第二章.放大电路基础
数电——第2章放大电路基础学习要点
二、分压式偏置放大电路
(2) 动态分析 分压式偏置放大电路的微变 等效电路如图所示。 等效电路如图所示。 RS 电压放大倍数: 电压放大倍数: us + • RB1 RC
C1 + + C2
+VCC T RB2
+
+
RL
uo
-
Au =
Uo
•
=−
β ( RL // RC )
rbe
RE
CE
- (a) 放大电路
2.1.3 放大电路的直流通路和交流通路
1.直流通路 直流电源作用下直流电流流经的路径 1.直流通路—直流电源作用下直流电流流经的路径。 直流通路 直流电源作用下直流电流流经的路径。 电容视为开路; 视为开路 ① 电容视为开路; 电感视为短路; ② 电感视为短路; ③ 交流信号源视为短路(保留内阻)。 交流信号源视为短路(保留内阻)。 视为短路 2.交流通路 输入信号作用下交流信号流经的路径 2.交流通路—输入信号作用下交流信号流经的路径。 交流通路 输入信号作用下交流信号流经的路径。 大容量电容视为短路 电容视为短路; ① 大容量电容视为短路; 直流电压源视为短路。 视为短路 ② 直流电压源视为短路。 (P47 图2.4)
二、分压式偏置放大电路
分压式偏置放大电路, 自动调节 不随温度变化, 分压式偏置放大电路,能自动调节IC不随温度变化, 克服了固定偏置放大电路受温度影响的缺点。 克服了固定偏置放大电路受温度影响的缺点。 +V +VCC RB1 RC
C1 + + C2
CC
RB1
+
I1 RC IB I2
IC UCE
ri
注意射极电阻折算到基级: 注意射极电阻折算到基级 ×(1+β)
电子技术基础第二章 基本放大电路
图2.3.4 基本共 (2)输出电路方程:uCE=VCC-iCRc
图2.3.5 用图解法求解静态工作点和电压放大倍数
二、电压放大倍数的分析 当加入输入信号△uI时,输入回路方程为 uBE=VBB+ △uI-iBRb
Q点高,同样的△uI产生的△iB越大,因而Au大。 Rc变化时,影响负载线的斜率,从而影响Au的大小。
图2.1.1 扩音机示意图
2.1.2
放大电路的性能指标
图2.1.2 放大电路 的示意图
一、放大倍数
二、输入电阻
三、输出电阻
根据图2.1.2有
输入电阻和输出电阻是影响多级放大电路 连接的重要参数。
图2.1.3
两个放大电路的连接
四、 通频带
通频带用于衡量放大电路对不同频率 信号的放大能力。
图2.1.4 fbw=fH-fL
2、输入电阻Ri 3、输出电阻Ro 分析输出电阻,也可令其信号源电压 ,但 保留其内阻Rs。然后在输出端加一正弦波测试信 号Uo,必然产生动态电流Io, 为恒压源,其内 阻为0,且 =0时, =0, =0,所以
2.4
放大电路工作点的稳定
2.4.1 静态工作点稳定的必要性
图2.4.1
2.4.2 典型的静态工作点稳定电路 一、电路组成和Q点稳定原理
图2.4.2 静态工作点稳定电路 (a) 直接耦合 (b) 阻容耦合 (c) 直流通路
B点的电流方程为 I2=I1+IBQ 一般选择 I1» IBQ 所以, I2I1 B点电位为
五、非线性失真系数
六、最大不失真输出电压
当输入电压再增大就会使输出波形 产生非线性失真时的输出电压。此时的 非线性失真系数要被定义,如10%。
七、最大输出功率与效率
第二章:放大电路分析基础
放大电路分析基础在我们的生活中,经常会把一些微弱的信号放大到便于测量和利用的程度。
这就要用到放大电路,它是我们这门课程的重点。
放大的基础就是能量转换。
