新疆乌鲁木齐市第一中学2019届高三上学期第二次月考数学(理)试题

合集下载

新疆乌鲁木齐一中2012届高三第一次月考(地理)

新疆乌鲁木齐一中2012届高三第一次月考(地理)

乌鲁木齐市第一中学2011—2012学年高三第一次月考地理试题一、单项选择题(25*2=50分)河流侵蚀作用中的溯源侵蚀,是河床深切作用逐渐向河流上游方向发展的过程。

图3为某地的等高线示意图(单位:米)。

据图回答1-2题。

1.关于图中水文和地形的说法,正确的是()A.L1、L2、L3、L4为河流B.L3是L1河与L2河的分水岭C.L3河落差最大D.L4河水流较急2.若图中河流侵蚀作用不断增强,则未来可能出现的是()A.山地一定变得更低B.分水岭与河谷之间的高差变小C.L3附近的等高线将逐渐向南凸出D.L4河与L1河连成同一水系图为某区域的海上航线示意图。

在一艘驶往大西洋的轮船上,船员在图○1处看到了海上日出景观,此时为世界时(中时区区时)2时。

读图回答3-4题。

3.下列四幅图中,与①处当日日出时刻相符的是(注:阴影部分表示夜半球,●表示①处位置)()A B C D4.下列叙述正确的是()A.①处该船逆水航行B.②处风平浪静C.③地河流正值枯水期D.④地森林密布下图中心表示南极,阴影区为3月22日,非阴影部分为3月21日。

据此回答5-6:5.SA的经度是()A.60°E B.60°WC.180°D.0°6.此时下列地区的时间是()A.SA的地方时是3月22日24时B.SB的地方时是3月21日24时C.北京时间为3月22日12时D.伦敦时间为3月21日6时30°图3图3为某日观测到的同一经线上不同纬度的日出时刻(东十区区时)。

此时,东十区区时为12时。

读图回答7-9题。

7.此时太阳直射点的坐标是 ( ) A .30°E, 20°N B .150°E, 20°S C .30°E, 20°S D .150°E, 20°N8.对图中四地地理现象叙述正确的是( ) A .丁地地方时12时日出 B .丙地地方时16时日落 C .乙地昼长20小时 D .甲地夜长12小时 9.此时与东十区日期相同的范围占全球范围的 比例是 ( ) A .四分之一 B .二分之一 C .三分之一 D .大于二分之一图4为经纬网图。

新疆乌鲁木齐市第一中学2019届高三上学期第一次月考(9月)生物试题

新疆乌鲁木齐市第一中学2019届高三上学期第一次月考(9月)生物试题

乌鲁木齐市第一中学2018--2019学年第一学期2019届高三年级第一次月考生物试卷(请将答案写在答题纸上)一、选择题(每小题2分,共50分。

每小题只有一个选项符合题意)1、人类乳头瘤病毒(HPV病毒),是一种DNA病毒,主要类型有HPV1、2、6、11、16、18、31、33、35等,其中HPV16、18型长期感染会导致宫颈癌。

下列叙述正确的A.HPV病毒的不同类型是基因突变和染色体变异的结果B.该病毒进入人体可以依赖宿主细胞进行有氧呼吸作用C.该病毒进入人体可引起人体产生体液免疫和细胞免疫D.该病毒严格寄生于人体细胞中,属于生态系统的分解者2、下列关于生命系统的叙述,正确的是A.植物的导管、木纤维和花粉都不属于生命系统的细胞层次B.胃蛋白酶、甲状腺素、抗体等物质都属于生命系统的结构层次C.人工合成脊髓灰质炎病毒的成功意味着病毒可构成一个生命系统D.被污染的培养基上长出的各种细菌、真菌等属于生命系统中的群落3、下列有关细胞学说及其建立过程的叙述,正确的是A.维萨里通过大量的尸体研究,揭示了人体在器官和组织水平的结构B.荷兰的列文虎克用自制显微镜观察了不同形态的细菌、红细胞、精子等C.施莱登和施旺指出一切生物都是由细胞发育而来,并由细胞和细胞产物构成D.魏尔肖指出新细胞可以从老细胞中产生,并总结出“细胞通过分裂产生新细胞”4、下列关于原核细胞与真核细胞的统一性的叙述,不正确的是A.组成细胞的元素和化合物种类基本相同,直接能源物质都是ATPB.都含有DNA、RNA,遗传物质DNA的主要载体都是染色体C.具有相似的细胞膜和细胞质,细胞质基质中都有核糖体D.都能通过转录翻译合成蛋白质,翻译时共用一套遗传密码5、李斯特氏菌的致死性细菌会在人类细胞之间快速传递,使人患脑膜炎。

其原因是该菌的一种InIC的蛋白可通过阻碍人类细胞中的Tuba蛋白的活性,使细胞膜更易变形而有利于细菌的转移。

下列叙述错误的是A.该菌进入人体细胞的方式是需要消耗能量的胞吞作用B.与乳酸菌一样,该菌没有以核膜为界限的细胞核,无核膜核仁C.Tuba蛋白和InIC蛋白的合成均在人体细胞的核糖体上D.该菌使人类细胞发生变形,说明细胞膜具有一定的流动性6、下列有关生物学实验的叙述,正确的是A.高温和NaCl处理的蛋白质与双缩脲试剂作用,均可产生紫色反应B.脂肪检测时滴加体积分数为50%的酒精是为了杀死脂肪细胞C.观察核酸在细胞中的分布时,加热可促使DNA和蛋白质分离D.观察口腔上皮细胞的线粒体时,用健那绿染色前需要先用盐酸处理7、有关显色试剂的说法,错误的是A.斐林试剂遇还原糖会出现蓝色—棕色—砖红色的变化B.溴麝香草酚蓝水溶液遇CO2可出现蓝—绿—黄的颜色变化C.龙胆紫或醋酸洋红可将染色体(质)染成紫色或红色D.台盼蓝可将动物活细胞染成蓝色,而死细胞不着色8、如图是小麦种子成熟过程中干物质和水分的变化示意图,据图分析,下列叙述正确的是A.随着种子的成熟,种子中结合水/自由水的比值逐渐减小B.随着种子的成熟,种子的鲜重/干重的比值逐渐增加C.随着种子的成熟,种子细胞中有机物的量/水含量的值增大D.随着种子的成熟,种子细胞呼吸作用增强、淀粉合成增多9、肌质网是肌细胞内一种特化的内质网。

《高考真题》专题14 函数的奇偶性的应用-2019年高考理数母题题源系列(全国Ⅱ专版)(解析版)

《高考真题》专题14 函数的奇偶性的应用-2019年高考理数母题题源系列(全国Ⅱ专版)(解析版)

专题14 函数的奇偶性的应用【母题来源一】【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e axf x =-.若(l n2)8f =,则a =______________. 【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =, 所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.【母题来源二】【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1),(3)(1)(1),4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此[](1)(2)(3)(50)12(1)()(2)(3)4(1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1),(4)(2)f f f f =-=-,所以(1)(2)0())(34f f f f +++=, 因为(2)(0)0f f ==,从而(1)(2)(3)(50)(1)2f f f f f ++++==.故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.【命题意图】1.结合具体函数,了解函数奇偶性的含义.2.以抽象函数的奇偶性、对称性、周期性为载体考查分析问题、解决问题的能力和抽象转化的数学思想. 【命题规律】高考对该部分内容考查一般以选择题或填空题形式出现,难度中等或中等上,热点是奇偶性、对称性、周期性之间的内在联系,这种联系成为命题者的钟爱,一般情况下可“知二断一”. 【答题模板】1.判断函数奇偶性的常用方法及思路 (1)定义法(2)图象法(3)性质法利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断.注意:①分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围相应地化简解析式,判断()f x 与()f x 的关系,得出结论,也可以利用图象作判断. ②性质法中的结论是在两个函数的公共定义域内才成立的.③性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.2.与函数奇偶性有关的问题及解决方法 (1)已知函数的奇偶性,求函数的值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)已知函数的奇偶性求解析式已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可. (3)已知带有参数的函数的表达式及奇偶性求参数在定义域关于原点对称的前提下,利用()f x 为奇函数⇔()()f x f x -=-,()f x 为偶函数⇔()f x -()f x =,列式求解,也可以利用特殊值法求解.对于在0x =处有定义的奇函数()f x ,可考虑列式(0)0f =求解.(4)已知函数的奇偶性画图象判断单调性或求解不等式.利用函数的奇偶性可画出函数在另一对称区间上的图象及判断另一区间上函数的单调性. 【方法总结】1.函数奇偶性的定义及图象特点判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称). 2.函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (2)()f x ,()g x 在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括0,则(0)0f =.(4)若函数()f x 是偶函数,则()()(||)f x f x f x -==.(5)定义在(,)-∞+∞上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数()y f x =的定义域关于原点对称,则()()f x f x +-为偶函数,()()f x f x --为奇函数,()()f x f x ⋅-为偶函数.(7)一些重要类型的奇偶函数 ①函数()xxf x a a-=+为偶函数,函数()x xf x a a-=-为奇函数.②函数221()1x x x x x x a a a f x a a a ----==++(0a >且1a ≠)为奇函数. ③函数1()log 1axf x x-=+(0a >且1a ≠)为奇函数.④函数()log (a f x x =(0a >且1a ≠)为奇函数. 3.若()()f a x f a x +=-,则函数()f x 的图象关于x a =对称. 4.若()()f a x f a x +=--,则函数()f x 的图象关于(,0)a 对称.5.若函数()f x 关于直线x a =和()x b b a =>对称,则函数()f x 的周期为2()b a -. 6.若函数()f x 关于直线x a =和点(,0)()b b a >对称,则函数()f x 的周期为4()b a -. 7.若函数()f x 关于点(,0)a 和点(,0)()b b a >对称,则函数()f x 的周期为2()b a -. 8.若函数()f x 是奇函数,且关于x a =(0)a >对称,则函数()f x 的周期为4a . 9.若函数()f x 是偶函数,且关于x a =(0)a >对称,则函数()f x 的周期为2a . 10.若函数()f x 是奇函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为2a . 11.若函数()f x 是偶函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为4a . 12.若函数()()f x x R ∈满足()()f a x f x +=-,1()()f a x f x +=-,1()()f a x f x +=均可以推出函数()f x 的周期为2a .1.【重庆市第一中学2019届高三上学期期中考试】下列函数为奇函数的是 A . B . C .D .【答案】D【分析】根据奇函数的定义逐项检验即可.【解析】A 选项中 ,故不是奇函数,B 选项中 ,故不是奇函数,C 选项中 ,故不是奇函数,D 选项中,是奇函数,故选D .2.【黑龙江省齐齐哈尔市2019届高三第一次模拟】若函数2()22x a xx f x -=-是奇函数,则(1)f a -= A .1- B .23- C .23D .1【答案】B【分析】首先根据奇函数的定义,求得参数0a =,从而得到2(1)(1)3f a f -=-=-,求得结果. 【解析】由()()f x f x -=-可得22(2)22a x x x x--+=+,∴0a =,∴2(1)(1)3f a f -=-=-, 故选B .【名师点睛】该题考查函数的奇偶性及函数求值等基础知识,属于基础题目,考查考生的运算求解能力. 3.【甘肃省静宁县第一中学2019届高三上学期第一次模拟】已知()f x 是定义在R 上的奇函数,当 时3()x m f x =+(m 为常数),则3(log 5)f -的值为A .4B .4-C .6D .6-【答案】B【分析】根据奇函数的性质 求出 ,再根据奇函数的定义求出3(log 5)f -.【解析】当 时3()x m f x =+(m 为常数),则03(0)0m f =+=,则 , , 函数()f x 是定义在R 上的奇函数,∴335log 35((log 5)()log )314f f -=-=--=-.故选B .【名师点睛】本题考查函数的奇偶性,解题的突破口是利用奇函数性质:如果函数是奇函数,且0在其定义域内,一定有 .4.【甘青宁2019届高三3月联考】若函数3()1f x x =+,则1(lg 2)(lg )2f f +=A .2B .4C .2-D .4-【答案】A【分析】3()1f x x =+,可得()()2f x f x -+=,结合1lglg22=-,从而求得结果. 【解析】∵3()1f x x =+,∴()()2f x f x -+=,∵1lglg22=-,∴1(lg 2)(lg )22f f +=, 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有奇函数的性质,属于简单题目,注意整体思维的运用.5.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第二次模拟】已知函数2()e e 21xxxxf x -=-++,若(lg )3f m =,则1(lg )f m = A .4- B .3- C .2-D .1-【答案】C【分析】先由2()e e 21xxxx f x -=-++得到()()1f x f x -+=,进而可求出结果.【解析】因为2()e e 21x xxx f x -=-++,所以21()e e e e 2121x x xx x x xf x -----=-+=-+++, 因此()()1f x f x -+=; 又(lg )3f m =,所以(lg )1(lg 1(lg )132)f mf m f m =-=-=-=-. 故选C .【名师点睛】本题主要考查函数奇偶性的性质,熟记函数奇偶性即可,属于常考题型. 6.【山东省济宁市2019届高三二模】已知 是定义在 上的周期为4的奇函数,当 时, ,则 A . B .0 C .1D .2【答案】A【解析】由题意可得: . 故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.7.【云南省玉溪市第一中学2019届高三第二次调研】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x =C .||2x y =D .cos y x =【答案】B【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B .【名师点睛】本题考查函数的奇偶性和单调性,属于基础题.8.【山东省烟台市2019届高三3月诊断性测试】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =, 且0x <时,2()log ()f x x m =-+, ∴211()log 2144f m m -=+=-+=-, ∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.9.【宁夏银川市2019年高三下学期质量检测】已知()f x 是定义在R 上奇函数,当0x ≥时,2()log (1)f x x =+,则3()f -= A .2- B .1- C .2D .1【答案】A【分析】利用函数()f x 是奇函数,得到(3)(3)f f -=-,再根据对数的运算性质,即可求解.【解析】由题意,函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()log (1)f x x =+,则22(3)(3)log (31)log 42f f -=-=-+=-=-,故选A .【名师点睛】本题主要考查了函数的奇偶性的应用,以及对数的运算的性质的应用,其中解答中熟记函数的奇偶性,以及熟练应用对数的性质运算是解答的关键,着重考查了转化思想,以及运算与求解能力,属于基础题.10.【甘肃省甘谷县第一中学2019届高三上学期第一次检测】已知定义在 上的函数 ,若 是奇函数,是偶函数,当 时, ,则 A . B . C .0D .【答案】A【分析】根据题意和函数的奇偶性的性质通过化简、变形,求出函数的周期,利用函数的周期性和已知的解析式求出 的值.【解析】因为 是奇函数, 是偶函数,所以 ,则 ,即 , 所以 , 则奇函数 是以4为周期的周期函数, 又当 时, ,所以 , 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有函数的周期性,函数的奇偶性的定义,正确转化题的条件是解题的关键.11.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R 都有33())22(f x f x +=-,当3(,0)2x ∈-时,()f x =12log (1)x -,则(2017)f +(2019)f =A .1B .2C .1-D .2-【答案】A【分析】根据题意,对33())22(f x f x +=-变形可得()(3)f x f x =-,则函数()f x 是周期为3的周期函数,据此可得(2017)(1)f f =,(2019)(0)f f =,结合函数的解析式以及奇偶性求出(0)f 与(1)f 的值,相加即可得答案.【解析】根据题意,函数()f x 满足任意的x ∈R 都有33())22(f x f x +=-, 则()(3)f x f x =-,则函数()f x 是周期为3的周期函数,所以(2017)(16723)(1)f f f =+⨯=,(2019)(6733)(0)f f f =⨯=, 又由函数()f x 是定义在R 上的奇函数,则(0)0f =, 当3(,0)2x ∈-时,()f x =12log (1)x -,则12(1)log [1(1)]1f -=--=-,则(1)(1)1f f =--=,故(2017)(2019)(0)(1)1f f f f +=+=, 故选A .12.【甘肃省兰州市第一中学2019届高三9月月考】奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为 A .2B .1C .-1D .-2【答案】A【分析】根据函数的奇偶性的特征,首先得到 ,进而根据奇函数可得 ,根据 可得 ,即可得到结论.【解析】∵ 为偶函数, 是奇函数,∴设 , 则 ,即 ,∵ 是奇函数,∴ ,即 , , 则 , ,∴ , 故选A .【名师点睛】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴以及周期性是解决本题的关键,属于中档题.13.【陕西省彬州市2019届高三上学期第一次教学质量监测】已知函数()y f x =是奇函数,当0x >时,2()log (1)f x x =-,则(1)0f x -<的解集是A .(,1)(2,3)-∞-B .(1,0)(2,3)-C .(2,3)D .(,3)(0,1)-∞-【分析】根题设条件,分别求得,当0x >和0x <时,()0f x <的解集,由此可求解不等式(1)0f x -<的解集,得到答案.【解析】由题意,当0x >时,令()0f x >,即2log (1)0x -<,解得12x <<, 又由函数()y f x =是奇函数,函数()f x 的图象关于原点对称, 则当0x <时,令()0f x >,可得2x <-,又由不等式(1)0f x -<,可得112x <-<或12x -<-,解得23x <<或1x <-, 即不等式(1)0f x -<的解集为(,1)(2,3)-∞-,故选A .【名师点睛】本题主要考查了函数的基本性质的综合应用,其中解答中熟记对数函数的图象与性质,以及数列应用函数的奇偶性的转化是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.14.【陕西省榆林市2019届高三第四次普通高等学校招生模拟考试】已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =A .3B .3-C .2D .2-【答案】C【分析】根据(5)(3)f x f x +=-,可得(8)()f x f x +=,即()f x 的周期为8,再根据[0,4)x ∈时,2()log (2)f x x =+及()f x 为R 上的偶函数即可求出(766)(2)2f f ==.【解析】由(5)(3)f x f x +=-,可得(8)()f x f x +=,所以()f x 是周期为8的周期函数, 当[0,4)x ∈时,2()log (2)f x x =+,所以(96(7682)6)(2)2f f f ⨯-===, 又()f x 是定义在R 上的偶函数,所以2(2)(2)log 42f f -===. 故选C .15.【黑龙江省哈尔滨师范大学附属中学2019届高三上学期期中考试】已知定义域为R 的奇函数 ,当时, ,当 时, ,则 A .B .C .D .【分析】由当 时, ,可得,根据奇偶性求出 即可. 【解析】定义域为R 的奇函数 ,当 时, ,则, 则 ..., 又当 时, , — , 故. 故选B .16.【重庆市2018-2019学年3月联考】定义在[7,7]-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为 A .(2,7]B .(2,0)(2,7]-C .(2,0)(2,)-+∞D .[7,2)(2,7]--【答案】B【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(2,7],再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-.【解析】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤<时,()f x 在[7,0)-上单调递增, 且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<, 所以不等式()0f x >的解集为(2,0)(2,7]-.故选B .【名师点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.17.【宁夏平罗中学2019届高三上学期期中考试】已知定义在 上的函数 是奇函数,且当 时,,则 ______________. 【答案】18-【分析】先求(4)f ,再利用函数的奇偶性求4()f -.【解析】由题得22(4)log 4418f =+=,所以(4)(4)18f f -=-=-.18.【重庆南开中学2019届高三第四次教学检测】已知偶函数()f x 的图象关于直线2x =对称,(3)f =则(1)f =______________.【分析】由对称性及奇偶性求得函数的周期求解即可【解析】由题()()(4)f x f x f x =-=-,则函数的周期4T =,则()1f =(1)(1)(3)f f f =-==19.【辽宁省抚顺市2019届高三第一次模拟】已知函数()f x 是奇函数,且当0x <时1()()2xf x =,则(3)f 的值是______________. 【答案】8-【分析】先求(3)f -,再根据奇函数性质得(3)f . 【解析】因为31(3)()82f --==,函数()f x 是奇函数,所以(3)(3)8f f =--=-.20.【辽宁省朝阳市重点高中2019届高三第四次模拟】已知()y f x =是定义域为R 的奇函数,且周期为2,若当[0,1]x ∈时,()(1)f x x x =-,则( 2.5)f -=______________. 【答案】0.25-【分析】根据函数的奇偶性和周期性,求出( 2.5)(0.5)f f -=-,求出函数值即可. 【解析】已知()y f x =是定义域为R 的奇函数,且周期为2,∴( 2.5)( 2.52)(0.5)(0.5)f f f f -=-+=-=-,∵当[0,1]x ∈时,()(1)f x x x =-,∴(0.5)0.5(10.5)0.25f =⨯-=,∴( 2.5)0.25f -=-. 21.【陕西省咸阳市2019届高三模拟检测三】已知定义在R 上的奇函数()f x 的图像关于点(2,0)对称,且(3)3f =,则(1)f -=______________.【答案】3【分析】先由函数关于(2,0)对称,求出(1)f ,然后由奇函数可求出(1)f -. 【解析】函数()f x 的图像关于点(2,0)对称,所以(1)(3)3f f =-=-, 又函数()f x 为奇函数,所以(1)(1)3f f =-=-.22.【宁夏石嘴山市第三中学2019届高三四模】若函数2,0()3(),0x x f x g x x ⎧>⎪=⎨⎪<⎩是奇函数,则1()2f -=______________.【答案】 【分析】利用解析式求出1()2f ,根据奇函数定义可求得结果.【解析】由题意知1212()233f ===, ()f x为奇函数,11()()22f f ∴-=-=.23.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟】已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1(())100f f 的值为______________. 【答案】2lg - 【分析】先求出1()100f 的值,设为a ,判断a 是否大于零,如果大于零,直接求出()f a 的值,如果不大于零,那么根据奇函数的性质()()f a f a =--,进行求解. 【解析】10,100>∴1()100f =21lg()lg102100-==-, 20-<∵,函数()f x 是奇函数,(2)(2)lg 2f f ∴-=-=-,所以1(())100f f 的值为lg2-.24.【山东省滨州市2019届高三第二次模拟(5月)】若函数 为偶函数,则______________.【答案】2-【解析】函数 为偶函数,则 , 即 恒成立, .则.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.25.【甘肃省张掖市2019届高三上学期第一次联考】已知()f x ,()g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,2()()22xf xg x x x b -=+++(b 为常数),则(1)(1)f g -+-=______________. 【答案】4-【分析】根据函数的奇偶性,先求b 的值,再代入1x =,求得(1)(1)4f g -=,进而求解(1)(1)f g -+-的值.【解析】由()f x 为定义在R 上的奇函数可知(0)0f =,因为(0)0g =,所以0(0)(0)20f g b -=+=,解得1b =-,所以(1)(1)4f g -=,于是(1)(1)(1[(1)(1)](4)1)f g f g f g =-+=---+=--.【名师点睛】本题考查了函数的奇偶性的应用,涉及了函数求值的知识;注意解析式所对应的自变量区间.26.【陕西省安康市安康中学2019届高三第三次月考】若函数2()e 1x f x a =--是奇函数,则常数 等于______________. 【答案】【分析】由奇函数满足 ,代入函数求值即可. 【解析】 对一切 且 恒成立.恒成立,恒成立., .27.【吉林省长春市实验中学2019届高三期末考试】已知函数 是定义在 上的周期为 的奇函数,当时, ,则______________. 【答案】【分析】根据 是周期为4的奇函数即可得到 =f (﹣8 )=f ( )=﹣f (),利用当0<x <2时,=4x,求出,再求出 ,即可求得答案.【解析】∵ 是定义在R 上周期为4的奇函数,∴=f(﹣8)=f()=﹣f(),∵当x∈(0,2)时,,∴=﹣2,∵是定义在R上周期为4的奇函数,∴==,同时=﹣,∴=0,∴﹣2.【名师点睛】考查周期函数的定义,奇函数的定义,关键是将自变量的值转化到函数解析式所在区间上,属于中档题.28.【新疆昌吉市教育共同体2019届高三上学期第二次月考】下列函数:①;②,,;③;④.其中是偶函数的有______________.(填序号)【答案】①【分析】先判断函数的定义域是否关于原点对称可知②,,为非奇非偶函数;再利用偶函数的定义,分别检验①③④是否符合,从而得到结果.【解析】①,为偶函数;②定义域,关于原点不对称,为非奇非偶函数;③,为奇函数;④,为非奇非偶函数;故答案为①.【名师点睛】该题考查的是有关偶函数的选择问题,涉及到的知识点有函数奇偶性的定义,注意判断函数奇偶性的步骤,首先确定函数的定义域是否关于原点对称,再者就是判断与的关系.29.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考】已知,.若偶函数满足(其中,为常数),且最小值为1,则______________.【答案】【分析】利用函数是偶函数,确定,利用基本不等式求最值,确定的值,即可得到结论.【解析】由题意,,,为偶函数,,,,,, ,.30.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,当[0,1]x ∈时,3()1f x x =-,则29()2f =______________. 【答案】78-【分析】先由题意,()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,利用函数的奇偶性推出()f x 的周期4T =,可得291()()22f f =-,然后带入求得结果. 【解析】因为(1)f x -为奇函数,所以(1)(1),(2)()f x f x f x f x --=--∴--=-, 又()f x 是定义域为(,)-∞+∞的偶函数,所以()()f x f x -=,即(2)(),(2)()f x f x f x f x --=--∴-=-,所以()f x 的周期4T =,因为295551()(12)()(2)()22222f f f f f =+==--=-,2117()1()228f =-=, 所以297()28f =-.31.【辽宁省大连市2019届高三第二次模拟】已知函数 是定义域为 的偶函数,且 在 , 上单调递增,则不等式 的解集为______________. 【答案】 , ,【分析】利用偶函数关于 轴对称, 在 , 上单调递增,将不等式 转化为 ,即可解得 的解集. 【解析】 函数 是定义域为 的偶函数,可转化为 , 又 在 , 上单调递增,,两边平方解得 , , , 故 的解集为 , , .32.【辽宁省大连市2019届高三下学期第一次双基测试】已知定义在R 上的函数()f x ,若函数(1)f x +为偶函数,函数(2)f x +为奇函数,则20191()i f i ==∑______________.【答案】0【分析】根据函数(1)f x +为偶函数,函数(2)f x +为奇函数可得()(2)f x f x -=+和()(4)f x f x --=+,可得(4)()f x f x +=,则函数()f x 是周期为4的周期函数,结合函数的对称性可得(1)(3)0f f +=且(2)(0)(4)0f f f ===,从而可得结果.【解析】根据题意,(1)f x +为偶函数,则函数()f x 的图象关于直线1x =对称, 则有()(2)f x f x -=+,若函数(2)f x +为奇函数,则函数()f x 的图象关于点(2,0)对称, 则有()(4)f x f x --=+,则有(4)(2)f x f x +=-+, 设2t x =+,则(2)()f t f t +=-, 变形可得(4)(2)()f t f t f t +=-+=, 则函数()f x 是周期为4的周期函数, 又由函数()f x 的图象关于点(2,0)对称, 则(1)(3)0f f +=且(2)0f =, 则有(2)(0)0f f =-=, 可得(4)0f =,则20191(1)(2)(019))(2i f i f f f ==+++∑[12(3)4][(2013)(2014()()(2015)(2016]))()f f f f f f f f =+++++++++[(2017)(2018)(201()9)]12((0)3)f f f f f f ++=++=,故答案为0.33.【内蒙古呼和浩特市2019届高三上学期期中调研】已知函数 与 都是定义在 上的奇函数,当 时, ,则的值为______________. 【答案】2【分析】根据题意,由 是定义在R 上的奇函数可得 ,结合函数为奇函数,分析可得 ,则函数是周期为2的周期函数,据此可得,结合函数的解析式可得的值,结合函数的奇偶性与周期性可得 的值,相加即可得答案. 【解析】根据题意 是定义在R 上的奇函数,则 的图象关于点(﹣1,0)对称, 则有 ,又由 是R 上的奇函数,则 ,且 ,则有,即,则函数是周期为2的周期函数,则,又由=log2=﹣2,则=2,,故=2+0=2.。

