:
因而一般大电容滤低频波,小电容滤高频波。
这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高。
至于到底用多大的电容,这是一个参考
电容谐振频率
电容值 DIP (MHz) STM (MHz)
1.0μF 2.5 5
0.1μF 8 16
0.01μF 25 50
印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采
用RC吸收电路来吸收放电电流。一般R取1~2kΩ,C取2.2~4.7μF
一般的10PF左右的电容用来滤除高频的干扰信号,0.1UF左右的用来滤除低频的纹波干扰,还
可以起到稳压的作用
滤波电容具体选择什么容值要取决于你PCB上主要的工作频率和可能对系统造成影响的谐波
再加一个比较大的钽电容。
其实滤波应该也包含两个方面,也就是各位所说的大容值和小容值的,就是去耦和旁路。
原理我就不说了,实用点的,一般数字电路去耦0.1uF即可,用于10M以下;20M以上用1到
10个uF,去除高频噪声好些,大概按C=1/f 。旁路一般就比较的小了,一般根据谐振频率
一般为0.1或0.01uF
说到电容,各种各样的叫法就会让人头晕目眩,旁路电容,去耦电容,滤波电容等等,其
实无论如何称呼,它的原理都是一样的,即利用对交流信号呈现低阻抗的特性,这一点可
以通过电容的等效阻抗公式看出来:Xcap=1/2лfC,工作频率越高,电容值越大则电容的
阻抗越小.。在电路中,如果电容起的主要作用是给交流信号提供低阻抗的通路,就称为旁
滤波电容的选取原则
经过整流桥以后的是脉动直流,波动范围很大。后面一般用大小两个电容
大电容用来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑
小电容是用来滤除高频干扰的,使输出电压纯净
电容越小,谐振频率越高,可滤除的干扰频率越高
容量选择:
(1)大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大
FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打
折扣,所以需要一个较小的电容并联对地,可以想想为什么?
原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常
常这样理解:大电容虑低频,小电容虑高频,根本的原因在于SFR(自谐振频率)值不同,当然也
用于高速PCB设计中的电容都称为旁路电容.
电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好。
但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,
(还有电容本身的电阻,有时也不可忽略)
这就引入了谐振频率的概念:ω=1/(LC)1/2
在谐振频率以下电容呈容性,谐振频率以上电容呈感性。
(1)选择整流二极管;
(2)选择滤波电容;
(3)另:电容滤波是降压还是增压?
(1)因为桥式是全波,所以每个二极管电流只要达到负载电流的一半就行了,所以二极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输入交流电压有效值的1.2倍,所以你的电路输入的交流电压有效值应是20V,而二极管承受的最大反压是这个电压的根号2倍,所以,二极管耐压应大于 28.2V。
在电源设计中,滤波电容的选取原则是: C≥2.5T/R
其中: C为滤波电容,单位为UF;
T为频率, 单位为Hz
R为负载电阻,单位为Ω
当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R.
3.
滤波电容的大小的选取
PCB制版电容选择
在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.
这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.
至于到底用多大的电容,这是一个参考电容谐振频率
电容值 DIP (MHz) STM (MHz)
1.0μF 2.5 5
0.1μF 8 16
频率,可以查一下相关厂商的电容资料或者参考厂商提供的资料库软件,根据具体的需要
选择。至于个数就不一定了,看你的具体需要了,多加一两个也挺好的,暂时没用的可以
先不贴,根据实际的调试情况再选择容值。如果你PCB上主要工作频率比较低的话,加两个
相关文档
最新文档