在学习时我们把这一章的课程分为六节,它们分别是:§2、1 放大电路工作原理§2、2 放大电路的直流工作状态§2、3 放大电路的动态分析§2、4 静态工作点的稳定及其偏置电路§2、5 多级放大电路§2、6放大电路的频率特性§2、1放大电路工作原理我们知道三极管可以通过控制基极的电流来控制集电极的电流,来达到放大的目的。
放大电路就是利用三极管的这种特性来组成放大电路。
我们下面以共发射极的接法为例来说明一下。
一:放大电路的组成原理放大电路的组成原理(应具备的条件)(1):放大器件工作在放大区(三极管的发射结正向偏置,集电结反向偏置)(2):输入信号能输送至放大器件的输入端(三极管的发射结)(3):有信号电压输出。
判断放大电路是否具有放大作用,就是根据这几点,它们必须同时具备。
例1:判断图(1)电路是否具有放大作用不满足条件(1),所解:图(1)a不能放大,因为是NPN三极管,所加的电压UBE以不具有放大作用。
图(1)b具有放大作用。
二:直流通路和交流通路在分析放大电路时有两类问题:直流问题和交流问题。
(1)直流通路:将放大电路中的电容视为开路,电感视为短路即得。
它又被称为静态分析。
(2)交流通路:将放大电路中的电容视为短路,电感视为开路,直流电源视为短路即得。
它又被称为动态分析。
例2:试画出图(2)所示电路的直流通路和交流通路。
解:图(2)所示电路的直流通路如图(3)所示:交流通路如图(4)所示:§2、2 放大电路的直流工作状态这一节是本章的重点内容,在这一节中我们要掌握公式法计算Q点和图形法计算Q点在学习之前,我们先来了解一个概念:什麽是Q点?它就是直流工作点,又称为静态工作点,简称Q点。
模拟电路第二章 放大电路基础
模拟电路第二章放大电路基础模拟电路第二章放大电路基础第2章放大电路基础2.1教学要求1、掌握放大电路的组成原理,熟练掌握放大电路直流通路、交流通路及交流等效电路的画法并能熟练判断放大电路的组成是否合理。
2、熟识理想情况下放大器的四种模型,并掌控增益、输入电阻、电阻值等各项性能指标的基本概念。
3、掌握放大电路的分析方法,特别是微变等效电路分析法。
4、掌控压缩电路三种基本组态(ce、cc、cb及cs、cd、cg)的性能特点。
5、介绍压缩电路的级间耦合方式,熟识多级压缩电路的分析方法。
2.2基本概念和内容要点2.2.1压缩电路的基本概念1、放大电路的组成原理无论何种类型的压缩电路,均由三大部分共同组成,例如图2.1右图。
第一部分就是具备压缩促进作用的半导体器件,例如三极管、场效应管,它就是整个电路的核心。
第二部分就是直流偏置电路,其促进作用就是确保半导体器件工作在压缩状态。
第三部分就是耦合电路,其促进作用就是将输出信号源和输入功率分别相连接至压缩管及的输出端的和输入端的。
(1)偏置电路①在分立元件电路中,常用的偏置方式存有压强偏置电路、自偏置电路等。
其中,分后甩偏置电路适用于于任何类型的放大器件;而自偏置电路只适合于用尽型场效应管(如jfet及dmos管)。
42输出信号耦合电路耦合电路输入功率t偏置电路外围电路图2.1下面详述偏置电路和耦合电路的特点。
②在集成电路中,广泛采用电流源偏置方式。
偏置电路除了为压缩管提供更多最合适的静态点(q)之外,还应当具备平衡q点的促进作用。
(2)耦合方式为了保证信号不失真地放大,放大器与信号源、放大器与负载、以及放大器的级与级之间的耦合方式必须保证交流信号正常传输,且尽量减小有用信号在传输过程中的损失。
实际电路有两种耦合方式。
①电容耦合,变压器耦合这种耦合方式具有隔直流的作用,故各级q点相互独立,互不影响,但不易集成,因此常用于分立元件放大器中。
②轻易耦合这是集成电路中广泛采用的一种耦合方式。
第二章(简好用新)-基本放大电路..