二项式定理(1)

二项式定理(1)

x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。

新疆乌鲁木齐市第一中学2013届高三上学期第一次月考生物试题

新疆乌鲁木齐市第一中学2013届高三上学期第一次月考生物试题

乌鲁木齐市第一中学2012--2013学年第一学期2013届高三年级第一次月考生物试卷(请将答案写在答题纸上)时间:2012.9一、填空题(每小题2分,共50分,每小題列出的四个选项中,只有一项是符合题目要求的)1.下图是显微镜下观察到的几种细胞或组织图像,图中能表示生命系统个体层次的是2.生命活动离不开细胞,不包括下列内容中的()A.兴奋的传导离不开神经细胞B.生物与环境的物质和能量交换以细胞代谢为基础C.人的生殖和发育离不开细胞的增殖和分化D.病毒、草履虫和松鼠借助单个细胞就能完成各种生命活动3. 下列关于组成细胞的分子的叙述,正确的是()A.蔗糖和麦芽糖水解的产物都是葡萄糖B.细胞中的有机物都能为细胞的生命活动提供能量C.磷脂是所有原核细胞和真核细胞必不可少的脂质D.蛋白质是生命活动的主要承担者也是最基本的生命系4.下图表示细胞中的五类有机化合物的关系,每个椭圆形代表一种有机物,下面列出这五种化合物名称中最合理的一组是A.①~⑤:维生素、脂质、酶、蛋白质、激素B.①一⑤:酶、蛋白质、激素、脂质、维生素C.①一⑤:维生素、脂质、激素、蛋白质、酶D.①一⑤:激素、脂质、维生素、蛋白质、酶5.朊病毒蛋白(PrP)有两种:一种是PrPc,一种是PrPsc,它们的比较如下表:因此可以推知控制合成这两种蛋白质的基因核苷酸排列顺序以及它们表现出不同性质的原因分别是( ) A.不相同;溶解度不同B.不相同;氨基酸组成的种类不同C.相同;空间结构不同D.相同;组成氨基酸的数量不同6. 下列关于生物体内化合物的叙述中正确的是A.细胞内的化合物都是以碳链为骨架B.淀粉、纤维素和糖原都是生物大分子,它们的单体成分相同C.因为蛋白质酶在0℃左右时空间结构不能保持稳定,所以酶的活性很低D.腺苷是构成ATP、RNA和DNA的基本成分单位7. 下列对组成细胞分子的描述,正确的是()A. 水稻细胞中由C、G、T、U四种碱基参与合成的核苷酸有6种B. 激素、抗体、酶、载体蛋白发挥作用后均将失去生物活性C. 各种有机分子都因物种不同而存在结构差异D. 碳元素是各种大分子化合物中质量分数最多的元素8.生物体中的某种肽酶可水解肽链末端的肽键,导致A.蛋白质分解为多肽链B.多肽链分解为若干短肽C.多肽链分解为氨基酸D.氨基酸分解为氨基和碳链化合物9.由n个碱基对组成的基因,控制合成由1条多肽链组成的蛋白质(考虑终止密码),则该蛋白质中氧原子的个数至少为()A.n/6 B.n/3 C.(n/6)+1 D.(n/3)+110.牛奶制品都是要按规定检测蛋白质含量的,若蛋白质含量不够,说明牛奶质量不过关。

专题4-3 正余弦定理与解三角形小题归类-(解析版)

专题4-3 正余弦定理与解三角形小题归类-(解析版)