五、实用共发射极放大电路
1.温度对工作点的影响
温度升高
UBE减小 ICBO增大
β增大
注:旁路电容的作用。接人发射极电阻 RE,一方面发射极电流的直流分量IE 通过它能起到自动稳定静态工作点的作 用;另一方面发射极电流的交流分量ie 也会产生交流压降,使uBE减小,这样 就会降低电压放大倍数,因此增加了旁 路电容,使交流信号从电容上流过。
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us
–
E B
V
us+-
Rs
RB C ui+-
RE
RL
+-uo
交流通路
二、共集电极放大电路分析 1.静态工作点的计算
VCC IBQRB U BEQ IEQRE
I BQ
VCC U BE
RB (1 )RE
ICQ I BQ I EQ
动态分析步骤:
1.先画出交流通路, 有时为了便于分析, 还要把电路变形为我 们便于分析的方式。
2.根据交流通路画微 变等效电路
E B
V
RB C ui+-
RE
RL
+-uo
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us
–
Ii B
Ib
Ic
画微变等效电路时需注意的 问题:
1.交流通路变化成微变等效
RC
C2
+-
uCE
第二章放大电路基础(差分和功率)
+UCC 差模信号 是有用信号
+ +
RB2 RC RB1 T1
+ uo – T2
RC
RB2
RB1 +– ui2 – +
ui1 ––
(2) 差模信号 ui1 = – ui2 大小相等、极性相反 大小相等、 两管集电极电位一减一增,呈等量异向变化, 两管集电极电位一减一增,呈等量异向变化, uo= (VC1-∆VC1 )-(VC2 +∆ VC1 ) =-2 ∆VC1 (V =- 即对差模信号有放大能力。 对差模信号有放大能力。
任意信号可分解为一对共模信号和一对差模信号的组合。 任意信号可分解为一对共模信号和一对差模信号的组合。 可分解为一对共模信号和一对差模信号的组合
ui1 + ui 2 ui1 − ui 2 ui1 = + = uic + uid 2 差模信号: 差模信号: uid = ui1 − ui2 2 2 ui1 + ui 2 ui1 − ui 2 ui1 = − = uic − uid 2 1 共模信号: 2 2 共模信号: uic = ( ui1 + ui2 )
uo= uC1 - uC2
ui2
ui1
大小相等,极性相同), ),共模输入信号 当ui1 = ui2(大小相等,极性相同),共模输入信号 设ui1 ↑, ui2 ↑,使uC1 ↓, uC2 ↓。因ui1 = ui2,→ uC1 = uC2 ,
→ u o=
0 (理想化 。但因两侧不完全对称, uo≠ 0 理想化)。但因两侧不完全对称, 理想化 uo 很小, 共模电压放大倍数 AC = u (很小,<1) i1
2. 信号输入 共模信号 需要抑制
模电第二章 基本放大电路
T ( C U B ) 不 E I B I C 变
温度T (C) IC ,
若此时I B
,则I
、
CQ
U CEQ在输出特性坐标
系中的位置就可能
基本不变。
2.4 放大电路静态工作点的稳定
一、典型电路
消除方法:增大Rb,减小Rc,减小β。
例2-1:由于电路参数的改变使静态工作点产生如图所示变化。 试问(1)当Q从Q1移到Q2、 从Q2移到Q3、 从Q3移到Q4时, 分别是电路的哪个参数变化造成的?这些参数是如何变化的?
4mA 3mA 2mA 1mA
40µA
Q3
Q4
30µA 20µA
IB=10µA
2 6 m V
2 6 m V
r b e 2 0 0 ( 1 ) I E Q 2 0 0 ( 1 3 0 ) 1 . 2 m A 8 7 1 . 6 7
R i R b ∥ r b e r b e 8 7 1 . 6 7 R o R c 6 k
2.4 放大电路静态工作点的稳定
温度对Q点的影响
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法
结论: 1. ui uBE iB iC uCE uo
阻容耦合共射放大电路
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法 二、图解分析
结论: 2. uo与ui相位相反;3. 测量电压放大倍数;4. 最大不失 真输出电压Uom (UCEQ -UCES与 VCC- UCEQ ,取其小者,除以 2 )。
Q
UBE/V
UBEQ VCC
1、放大电路的静态工作点 (2)图解法确定静态工作点