专题4-3 正余弦定理与解三角形小题归类目录一、热点题型归纳【题型一】正余弦定理 .............................................................................................................................. 2 【题型二】求角 .......................................................................................................................................... 3 【题型三】判断三角形形状 ...................................................................................................................... 4 【题型四】面积与最值 .............................................................................................................................. 6 【题型五】周长与最值 .............................................................................................................................. 8 【题型六】角的最值 .................................................................................................................................. 9 【题型七】最值 ........................................................................................................................................ 11 【题型八】切弦互化求最值 .................................................................................................................... 13 【题型九】解三角形应用题 .................................................................................................................... 14 二、真题再现 ............................................................................................................................................ 17 三、模拟检测 .. (22)正余弦定理(1)正弦定理:a sin A =b sin B =csin C =2R ,其中R 为 外接圆半径 ;注意:正弦定理变式与性质:①边化正弦:a =2R sin A ,b =2R sin B ,c =2R sin C ; ②正弦化边:sin A sin B sin C =c2R ; ③a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;④a +b +csin A +sin B +sin C= 2R ;(2)余弦定理:①a 2=b 2+c 2-2bc cos_A ; ②b 2=c 2+a 2-2ca cos_B ; ③c 2=a 2+b 2-2ab cos_C 注意:变式:①cos A =b 2+c 2-a 22bc;②cos B =c 2+a 2-b 22ac;③cos C =a 2+b 2-c 22ab(3)三角形面积 :①S △ABC =12ab sin C =12bc sin A =12ac sin B =abc4R②S △ABC =12(a +b +c )·r (r 是切圆的半径) 三角形中:①sin(A +B )=sin C ,cos(A +B )=-cos C ;②sinA +B 2=cosC 2, cos A +B 2=sin C2;③三角形中,任何一个角的正弦值恒大于0;④a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos B .【题型一】正余弦定理【典例分析】(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤ 【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得. 【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B ,又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭, 所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b a c ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D1..(2022·江西·丰城九中高三开学考试(文))已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且656cos a c b C =+,则cos B =( )A .78B .56C .34D .23【答案】B【分析】根据题意,利用正弦定理边化角,由三角形内角和定理,展开化简得cos B . 【详解】由656cos a c b C =+,边化角得6sin 5sin 6sin cos A C B C =+, 又()sin sin A B C =+,所以()6sin 5sin 6sin cos B C C B C +=+, 展开得6sin cos 6cos sin 5sin 6sin cos B C B C C B C +=+,所以6cos sin 5sin B C C =, 因为sin 0C >,所以5cos 6B =.故选:B . 2.(2023·全国·高三专题练习)在ABC 中,60,3,90C AC B ==>,则ba 的可能取值为( ) A .23B .43 C .53D .73【答案】D【分析】通过正弦定理将所求表达式表示为关于A 的三角函数,求出范围即可得结果. 【详解】因为60,3,90C AC B ==>,所以030A <<,0tan A <<1tan A >()1sin sin sin 11222sin sin sin 2tan A AA C bB a A A A A +====>,则b a 的可能取值为73,故选:D. 3.面积(无最值型)【题型二】求角【典例分析】(2022·山西吕梁·三模(文))在ABC 中,内角,,A B C 的对边分别为,,a b c ,若()(),6b c b c ac C π+-==,则B =( ) A .6πB .3π C .2π D .23π 【答案】B【分析】由22b c ac =+结合余弦定理以及正弦定理的边化角公式得出sin 2sin cos sin A C B C -=,再由内角和定理以及三角恒等变换得出B .【详解】由()()b c b c ac +-=得22b c ac =+,结合余弦定理2222cos b a c ac B =+-,可得2cos a c B c -=,再由正弦定理得sin 2sin cos sin A C B C -=,因为()()sin 2sin cos sin 2sin cos sin A C B B C C B B C -=+-=-, 所以()sin sin B C C -=,所以B C C -=,得2B C =.因为6C π=,所以3B π=.【变式演练】1.(2022·全国·高三专题练习)已知在ABC中,30,1B a b ===,则A 等于( ) A .45 B .135C .45或135D .120 【答案】C【分析】根据正弦定理,结合三角形中的边角关系,即可求得答案.【详解】由正弦定理sin sina b A B=,得1sin 2sin 12a B Ab ===, 因为1,(0,π)a b A ==∈,故45A =或135, 故选:C2.(2022·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知()22a b c =+-,则sin 4C π⎛⎫+= ⎪⎝⎭( )A B C .2D .1【答案】A【分析】根据三角形面积公式及余弦定理化简条件求角C ,由此可求sin 4C π⎛⎫+ ⎪⎝⎭.【详解】因为()22a b c =+-,又in 12s S ab C =,所以222sin 2C ab a b c -=+-,22212a b c C ab +--=,又222cos 2a b c C ab+-=cos 1C C -=,所以1sin 62C π⎛⎫-= ⎪⎝⎭,又()0,C π∈,所以3C π=,所以sin =sin sin cos cos sin 4343434C πππππππ⎛⎫⎛⎫++=+= ⎪ ⎪⎭⎝⎭所以sin 44C π⎛⎫+= ⎪⎝⎭A.3.(2023·全国·高三专题练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,设22(sin sin )sin (2sin B C A B C +=+2sin 0A B -=,则sin C = ( )A .12B C D 【答案】C【分析】根据给定条件利用正弦定理角化边,求出角A ,再求出角B 即可计算作答.【详解】在ABC 中,由22(sin sin )sin (2sin B C A B C +=+及正弦定理得:22()(2b c a bc +=+,即222b c a +-=,由余弦定理得:222cos 2b c a A bc +-==0180A <<,解得135A =,2sin 0A B -=得1sin 2B A ==,显然090B <<,则30B =,15C =,所以6sin sin(6045)sin 60cos 45cos 60sin 454C -=-=-=. 故选:C【题型三】判断三角形形状【典例分析】(2023·全国·高三专题练习)在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若222a b c -=且cos sin =b C a B ,则ABC 是( ) A .等腰直角三角形 B .等边三角形 C .等腰三角形D .直角三角形【答案】A【分析】由222a b c -=结合余弦定理可求得π4A =,由cos sin =b C a B 结合正弦定理可求得π4C =,从而可判断出三角形的形状【详解】由222a b c -=,得222b c a +-,所以由余弦定理得222cos 2b c a A bc +-===, 因为(0,π)A ∈,所以π4A =,因为cos sin =b C a B ,所以由正弦定理得sin cos sin sin B C A B =,因为sin 0B ≠,所以πcos sin sin 4C A ===,因为(0,π)C ∈,所以π4C =,所以πππππ442B AC =--=--=,所以ABC 为等腰直角三角形, 故选:A【变式演练】1..(2021·广东·高三阶段练习)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形C .等边三角形D .等腰直角三角形【答案】C【分析】先依据条件222b c a bc +=+求得π3A =,再利用2sin sin sinBC A =可以求得b c =,从而判断△ABC 的形状是等边三角形【详解】△ABC 中,222b c a bc +=+,则2221cos 222b c a bc A bc bc +-=== 又0πA <<,则π3A =由2sin sin sin B C A =,可得2a bc =,代入222b c a bc +=+则有222b c bc bc bc +=+=,则()20b c -=,则b c = 又π3A =,则△ABC 的形状是等边三角形故选:C2.(2023·全国·高三专题练习)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos a bA B=,222c a b ab =+-,则ABC ∆是( )A .钝角三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】B【分析】利用正余弦定理可确定边角关系,进而可判定三角形形状.【详解】在ABC ∆中,由正弦定理得sin sin a bA B =,而cos cos a b A B =,△ sin sin cos cos A B A B=,即tan tan A B =,又△A 、B 为ABC ∆的内角,△A B =,又△222c a b ab =+-,△222ab a b c =+-,△由余弦定理得:2221cos 22a b c C ab +-==,△3C π=,△ABC ∆为等边三角形.故选:B.3.(2023·全国·高三专题练习)已知三角形ABC ,则“222cos cos cos 1A B C +->”是“三角形ABC 为钝角三角形”的( )条件.A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要 【答案】A【分析】利用同角的三角函数的基本关系式、正余弦定理可判断两个条件之间的推出关系,从而可得正确的选项.【详解】因为222cos cos cos 1A B C +->,故2221sin 1sin 1sin 1A B C -+--+>, 故222sin sin sin C A B >+,故222c a b >+,故222cos 02a b c C ab+-=<,而C 为三角形内角,故C 为钝角,但若三角形ABC 为钝角三角形,比如取2,63C B A ππ===,此时2221cos cos cos 14A B C +-=<,故222cos cos cos 1A B C +->不成立,故选:A.【题型四】面积与最值【典例分析】(2021·江苏·高三课时练习)在锐角三角形ABC 中,cos 2B B +=,且满足关系式cos cos sin sin 3sin B C A Bb c C +=,则ABC ∆的面积的最大值为( )AB .C .D .【答案】Ccos 2B B +=结合同角三角函数基本关系,可求出B ,根据正余弦定理由cos cos sin sin 3sin B C A Bb c C +=可得b ,再利用余弦定理及均值不等式求ac 最大值,代入面积公式即可.cos 2B B +=得cos 2B B =,所以2221cos sin 44sin B B B B =+=+-,即2(2sin 0B =,解得sin B =由锐角三角形知3B π=,cos cos sin sin 3sin B C A Bb c C+=, 22222222a c b a b c abc abc +-+-∴+=,即222a abc =b =2222126cos 122a c b ac B ac ac ac+--∴=≥=-,当且仅当a c =时等号成立,解得12ac ≤,11sin 1222ABC S ac B ∆=≤⨯=当且仅当a c =时等号成立,故选:C【变式演练】1.(2020·全国·高三课时练习)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c,b =且ABC ∆面积为222)S b a c --,则ABC ∆面积S 的最大值为( ) A.2 B.4-C.8-D.16-【答案】B【解析】由已知利用三角形的面积公式可求tan B ,可得cos B ,sin B 的值,由余弦定理,基本不等式可求8(23)ac -,根据三角形的面积公式即可求解其最大值. 【详解】解:222331()(2cos )sin12122S b a c ac B ac B =--=-=,tan B ∴=,56B π=,cos B=,1sin 2B =, 又22b =228(23)a c ac =++,88(223ac∴=+, 当且仅当a c =时取等号,111sin 8(24222ABC S ac B ∆∴=⨯⨯=- ∴面积S 的最大值为4-B .2.(2023·全国·高三专题练习)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a bkab +=,则△ABC的面积为22c 时,k 的最大值是( )A .2BC .4D .【答案】B【分析】由三角形的面积公式,可得2sin c ab C =, 根据余弦定理,可得22sin 2cos a b ab C ab C +=+,则整理出以k 为函数值的三角函数,根据三角函数的性质,可得k 的最值.【详解】由题意得21sin 22ABC c S ab C ==,所以2sin c ab C =,又因为2222cos c a b ab C =+-,所以2222cos sin 2cos a b c ab C ab C ab C +=+=+,所以()22sin 2cos a b k C CC abϕ+==++,其中tan 2ϕ=,且0k >, 所以k 的取值范围为(,故选:B. 3.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若8,sin 2sin cos 0ac B C A =+=,则ABC 面积的最大值为( ) A .1 B .3 C .2 D .4 【答案】C【分析】根据sin 2sin cos 0B C A +=利用三角恒等变换和正余弦定理得到2222b a c =-,再根据余弦定理和基本不等式可得cos B 的范围,由此得B 的范围,从而得到sin B 的最大值,从而根据1sin 2ABC S ac B =可求△ABC 面积的最大值.【详解】sin 2sin cos 0B C A +=,()sin 2sin cos 0A C C A ∴++=,即sin cos cos sin 2sin cos 0A C A C C A ++=, 即sin cos 3cos sin 0A C A C +=,则2222223022b a c b c a a c ab bc+-+-⋅+⨯⨯=,理得2222b a c =-, △2222222223232cos 2244a ca c a cb ac ac B ac ac ac ac -+-+-+====当且仅当a 2=3c 2⇔c =√√3a =√8√3时取等号,π10sin 62B B ⎛⎤∴∈∴ ⎥⎝⎦,,, 则111sin 82222ABCS ac B =⨯⨯=.故选:C .【题型五】周长与最值【典例分析】(2022·全国·高三专题练习)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若sin cos 6A A π⎛⎫++ ⎪⎝⎭4b c +=,则ABC ∆周长的取值范围是( )A .[)6,8B .[]6,8C .[)4,6D .[]4,6【答案】A【分析】利用三角函数恒等变换的应用化简已知可得3sin A π+=(),结合A 的范围可求A ,再由余弦定理求得2163a bc =- ,再由基本不等式,求得bc 的范围,即可得到a 的范围,进而可求周长的范围.【详解】△ sin 6A cos A π⎛⎫++ ⎪⎝⎭12sinA sinA ∴-=可得:3sin A π+=()40333A A ππππ∈+∈(,),(,),2 33A ππ∴+=,解得3A π=,△4b c +=, △由余弦定理可得222222163a bccosA b c bc bc bc =-=+--=-(),△由4b c +=,b c +≥,得04bc ≤<,△2416a ≤<,即24a ≤<.△ABC 周长4[68L a b c a =++=+∈,) .故选:A .【变式演练】1.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若sinA +cos(A +π6)=√32,b +c =4,则ABC ∆周长的取值范围是 A .[6,8) B .[6,8] C .[4,6) D .(4,6]【答案】A 【分析】利用三角函数恒等变换的应用化简已知可得sin (A +π3)=√32,结合A 的范围可求A ,再由余弦定理求得a 2=16−3bc ,再由基本不等式,求得bc 的范围,即可得到a 的范围,进而可求周长的范围. 【详解】△sinA +cos(A +π6)=√32,∴sinA +√32cosA −12sinA =√32,可得:sin (A +π3)=√32,∵A ∈(0,π),A +π3∈(π3,4π3),∴A +π3=2π3,解得A =π3,△b +c =4,△由余弦定理可得a 2=b 2+c 2−2bccosA =(b +c )2−2bc −bc =16−3bc ,△由b +c =4,b +c ≥2√bc ,得0<bc ≤4,△4≤a 2<16,即2≤a <4. △ABC 周长L =a +b +c =a +4∈[6,8) .故选A .2.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sinsin 2B Cb a B +=,a =△ABC 周长的最大值为________.【答案】【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故b c +≤b c ==.故△ABC 周长的最大值为a b c ++故答案为:3.(2022·全国·高三专题练习)在三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin Aa ==,则该三角形周长的最大值为___________.【分析】利用正弦定理化简式子,求出tan B 的值,进而求出B 的大小,由余弦定理结合基本不等式即可求出a c +≤.【详解】由正弦定理变形有:sin sin A B a b =,又因为sin A a ==sin B B =,则tan 3B B π=2=1b ===又因为()()()()222222212cos 3344a cb ac ac B a c ac a c a c +=+-=+-≥+-⋅=+,所以()2264464a cb ac +≤=⨯=⇒+≤ “a c =”时取等.则该三角形周长的最大值为a b c ++==.【题型六】角的最值【典例分析】(2022·全国·高三专题练习(理)(文))已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2c sin C =(a +b )(sin B -sin A ),则当角C 取得最大值时,B =( ) A .3π B .6πC .2π D .23π【答案】D 【分析】利用正弦定理化简已知条件,结合余弦定理与基本不等式求得C 的最大值,再通过三角形的形状,即可求得此时对应的B .【详解】由正弦定理得2c 2=(a +b )(b -a ),即b 2-a 2=2c 2.又cos C =2222a b c ab +-=2234a b ab +当且仅当3a 2=b 2,即b 时,cos C C 取到最大值6π.当b 时,3a 2-a 2=2c 2,则a =c .所以A =C =6π,从而B =π-A -C =23π.故选:D .【变式演练】1.(2022·安徽淮南·一模(文))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()322213f x x bx a c x =+++无极值点,则角B 的最大值是( )A .34πB .2πC .4π D .6π【答案】A【分析】由题知()()22220f x x bx a c '=+++=无解或有两个相等的解,即()()222240b a c ∆=-+≤,再由余弦定理得角B 的范围.【详解】解:因为()()322213f x x bx a c x =+++无极值点,所以()()22220f x x bx a c '=+++=无解或有两个相等的解,所以()()222240b a c ∆=-+≤,所以222cos 2a c b B ac +-=≥,因为()0,B π∈,所以304B π<≤.故选:A2. 2.(2022·全国·江西师大附中模拟预测(文))在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2sin sin sin a A c C b B +=,则角A 的最大值为( )A .π6B .π4C .π3D .2π3【答案】A【分析】根据正弦定理先将角化边,再运用余弦定理和基本不等式得到cos A 的范围进而得到最后的结果 【详解】因为2sin sin sin a A c C b B += 所以2222a c b +=,进而可得2222a b c =-2222222221()32cos 224b c b c b c a b c A bc bc bc+--+-+===因为223b c +≥=,当且仅当b =时等号成立所以cos A ≥=又因为(0,)A π∈所以角A 的最大值为6π故选:A3.已知锐角△ABC 中,角、、A B C 对应的边分别为a b c 、、,△ABC的面积)222S a b c =+-,若24)tan bc a b B -=(, 则c 的最小值是ABCD【答案】C 【详解】分析:利用余弦定理列出关系式,代入已知等式中,并利用三角形面积公式化简求出C 的度数,再对24)tan bc a b B -=(进行化简整理,最后利用基本不等式求得.详解:)2221cos sin 2S a b c C ab C =+-==,即tan C =,6C π∴=.又A B C π++=,56A B π∴+=,又△ABC 为锐角三角形,∴025062B B πππ<<<-<,解得32B ππ<<, ∴)tan B ∈+∞,又24)tan bc a b B -=(,5sin 24246tan 242424242424sin sin B bc a a sinA B c c c b b B Bπ⎛⎫- ⎪-⎝⎭∴==-=-=-, 即1tan 24242tan B c B ⎛=- ⎝⎭1224tan tan c B B ∴-+≥=,当且仅当12tan tan B B =,即tan B =.24c ∴-≥c ≥故选C.【题型七】最值【典例分析】在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知6B π=且1ABC S =△,则22a cca c ac a +++的最小值为( )A .12B .2C .14D .4 四川省成都市成都市石室中学2020-2021学年高三下学期期中数学试题 【答案】A【分析】由1sin 2ABC S ac B =△可解得4ac =,结合基本不等式,知24a c ac +=;经过变形化简可将原式整理为222()2()a c a c ac ca c ac a ac a c +-+=+++,令t a c =+,则[4t ∈,)+∞,2818()()44t f t t t t-==-,结合函数的单调性即可得解.【详解】由1sin 2ABC S ac B =△可知,11122ac =⨯,解得4ac =,由基本不等式得,24a c ac +=.22222()2()()()()a c a c a c a c acca c ac a c a c a c a ac a c ac a c ++-+=+==++++++, 令t a c =+,则[4t ∈,)+∞,∴222818()()44a c t f t t ca c ac a t t-+===-++,在[4,)+∞上单调递增, ()min f t f ∴=(4)12=,即22a c ca c ac a +++的最小值为12. 故选:A .【变式演练】1..锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2sinA(acosC +ccosA)=√3a ,则cb 的取值范围是( ) A .(12,2)B .(√33,2√33)C .(1,2)D .(√32,1)【答案】B【分析】根据正弦定理,结合2sinA(acosC +ccosA)=√3a 可求得角B .又由三角形为锐角三角形,求得角C 的取值范围,即可求解.【详解】由正弦定理得,2sinA(sinAcosC +sinCcosA)=√3sinA ⇒sin(A +C)=√32⇒B =π3又∵A,C ∈(0,π2)∴π6<C <π2⇒12<sinC <1⇒c b=sinC sinB=2√33sinC ∈(√33,2√33) 故选B.2.在锐角ABC ∆中,A =2B ,则ABAC 的取值范围是A .(−1,3)B .(1,3)C .(√2,√3)D .(1,2)【答案】D【分析】根据在锐角ABC ∆中,每个角都是锐角确定B 的范围,利用正弦定理以及三倍角的正弦公式,化简表达式,求出范围即可.【详解】在锐角ABC ∆中,{0<2∠B <π20<∠B <π20<π−3∠B <π2可得π6<∠B <π4,cosB ∈(√22,√32),cos 2B ∈(12,34),所以由正弦定理可知AB AC=cb =sinC sinB=sin3B sinB=3sinB−4sin 3BsinB=3−4sin 2B =4cos 2B −1∈(1,2),故选D.3.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设△ABC 的面积为S,若222c a b S --b a 的取值范围为A .(0,+∞)B .(1,+∞) C .(0D.)+∞【答案】A 【分析】根据222c a b S --=2222a b c C ab +-=,可得cos C C =,可得tan C =可得23C π=,再利用正弦定理可得sin sin b B a A =,12,根据A 的范围可得答案.【详解】由222c a b S --=得2221sin2a b c ab C +-= ,所以2222a b c C ab +-=,所以cos C C =,所以tan C =又0C π<<,所以23C π=, 所以sin()sin cos cos sin )sin 333sin sin sin A A A b B a A A A πππ--===1sin 122sin 2A AA -=,因为03A π<<,所以0tan A <<所以1tan A >所以102b a >=, 所以ba 的取值范围为(0,)+∞.故选:A【题型八】切弦互化求最值【典例分析】ABC 中,角,,A B C 的对边长分别为a,b,c ,若acosB −bcosA=35c ,则tan (A −B )的 最大值为 ( )A .43B .1C .34D 【全国百强校】黑龙江省鹤岗市第一中学2019届高三上学期第二次月考数学(理)试题 【答案】C 【分析】利用正弦定理,将已知等式化简整理得sinAcosB =4sinBcosA ,两边同除以cosAcosB ,得到tanA =4tanB ,利用两角差的正切公式,得tan (A −B )=31tanB+4tanB,最后利用基本不等式求最值 . 【详解】∵acosB −bcosA =35c ,∴结合正弦定理与sinC =sin (A +B ),可得sinAcosB −sinBcosA =35(sinAcosB +cosAsinB ),整理得sinAcosB =4sinBcosA , 同除以cosAcosB ,得tanA =4tanB ,由此可得tan (A −B )=tanA−tanB 1+tanAtanB =3tanB 1+4tan 2B =31tanB+4tanB ,∵A,B 是三角形内角,且tan A 与tan B 同号,∴A,B 都是锐角,即tanA >0,tanB >0,∴tan (A −B )=31tanB+4tanB ≤34,当且仅当1tanB=4tanB ,即tanB =12时,tan (A −B )的最大值为34,故选C.【变式演练】1.在ABC ∆中,若111tan tan tan B C A+=,则cos A 的取值范围为 A .20,3⎛⎤ ⎥⎝⎦B .2,13⎡⎫⎪⎢⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .1,13⎡⎫⎪⎢⎣⎭【答案】B 【详解】分析:由已知等式正切化为弦,可得2sin cos sin sin AA B C=,结合正弦定理、余弦定理以及基本不等式求得cos A的最小值,从而可得结果.详解:111tan tan tan B C A +=,cos cos cos sin sin sin B C A B C A ∴+=,可得sin cos cos sin sin cos sin sin sin sin sin C B C B A A B C B C A +==, 2sin cos sin sin A A B C ∴=,又22,cos sin sin sin a b c a R A A B C bc ====,22222b c a a bc bc+-∴=,可得2223a b c =+,222222222223cos 22333b c b c b c a b c bc A bc bc bc bc ++-+-+∴===≥=,cos A ∴的取值范围是2,13⎡⎫⎪⎢⎣⎭,故选B. 2.在ABC 中,,,a b c 分别是角,,A B C 的对边,若a 2+b 2=2014c 2,则2tanA⋅tanBtanC(tanA+tanB)的值为A .2013B .1C .0D .2014【答案】A 【分析】由a 2+b 2=2014c 2,利用余弦定理可得a 2+b 2﹣c 2=2013c 2=2abcosC .利用三角函数基本关系式和两角和的正弦公式、正弦定理可得2tanA⋅tanBtanC(tanA+tanB)=2sinA cosA ⋅sinBcosB sinC cosC (sinA cosA +sinBcosB)=2sinAsinBcosC sinCsin(A+B)=2abcosCc 2即可得出.【详解】△a 2+b 2=2014c 2,△a 2+b 2﹣c 2=2013c 2=2abcosC . △2tanA⋅tanBtanC(tanA+tanB)=2sinA cosA ⋅sinBcosB sinC cosC (sinA cosA +sinBcosB)=2sinAsinBcosC sinCsin(A+B)=2abcosCc 2=2013.故答案为:A3.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若ABC ∆为锐角三角形,且满足22b a ac -=,则1tanA−1的取值范围是A .⎛ ⎝⎭B .(1,√2)C .(2√33,√2) D .(1,+∞)【答案】A根据余弦定理以及正弦定理化简条件得A 、B 关系,再根据二倍角正切公式以及函数单调性求范围. 【详解】因为b 2−a 2=ac ,所以c 2−2accosB =ac ∴c −2acosB =a ∴sinC −2sinAcosB =sinA,sin(A +B)−2sinAcosB =sinA,∴sin(B −A)=sinA ∴B −A =A,B =2A因此1tanA−1tanB=1tanA−1tan2A=1tanA−1−tan 2A 2tanA=1+tan 2A 2tanA=12(tanA +1tanA), 因为ΔABC 为锐角三角形,所以0<A <π2,0<B =2A <π2,0<C =π−B −A =π−3A <π2∴π6<A <π4,√33<tanA <1因为y =12(x +1x )在(√33,1)上单调递减,所以1tanA−1tanB∈(1,2√33),选A.【题型九】解三角形应用题【典例分析】(2022·江苏·高三课时练习)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小,若15,25,30AB cm AC cm BCM ==∠=︒,则tan θ的最大值是( ).(仰角θ为直线AP 与平面ABC 所成的角)A B C D 【答案】D【分析】由题可得,20BC =,过P 作PP BC '⊥,交BC 于P ',连接'AP ,则tan PP AP θ'=',设(0)BP x x '=>,分类讨论,若P '在线段BC 上,则20CP x '=-,可求出PP '和'AP ,从而可得出2320tan 225xx θ-=+,利用函数的单调性,可得出0x =时,取得最大值;若P '在CB 的延长线上,同理求出PP '和'AP ,可得出220tan 225x x θ+=+454x =时,函数取得最大值;结合两种情况的结果,即可得出结论.【详解】解:15,25AB cm AC cm ==,AB BC ⊥,由勾股定理知,20BC =,过点P 作PP BC '⊥交BC 于P ',连结'AP ,则tan PP AP θ'=',设(0)BP x x '=>,若P '在线段BC 上,则20CP x '=-,由30BCM ∠=︒,得tan30)PP CP x ''=︒-,在直角ABP '△中,AP '220tan 225x x θ-∴+令y =,则函数在[0x ∈,20]单调递减,0x ∴=时,;若P '在CB 的延长线上,tan30)PP CP x ''=︒+,在直角ABP '△中,AP '220tan 225xx θ+∴+22(20)225x y x +=+,则0y '=可得454x =. 故答案为:539.【变式演练】1.(2022·全国·高三课时练习)如图,某城市有一条公路从正西方MO 通过市中心O 后转向东北方ON ,为了缓解城市交通压力,现准备修建一条绕城高速公路L ,并在,MO ON 上分别设置两个出口,A B ,若AB 部分为直线段,且要求市中心O 与AB 的距离为20千米,则AB 的最短距离为( )A .)201千米B .)401千米C .)201D .)401【答案】D【分析】使用余弦定理及基本不等式,得到(22AB ab ≥,使用正弦定理及三角恒等变换得到ab ≥AB 的最短距离. 【详解】在ABC 中,135AOB ∠=︒,设,AO a BO b ==,则(222222cos1352AB a b ab a b ab =+-︒=+≥,当且仅当a b =时取等号,设BAO α∠=,则45ABO α∠=︒-,又O 到AB 的距离为20千米,所以20sin a α=,()20sin 45b α=︒-,故()400sin sin 45ab αα=︒-(22.5α=︒时取等号),所以)221600216001AB ≥=,得)401AB ≥,故选:D2.在一座尖塔的正南方地面某点A ,测得塔顶的仰角为2230'︒,又在此尖塔正东方地面某点B ,测得塔顶的仰角为6730︒',且A ,B 两点距离为540m ,在线段AB 上的点C 处测得塔顶的仰角为最大,则C 点到塔底O 的距离为( ) A .90m B .100m C .110m D .270m 【答案】A 【分析】作出图示,根据正切的二倍角公式和解直角三角形求得塔的高度,再运用等面积法可求得选项. 【详解】如下图所示,设,,OC z OA x OB y ===,则222540x y +=,22.5,67.5OAP OBP ∠=∠=,则22tan 22.5tan 4511tan 22.5==-,解得tan 22.521=,22tan 67.5tan13511tan 67.5==--,解得tan 67.52+1=,所以222540+=,解得z =所以1x ==)y ==要使点C 处测得塔顶的仰角为最大,则需tan PCO ∠最大,也即需OC 最小,所以OC AB ⊥,又1122ABOSOA OB AB OC =⨯⨯=⨯⨯,即(90540OA OB OC AB ⨯===, 所以C 点到塔底O 的距离为90m ,故选:A.3..某制冷设备厂设计生产一种长方形薄板,如图所示,长方形ABCD 的周长为4米,沿AC 折叠使B 到B′位置,AB′交DC 于P ,研究发现,当ΔADP 的面积最大时最节能,则最节能时ABCD 的面积为A .3−2√2B .C .2(√2−1)D .2【答案】C 【分析】本题可以先通过设AB 、DP 分别为x 、y ,再通过题目所给信息以及AD 2+DP 2=PA 2得出x 、y 之间的关系,然后通过ΔADP 的面积列出算式,当其最大时求出AB 的值,最后得出结果. 【详解】设AB 为x ,DP 为y ,因为四边形ABCD 是周长为4的长方形,AB 为x 所以AD 为2−x ,DC 为x , 因为DP 为y ,所以PC 为x −y , 由题意可知,PC =PA ,所以有AD 2+DP 2=PA 2,即(2−x )2+y 2=(x −y )2,化简得y =2−2x , 所以S ΔADP =12(2−x )(2−2x ),化简得S ΔADP =3−(2x +2),所以当x =√2时ΔADP 面积最大,此时S ABCD =√2(2−√2)=2(√2−1),故选C .1.(2020·山东·高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos c B A =,则tan A 等于( )A .3B .13-C .3或13- D .-3或13【答案】A【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案;【详解】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===,sin sin cos sin sin cos A B C C B A B ∴⋅⋅+⋅⋅,sin()sin A C B ∴+=⇒=4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A. 2.(2021·全国·高考真题(文))在ABC 中,已知120B =︒,AC 2AB =,则BC =( )A.1 B C D .3 【答案】D【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D.3.(2020·全国·高考真题(文))在△ABC 中,cos C =2,AC =4,BC =3,则tan B =( )A B .C .D .【答案】C【分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B 【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 29a c b B B B ac +-==∴===故选:C4.(2014·江西·高考真题(文))在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若32a b =,则2222sin sin sin B AA-的值为( )A .19B .13 C .1 D .72【答案】D【分析】根据正弦定理边化角求解即可.【详解】由正弦定理有22222222sin sin 221sin B A b a b A a a --⎛⎫==- ⎪⎝⎭.又3322b a b a =⇒=, 故297212142b a ⎛⎫-=⨯-= ⎪⎝⎭.故选:D5.(2020·全国·高考真题(理))在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .23【答案】A【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC =根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =.故选:A.6.(2019·全国·高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =A .6B .5C .4D .3 【答案】A【分析】利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 【详解】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得 22222141313cos ,,,46422422b c a c c c b A bc bc c +---==∴=-∴=∴=⨯=,故选A .7.·湖南·高考真题(文))在△ABC 中,,BC=2,B =60°,则BC 边上的高等于A B C D 【答案】B2sin 60sin A A A =⇒==所以sin sin()sin cos cos sin C A B A B A B =+=+=则BC 边上的高h C ===,应选答案B .点睛:解答本题的思路是先运用正弦定理求出cos A ,再运用两角和的正弦公式求得sin C =,再解直角三角形可求得三角形的高h C =,从而使得问题获解.8.(2018·全国·高考真题(理))ABC 的内角A B C ,,的对边分别为a ,b ,c ,若ABC 的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π6【答案】C【详解】分析:利用面积公式12ABC S absinC =和余弦定理2222a b c abcosC +-=进行计算可得.详解:由题可知222124ABC a b c S absinC +-==所以2222absinC a b c +-=由余弦定理2222a b c abcosC +-=所以sinC cosC =()C 0,π∈C 4π∴=故选C.9.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =a ,b ,c 是三角形的三边,S是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.【分析】根据题中所给的公式代值解出.【详解】因为S =S10.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________.1##-【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++44≥=- 当且仅当311m m+=+即1m =时,等号成立,所以当ACAB取最小值时,31m =-.故答案为:31-.11.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________【分析】运用正弦定理及余弦定理可得解.【详解】根据余弦定理:22212cos 4922372BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=,得BC =△ABC 3sin 3=.故答案为 12.(2021·全国·高考真题(理))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 60B =︒,223a c +=,则b =________. 【答案】【分析】由三角形面积公式可得4ac =,再结合余弦定理即可得解.【详解】由题意,1sin 2ABC S ac B ==,所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =.故答案为:13.(2020·江苏·高考真题)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185或0 【分析】根据题设条件可设()0PA PD λλ=>,结合32PA mPB m PC ⎛⎫=+- ⎪⎝⎭与,,B D C 三点共线,可求得λ,再根据勾股定理求出BC ,然后根据余弦定理即可求解.【详解】△,,A D P 三点共线,△可设()0PA PD λλ=>,△32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,△32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫-⎪⎝⎭=+,若0m ≠且32m ≠,则,,B D C 三点共线,△321m m λλ⎛⎫-⎪⎝⎭+=,即32λ=,△9AP =,△3AD =,△4AB =,3AC =,90BAC ∠=︒,△5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.△根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,△()cos cos 0θπθ+-=,△()()2570665x x x --+=-,解得185x =,△CD 的长度为185.当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185. 14.(2020·全国·高考真题(理))如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB △AC ,AB △AD ,△CAE =30°,则cos△FCB =______________.【答案】14-【分析】在ACE 中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值.【详解】AB AC ⊥,AB =1AC =,由勾股定理得2BC ,同理得BD BF BD ∴==ACE 中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF △中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.15.(2019·全国·高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.【答案】34π.【分析】先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D .【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在(0,)π范围内,化边为角,结合三角函数的恒等变化求角.16.(2019·全国·高考真题(理))ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC的面积为__________.【答案】【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =解得c c ==-2a c ==11sin 22ABC S ac B ∆==⨯=1.(2022·江西·模拟预测(文))在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足1cos A A +=,sin 6cos sin A B C =,则bc的值为( )A .1B .1+C .1+D .1+【答案】A【分析】由题设化简1cos A A +=可得120A =︒,余弦定理结合sin 6cos sin A B C =可得(1b c =,即可得出答案.【详解】由题设可得22sin cos 222A A A =,即tan 2A ,则120A =︒,故由余弦定理可得222a b c bc =++;。