第2章 放大电路分析基础分析
第2章 放大电路分析基础
讨论一
画图示电路的直流通路和交流通路。
第2章 放大电路分析基础
二、图解法
uBE VBB iB Rb
应用实测特性曲线
uCE VCC iC Rc
1. 静态分析:图解二元方程组
输入回路 负载线 IBQ
负载线
Q
ICQ
Q
IBQ
UBEQ
UCEQ
第2章 放大电路分析基础
第2章 放大电路分析基础
一、放大的概念及放大电路的性能指标
1、放大的概念
放大的对象:变化量
放大的本质:能量的控制
放大的特征:功率放大
判断电路能否放 大的基本出发点
放大的基本要求:不失真,放大的前提
第2章 放大电均可看成为两端口网络。
输入电流
信号源 内阻 输出电流
2)输入电阻和输出电阻
从输入端看进去的 等效电阻
Ui Ri Ii
输入电压与 输入电流有 效值之比。
U Uo U Ro ( 1) RL Uo Uo RL
' o ' o
将输出等效 成有内阻的电 压源,内阻就 是输出电阻。
空载时输出 电压有效值
带RL时的输出电 压有效值
第2章 放大电路分析基础
第2章 放大电路分析基础
在基本共射放大电路中,电压和电流都得到放大(ic=ib, uoui),即功率得到放大。需要提醒大家的是,输出功
率并非来自输入信号 (信号源),而是来自直流电源 VCC。
正是由于 iB 或 iE 对 iC 的控制作用,使得在 ui 的作用下直 流电源VCC输出的电流中包含与 ui同样变化且被放大的 分量,即放大电路的输出功率是在输入信号的作用下 通过晶体管将直流电源的能量转换而来。因此,放大
放大电路基本原理
第二章放大电路基本原理本章内容简介本章首先讨论半导体三极管(BJT )的结构、工作原理、特性曲线和主要参数。
随后着重讨论BJT放大电路的三种组态,即共发射极、共集电极和共基极三种放大电路。
内容安排上是从共发射极电路入手,再推及其他两种电路,并将图解法和小信号模型法,作为分析放大电路的基本方法。
(一)主要内容:✧半导体三极管的结构及工作原理,放大电路的三种基本组态✧静态工作点Q的不同选择对非线性失真的影响✧用H参数模型计算共射极放大电路的主要性能指标✧共集电极电路和共基极电路的工作原理✧三极管放大电路的频率响应(二)教学要点:从半导体三极管的结构及工作原理入手,重点介绍三种基本组态放大电路的静态工作点、动态参数(电压增益、源电压增益、输入电阻、输出电阻)的计算方法,H参数等效电路及其应用。
(三)基本要求:✧了解半导体三极管的工作原理、特性曲线及主要参数✧了解半导体三极管放大电路的分类✧掌握用图解法和小信号分析法分析放大电路的静态及动态工作情况✧理解放大电路的工作点稳定问题掌握放大电路的频率响应及各元件参数对其性能的影响2.1 半导体三极管(BJT )2.1.1 BJT 的结构简介:半导体三极管有两种类型:NPN 型和PNP 型。
结构特点:发射区的掺杂浓度最高;集电区掺杂浓度低于发射区,且面积大;基区很薄,一般在几个微米至几十个微米,且掺杂浓度最低。
2.1.2 BJT 的电流分配与放大原理三极管的放大作用是在一定的外部条件控制下,通过载流子传输体现出来的。
外部条件:发射结正偏,集电结反偏。
1. 内部载流子的传输过程发射区:发射载流子;集电区:收集载流子; 基区:传送和控制载流子(以NPN 为例)以上看出,三极管内有两种载流子(自由电子和空穴)参与导电,载流子的传输过程故称为双极型三极管,或BJT (Bipolar Junction Transistor)。
2. 电流分配关系2. 三极管的三种组态共发射极接法,发射极作为公共电极,用CE 表示。
[整理]02第二章 放大电路基础
第二章放大电路基础一、基本要求:1、认识三种组态放大电路,知道其特点及应用;2、知道放大电路基本工作原理,认识单管共发射极放大电路组成并会分析;知道静态工作点、输入电阻和输出电阻的概念及意义;3、会测试和调整静态工作点,知道静态工作点与波形失真的关系4、认识多级放大电路,认识放大电路的频率特性。
二、重难点:1、重点:单管共发射极放大电路组成、分析及特性;2、难点:放大电路原理,放大电路技术指标的理解。
三、例题:例2.1电路如题2.1(a)图所示,图(b)是晶体管的输出特性,静态时V BEQ=0.7V。
利用图解法分别求出R L =∞和R L =3kΩ时的静态工作点和最大不失真输出电压V om (有效值)。
解:空载时:I BQ =20μA ,I CQ =2mA ,V CEQ =6V ;最大不失真输出电压峰值约为6-0.3=5.7V ,有效值约为4.03V 。