新疆乌鲁木齐一中2012届高三第一次月考(数学理)

新疆乌鲁木齐一中2012届高三第一次月考(数学理)

乌鲁木齐市第一中学 2011—2012学年高三第一次月考数学试题(理科)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合2M {|60},{|13}x x x N x x =+-<=≤≤,则M N = ( )A .[1,2)B .[1,2]C .(2,3]D .[2,3]2.设集合2{1,2},{}M N a ==,则“1a =”是“N M ⊆”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3.公差不为零的等差数列}{n a 中,2a ,3a ,6a 成等比数列,则其公比q 为 ( )A .1B .2C .3D .4 4.下列命题中是假命题的是( )A .π0,,2x ⎛⎫∀∈ ⎪⎝⎭x x sin > B .000,sin cos 2x R x x ∃∈+=C .,x ∀∈R 03>xD .0,x R ∃∈0lg 0=x5.数列{}n a 的首项为3,{}n b 为等差数列且1()n n n b a a n N *+=-∈,若3102,12b b =-=,则8a =( )A .0B .3C .8D .116.已知⎩⎨⎧>≤+-=1,log 1,4)13()(x x x a x a x f a是(,)-∞+∞上的减函数,那么a 的取值范围是( )A .(0,1)B .1(0,)3C .11[,)73D .1[,1)77.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若22a b -=,sin C B =,则A =( )A .30B .60C .120D .1508.已知函数2()sin 22cos 1f x x x =+-,将()f x 的图象上各点的横坐标缩短为原来21,纵坐标不变,再将所得图象向右平移4π个单位,得到函数()y g x =的图象,则函数()y g x =的解析式为( )A .()g x x =B .()g x x =C .()4g x x =D .3())4g x x π=-9.已知函数()log xa f x a x =+(0a >且1)a ≠在[1,2]上的最大值与最小值之和为log 26a +,则a 的值为( )A .12B .14C .2D .410.由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为( )A .12B .1C .32D . 311.已知函数)2sin()(φ+=x x f 满足)()(a f x f ≤对R x ∈恒成立,则函数 ( )A .)(a x f -一定为奇函数B .)(a x f -一定为偶函数C .)(a x f +一定为奇函数D .)(a x f +一定为偶函数12.下列关于函数2()(2)xf x x x e =-的判断正确的是( )①()0{|02}f x x x <<<的解集是 ② )2(-f 是极小值,)2(f 是极大值③)(x f 有最小值,没有最大值 ④ )(x f 有最大值,没有最小值A .①③B .①②③C .②④D .①②④二、填空题(本大题共4小题,每小题5分,共20分) 13.角θ终边上一点M (x ,-2)()0(≠x ,且cos 3xθ=,则sin θ= . 14.若两个等差数列的前n 项和之比为7235+-n n ,则这两个数列的第9项之比是 。

(人教版)最新2020届高三化学上学期第二次月考试题(含解析)

(人教版)最新2020届高三化学上学期第二次月考试题(含解析)

2019届高三上学期第二次月考化学试题1. 下列说法正确的是A. H2、D2、T2互为同素异形体B. 液氨、氨水、王水都是混合物C. H2O、苯酚、Fe(SCN)3都是弱电解质D. 硫酸、纯碱、醋酸钠和生石灰分别属于酸、碱、盐和氧化物【答案】C【解析】试题分析:A.H2、D2、T2的结构相同,不属于同素异形体,错误;B.液氨属于纯净物,错误;C.H2O、苯酚、Fe(SCN)3都是弱电解质,正确;D.纯碱是碳酸钠,属于盐,错误;故选C。

【考点定位】考查物质的分类【名师点晴】本题考查了化学基本概念的理解应用,主要考查混合物、化合物、非电解质、同素异形体,结合物质的组成分析判断。

判断物质是否属纯净物时,不要只看表面字眼“纯”或“混”,而要看实质.例如:“冰和水的混合物”其实不是混合物而是纯净物,因为冰和水都是由水分子组成的。

弱电解质与强电解质最大的区别就是弱电解质存在电离平衡,而强电解质不存在电离平衡。

因此只要证明有电离平衡存在,就证明了弱电解质。

另外为了提高答题效率要记住常见的强电解质,即强酸、强碱以及大部分盐类和金属氧化物等均是强电解质,弱酸、弱碱和少数盐类以及水是弱电解质。

2. 下列关于古籍中的记载说法不正确的是A. 《天工开物》中“凡石灰,经火焚炼为用”涉及的反应类型是分解反应B. 《吕氏春秋·别类编》中“金(即铜)柔锡柔,合两柔则刚”体现了合金硬度方面的特性C. 《本草纲目》中“凡酸坏之酒,皆可蒸烧”,“以烧酒复烧二次……价值数倍也”用到的实验方法是蒸馏D. 《肘后备急方》中“青蒿—握,以水二升渍,绞取汁,尽服之”该提取过程属于化学变化【答案】D【解析】A. 《天工开物》中“凡石灰,经火焚炼为用”涉及的反应类型是碳酸钙的分解反应,A正确;B. 《吕氏春秋·别类编》中“金(即铜)柔锡柔,合两柔则刚”体现了合金硬度方面的特性,即合金的硬度比其成分金属高,B正确;C. 《本草纲目》中“凡酸坏之酒,皆可蒸烧”,“以烧酒复烧二次……价值数倍也”用到的实验方法是蒸馏,即根据混合物的沸点不同将混合物分离的方法,C正确;D. 《肘后备急方》中“青蒿—握,以水二升渍,绞取汁,尽服之”该提取过程没有新物质生成,属于物理变化,D不正确。

高考数学一轮复习专题22两角和与差的正弦、余弦和正切公式(含解析)

高考数学一轮复习专题22两角和与差的正弦、余弦和正切公式(含解析)