带载时:I BQ =20μA ,I CQ =2mA ,V CEQ =3V ;最大不失真输出电压峰值约为 2.7V ,有效值约为1.91V 。
v o+V BB v CE /V题2. 1图(a) (b)v CE /V解题2. 1图v CES例2.2在由NPN 型管组成的共射电路中,由于电路参数不同,在信号源电压为正弦波时,测得输出波形如题2.2图(a )、(b )、(c )所示,试说明电路分别产生了什么失真,如何消除?解:(a)饱和失真,增大R b ,减小R c 。
(b)截止失真,减小R b 。
(c)同时出现饱和失真和截止失真,应增大V CC 。
例2.3若由PNP 型管组成的共射电路中,输出电压波形如题2.2图(a )、(b )、(c )所示,则分别产生了什么失真?题2.2图解:(a )截止失真;(b )饱和失真;(c )同时出现饱和失真和截止失真。
例2.4电路如题2.4图(a)所示, 已知β=50,r be =1kΩ;V CC =12V ,R b1=20kΩ, R b2=10kΩ, R c =3kΩ, R e =2kΩ, R s =1kΩ,R L =3kΩ,(1)计算Q 点;(2)画出小信号等效电路;(3)计算电路的电压增益A v =v o /v i 和源电压增益A vs =v o /v s ;输入电阻R i 、输出电阻R o 。
2-基本放大电路
2. 电压放大倍数的图解分析
此项分析需在静态工作点确定后进行! 由直流负载线方程 uBE VBB iB Rb
作出直流负载线,作出△uI。
uBE VBB uI iB Rb
I B1 I BQ iB
iC
I B1
直 流
uCE
u I
给定 uI i B iC uCE ( uO ) uO Au uI ( uO与uI 反相)
两种实用放大电路
(1)直接耦合放大电路
将两个电源 合二为一
- + UBEQ
有交流损失
有直流分量
两种实用放大电路:(2)阻容耦合放大电路
C1、C2为耦合电容!
+ - - ++
UCEQ
BE
UBEQ U
-
耦合电容的容量应足够 大,即对于交流信号近似 为短路。其作用是“隔离 直流、通过交流”。
静态时,C1、C2上电压? U C1 U BEQ,U C2 UCEQ 动态时, uBE=uI+UBEQ,信号驮载在静态之上。 负载上只有交流信号。
第二章 基本放大电路
第二章 基本放大电路
§2.1 放大的概念与放大电路的性能指标
§2.2 基本共射放大电路的工作原理
§2.3 放大电路的分析方法
§2.4 静态工作点的稳定
§2.5 晶体管放大电路的三种接法 §2.6 场效应管及其基本放大电路 §2.7 基本放大电路的派生电路
§2.1 放大的概念与放大电路 的性能指标
iC I CQ ic uCE U CEQ uce
3. 失真分析
• 截止失真:输出波形进入截止区 产生的失真。
t
截止失真是在输入回路首先产生失真! 消除方法:增大VBB,即向上平移输入回路负载线。 减小Rb能消除截止失真吗?
放大电路的基本原理
2. 当 值一定时,IEQ 愈大则 rbe 愈小,可以得到较
大的 Au ,这种方法比较有效。
(三) 等效电路法的步骤(归纳)
1. 首先利用图解法或近似估算法确定放大电路 的静态工作点 Q 。
2. 求出静态工作点处的微变等效电路参数 和
rbe 。 3. 画出放大电路的微变等效电路。可先画出三
极管的等效电路,然后画出放大电路其余部分的交 流通路。
误差很小。
4. 电压放大倍数 Au;输入电阻 Ri、输出电阻 RO
Rb C1+ + Ui
Rc +C2
VT RL
+VCC
+
UO
b Ib
+
Ic c
+
Ui Rb
rbe Ib
Rc RLUo
e
图 2.4.12 单管共射放大电路的等效电路
Au 所以
Uo Ui
Au
而
Uo Ui
Ui Ibrbe
RL
rbe
该恒流源为受控源;
Q
iB
iB
为 iB 对 iC 的控制。
O
uCE
图 2.4.10(b)
3. 三极管的简化参数等效电路
iB b
+
uBE
iC c
+
iB b
+
iC c
+
uCE
uBE rbe
iB uCE
rce
e
e
图 2.4.11 三极管的简化 h 参数等效电路
注意:这里忽略了 uCE 对 iC与输出特性的影响,在 大多数情况下,简化的微变等效电路对于工程计算来说
1. 静态工作点
第二章 基本放大电路 2.1 放大的概念和放大电路的主要性能指标2.2 基本共射放大电路的工作原理2.3 放大电
RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
VBB iE
+ uo –
共发射极基本电路
晶体管T--放大元
件, iC= iB。要保
+ 证集电结反偏,发 VCC射结正偏,使晶体 – 管工作在放大区 。
基极电源VBB与基极 电阻RB--使发射结 处于正偏,并提供 大小适当的基极电 流。
直接耦合共射放大电路 直 流 通 路
视为短路
直接耦合共射放大电路
直 流 通 路
直接耦合共射放大电路
视为 接地
交 流 通 路
直接耦合共射放大电路 交 流 通 路
阻容耦合共射放大电路
1、直流通路 对直流信号电容 C 可看作开路(即将电容断开)
断开 RB
C1 +
RS +
+ ui
es –
–
+UCC
RC +C2 断开
iB iC + + TuCE + uB–E – RL uo
iE
–
+UCC
RB
RC IB IC
+
U+B–ETU–CE
直流通路
IE
直流通路用来计算静态工作点Q ( IB 、 IC 、 UCE )
2、对交流信号(有输入信号ui时的交流分量)
+UCC
RB
RC
+C2
XC 0,C 可看作 对地短路 短路。忽略电源的
ib:IBQIBQ IB
第2章放大电路完整版
放大元件iC=iB, 工作在放大区, 要保证集电结反 偏,发射结正偏。
输入 ui ui
Rb
uo 输出 VBB
参考点
(2-9)
共射放大电路组成 +VCC RC T
基极电阻 Rb ,调整 限制IB
ui Rb VBB
使发射结正偏, 并提供适当的静 态工作点。
(2-10)
共射放大电路 +VCC RC T
大写字母、大写下标,表 示直流量。 小写字母、大写下标,表 示全量(交流+直流)。 小写字母、小写下标,表 示交流量。
iB
ib
uA
ua
(2-52)
基本放大电路的静态工作点表达式 +VCC RC
ICQ
T
I BQ
VBB U BEQ Rb
I CQ I BQ
IBQ
Rb
UCEQ VBB
U CEQ VCC I CQ RC
电子学中放大的目的是将微弱的变化信号放 大成较大的信号。电子电路放大的基本特征是 功率放大。这样,在放大电路中必须有能够控 制能量的元件,即有源元件,如晶体管等。放 大的前提是不失真,此时放大才有意义。 电压放大电路可以用有输入口和输出口的 四端网络表示,如图。
ui
Au
uo
(2-3)
放大电路的性能指标 (1) 放大倍数 电压放大倍数
列输入回路方程:
iC C VCC Rc 1 斜率 I B + Rc
VBE =VCC-IBIRb Q 列输出回路方程(直流负载线) : V
CQ
IBQ
VBE -
I+ C VCE -
C EQ
VCC
vC E 直流通路
第02章基本放大电路
iB
Ec/Rb
B
- 1/Rb
Q
放大电路的输入和输出直流负载线
确定静态工作点 I
UBE Ec uBE
(1)由输入特性曲线和输入直流负载线求IBQ、UBEQ
EC
UBE=EC- IBRb → 直流负载线
IB IC UCE
作出直流负载线,直流负载线和输入 特性曲线的交点即是静态工作点Q,由 Q可确定IB、UBE
1.估算法 (1) 首先画出直流通路
EC
(2)求静态值 求解顺序是先求IB→IC→UCE
Si管:UBE=0.6V~0.7V
IB UBE IC UCE
Ge管:UBE=0.2V~0.3V
IB
E C U BE Rb
E C 0 .7 Rb
IC β IB
UCE=EC-ICRC
2. 图解法
三极管的输入和输出特性曲线
EC Ii Uo Ui Ib
Ic Uo
Ui
2. 放大电路的工作过程
当有交流信号ui加到放大器的输入端时,晶体管各点
的电压和电流将在静态值基础上叠加一交流分量,
此时电路中的信号即有直流,又有交流。
各点波形
iC
+EC
RC RB C1 iB
ui
t iB ui t
iC C2
t
uC u C uo
t
uo t
US ~
Ui
Au
ri
Ui Ii
(2-3)
三、输出电阻ro
放大电路对其负载而言,相当于信号源,我们 可以将它等效为戴维南等效电路,这个戴维南 等效电路的内阻就是输出电阻。
US ~
Au
ro
US' ~
第二章 基本放大电路(2008级)
UB ≈ 0.7 +Uz
VCC UB UB IBQ = Rb2 Rb1
UB
ICQ = βIBQ
UCEQ = VCC ICQRCUZ
交流内阻忽略
+
& Ui
I&b
Rb1// Rb2 rbe
I& c
β I&b
Rc RL
+
& UO
_
_
习题: 习题: 求
交流参数
① Q点;② Au、Ri、Ro 点 、 、
VBB △ ui
IBQ + △IB + UBEQ +△UBE
-
ICQ+△IC + UCEQ+△UCE
-
VCC