专题22两角和与差的正弦、余弦和正切公式最新考纲1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).基础知识融会贯通1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β(C (α-β)) cos(α+β)=cos αcos β-sin αsin β(C (α+β)) sin(α-β)=sin αcos β-cos αsin β(S (α-β)) sin(α+β)=sin αcos β+cos αsin β(S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α. 【知识拓展】1.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.2.升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b2,cos φ=a a 2+b 2.重点难点突破【题型一】和差公式的直接应用【典型例题】求值:sin24°cos54°﹣cos24°sin54°等于()A.B.C.D.【解答】解:sin24°cos54°﹣cos24°sin54°=sin(24°﹣54°)=sin(﹣30°)=﹣sin30°,故选:C.【再练一题】若sinα,α∈(),则cos()=()A.B.C.D.【解答】解:∵sinα,α∈(),∴cosα,∴cos()(cosα﹣sinα).故选:A.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.【题型二】和差公式的灵活应用命题点1 角的变换【典型例题】已知tan(α)=﹣2,则tan()=()A.B.C.﹣3 D.3【解答】解:∵tan(α)=﹣2,则tan()=tan[(α)],故选:A.【再练一题】若sin()=2cos,则()A.B.C.2 D.4【解答】解:∵sin()=2cos,∴sinαcos cosαsin2cos,即 sinαcos3cosαsin,∴tanα=3tan,则,故选:B.命题点2 三角函数式的变换【典型例题】若,且,则()A.B.C.D.【解答】解:∵α,∴π<2α,又,∴cos2α.∴,解得cosα,则sinα.∴.故选:D.【再练一题】已知sinα+3cosα,则tan(α)=()A.﹣2 B.2 C.D.【解答】解:∵(sinα+3cosα)2=sin2α+6sinαcosα+9cos2α=10(sin2α+cos2α),∴9sin2α﹣6sinαcosα+cos2α=0,则(3tanα﹣1)2=0,即.则tan(α).故选:B.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.基础知识训练1.【辽宁省辽阳市2019届高三下学期一模】已知α∈(22ππ-,),tan α=sin76°cos46°﹣cos76°sin46°,则sin α=( )A B . C D . 【答案】A 【解析】解:由tan α=sin76°cos46°﹣cos76°sin46°=sin (76°﹣46°)=sin30°12=, 且α∈(22ππ-,),∴α∈(0,2π),联立,解得sin α=. 故选:A .2.【福建省2019年三明市高三毕业班质量检查测试】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边过点(3,4)P .若角β满足,则tan β=( )A .-2B .211 C .613D .12【答案】B 【解析】因为角α的终边过点()3,4P ,所以4tan 3α=,又,所以,即,解得2tan 11β=. 故选B3.【福建省宁德市2019届高三毕业班第二次(5月)质量检查考试】( )A .B .C .D .【答案】B 【解析】,故选:B4.【河南名校联盟2018-2019学年高三下学期2月联考】已知,则=( )A .35B .45C D 【答案】D 【解析】∵,∴12tan θ=.∴.故选D .5.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟考试】已知,则sin α= ( )A B C .45D .35【答案】A 【解析】因为,所以,所以,且0,2πα⎛⎫∈ ⎪⎝⎭解得,故选A.6.若,则tan α= ( )A .17 B .17-C .1D .1-【答案】D 【解析】tan (α-β)=3,tan β=2, 可得3,∴,解得tan α1=-. 故选:D .7.【福建省三明市2019的是( ) A . B . C .D .【答案】D 【解析】 解:选项A :;选项B :;选项C :; 选项D :,经过化简后,可以得出每一个选项都具有的形式,, 故只需要sin α接近于sin 45︒,根据三角函数图像可以得出sin 46︒最接近sin 45︒,故选D.8.【广西桂林市、崇左市2019届高三下学期二模联考】已知,则( )A .B .C .D .【答案】C 【解析】 由题得.当在第一象限时,.当在第三象限时,.故选:C9.【湖南省长沙市长郡中学2019届高三下学期第一次适应性考试(一模)】已知为锐角,则()sin αβ+的值为( )A .12B .312- C .12D .312+ 【答案】D 【解析】 因为为锐角因为()cos 2β=所以2αβ+大于90°由同角三角函数关系,可得所以 =所以选D10.【山东省菏泽市2019届高三下学期第一次模拟考试】若,且α是钝角,则( )A .46B .46- C .46D .46-【答案】D 【解析】 因为α是钝角,且,所以,故,故选:D11.【安徽省黄山市2019届高三毕业班第三次质量检测】________.【答案】2 【解析】 因为,又,所以,所以.故答案为212.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】函数的最大值为_______【答案】1【解析】,所以,因此()f x的最大值为1.13.【吉林省2019届高三第一次联合模拟考试】已知,则m=______.【答案】【解析】由得:整理得:m=本题正确结果:14.【山东省泰安市教科研中心2019届高三考前密卷】已知,则=_____.【答案】1 7 -【解析】,则3cos5α=-,所以4tan3α=-,则:,故答案为:17-. 15.【江西省新八校2019届高三第二次联考】在锐角三角形ABC ∆中,角,,A B C 的对边分别为,,a b c ,若3sin c b A =,则的最小值是_______.【答案】12 【解析】 由正弦定理可得:得:,即又令,得:ABC ∆为锐角三角形得:,即1t > 10t ∴->当且仅当,即时取等号本题正确结果:1216.【安徽省合肥市2019届高三第三次教学质量检测】已知函数,若对任意实数x ,恒有,则______.【答案】14- 【解析】对任意实数x ,恒有,则()1fα为最小值,()2f α为最大值.因为,而,所以当sin =1x -时,()f x 取得最小值;当1sin 4x =时,()f x 取得最大值. 所以.所以1cos 0α=.所以.17.【江苏省徐州市2018-2019学年高三考前模拟检测】在ABC ∆中,已知3AC =,cos B =,3A π=.(1)求AB 的长; (2)求的值.【答案】(1)2AB =(2)【解析】(1)在ABC ∆中,因为cos B =,所以02B π<<,所以,又因为,所以,由正弦定理,,所以.(2)因为,所以,所以.18.【天津市北辰区2019届高考模拟考试】在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知45B =,b =cos C =. (1)求边a ;(2)求()sin 2A B -.【答案】(1)(2)【解析】(1)由题意得:cos C =,,0C π<<,∴,∵45B =︒,,∴,∴由正弦定理,得a =.(2)由(1)得,,∴,,∴.19.【2019年塘沽一中、育华中学高三毕业班第三次模拟考试】在ABC △中,角,,A B C 的对边分别为,,a b c ,已知,.(1)求ABC △的面积; (2)若2c =,求的值.【答案】(1)4;(2) 【解析】 解:,,,,易得sin 0A ≠,3cos 5A ∴=,,又,可得,10bc =,可得ABC △的面积;(2),5b ∴=,由余弦定理可得,,a ∴=,,20.【天津市河北区2019届高三一模】已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,满足,.(1)求cos A 的值; (2)求的值。

南阳市第一中学2023届高三上学期第三次阶段测数学(理)试卷(PDF版,含解析)

南阳市第一中学2023届高三上学期第三次阶段测数学(理)试卷(PDF版,含解析)

2023届年高三第三次阶段性测试理科数学试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若i 为虚数单位,,a b ∈R ,且2a ib i i+=+,则复数a bi −的模等于( ) A .2B .3C .5D .62.设集合3(,)2,,1y A x y x y R x −⎧⎫==∈⎨⎬−⎩⎭,{}(,)4160,B x y x ay x y R =+−=∈,若A B ⋂=∅,则实数a 的值为( ) A .4B .2−C .4或2−D .4−或23.在等比数列{}n a 中,12318a a a =,且86434a a a =+,则3a =( )A .1B .2C .±1D .2±4.若点(cos ,)P sin αα在直线2y x =−上,则cos(2)2πα+的值等于A .45−B .45C .35-D .355.设,a b 为两条直线,,αβ为两个平面,下列四个命题中真命题是( )A .若,a b 与α所成角相等,则//a bB .若//,//,//a b a ααβ,则b β//C .若,,//a b a b αβ⊂⊂,则//αβD .若,,a b αβαβ⊥⊥⊥,则a ⊥b6.如图所示的函数图象,对应的函数解析式可能是( ) A .221x y x =−− B .2sin y x x =⋅C. ln xy x=D .2(2)x y x x e =−⋅ 7. 给定两个长度为2的平面向量OA u u u r 和OB u u u r,它们的夹角为120°.如图所示.点C 在以O 为圆心2为半径的圆弧AB 上运动.则的最小值为 A. 4− B. 2− C. 0 D. 28.下列四个结论中正确的个数是 ①若22am bm <,则a b <②“已知直线m ,n 和平面α、β,若m n ⊥,m α⊥,n β∥,则αβ⊥”为真命题③3m =是直线()320m x my ++−=与直线650mx y −+=互相垂直的充要条件A .1B .2C .3D .49.已知函数()()213cos sin 222x f x x ϕϕ+=−++22ππϕ⎛⎫−<< ⎪⎝⎭,函数()f x 图象的一个对称中心为,03π⎛−⎫⎪⎝⎭,现将()f x 图象上各点的横坐标缩小到原来的13(纵坐标不变),纵坐标伸长到原来的2倍(横坐标不变),得到函数()y g x =的图象,当5,1818x ππ⎛⎫∈− ⎪⎝⎭时,函数()g x 的值域为( )A .(]1,2B .(]1,2−C .1,12⎛⎤− ⎥⎝⎦D .1,12⎡⎤−⎢⎥⎣⎦10.已知一圆锥底面圆的直径为3,圆锥的高为332,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a 的最大值为( ) A .3 B .2 C .()9322− D .32211.已知实数a ,b 满足312log 4log 9a =+,51213a a b +=,则下列判断正确的是( ) A .2a b >>B .2b a >>C .2b a >>D .2a b >>12. 已知正方体ABCD A B C D ''''−的棱长为4,E ,F ,G 分别为BB ',C D '',AA '的中点,点P 在平面ABB A ''中,25=PF ,点N 在线段AE 上,则下列结论正确的个数是( ) ①点P 的轨迹长度为2π;②FP 的轨迹平面A B CD ''的交线为圆弧; ③NP 的最小值为65105−;④若CG P D ⊥',则tan BPC ∠的最大值为5. A. 4B. 3C. 2D. 1二、填空题(本题共4小题,每小题5分,共20分)13.12200cos 1πxdx x dx +−=⎰⎰.14.2.已知,,且与的夹角为钝角,则实数k 的取值范围是______.15. 在ABC V 中,若22(sin 3cos )40a a B B −++=,27b =,则的面积为_____.16.已知函数()()e sin 0xf x a x x =−>有两个零点,则正实数a 的取值范围为______.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答) (一)必考题:共60分.17.(12分)在数列{}n a 和等比数列{}n b 中,10a =,32a =,()1*2n a n b n N +=∈.(1)求数列{}n b 及{}n a 的通项公式; (2)若12n n n c a b =,求数列{}n c 的前n 项和n S .18. (12分)如图所示,在三棱柱ABC ﹣A 1B 1C 1中,AB ⊥AC ,AB =AC ,四边形BCC 1B 1为菱形,BC =2,∠BCC 1=3π,D 为B 1C 1的中点.(1)证明:B 1C 1⊥平面A 1DB ;(2)若AC 1=2,求二面角C 1﹣A 1B 1﹣C 的余弦值.19.(12分)已知a ,b ,c 分别是ABC ∆内角A ,B ,C 所对的边,1sin cos sin 23cos 2a A C c Ab A +=.(1)求角A ;(2)已知D 是AB 上一点,2AB AD AC =<,7CD =3AC =,求BDC ∆的面积.20.(12分)已知圆C 的方程为22840x y x y +−+=,12,l l 是经过(0,2)P −且互相垂直的两条直线,其中1l 交圆C 于,M N 两点,2l 交x 轴于Q 点. (1)若8MN =,求直线1l 的方程; (2)求面积的最小值.21. (12分)已知函数()()2121ln 1f x x x a x x x ⎛⎫=−+−−+ ⎪⎝⎭.其中()a ∈R(1)当0a =时,求函数()f x 的单调区间;(2)若对于任意0x >,都有()0f x ≤恒成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程] 22. 在平面直角坐标系中,点()5,0P,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为223645cos ρθ=+,1F ,2F 是曲线C 的下、上焦点.(1)求曲线C 的标准方程和直线2PF 的直角坐标方程;(2)经过点1F 且与直线2PF 垂直的直线l 交曲线C 于A 、B 两点,求11AF BF −的值.23.已知函数()|1||3|f x x x =−+−.(1)解不等式()1f x x ≤+;(2)设函数()f x 的最小值为c ,实数,a b 满足0,0,a b a b c >>+=,求证:22111a ba b +≥++.高三第三次阶段性测试理科数学试题解析版一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若i 为虚数单位,,a b ∈R ,且2a ib i i+=+,则复数a bi −的模等于( ) A 2B 3C 5D 6【答案】C2.设集合3(,)2,,1y A x y x y R x −⎧⎫==∈⎨⎬−⎩⎭,{}(,)4160,B x y x ay x y R =+−=∈,若A B ⋂=∅,则实数a 的值为( ) A .4 B .2− C .4或2− D .4−或2【答案】C【分析】本题先化简集合A 、集合B ,再结合A B ⋂=∅,确定直线21y x =+与4160x ay +−=平行或直线4160x ay +−=过点(1,3),最后求实数a 的值.【详解】解:集合A 表示直线32(1)y x −=−,即21y x =+上的点,但除去点(1,3), 集合B 表示直线4160x ay +−=上的点, 当A B ⋂=∅时,直线21y x =+与4160x ay +−=平行或直线4160x ay +−=过点(1,3), 所以42a−=或43160a +−=, 解得2a =−或4a =. 故选:C.3.在等比数列{}n a 中,1238a a a =,且86434a a a =+,则3a =( )A .1B .2C .±1D .2±【答案】C4.若点(cos ,)P sin αα在直线2y x =−上,则cos(2)2πα+的值等于A .45−B .45C .35-D .35【答案】B5.设,a b 为两条直线,,αβ为两个平面,下列四个命题中真命题是( D )A .若,a b 与α所成角相等,则//a bB .若//,//,//a b a ααβ,则b β//C .若,,//a b a b αβ⊂⊂,则//αβD .若,,a b αβαβ⊥⊥⊥,则a ⊥b6.如图所示的函数图象,对应的函数解析式可能是( ). D A .221x y x =−− B .2sin y x x =⋅ C. ln xy x=D .2(2)x y x x e =−⋅u u u r u u u rA. 4−B. 2−C. 0D. 2【答案】B 【解析】【分析】设([0,120])AOC αα︒∠=∈,以,OA OB u u u r u u u r为平面内一组基底,根据平面向量的加法的几何意义、平面向量数量积的定义和运算性质,结合辅助角公式、余弦函数的单调性进行求解即可. 【详解】设([0,120])AOC αα︒∠=∈,因此有2()()CB CA CO OB CO OA CO CO OA OB CO OB OA ⋅=+⋅+=+⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r2CO OC OA OB OC OB OA =−⋅−⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r422cos 22cos(120)22cos120αα︒︒=−⨯−⨯⋅−+⨯⋅44cos 4cos(120)2αα︒=−−−− 24cos 2cos 23ααα=−+− 22cos 23αα=−−24cos(60)α︒=−−,因为[0,120]α︒∈,所以60[60,60]α︒︒︒−∈−,所以当600α︒︒−=时,即60α︒=,CB CA ⋅u u u r u u r有最小值,最小值为242−=−. 故选:B8.下列四个结论中正确的个数是 ①若22am bm <,则a b <②“已知直线m ,n 和平面α、β,若m n ⊥,m α⊥,n β∥,则αβ⊥”为真命题 ③3m =是直线()320m x my ++−=与直线650mx y −+=互相垂直的充要条件 A .1 B .2 C .3 D .4【答案】A9.已知函数()()213cos 22x f x x ϕϕ+=−+22ππϕ⎛⎫−<< ⎪⎝⎭,函数()f x 图象的一个对称中心为,03π⎛−⎫⎪⎝⎭,现将()f x 图象上各点的横坐标缩小到原来的13(纵坐标不变),纵坐标伸长到原来的2倍(横坐标不变),得到函数ππA .(]1,2B .(]1,2−C .1,12⎛⎤− ⎥⎝⎦D .1,12⎡⎤−⎢⎥⎣⎦【答案】B ()()21cos 22x f x x ϕϕ+=−+ ()()1cos sin 26x x x πϕϕϕ⎛⎫=++=++ ⎪⎝⎭, ∵函数()f x 的一个对称中心为,03π⎛−⎫ ⎪⎝⎭,∴36k ππϕπ−++=,∴6k πϕπ=+,∵22ππϕ−<<,∴6π=ϕ,∴()sin 3f x x π⎛⎫=+ ⎪⎝⎭,将()f x 图象上各点的横坐标缩小到原来的13(纵坐标不变),纵坐标伸长到原来的2倍(横坐标不变),得到函数()y g x =的图象,则()sin 332g x x π⎛⎫+ ⎝=⎪⎭,∵51818x ππ−<<,73636x πππ<+<,所以函数()g x 的值域为(]1,2−.故选:B .10.已知一圆锥底面圆的直径为3,圆锥的高为2,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a 的最大值为( )BA .3 BC.92D.211.已知实数a ,b 满足312log 4log 9a =+,51213a a b +=,则下列判断正确的是( ) A .2a b >> B .2b a >> C .2b a >> D .2a b >>【详解】由题意,31333323log 92lo 12g 4log 9log 4log 4log 1log 4a =+=+=++, 所以3322log 421log 4a −=+−+()333log log 1g 4144lo =+−,因为3log 41>,所以()333414log log 01log 4>+−,即2a >.所以2213512512169b a a >==++,即21313b >, 所以2b >.再来比较,a b 的大小: 因为20a −>, 所以222512135144122511693a a a a a a −−−++⨯−=⨯−⨯22212144122516913a a a −−−<⨯−⨯+⨯221691216931a a −−=−⨯⨯()2216912301a a −−=−<,所以b a <.综上所述,2a b >>. 故选:A.12. 已知正方体ABCD A B C D ''''−的棱长为4,E ,F ,G 分别为BB ',C D '',AA '的中点,点P 在平面ABB A ''中,25=PF ,点N 在线段AE 上,则下列结论正确的个数是( ) ①点P 的轨迹长度为2π;②FP 的轨迹平面A B CD ''的交线为圆弧; ③NP 的最小值为65105−;④若CG P D ⊥',则tan BPC ∠的最大值为5. A. 4 B. 3C. 2D. 1【答案】D【详解】解:根据正方体的性质知,F 到平面''ABB A 的距离为4,因为254PF =>,所以FP 的轨迹为圆锥的侧面,P 点在圆锥底面的圆周上,圆锥的底面的圆半径为()222542−=,圆锥的高为4,母线25=PF ,对于①,点P 的轨迹长度为224ππ⨯=,故①错误,对于②,由题意知,平面''A B CD 与圆锥的高不垂直,所以平面''A B CD 截圆锥所形成的曲线为椭圆,所以FP 的轨迹与平面''A B CD 的交线不是圆弧,故②错误,对于③,以A 为原点,AB 所在的直线为x 轴,以'AA 所在的直线为y 轴,建立平面直角坐标系,如图所示,所以()0,0A ,()4,2N ,P 点所在的圆的圆心为()2,4O ,所以圆的标准方程为()()22244x y −+−=,AE 所在的直线方程为12y x =,所以圆心到直线的距离为222465512−⨯=+,所以圆上的点到直线的距离最小值为6525−,即NP 的最小值为65105−,故③正确;则(0,D 0,0),'(0,D 0,4),(0,C 4,0),(4,G 0,2),(4,B 4,0)设(4,P y ,)z ,因为'D P CG ⊥,所以'0D P CG =g u u u u r u u u r,即()164240y z −+−=,对于P ,()()22244y z −+−=,tan BC BPC BP∠=,即求BP 的最小值,()222452432BP y z y y =−+=−+,由二次函数的性质知,当24 2.425y −=−=⨯时,BP 取得最小值455,又因为42BC =,所以10BC BP=,所以tan BPC ∠的最大值为10,所以④错误,故选:D .二、填空题(本题共4小题,每小题5分,共20分)13. 12200cos 1πxdx x dx +−=⎰⎰. 14π+14.已知(),2a k =−r ,() 3,5b =−r ,且a r 与b r的夹角为钝角,则实数k 的取值范围是______. 【答案】1066,,355⎛⎫⎛⎫−⋃+∞ ⎪ ⎪⎝⎭⎝⎭;15. 在中,若22(sin 3cos )40a a B B −++=,27b =,则的面积为_____.【答案】3【详解】解:由题得24sin()403a a B π−++=,因为方程有解,所以2216sin ()160,sin ()133B B ππ∆=+−≥∴+≥,所以sin()13B π+=±,因为0.333B B πππππ<<∴<+<+,所以24402a a a −+=∴=,. 由余弦定理得22328=4+22,23240,432c c c c c −⨯⨯⨯∴−−=∴=. 所以的面积为111sin 24323222S ac B ==⨯⨯⨯=. 故答案为:2316.已知函数()()e sin 0xf x a x x =−>有两个零点,则正实数a 的取值范围为______.【答案】944(2e ,2e )ππ【分析】由已知可得方程e sin x a x =其中()2,2N x k k k πππ∈+∈,有两个根,利用导数研究e sin xy x=,()2,2N x k k k πππ∈+∈,的单调性,作出其函数图象,观察图象可求出a 的取值范围.【详解】因为函数()()e sin 0,0xf x a x x a =−>>有两个零点, 所以方程()e sin 00,0xa x x a −=>>有两个根,所以()2,2N x k k k πππ∈+∈,所以方程e sin xa x =其中()2,2N x k k k πππ∈+∈,有两个根,设e ()sin xg x x=,()2,2N x k k k πππ∈+∈,,所以2e sin cos e ()sin x xx x g x x−'=,令()0g x '=可得e sin cos e 0x x x x −=, 化简可得24x k ππ=+,N k ∈,所以当22,N 4k x k k πππ<<+∈时,()0g x '<,函数()g x 单调递减,当22,N 4k x k k ππππ+<<+∈时,()0g x '>,函数()g x 单调递增,作函数()g x 的图象可得,由图象可得,当9()()g a g ππ<<时,直线y a =与函数e()xg x =,()2,2N x k k k πππ∈+∈,,的图象有且仅有所以当9442e 2e a ππ<<时,函数()()e sin 0xf x a x x =−>()0a >有两个零点,故答案为:944(2e ,2e )ππ.题考生都必须作答.第22、23题为选考题,考生根据要求作答) (一)必考题:共60分.17.(12分)在数列{}n a 和等比数列{}n b 中,10a =,32a =,()1*2n a n b n N +=∈.(1)求数列{}n b 及{}n a 的通项公式; (2)若12n n n c a b =,求数列{}n c 的前n 项和n S . 17.解:(1)依题意12b =,3328b ==,设数列{}n b 的公比为q ,由120n a n b +=>,可知0q >,由223128b b q q =⋅=⨯=,得24q =,又0q >,则2q =,故111222n n n n b b q−−==⨯=,┅┅┅┅┅┅4分又由122n a n +=,得1n a n =−. ┅┅┅┅┅┅6分 (2)依题意1(1)2n n c n −=−⨯.┅┅┅┅┅┅7分01221021222(2)2(1)2n n n S n n −−=⨯+⨯+⨯+⋯+−⨯+−⨯,①则12312021222(2)2(1)2n n n S n n −=⨯+⨯+⨯+⋯+−⨯+−⨯,②①-②得12122222(1)2(1)212nn nn n S n n −−−=+++−−⨯=−−⨯−…,┅┅┅┅┅┅10分即2(2)2n n S n −=−+−⨯,故2(2)2nn S n =+−⨯.┅┅┅┅┅┅12分18. 如图所示,在三棱柱ABC ﹣A 1B 1C 1中,AB ⊥AC ,AB =AC ,四边形BCC 1B 1为菱形,BC =2,∠BCC 1=3π,D 为B 1C 1的中点.(1)证明:B 1C 1⊥平面A 1DB ;(2)若AC 1=2,求二面角C 1﹣A 1B 1﹣C 的余弦值. 【答案】(1)证明见解析 (215(1)证明:由AB =AC ,则有A 1B 1=A 1C 1. ∵D 为B 1C 1的中点,∴A 1D ⊥B 1C 1. 由BC =2,则有B 1D =1,BB 1=2, ∵1113B BC C BC π=∠=∠,∴2222111112cos21221332BD B B B D B B B D π=+−⋅=+−⨯⨯⨯= ∴BD 2+B 1D 2=BB 12,∴BD ⊥B 1C 1,∵A 1D ∩BD =D ,∴B 1C 1⊥平面A 1DB . ┅┅┅┅┅┅6分(2)取BC 中点为E ,连接AE ,C 1E , 由AB ⊥AC ,得AE =12BC =1, 由题意得C 1E =BD =3,∴222114AE C E AC +==,∴AE ⊥C 1E ,又可知AE ⊥BC ,AE ∩C 1E =E ,则AE ⊥平面BB 1C 1C ,如图,以E 为坐标原点,1C E BE AE u u u u r u u u r u u u r,,分别为x ,y ,z 轴的正方向,建立空间直角坐标系,┅┅┅┅┅┅7分则C (0,﹣1,0),B 1(3,2,0),A 1(3,1,1),B (0,1,0),D (3,1,0),由A 1D ∥AE ,得A 1D ⊥平面BB 1C 1C ,∴BD ⊥B 1C 1,∵BD ⊥B 1C 1,A 1D ∩B 1C 1=D ,∴BD ⊥平面A 1B 1C 1, ∴平面A 1B 1C 1的法向量BD u u u r=(3,0,0),┅┅┅┅┅┅8分设平面A 1B 1C 的法向量n r=(x ,y ,z ),则,不妨取x =﹣3,得n r=(﹣3,3,3),┅┅┅┅┅┅9分设二面角C 1﹣A 1B 1﹣C 的平面角为θ,由图示θ为锐角. ┅┅┅┅┅┅10分 则cosθ=,┅┅┅┅┅┅11分 ∴二面角C 1﹣A 1B 1﹣C 的余弦值为155.┅┅┅┅┅┅12分 19.(12分)已知a ,b ,c 分别是ABC ∆内角A ,B ,C 所对的边,1sin cos sin 23cos 2a A C c Ab A +=. (1)求角A ;(2)已知D 是AB 上一点,2AB AD AC =<,7CD =,3AC =,求BDC ∆的面积.19.(1)∵1sin cos sin 23cos 2a A C c Ab A +=, ∴sin cos sin cos 3cos a A C c A A b A +=,由正弦定理得()sin sin cos cos sin 3sin cos A A C A C B A +=, ∴()sin sin 3sin cos A A C B A +=,即sin sin 3sin cos A B B A =, ∵0B π<<,∴sin 0B ≠,∴sin 3cos A A =,显然cos 0A ≠,∴tan 3A =,∵0A π<<,∴3A π=.┅┅┅┅┅┅6分(2)在ADC ∆中,由余弦定理知,2222cos DC AD AC AD AC A =+−⋅,即()222173232AD AD =+−⨯⨯⨯,解得1AD =或2AD =(舍),∵2AB AD =,∴1BD AD ==,∴133313224BDC ACD S S ∆∆==⨯⨯⨯=.┅┅┅┅┅┅12分20.已知圆C 的方程为22840x y x y +−+=,12,l l 是经过(0,2)P −且互相垂直的两条直线,其中1l 交圆C 于,M N 两点,2l 交x 轴于Q 点.(1)若8MN =,求直线1l 的方程; (2)求面积的最小值.20.(1)圆C 的方程为22(4)(2)20x y −++=,圆心(4,2)C −,半径25r =. 若1l 垂直于x 轴,则4MN =不合题意,┅┅┅┅┅┅2分故1l 斜率存在,设为k ,则1l 的方程为2y kx =−,即20kx y −−=.┅┅┅┅┅┅3分8MN =,C 到1l 的距离()222542d =−=,242221k k +−=+,解得33k =±,┅┅┅┅┅┅4分故直线1l 的方程为323y x =±−,即3360x y ±−−=.┅┅┅┅┅┅5分 (2)由已知,2l 斜率不为0,故1l 斜率存在.┅┅┅┅┅┅6分当2l 斜率不存在时,2l 方程为0x =,则(0,0)Q ,此时1l 方程为=2y −,此时45MN =, 1452452QMN S =⨯⨯=△.┅┅┅┅┅┅7分当2l 斜率存在时,设1:2l y kx =−即20kx y −−=,则圆心C 到直线MN 的距离为241k k +.┅┅┅┅┅8分()222222216420522524111k k k MN k k k ++=−==+++,┅┅┅┅┅┅9分 2l 方程为12y x k =−−,即20x ky ++=,()2,0Q k −,则点Q 到MN 的距离为22221k k−−+.┅┅┅┅┅┅10分22222122454545211QMNk k S k k k ++=⨯⨯=+>++△.┅┅┅┅┅┅11分 综上:面积的最小值为45.┅┅┅┅┅12分21. 已知函数()()2121ln 1f x x x a x x x ⎛⎫=−+−−+ ⎪⎝⎭.其中()a ∈R(1)当0a =时,求函数()f x 的单调区间;(2)若对于任意0x >,都有()0f x ≤恒成立,求a 的取值范围. 解:(1)()12ln 1f x x x ⎛⎫'=+− ⎪⎝⎭,令其为()p x ,则()21120p x x x ⎛⎫'=+> ⎪⎝⎭┅┅┅┅┅┅1分 所以可得()p x ,即单调递增,┅┅┅┅┅┅2分而()10f '=,则在区间()0,1上,,函数()f x 单调递减;┅┅┅┅┅┅3分在区间上,函数()f x 单调递增┅┅┅┅┅┅4分(2)()()2112ln x f x x x a x ⎛⎫−=−+ ⎪⎝⎭,令()212ln x h x x ax −=+,可知()10h =. ()222ax x a h x x++'=,令()22,0g x ax x a x =++>,┅┅┅┅┅┅5分 ①当1a ≤−时,结合()g x 对应二次函数的图像可知,()0g x ≤,即()0h x '≤,所以函数()h x 单调递减,∵()10h =,∴()0,1∈x 时,()0h x >,()1,∈+∞x 时,()0h x <, 可知此时()0≤f x 满足条件;┅┅┅┅┅┅7分②当0a ≥时,结合()g x 对应的图像可知,()0h x '>,()h x 单调递增, ∵()10h =,∴()0,1∈x 时,()0h x <,()1,∈+∞x 时,()0h x >, 可知此时()0≤f x 不恒成立,┅┅┅┅┅┅9分 ③当10a −<<时,研究函数()22g x ax x a =++.可知()10g >.对称轴11x a=−>. 那么()g x 在区间11,a ⎛⎫−⎪⎝⎭大于0,即()h x '在区间11,a ⎛⎫− ⎪⎝⎭大于0, ()h x 在区间11,a ⎛⎫− ⎪⎝⎭单调递增,()()10h x h >=,可知此时()0f x >.所以不满足条件. ┅┅┅┅┅11分综上所述:1a ≤−.┅┅┅┅┅┅12分(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在平面直角坐标系中,点)P,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为223645cos ρθ=+,1F ,2F 是曲线C 的下、上焦点.(1)求曲线C 的标准方程和直线2PF 的直角坐标方程;(2)经过点1F 且与直线2PF 垂直的直线l 交曲线C 于A 、B 两点,求11AF BF −的值.解:由223645cos ρθ=+得()2245cos 36ρρθ+=, 即()2224536y x x ++=,所以229436x y +=,即22149x y +=,┅┅┅┅┅┅2分∴(2F ,∴直线2PF 1=,即0x y +=;┅┅┅┅┅┅4分(2)解:由(1)知(10,F ,直线l的直角坐标方程为y x =,直线l的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),将直线l 的参数方程代入曲线C的标准方程可得:213320t −−=,┅┅┅┅┅┅6分 设A 、B 两点对应的参数分别为1t ,2t ,则12t t +=123213t t =−,∴1t ,2t 异号,┅┅┅┅┅┅8分∴111213AF BF t t −=+=.┅┅┅┅┅┅10分 23.已知函数()|1||3|f x x x =−+−.(1)解不等式()1f x x ≤+;(2)设函数()f x 的最小值为c ,实数,a b 满足0,0,a b a b c >>+=,求证:22111a ba b +≥++.23.(1)()1f x x ≤+,即131x x x −+−≤+.当1x <时,不等式可化为421x x −≤+,解得:1≥x 又∵1x <,∴x ∈∅; ┅┅┅┅┅┅1分当13x ≤≤时,不等式可化为21x ≤+,解得:1≥x 又∵13x ≤≤,∴13x ≤≤.┅┅┅┅┅┅2分当3x >时,不等式可化为241x x −≤+,解得:5x ≤ 又∵3x >,∴35x <≤.┅┅┅┅┅┅3分综上所得,13x ≤≤或35x <≤,即15x ≤≤.┅┅┅┅┅┅4分 ∴原不等式的解集为[]1,5.┅┅┅┅┅┅5分(2)由绝对值不等式性质得,()()13132x x x x −+−≥−−−=, ∴2c =,即2a b +=.┅┅┅┅┅┅6分令1,1a m b n +=+=,则1,1m n >>,114a m b n m n =−=−+=,,,┅┅┅┅┅┅7分()()2222211114441112m n a b m n a b m n m n mn m n −−+=+=+++−=≥=+++⎛⎫ ⎪⎝⎭, ┅┅┅┅┅┅9分 当且仅当2m n ==即1a b ==时等号成立.原不等式得证. ┅┅┅┅┅┅10分。