2.动态: 2.动态:放大信号 动态 △ui→△UBE →△IB →△IC(=β△IB) →△UCE(=-△IC×Rc) - 电压放大倍数
& Au = UCE / uI
静态设置工作点Q估算: 静态设置工作点Q估算:
26 ( mV ) rbe = 300 ( ) + (1 + β ) I E Q ( mA )
电流放大系数 β ——电流放大系数 控制的恒流源 恒流源i 输出端等效受 ib控制的恒流源 c
基本共射电路动态参数分析
& & Ui = Ib ( Rb + rbe) & U O = I&C R C = β I&bR C
i
I BQ
=
I CQ = β I BQ
UCEQ = VCC ( ICQ + ILQ) RC
ILQ = UCEQ / RL
V CC R L ' →U CEQ = ICQ R L ' RC RL'= RC // RL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+U RC C1 T RB EB
cc
集电极电源, 为电路提供能 量。并保证集 电结反偏。
C2
8
+
Ucc
C2
RC
C1 T RB EB
集电极电阻, 将变化的电流 转变为变化的 电压。
9
+
Ucc
RC C1 T
基极电源与 基极电阻
C2
使发射结正偏, 并提供适当的 静态工作点。
RB EB
10
+
Ucc
耦合电容
40
• 在低频、小信号作用下的关系式
uBE uBE duBE i U CE diB u I B duCE B CE iC di iC d i C U CE B I B duCE iB uCE
h I U be 11 b h12U CE I C h21 I b h22U CE
① 保证三极管发射结正偏、集电结反偏 (如下图所示); ② 欲放大信号能进入三极管中; ③ 所放大信号能传输到负载上。
6
2.2.2 共射放大电路的基本组成
+Ucc RC C1 T 输入 ui RB EB
参考点
放大元件iC= iB, 工作在放大区, 要保证集电结反 偏,发射结正偏。
C2
uo 输出
7
但是,电容对交、直流的作用不同。如果电 容容量足够大,可以认为它对交流不起作用,即 对交流短路。而对直流可以看成开路,这样,交 直流所走的通道是不同的。 交流通道:只考虑交流信号的分电路。 直流通道:只考虑直流信号的分电路。 信号的不同分量可以分别在不同的通道分析。
18
例:
对直流信号(只有+ Ucc ) +UCC 直流通道 +UCC RB 开路
不变。信号放大主要是利用三极管基极电流对集电极
电流的控制作用(IC=β Ib)。
2
•
三极管是一种控制元件,主要用来控制电流的大小。
•
共射极为例,当基极电压UB有一个微小的变化时,基极电流IB也 会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个 很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电 流越小,集电极电流也越小,即基极电流控制集电极电流的变化。但 是集电极电流的变化比基极电流的变化大得多,这就是三极管的放大 作用。
负载
放大电路是一个双口网络。从端口 特性来研究放大电路,可将其等效成 具有某种端口特性的等效电路。
47
一、电压放大倍数Au
电压增益(电压放大倍数) 电流增益
U o A u U
i
I o A i I i
互导增益
互阻增益
U o A R Ii
()
I o A G U i
压方程表示:
uCE=UCC-iCRc
uCE与iC是线性关系, 只需确定两点即可:
Department of physics Northwest University
22
a
iC
iB iB iB
4
Rc UCC
3
2
iB iB
1 0
b
O (b) iC UCC Rc 直流负载线 ICQ Q N iB iB
uCE
US ~
Au
ro
US' ~
50
方法一:计算 步骤:
也称直流工作状态。
动态—— vi 0 时,放大电路的工作状 态,也称交流工作状态。 放大电路建立正确的静态,是保证动态工作 的前提。分析放大电路必须要正确地区分静态和 动态,正确地区分直流通道和交流通道。
17
2.3.2 直流通道和交流通道
放大电路中各点的电压或电流都是在静态直 流上附加了小的交流信号。
RB C1
RC T
C2
RC
开路
19
对交流信号(输入信号ui)
+UCC RB C1 RC T
C2
置零
交流通路
uo
短路
ui
短路
RB
RC RL
20
2.3.3 放大电路的静态分析
一、近似估算确定静态工作点 +UCC U RB