湖南省长沙市第一中学2024-2025学年高三上学期月考(一)地理试题

湖南省长沙市第一中学2024-2025学年高三上学期月考(一)地理试题

大联考长沙市一中2025届高三月考试卷(一)地 理得分 本试题卷分选择题和非选择题两部分,共8页。

时量75分钟,满分100分。

第Ⅰ卷 选择题(共48分)一 选择题:本大题共16小题,每小题3分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

区域人口迁移通常经历单核心向多核心演化的过程。

下图为我国长三角不同时期人口迁移的空间演化过程示意图。

据此完成1~2题。

1.与单核心阶段相比,多核心阶段人口迁移的特点是A.人口迁移的通道较少B.人口迁移的规模更小C.人口仅在小城镇阿流动D.人口迁移的频次更高2.在多核心阶段,若次级城市吸引力增强,可能带来的影响有①疏导核心城市的人口压力 ②加剧核心城市的逆城市化③降低核心城市的行政级别 ④促进区域经济一体化发展A.①②B.②③C.①④D.③④甘肃西接阿尔金山和祁连山,是我国西北地区重要的生态安全屏障。

为规范国土空间开发,实现区域的协调发展,甘肃将全省划分为3个主体功能区:城镇化发展区、农产品主产区、重点生态功能区(图1)。

图2示意2021年县域碳排放网络空间关联关系图(节点的大小表示在网络关系中的重要程度,节点间线的长度和粗细表示联系的频繁程度)。

据此完成3~5题。

3.甲、乙、丙分别表示A.城镇化发展区、农产品主产区、重点生态功能区B.城镇化发展区、重点生态功能区、农产品主产区C.农产品主产区、重点生态功能区、城镇化发展区D 重点生态功能区、城镇化发展区、农产品主产区关于甘肃省碳排放的说法,正确的是①陇中地区的碳排放强度最小②陇东南地区碳中和压力最大③河西地区因受地形的影响县域间碳排放网络空间联系弱④县域碳排放网络空间紧密度由中小县.域向周边县域递减A.①②B.①④C.②③D.③④5.关于城关区的发展方向,下列规划合理的是A.积极推进农创产业及新型农业发展B.积极创新推动低碳试点,发挥低碳引领导向C.积极发展生态经济和文化旅游经济D.积极优化产业结构,停止高耗能产业的发展风和水是干旱地区的两种主要作用力。

新疆乌鲁木齐市第一中学2014届高三上学期第二次月考数学(理)试题

新疆乌鲁木齐市第一中学2014届高三上学期第二次月考数学(理)试题

(请将答案写在答题纸上)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

第I 卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2320A x x x =-+=,{}log 42x B x ==,则AB =A .{}2,1,2-B .{}1,2C .{}2,2-D .{}22.已知A 、B 、C 分别为ΔABC 的三个内角,那么“sin cos A B >”是“ΔABC 为锐角三角形”的A . 充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 3.下列函数中,在其定义域中,既是奇函数又是减函数的是A.xx f 1)(=B.x x f -=)(C.x x x f 22)(-=-D.x x f tan )(-= 4. 已知0x 是函数f(x) =2x +11x-的一个零点, 若1x ∈(1,0x ),2x ∈(0x ,+∞),则(A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0 (C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>05.函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的部分图象如图所示,则将()y f x =的图象向左平移6π个单位后,得到()g x 的图象解析式为A.()sin 2g x x = B .()sin(2)6g x x π=-C .2()sin(2)3g x x π=+D .()cos 2g x x = 6.定义在R 上的函数()f x 满足2log (1),(0),()(1)(2),(0).x x f x f x f x x -≤⎧=⎨--->⎩则f(1)+ f(2) +f(3)+…+ f(2013)的值为A .-2B .-1C .1D .27.若函数321(02)3x y x x =-+<<的图象上任意点处切线的倾斜角为α,则α的最小值是 A .4π B .6π C .56π D .34π8.函数x xx xe e y e e --+=-的图像大致为9.与向量a =(72,12),b =(12,-72)的夹角相等,且模为1的向量是A.B.C. D.10.设集合{}2),(≤+=y x y x A ,{}2(,)B x y A y x =∈≤,从集合A 中随机地取出一个元素(,)P x y ,则(,)P x y B ∈的概率是第5题图A .121 B .32 C .2417 D .6511.函数22()(sin cos )2cos f x x x x m =+--在[0,]2π上有零点,则实数m 的取值范围是A .[1,1]- B. C.[1- D.[ 12.定义方程)(')(x f x f =的实数根0x 叫做函数)(x f 的“驻点”,若函数3(),()ln(1),()1g x x h x x x x φ==+=-的“驻点”分别为γβα,,,则γβα,,的大小关系为A.βαγ>>B.γαβ>>C.γβα>>D.αγβ>>第II 卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分. 13.函数y =x2-sin x 的单调递减区间是 . 14.已知a = (cos2α, sin α), b =(1, 2sin α―1), α∈(,ππ2),若a ·b =52,则tan(α+4π)的值为_________. 15. 设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()12xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()log (2)0a f x x -+=在区间(2,6]-内恰有三个不同实根,则实数a 的取值范围是 . 16. 在ABC ∆中,点G 为中线AD 上一点,且1,2AG AD =过点G 的直线分别交,AB AC 于点,E F ,若AC n AF AB m AE ==,,则m +3n 的最小值为_________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分):在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且274s i n c o s222A B C +-=. (Ⅰ)求角C 的大小; (Ⅱ)求sin sin A B +的最大值.18. (本小题满分12分)设数列{a n}的前n项和S n=n2,数列{b n}满足b n=a na n+m(m∈N*).(1)若b1,b2,b8成等比数列,试求m的值;(2)是否存在m,使得数列{b n}中存在某项b t满足b1,b4,b t(t∈N*,t≥5)成等差数列?若存在,请指出符合题意的m的个数;若不存在,请说明理由.19.(本小题满分12分)如图,在斜三棱柱111C B A ABC -中,点O 、E 分别是11C A 、1AA 的中点,⊥AO 平面111C B A .已知 90=∠BCA ,21===BC AC AA .(Ⅰ) 求异面直线1AB 与C A 1所成的角; (Ⅱ) 求11C A 与平面11B AA 所成角的正切值.20. (本小题满分12分):给定抛物线c ∶y 2=4x ,F是c 的焦点,过点F的直线l 与c 相交于A,B两点. (1)设l 的斜率为1,求与夹角的余弦值;(2)设=,若λ∈[4,9],求l 在y 轴上的截距的取值范围.21.(本小题满分12分): 已知函数()ln(1)2af x x x =+++ (1)当254a =时,求()f x 的单调递减区间; (2)若当0x >时,()1f x >恒成立,求a 的取值范围; (3)求证:1111ln(1)()35721n n N n *+>++++∈+请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)已知AB 为半圆O 的直径,4AB =,C 为半圆上一点,过点C 作半圆的切线CD ,过点A 作AD CD ⊥于D ,交圆于点E ,1DE =. (Ⅰ)求证:AC 平分BAD ∠; (Ⅱ)求BC 的长.ABCO1A 1C 1B E23.(本小题满分10分)已知极坐标的极点在平面直角坐标系的原点O 处,极轴与x 轴的正半轴重合,且长度单位相同.直线l 的极坐标方程为:)4sin(210πθρ-=,点(2cos ,2sin 2)P αα+,参数[]0,2απ∈.(Ⅰ)求点P 轨迹的直角坐标方程; (Ⅱ)求点P 到直线l 距离的最大值.24.(本小题满分10分)选修4-5:不等式选讲已知函数a a x x f +-=2)(.(Ⅰ)若不等式6)(≤x f 的解集为{}32≤≤-x x ,求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n 使)()(n f m n f --≤成立,求实数m 的取值范围.乌鲁木齐市第一中学2013--2014学年第一学期 2014届高三年级第一次月考理科数学参考答案一.选择题二、填空题三、解答题(Ⅱ)由(Ⅰ)得 32π=+B A .∴ A A A sin 32cos cos 32sinsin ⋅-⋅+=ππ)6sin(3cos 23sin 23π+=+=A A A . ∵ 320π<<A ,∴ 6566πππ<+<A .∴ 当26ππ=+A ,即 3π=A 时,B A sin sin +取得最大值为3.19.解法一:(Ⅰ) ∵⊥AO 平面111C B A ,∴AO O AO C A = 11,∴⊥11C B 平面11AC CA ,∴111C B C A ⊥ 又∵AC AA =1, ∴四边形11AC CA 为菱形,∴11AC C A ⊥,且1111B C AC C =∴⊥C A 1平面1AB ∴C A AB 11⊥,即异面直线1AB 与C A 1所成的角为90(Ⅱ)设点1C 到平面11B AA 的距离为d ,∵111111B AA C C B A A V V --=, 即⋅=⋅⋅⋅⋅3121311111AO C B C A S △11B AA d ⋅ 又∵在△11B AA 中,22111==AB B A ,∴S △11AA B 7=.∴7212=d ,∴11C A 与平面11B AA 所成角的正弦值721A 1(Ⅱ)设11C A 与平面11B AA 所成角为θ,∵)0,2,0(11=C A ,111(2,2,0),(0,1A B A A ==设平面11B AA 的一个法向量是(,,)n x y z =则111•0,•0,A B n A A n ⎧=⎪⎨=⎪⎩即220,0.x y y +=⎧⎪⎨=⎪⎩不妨令1x =,可得(1,1,n =-∴11sin cos ,7AC n θ=<>==, ∴11C A 与平面11B AA 所成角的正弦值72120.解: (1)C的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y =x -1. 将y =x -1代入方程y 2=4x , 整理得x 2-6x +1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1..所以与的夹角的余弦值为-3/√41(2)由题设得(x 2-1,y 2)=λ(1-x 1,-y 1),即由②得∴, ③联立①、③解得x 2=λ,依题意有λ>0. ∴ B (λ,),或B(λ,-),又F(1,0),得直线l 方程为(λ-1)y =(x -1)或(λ-1)y =-(x -1),当λ∈[4,9]时,l 在方程y 轴上的截距为或-,把看作函数,设g(λ)=,λ∈[4,9],,可知g(λ)=在[4,9]上是递减的(或用导数g′(λ)=-<0,证明g(λ)是减函数).∴,即直线l 在y 轴上截距的变化范围为.22.解:(Ⅰ)连结AC ,因为OA OC =,所以OAC OCA ∠=∠,因为CD 为半圆的切线,所以OC CD ⊥,又因为AD CD ⊥,所以OC ∥AD ,所以OCA CAD ∠=∠,OAC CAD ∠=∠,所以AC 平分BAD ∠. (Ⅱ)由(Ⅰ)知BC CE =,连结CE ,因为ABCE 四点共圆,B CED ∠=∠,所以cos cos B CED =∠, 所以DE CB CE AB=,所以2BC =.。

新疆乌鲁木齐市第一中学2020┄2021届高三上学期第一次月考英语试题

新疆乌鲁木齐市第一中学2020┄2021届高三上学期第一次月考英语试题

命题人:XXM (请将答案写在答题纸上)(满分150分,时间120分钟)第一部分:听力(共两节,满分30分)第一节(共5小题,满分7.5分)1. Where does this conversation probably take place?A. In a bookstore.B. In a classroom.C. In a library.2. At what time will the film begin?A. 7:20.B. 7:15.C. 7:00.3. What are the two speakers mainly talking about?A. Their friend Jane.B. A weekend trip.C. A radio programme.4. What will the woman probably do?A. Catch a train.B. See the man off.C. Go shopping.5. Why did the woman apologize?A. She made a late delivery.B. she went to the wrong place.C. She couldn’t take the cake back.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话。

每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题给出5秒钟的作答时间。

每段对话读两遍。

听第6段材料,回答第6、7题。

6. Whose CD is broken?A. Kathy’s.B. Mum’s.C. Jack’s.7. What does the boy promise to do for the girl?A. Buy her a new CD.B. Do some cleaning.C. Give her 10 dollars.听第7段材料,回答第8、9题。

专题4-2 三角函数图像与性质归类-(原卷版)

专题4-2 三角函数图像与性质归类-(原卷版)

专题4-2 三角函数图像与性质归类目录一、热点题型归纳【题型一】平移1:正弦←→余弦 (1)【题型二】平移2:识图平移 (3)【题型三】平移3:恒等变形平移 (4)【题型四】平移4:中心对称,轴对称,单调性等性质 (5)【题型五】平移5:最小平移 (6)【题型六】平移6:求w 最值 (7)【题型七】正余弦函数对称轴 (8)【题型八】正余弦对称中心 (9)【题型九】三角函数周期 (9)【题型十】单调性与最值 (11)【题型十一】正余弦“和”与“积”性质、最值 (11)【题型十二】三角函数零点 (12)【题型十三】图像与性质:x1与x2型 (13)【题型十四】三角函数最值 (14)【题型十五】万能代换与换元 (15)【题型十六】图像和性质综合 (15)二、真题再现 (16)三、模拟检测 (178)【题型一】平移1:正弦←→余弦【典例分析】(2022·安徽省太和中学高三阶段练习)已知函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭,若()f x 的图象向右平移π12个单位后,得到函数()2πsin 23g x x ⎛⎫=+ ⎪⎝⎭的图象,则( )A .6π=ϕB .π4ϕ= C .π3ϕ= D .2π5ϕ=1(2023·全国·高三专题练习)已知直线8x π=是函数()2sin(2)||2πϕϕ⎛⎫=+< ⎪⎝⎭f x x 的图像的一条对称轴,为了得到函数()y f x =的图像,可把函数2cos 26y x π⎛⎫=- ⎪⎝⎭的图像( )A .向左平移24π个单位长度B .向右平移24π个单位长度C .向左平移12π个单位长度 D .向右平移12π个单位长度2.(2022·全国·高三专题练习)为得到函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-- ⎪⎝⎭图象上所有的点( )A .向左平移712π个单位长度B .向右平移712π个单位长度 C .向左平移724π个单位长度D .向右平移724π个单位长度3.(2023·全国·高三专题练习)为了得到函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象,可以将函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移5π24个单位 B .向右平移7π24个单位 C .向右平移5π24个单位D .向左平移7π24个单位【题型二】平移2:识图平移【典例分析】(2022·陕西·渭南市华州区咸林中学高三开学考试(理))如图,函数()()π2sin 0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像过()π,0,2π,22⎛⎫⎪⎝⎭两点,为得到函数()()2cos g x x ωϕ=-的图像,应将()f x 的图像( )A .向右平移7π6个单位长度 B .向左平移7π6个单位长度 C .向右平移5π2个单位长度D .向左平移5π2个单位长度()++(0)0Asin x b A ,的步骤和方法:确定函数的最大值M 和最小值2M mA ,2M mb; :确定函数的周期T ,则可2T得=; :常用的方法有代入法和五点法. 把图象上的一个已知点代入(此时A b ,,已知)或代入图象与直线y b =的交点求解注意交点是在上升区间上还是在下降区间上).五点法”中的某一个点为突破口.【变式演练】1.(2022·河南·高三阶段练习(理))函数()()2sin f x x ωϕ=+(0>ω且0πϕ<<)在一个周期内的图象如图所示,将函数()y f x =图象上的点的横坐标伸长为原来的2倍,再向右平移π4个单位长度,得到函数()y g x =的图象,则π3g ⎛⎫= ⎪⎝⎭( )AB .1C .-1D .2.(2022·全国·长垣市第一中学高三开学考试(理))将函数sin y x =的图象上所有点的横坐标变为原来的(0)m m >倍,纵坐标不变,再将所得函数图象向左平移(0)ϕϕπ<<个单位长度,最后将所得函数图象上所有点的纵坐标变为原来的(0)n n >倍,横坐标不变,得到如图所示的函数()f x 的部分图象,则,,m n ϕ的值分别为( )A .22,2,3m n πϕ===B .12,2,23m n πϕ===C .2,2,3m n πϕ===D .1,2,23m n πϕ===3.(2022·四川省内江市第六中学模拟预测(文))已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,将函数()f x 的图象向左平移34π个单位长度,得到函数()g x 的部分图象如图所示,则3f π⎛⎫= ⎪⎝⎭( )A .12 B .12-C D .【题型三】平移3:恒等变形平移【典例分析】(2022·湖北·高三开学考试)要得到2()sin 43g x x π⎛⎫=+⎪⎝⎭的图象,只需要将22()cos 2sin 2f x x x =-的图象( ) A .向左平移24π个单位长度 B .向右平移24π个单位长度 C .向左平移12π个单位长度D .向右平移12π个单位长度【变式演练】1.(2023·全国·高三专题练习)已知函数()2sin cos f x x x =+的图象向左平移()0ϕϕ>个单位长度后得到函数()sin 2cos g x x x =+的图象,则()g ϕ=( )A .65B .115C .15 D .852.(2022·全国·高三专题练习)为了得到函数2cos2y x =的图象,只需把函数2cos 2y x x =+的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度 D .向右平移6π个单位长度3.(【百强校】2015届浙江省宁波市镇海中学高三5月模拟考试理科数学)设()cos 22f x x x =,把()y f x =的图像向左平移(0)ϕϕ>个单位后,恰好得到函数()cos 22g x x x =-的图象,则ϕ的值可以为( ) A .6π B .3πC .23πD .56π【题型四】平移4:中心对称,轴对称,单调性等性质【典例分析】(2022·安徽·高三开学考试)将函数()sin(2)(0)f x x ϕϕπ=+<<的图象向右平移6π个单位长度得到()g x 的图象,若()g x 的图象关于直线3x π=对称,则6g π⎛⎫= ⎪⎝⎭( )A .B .12-C .0D .12)+)00((Asin x A ,两个点关于中心对称,则函数值互为相反数。

湖南省长沙市第一中学2022-2023学年高三上学期月考(二)数学试题(解析版)

湖南省长沙市第一中学2022-2023学年高三上学期月考(二)数学试题(解析版)

故答案为:
15.用符号 表示不超过 的最大整数(称为 的整数部分),如 ,已知函数 有两个不同的零点 ,若 ,则实数 的取值范围是_____.
【答案】
【解析】
【分析】函数 有两个不同的零点即函数 与函数 的图象有两个不同交点,分类讨论数形结合可得结果.
【详解】函数 有两个不同的零点 ,
即函数 与函数 的图象有两个不同交点,
故选:ABD
10.已知函数 ,则()
A.函数 的最小正周期为 B. 为函数 的一条对称轴
C.函数 的最小值为1,最大值为2D.函数 在 上单调递减
【答案】BC
【解析】
【分析】根据给定条件利用周期定义、对称性性质判断选项A,B;换元借助二次函数最值判断选项C;利用复合函数单调性判断选项D作答.
【详解】因为 ,所以 ,A错误;
且 ,
由 知 且 ,故 的充要条件是 为纯虚数,
故选:D.
4.如图,一个装有某种液体的圆柱形容器固定在墙面和地面的角落内,容器与地面所成的角为 ,液面呈椭圆形,椭圆长轴上的顶点 到容器底部的距离分别是10和16,则容器内液体的体积是()
A. B. C. D.
【答案】B
【解析】
【分析】利用补体法可求液体的体积.
同理可得其余各点坐标, , , , , ,
对于A中, ,故A正确;
对于B中, ,故B正确;
对于C中, , , ,
所以 ,故C错误;
对于D中, , ,所以 在 方向上的投影为 ,
又因为 ,所以 在 方向上的投影,向量为 ,故D正确.
故选:C.
6.已知函数 的图象的一条对称轴与其相邻的一个对称中心的距离为 ,将 的图象向右平移 个单位长度得到函数 的图象.若函 的图象在区间 上是增函数,则 的取值范围为()

河北省2023届高三上学期第二次月考地理试卷(PDF版)

河北省2023届高三上学期第二次月考地理试卷(PDF版)