RC
IB
CC
IC UCE
U BE Rb
IC β IB U CE EC I C Rc
所以: ic
ib
iC (1) 输出端相当于一个受ib 控制
的电流源。
uCE (2) 考虑 u 对 i 的影响,输出 CE C 端还要并联一个大电阻rce。 uCE rce的含义
uce rce ic
44
c 晶体管的低频小信号模型
ib
ic
ib
c
ic
ib
b
ube rbe uce
ib
第二章 基本放大电路
2.1 2.2 2.3 2.4 2.5 2.6 2.7 放大的概念 放大电路的实现 放大电路基本分析方法 放大电路的性能指标 工作点稳定问题 放大器三种基本组态 多级放大电路
1
2.1 放大的概念
1.信号:电流或电压。
2.放大的概念
小信号
放大器
大信号
信号放大时,放大的是信号的幅度,信号的频率
•
3
符号规定
UA uA ua
全量
大写字母、大写下标,表示直流量。 小写字母、大写下标,表示全量。 小写字母、小写下标,表示交流分量。
uA
ua
交流分量
UA直流分量
t
4
2.2 放大电路的实现
共射放大器 三极管放 大电路有 三种形式 共基放大器 共集放大器
以共射放 大器为例 讲解工作 原理
5
2.2.1 放大器电路的构成原则
(a) 输入特性上求iB
iB /uA iB /uA
60 40 20
Q` Q IBQ Q`` vBE/V vBE/V
t
t
VBEQ
30
(b)交流负载线的确定 R'L= RL∥Rc, 是 交流负载电阻。
Rc
iC 斜率 VCC
1 Rc// RL 1 Rc
过输出特性曲线上 的Q点做一条斜率为-
ICQ
Q
斜率 IBQ
rce
uce
ube
e
b
rbe
ib
c
rce很大, 一般忽略。
e
45
2 放大电路的交流等效电路
将交流通道中的晶体管用其低频模型代替 ii
uo
ib
ic
ui
RB
RC
RL ui RB rbe
ib
RL uo
RC
交流通路
46
2 .4 放大电路的性能指标
信号源
+ Vs – Ii Rs + Vi – 放大电路 + Vo – Io RL
图解法确定静态工作点。
Department of physics Northwest University
25
2.3.4 电路参数对静态工作点的影响
1、RB的影响
直流负载线不变。 RB变大时IB减小,Q点 下移,易出现截止失真; RB变小时IB增大,Q点
上移,易出现饱和失真。
26
2、RC的影响
直流负载线与横 轴交点不变,但与纵 轴交点变化。RC变大 交点下移,工作点沿 IB线左移,易出现饱 和失真;RC变小时交 点上移,易超出安全 区。
(a )
iC N
UCC Rc
4
3
iB =IBQ
2
iB O M UCC uCE O M UCEQ UCC iB
1 0
uCE
(c)
(d )
Department of physics Northwest University
23
由上可得出用图解法求Q点的步骤: (1) 在输出特性曲线所在坐标中, 按直流负载线方程 uCE=UCC-iCRc, 作出直流负载线。 (2) 由基极回路求出IBQ 。
Io RL
14
(IB,UBE) 输入特性和( IC,UCE )输出特性曲线
IB IB Q UBE UBE UCE
15
IC Q
IC
IB
UCE
估算法
静态分析
图解法
放大 电路 分析
微变等效电 路法 动态分析
图解法 计算机仿真
16
2.3.1 简单工作原理
静态—— vi 0 时,放大电路的工作状态,
三极管在放大信号时,首先要进入导通状态,即要先建立合适的 静态工作点,也叫 建立偏置 。 在三极管的集电极与电源之间接一个 电阻,可将电流放大转换成电压放大:当基极电压UB升高时,IB变大, IC也变大,IC 在集电极电阻RC的压降也越大,所以三极管集电极电压 UC会降低,且UB越高,UC就越低,ΔUC=ΔUB。
uCE uo
37
a Q点过低,信号进入截止区
iC 放大电路产生 截止失真 输入波形 uCE ib
uo 输出波形
38
b Q点过高,信号进入饱和区 iC
ib
输入波 形
uCE
输出波形
放大电路产生 饱和失真
uo
39
二、微变等效电路法交流分析
1.三极管的h参数表达式 υBE =f (iB,υCE) iC = g(iB,υCE)
27
3、UCC的影响
Ucc对Q点的影响 较复杂。Ucc变化,直
流负载线平行移动, 同时IBQ变化。UCC变大 时直流负载线右移, IBQ增大,容易超出安 全区;UCC变小时直流 负载线左移,容易出 现饱和失真。
28
2.3.5 放大电路的交流分析