2022-2023学年第一学期第二次月考高三地理试题㊀㊀㊀㊀㊀㊀㊀考试范围:水圈㊁岩石圈与地表形态㊁植被㊁土壤㊁自然环境的整体性和差异性㊁人口㊁城市㊁农业说明:1.本试卷共8页,考试时间75分钟,满分100分.2.请将所有答案填写在答题卡上,答在试卷上无效.第Ⅰ卷(选择题㊀共50分)一㊁选择题(每题2分,共50分)㊀㊀下图是印度洋(局部)某季节洋流示意图,箭头为b洋流流向.读图完成1~2题.1.此时,有关a㊁b㊁c㊁d洋流流向的描述,正确的是A.a洋流流向西南c洋流流向东南B.a洋流流向东北d洋流流向东南C.c洋流流向西北d洋流流向西北D.a洋流流向东北c洋流流向西北2.该季节,下列说法正确的是A.甲地附近海域渔获量较其他季节少B.乙地降水量较其他季节多C.丙地蒸发量较其他季节多D.丁海峡货运量较其他季节少㊀㊀罗布泊地区原为湖泊,是塔里木盆地的汇水与积盐中心之一,干涸过程中盐壳(盐分在地表集聚形成的坚硬壳状物质)广泛发育.下图示意罗布泊地区内相邻且不同海拔的甲㊁乙㊁丙三处地下水埋深㊁盐壳厚度和含盐量.据此完成3~4题.3.甲㊁乙㊁丙三处盐壳形成的先后顺序依次是(㊀㊀)A.甲乙丙B.甲丙乙C.乙甲丙D.乙丙甲4.丙处盐壳刚开始形成时,甲㊁乙㊁丙三处中A.甲处降水量最多B.甲地下水位最高乙处蒸发量最多丙处地表温度最高㊀㊀新疆维吾尔自治区阿图什市哈拉峻乡的北部山区有一座含有铅锌矿的 飞来峰 .地质考证, 飞来峰 及其下部岩层属于海相沉积.铅锌矿质来源于地壳内部,通过喷流和沉积形式聚集在海洋洼地. 飞来峰 上部岩石年龄大于下部,属于逆地层.下图示意 飞来峰 岩石年龄分布.据此完成5~6题.5. 飞来峰 逆地层的成因是A.岩层弯曲上拱B.岩层弯曲凹陷C.岩层断裂,垂直上升D.岩层发生水平位移6.推测铅锌矿品位由喷气通道向四周变化的规律是A.高 低 高B.逐渐升高C.低 高 低D.逐渐降低㊀㊀夷平作用是外力作用于起伏的地表,使其削高填洼逐渐变为平面的作用.夷平面是指各种夷平作用形成的陆地平面,包括准平原㊁山麓平原㊁风化剥蚀平原和高寒夷平作用形成的平原等.下图为天山某山脉四级夷平面示意图.据此完成7~8题.7.图中最古老的夷平面是A.I B.ⅡC.ⅢD.Ⅳ8.推测该山脉所在区域的地壳经历了A.持续抬升B.持续下降C.间歇性抬升D.间歇性下降㊀㊀2021年2月27日, 月球样品001号 见证中华飞天梦 展览在中国国家博物馆开幕, 嫦娥五号 带回来的月壤,正式入藏国博,成为G B93484号藏品.月壤置于专用水晶容器内,重量为100克,放置于展厅的正中央.专家介绍,在月球上月壤其实是一层沙,看起来像细细的水泥,平均粒径为100微米,厚度大约为几米到十几米.成分主要是橄榄石㊁辉石㊁钛铁矿㊁斜长石等矿物以及胶结质玻璃.据此完成9~10题.9.推测在月壤的形成中,起作用最大的是月球表面的A.降水㊀㊀B.温度C.风力㊀㊀D.地貌10.月球上的土壤不能用来种菜是因为A.富含金属元素㊀㊀B.不含矿物质水分㊁空气很少不含任何有机养分㊀㊀群落中物种数目的多少称为物种丰富度.调查发现,横断山区某山地木本植物和草本植物的物种丰富度随海拔上升表现出规律性变化(如下图).据此完成11~12题.11.随着海拔上升,该地A.木本植物丰富度逐渐减少B.木本植物丰富度逐渐增多C.草本植物丰富度呈先减后增的趋势D.草本植物丰富度呈先增后减的趋势12.该地海拔3000米以下物种丰富度随海拔的变化主要取决于A.气温变化B.降水变化C.土壤变化D.坡度变化㊀㊀人口零增长是人口增减处于平衡状态的指标.下图示意我国部分省级行政区实现人口 零增长 的时间(含预测).据此完成13~15题.13.有关我国 人口零增长 叙述,正确的是A.与我国计划生育政策密不可分B.经济发达地区早于欠发达地区C.意味着人口出生率等于死亡率D.导致就业压力加大14.针对我国 人口零增长 可能引发的人口问题,可采取的应对措施是A.继续完善社会养老服务体系B.大量吸纳移民,弥补劳动力的不足C.放开生育政策,鼓励生育D.加大资源开发力度,提高人口容量15.北京和河北进入 零增长 的时间明显不同,主要原因是A.北京常住人口平均年龄小B.河北省有人口大量迁出C.城市化水平不同D.社会经济发展水平不同㊀㊀2018年1月1日,成都市«成都市关于推进户籍制度改革的实施意见»和«成都市户籍迁入登记管理办法(试行)»正式施行,该项政策给予高学历和紧缺型技术人才直接落户的优惠.下图为部分人才落户迁移示意图.据此回答16~18题.16.导致中小城市人才迁移的推力是A.生活成本低B.昂贵的房价C.发展前景好D.发展空间狭小17.该项政策实施后对成都的主要影响是A.加剧人口老龄化B.加快产业结构的升级18.下列人口迁移现象,其主要影响因素与上图类似的是A.叙利亚难民大量迁往欧洲B.三峡库区工程建设移民C.改革开放初期,大量民工到广东务工D.邢台一中学子考取北大读书㊀㊀北京市设置了很多的 潮汐车道 . 潮汐车道 就是可变车道,早高峰进城车辆多时,增加进城方向车道数,减少出城方向车道数;晚高峰则反之.下图为 潮汐车道 通行方向示意图.读图,回答19~20题.19.北京设置很多 潮汐车道 的主要目的是A.减少道路违章行驶B.优化配置道路资源C.加强城市交通管理D.美化城市道路景观20.如果图示的 潮汐车道 设置在早高峰,则A.城市西侧有大型居住区B.城市东侧有大型居住区C.大型工业园区在城市东侧D.主城区位于城市的西侧㊀㊀2020年6月23日,河北省公布,国务院批复同意河北省调整邢台市部分行政区划(如下图所示),桥东区更名为襄都区,桥西区更名为信都区,撤销邢台县㊁任县㊁南和县,设立邢台市任泽区㊁南和区.这将对邢台周边地区产生深远的影响.读图,回答21~22题.21.邢台市行政区划的调整,能反映的城市化特征是①乡村气候转为城市气候㊀②乡村地区转化为城市地区③乡村人口转变为城市人口㊀④城市边缘区的用地规模扩大A.①②③B.②③④C.①②④D.①③④22.邢台市行政区划调整的主要目的是A.全面提高城市等级B.缩小城乡经济差距改善城市景观结构优化城市空间布局㊀㊀富岗苹果,河北省内丘县特产,中国国家地理标志产品,以果实细脆津纯㊁清香蜜味㊁酸甜适口㊁易储耐藏享誉全国.1984年,位于太行山深处的内丘县岗底村(今富岗山庄)根据 人均山地14亩,人均不足半分田 的现状及多年种植苹果的经验,将山地苹果种植作为脱贫致富的突破口.经过多年发展,富岗苹果种植区域扩大到内丘县太行山区的侯家庄㊁獐么㊁南赛等3个乡镇行政区域,这里成为富岗苹果地理标志产品地域保护范围.下图示意侯家庄乡㊁獐么乡㊁南赛乡及富岗山庄位置.据此完成23~25题.23.富岗苹果成为国家地理标志产品的自然条件是A.泉水灌溉,生长慢,糖分积累多B.环境清洁,光照足,昼夜温差大C.土壤质地疏松,微量元素多D.地处太行深处,果树冻害少24.富岗山庄利用山地种植苹果,带来的生态效益是A.维持生物多样性B.治理冬春沙尘暴C.防御水土流失D.保持土壤肥力25.近年来,富岗苹果品质不断提升,主要得益于A.标准化栽培与管理技术B.多种类型的营销方式C.现代化交通网络的建立D.水利设施的不断完善第Ⅱ卷(非选择题,共50分)二㊁非选择题(本题4个小题,共50分)26.阅读图文材料,完成下列要求.(12分)㊀㊀阿特拉斯山脉位于非洲西北部,它把地中海西南岸与撒哈拉沙漠分开,最高峰为图卜卡勒峰,海拔4167米.阿特拉斯山脉从西北部的山麓地带到干燥裸露的巅峰,自然景观的空间分异显著.据联合国动物保护组织调查发现,近年来,阿特拉斯山脉西北部山麓地带的野生动物出现高迁山林的现象.下图为阿特拉斯山脉位置图.(1)说明阿特拉斯山脉东西两侧区域自然景观的差异并分析形成原因.(8分) (2)近年来阿特拉斯山脉西北部山麓地带野生动物纷纷高迁山林,请给出合理的解释(4分).27.阅读图文材料,完成下列要求.(11分)㊀㊀材料一:宁夏回族自治区面积㊁人口统计表(据截止2019年12月)地级市银川市石嘴山市中卫市固原市吴忠市面积(平方千米)9025 4531017441 610541 421400人口(万人)229 3180 59117 46125 05142 25㊀㊀材料二: 西海固 是西吉㊁海原和固原首字的简称,地处宁夏南部山区,是革命老区㊁贫困山区和少数民族聚居区,是国家确定的14个集中连片特困地区之一.该区域山大沟深,年均降水量仅300mm,蒸发量却在2000mm以上.1972年西海固地区被联合国世界粮食计划署确定为全球最不适宜人类居住的地区之一.1982年宁夏开始实施生态移民工程,将居住在西海固生态环境日益恶化地区的居民,分期分批迁移到生态环境和生存环境相对良好的宁夏北部.2020年11月16日宁夏回族自治区政府宣布固原市西吉县退出贫困县序列,这标志着曾有 苦甲天下 之称的西海固地区全部 摘帽 ,从此告别绝对贫困.(1)说出宁夏人口空间分布特点.(4分)(2)说明西海固地区资源环境承载力的特点并分析自然原因,并说明西海固 生态移民 迁入地应具备的条件.(7分)28.阅读图文材料,完成下列要求.(11分)㊀㊀材料一:上海迪士尼乐园位于上海市浦东新区川沙新镇.材料二:诗人海子有一首著名的诗歌,里边提到了:我有一所房子,面朝大海,春暖花开.随着社会经济的发展,人们对美好生活的向往也越来越强烈.联合国人居组织发布的«伊斯坦布尔宣言»强调: 我们的城市必须成为人类能够过上有尊严的㊁身体健康㊁安全㊁幸福和充满希望的美满生活的地方. 但大多数发展中国家在发展中由于种种原因出现了 城市病 .如下图所示.㊀㊀材料三:生态城市这一概念是在20世纪70年代联合国教科文组织发起的 人与生物圈 计划研究过程中提出的.前苏联生态学家杨尼斯基认为,生态城市是一种理想模式,技术与自然充分融合,人的创造力和生产力得到最大限度的发挥,居民的身心健康和环境质量得到最大限度的保护.(1)上海迪士尼乐园选址在浦东新区川沙新镇,试分析其优势区位条件.(3分) (2)说明材料二中 城市病 的表现及 病因 .(5分)(3)试从环境㊁交通㊁能源利用等方面设想如何将你所生活的城市改造为生态城市.(3分)29.阅读材料,完成下列问题.(16分)㊀㊀材料一:棉花喜温㊁喜光㊁耐旱,种子萌发最低温度为10 5-12ħ,苗期气温低于-2 5ħ即受冻害.下图为新疆棉区农时安排.材料二:膜下滴灌技术使水㊁肥㊁农药等通过滴灌定时㊁定量浸润作物根系发育区,结合地膜覆盖,真正实现由浇地向浇作物的转变.近年来,阿克苏市通过推广膜下滴灌等多项农业新技术实现了农民增收㊁农业增效.(1)评价阿克苏棉花种植的气候条件.(10分)(2)简述膜下滴灌技术促使棉农增收的原因.(6分)2022-2023学年上学期第二次月考高三年级地理试题答案一、选择题1-5BBBCC6-10CACBD11-15CAAAD16-20DBCBA21-25BDBCA二、综合题26.(12分)(1)差异:阿特拉斯山脉西北部以亚热带常绿硬叶林为主;(2分)东南部以(热带)荒漠为主。

乌鲁木齐县三中2018-2019学年高二上学期第二次月考试卷数学

乌鲁木齐县三中2018-2019学年高二上学期第二次月考试卷数学

乌鲁木齐县三中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设集合A={ x|﹣3≤2x﹣1≤3},集合B为函数y=lg(x﹣1)的定义域,则A∩B=()A.(1,2) B.[1,2] C.[1,2)D.(1,2]2.过点P(﹣2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有()A.3条B.2条C.1条D.0条3.复数=()A.B.C.D.4.在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既不充分也非必要条件5.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.15B.C.15D.15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.6.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件C .充分必要条件D .既不充分也不必要条件7. 把“二进制”数101101(2)化为“八进制”数是( )A .40(8)B .45(8)C .50(8)D .55(8)8. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化9. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( ) A.B.C.D.10.已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .12111.等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( ) A .3B.C .±D .以上皆非12.圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( ) AB .2 CD.【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.二、填空题13.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.14.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 .15.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.16.已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤17.设函数f (x )=,则f (f (﹣2))的值为 .18.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.三、解答题19..(1)求证:(2),若.20.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2).试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.21.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*n N ∈,p ,为常数),且145x x x ,,成等差数列,求:(1)p q ,的值;(2)数列{}n x 前项和n S 的公式.22.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF=3,H 是CF 的中点. (1)求证:AC ⊥平面BDEF ; (2)求二面角H ﹣BD ﹣C 的大小.23.已知z是复数,若z+2i为实数(i为虚数单位),且z﹣4为纯虚数.(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围.24.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.乌鲁木齐县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由A中不等式变形得:﹣2≤2x≤4,即﹣1≤x≤2,∴A=[﹣1,2],由B中y=lg(x﹣1),得到x﹣1>0,即x>1,∴B=(1,+∞),则A∩B=(1,2],故选:D.2.【答案】C【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则.即2a﹣2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.3.【答案】A【解析】解:===,故选A.【点评】本题考查复数的代数形式的乘除运算,本题解题的关键是掌握除法的运算法则,本题是一个基础题.4. 【答案】A【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ), ∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB , ∴sinB=2cosAsinB , ∵sinB ≠0, ∴cosA=, ∴A=, ∴sinA=, 当sinA=,∴A=或A=,故在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的充分非必要条件,故选:A5. 【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面ABCD ,如图所示,所以此四棱锥表面积为1S =262创?1123+22622创创?15=,故选C .4646101011326E VD CBA6. 【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x ﹣1=0,2x ﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y ﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.7.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D.8.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.9.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A .【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.10.【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n项和为11111)(1)52222n +++==,∴120n =,选C . 11.【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a 62=a 3a 9=3,即a 6=±.故选C12.【答案】C二、填空题13.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划.14.【答案】(﹣2,﹣6).【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),故答案为:(﹣2,﹣6).【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.15.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.16.【答案】①②③④【解析】因为只有是中的最小项,所以,,所以,故①②③正确;,故④正确;,无法判断符号,故⑤错误, 故正确答案①②③④答案:①②③④17.【答案】 ﹣4 .【解析】解:∵函数f (x )=,∴f (﹣2)=4﹣2=,f (f (﹣2))=f ()==﹣4.故答案为:﹣4.18.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乌鲁木齐市第一中学2019届高三上学期第二次月考数学(理)试题(请将答案写在答题纸上)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

第I 卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2320A x x x =-+=,{}log 42x B x ==,则AB =A .{}2,1,2-B .{}1,2C .{}2,2-D .{}22.已知A 、B 、C 分别为ΔABC 的三个内角,那么“sin cos A B >”是“ΔABC 为锐角三角形”的A . 充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 3.下列函数中,在其定义域中,既是奇函数又是减函数的是A.xx f 1)(=B.x x f -=)(C.x x x f 22)(-=-D.x x f tan )(-= 4. 已知0x 是函数f(x) =2x +11x-的一个零点, 若1x ∈(1,0x ),2x ∈(0x ,+∞),则(A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0 (C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>05.函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的部分图象如图所示,则将()y f x =的图象向左平移6π个单位后,得到()g x 的图象解析式为A.()sin 2g x x = B .()sin(2)6g x x π=-C.2()sin(2)3g x x π=+D .()cos 2g x x =6.定义在R 上的函数()f x 满足2log (1),(0),()(1)(2),(0).x x f x f x f x x -≤⎧=⎨--->⎩则f(1)+ f(2) +f(3)+… +f(2019)的值为A .-2B .-1C .1D .27.若函数321(02)3x y x x =-+<<的图象上任意点处切线的倾斜角为α,则α的最小值是 A .4π B .6π C .56π D .34π8.函数x xx xe e y e e--+=-的图像大致为9.与向量a =(72,12),b=(12,-72)的夹角相等,且模为1的向量是A.B.C. D.10.设集合{}2),(≤+=y x y x A ,{}2(,)B x y A y x =∈≤,从集合A 中随机地取出一个元素第5题图(,)P x y ,则(,)P x y B ∈的概率是A .121 B .32 C .2417 D .6511.函数22()(sin cos )2cos f x x x x m =+--在[0,]2π上有零点,则实数m 的取值范围是A .[1,1]- B. C.[1- D.[ 12.定义方程)(')(x f x f =的实数根0x 叫做函数)(x f 的“驻点”,若函数3(),()ln(1),()1g x x h x x x x φ==+=-的“驻点”分别为γβα,,,则γβα,,的大小关系为A.βαγ>>B.γαβ>>C.γβα>>D.αγβ>>第II 卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分. 13.函数y =x2-sin x 的单调递减区间是 .14.已知a = (cos2α, sin α), b =(1, 2sin α―1), α∈(,ππ2),若a ·b =52,则tan(α+4π)的值为_________. 15. 设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()12xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()log (2)0a f x x -+=在区间(2,6]-内恰有三个不同实根,则实数a 的取值范围是 .16. 在ABC ∆中,点G 为中线AD 上一点,且1,2AG AD =过点G 的直线分别交,AB AC 于点,E F ,若n m ==,,则m +3n 的最小值为_________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分):在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且274sin cos222A B C +-=. (Ⅰ)求角C 的大小; (Ⅱ)求sin sin A B +的最大值.18. (本小题满分12分)设数列{a n}的前n项和S n=n2,数列{b n}满足b n=a na n+m(m∈N*).(1)若b1,b2,b8成等比数列,试求m的值;(2)是否存在m,使得数列{b n}中存在某项b t满足b1,b4,b t(t∈N*,t≥5)成等差数列?若存在,请指出符合题意的m的个数;若不存在,请说明理由.19.(本小题满分12分)如图,在斜三棱柱111C B A ABC -中,点O 、E 分别是11C A 、1AA 的中点,⊥AO 平面111C B A .已知90=∠BCA ,21===BC AC AA . (Ⅰ) 求异面直线1AB 与C A 1所成的角; (Ⅱ) 求11C A 与平面11B AA 所成角的正切值.20. (本小题满分12分):给定抛物线c ∶y 2=4x ,F是c 的焦点,过点F的直线l 与c 相交于A,B两点. (1)设l 的斜率为1,求与夹角的余弦值;(2)设=,若λ∈[4,9],求l 在y 轴上的截距的取值范围.21.(本小题满分12分): 已知函数()ln(1)2af x x x =+++ (1)当254a =时,求()f x 的单调递减区间; (2)若当0x >时,()1f x >恒成立,求a 的取值范围; (3)求证:1111ln(1)()35721n n N n *+>++++∈+请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)已知AB 为半圆O 的直径,4AB =,C 为半圆上一点,过点C 作半圆的切线CD ,过点A 作AD CD ⊥于D ,交圆于点E ,1DE =.ABO1A 1C 1B E(Ⅰ)求证:AC 平分BAD ∠; (Ⅱ)求BC 的长.23.(本小题满分10分)已知极坐标的极点在平面直角坐标系的原点O 处,极轴与x 轴的正半轴重合,且长度单位相同.直线l 的极坐标方程为:)4sin(210πθρ-=,点(2cos ,2sin 2)P αα+,参数[]0,2απ∈.(Ⅰ)求点P 轨迹的直角坐标方程; (Ⅱ)求点P 到直线l 距离的最大值.24.(本小题满分10分)选修4-5:不等式选讲已知函数a a x x f +-=2)(.(Ⅰ)若不等式6)(≤x f 的解集为{}32≤≤-x x ,求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n 使)()(n f m n f --≤成立,求实数m 的取值范围.乌鲁木齐市第一中学2019学年第一学期 2019届高三年级第一次月考理科数学参考答案一.选择题二、填空题三、解答题(Ⅱ)由(Ⅰ)得 32π=+B A .∴ A A A sin 32cos cos 32sinsin ⋅-⋅+=ππ)6sin(3cos 23sin 23π+=+=A A A . ∵ 320π<<A ,∴ 6566πππ<+<A .∴ 当26ππ=+A ,即 3π=A 时,B A sin sin +取得最大值为3.19.解法一:(Ⅰ) ∵⊥AO 平面111C B A ,∴1C B AO ⊥O =, ∴⊥11C B 平面11AC CA ,∴111C B C A ⊥ 又∵AC AA =1, ∴四边形11AC CA 为菱形, ∴11AC C A ⊥,且1111B C AC C =∴⊥C A 1平面1AB ∴C A AB 11⊥,即异面直线1AB 与C A 1所成的角为90(Ⅱ)设点1C 到平面11B AA 的距离为d ,∵111111B AA C C B A A V V --=, 即⋅=⋅⋅⋅⋅3121311111AO C B C A S △11B AA d ⋅ 又∵在△11B AA 中,22111==AB B A ,∴S △11AA B 7=.∴7212=d ,∴11C A 与平面11B AA 所成角的正弦值721A 1(Ⅱ)设11C A 与平面11B AA 所成角为θ,∵)0,2,0(11=C A ,111(2,2,0),(0,1A B A A ==设平面11B AA 的一个法向量是(,,)n x y z =则111•0,•0,A B n A A n ⎧=⎪⎨=⎪⎩即220,0.x y y +=⎧⎪⎨+=⎪⎩不妨令1x =,可得(1,1,3n =-∴11sin cos ,AC n θ=<>==, ∴11C A 与平面11B AA 所成角的正弦值72120.解: (1)C的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y =x -1. 将y =x -1代入方程y 2=4x , 整理得x 2-6x +1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1..所以与的夹角的余弦值为-3/√41(2)由题设得(x 2-1,y 2)=λ(1-x 1,-y 1),即由②得∴,③联立①、③解得x2=λ,依题意有λ>0.∴B(λ,),或B(λ,-),又F(1,0),得直线l方程为(λ-1)y=(x-1)或(λ-1)y=-(x-1),当λ∈[4,9]时,l在方程y轴上的截距为或-,把看作函数,设g(λ)=,λ∈[4,9],,可知g(λ)=在[4,9]上是递减的(或用导数g′(λ)=-<0,证明g(λ)是减函数).∴,即直线l在y轴上截距的变化范围为.22.解:(Ⅰ)连结AC ,因为OA OC =,所以OAC OCA ∠=∠,因为CD 为半圆的切线,所以OC CD ⊥,又因为AD CD ⊥,所以OC ∥AD ,所以OCA CAD ∠=∠,OAC CAD ∠=∠,所以AC 平分BAD ∠.(Ⅱ)由(Ⅰ)知BC CE =,连结CE ,因为ABCE 四点共圆,B CED ∠=∠,所以cos cos B CED =∠, 所以DE CB CE AB=,所以2BC =.。

相关文档
最新文档