2021年贵州省高考数学重难点热点复习:数列

合集下载

2021年高考数学专题复习:数列(含答案解析)

2021年高考数学专题复习:数列(含答案解析)
已知等差数列{an}的前n项和为Sn,满足a3=6,____.
(1)求{an}的通项公式;
(2)设bn=2 an,求{bn}的前n项和Tn.
3.已知等比数列{an}的各项均为正数,且a1+16a3=1,a1a5=16a42.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{ }的前n项和Tn.
(1)求数列{an}的通项公式;
(2)证明: .
13.设数列{an}满足a1=2,an+1=an+2n.
(1)求数列{an}的通项公式;
(2)设bn=log2(a1•a2…an),求数列{ }的前n项和Sn.
14.已知等比数列{an}的各项都为正数,Sn为其前n项和,a3=8,S3=14.
(1)求数列{an}的通项公式;
(2)记Tn ,求使得Tn 成立的正整数n的最小值.
15.设数列{an}的前n项和为Sn(n∈N*),且满足an+Sn=2n+1.
(1)证明数列{an﹣2}是等比数列,并求数列{an}的通项公式;
(2)若bn=n(2﹣an),求数列{bn}的前n项和Tn.
16.已知{an}是等差数列,{bn}是等比数列,b1=a5,b2=3,b5=﹣81.
(1)求数列{an},{bn}的通项公式;
(2)设cn an,数列{cn}的前n项和为Tn,若不等式 1 恒成立,求λ的取值范围.
18.已知递增的等比数列{an}的前n项和为Sn,S3 ,a3a4=a5.
(1)求数列{an}的通项公式;
(2)若4an=3Sn,求正整数n的值.
19.已知等差数列{an}中,a2=3,a4=7.等比数列{bn}满足b1=a1,b4=a14.

2021年高考数学解答题专项复习-《数列》(含答案)

2021年高考数学解答题专项复习-《数列》(含答案)

2021年高考数学解答题专项复习-《数列》1.设{a}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.n(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.2.设{a}是等差数列,且a1=ln2,a2+a3=5ln2.n(1)求{a n}的通项公式;(2)求错误!未找到引用源。

.3.设数列{a}的前n项和为S n.已知2S n=3n+3.n(1)求{a n}的通项公式;(2)若数列{b n}满足a n·b n=log3a n,求{b n}的前n项和T n.4.已知{a}是公差为1的等差数列,且a1,a2,a4成等比数列.n(1)求{a n}的通项公式;(2)求数列的前n项和.5.已知数列{a}前n项和为S n,且S n=2n2+n,n∈N+,数列{b n}满足a n=4log2b n+3,n∈N+.n(1)求a n和b n的通项公式;(2)求数列{a n·b n}的前n项和T n.6.已知数列{a}和{b n}满足a1=1,b1=0,,.n(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.7.S为数列{a n}的前n项和.已知a n>0,=.n(1)求{a n}的通项公式;(2)设 ,求数列{b n}的前n项和.8.已知等差数列{a}满足a3=6,前7项和为S7=49.n(1)求{a n}的通项公式(2)设数列{b n}满足b n=(a n-3)·3n,求{b n}的前n项和T n.9.设数列{a}满足a1+3a2+...+(2n-1)a n=2n.n(1)求{a n}通项公式;(2)求数列的前n项和.10.已知等比数列{a}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,n数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.11.已知数列{a}是递增的等比数列,且a1+a4=9,a2a3=8.n(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,,求数列{b n}的前n项和T n.12.已知数列{a}为递增的等差数列,其中a3=5,且a1,a2,a5成等比数列.n(1)求{a n}的通项公式;(2)设记数列{b n}的前n项和为T n,求使得成立的m的最小正整数.13.等比数列{a}的各项均为正数,且.n(1)求数列{a n}的通项公式;(2)设,求数列的前n项和T n.14.已知数列{a}是首项为正数的等差数列,数列的前n项和为.n(1)求数列{a n}的通项公式;(2)设错误!未找到引用源。

2021届高考数学热点题型训练:第5章 第1节 数列的概念与简单表示 Word版含解析

2021届高考数学热点题型训练:第5章 第1节 数列的概念与简单表示 Word版含解析

第一节 数列的概念与简洁表示考点一由数列的前几项归纳数列的通项公式[例1] 依据数列的前几项,写出下列各数列的一个通项公式. (1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,….[自主解答] (1)数列中各项的符号可通过(-1)n表示,从第2项起,每一项的确定值总比它的前一项的确定值大6,故通项公式为a n =(-1)n(6n -5).(2)数列变为89⎝ ⎛⎭⎪⎫1-110,89⎝ ⎛⎭⎪⎫1-1102,89⎝ ⎛⎭⎪⎫1-1103,…, 故a n =89⎝⎛⎭⎪⎫1-110n .(3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母小3.因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n 2n-32n .【方法规律】求数列的通项公式应关注的四个特征 (1)分式中分子、分母的特征; (2)相邻项的变化特征; (3)拆项后的特征;(4)各项符号特征等,并对此进行归纳、化归、联想.依据数列的前几项,写出各数列的一个通项公式. (1)3,5,7,9,…; (2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,….解:(1)各项减去1后为正偶数,∴a n =2n +1.(2)每一项的分子比分母小1,而分母组成数列21,22,23,24,…,∴a n =2n-12n .(3)数列的奇数项为负,偶数项为正,故通项公式中含有因式(-1)n,各项确定值的分母组成数列{n },分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1.∴a n =(-1)n 2+-1nn.考点二由递推关系式求通项公式[例2] 依据下列条件,确定数列{a n }的通项公式.(1)a 1=1,a n =n -1na n -1(n ≥2);(2)a 1=2,a n +1=a n +3n +2; (3)a 1=1,a n +1=3a n +2;(4)a 1=56,a n +1=5a n4a n +1.[自主解答] (1)∵a n =n -1na n -1(n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘,得a n =a 1×12×23×…×n -1n =a 1n =1n.(2)∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =n 3n +12(n ≥2).当n =1时,a 1=12×(3×1+1)=2符合公式,∴a n =32n 2+n 2.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1),即a n +1+1a n +1=3.∴数列{a n +1}为等比数列,公比q =3.又a 1+1=2,∴a n +1=2×3n -1.∴a n =2×3n -1-1.(4)∵a n +1=5a n4a n +1,∴1a n +1=45+15a n , ∴1a n +1-1=15⎝ ⎛⎭⎪⎫1a n -1. 又1a 1-1=15, ∴⎩⎨⎧⎭⎬⎫1a n -1是以15为首项,15为公比的等比数列,∴1a n -1=15·15n -1=15n , ∴a n =5n 1+5n .【方法规律】由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n ;。

高考数学数列知识点归纳

高考数学数列知识点归纳

高考数学中的数列知识点主要包括以下内容:
1. 数列的定义与性质:
-数列的概念:数列是按照一定规律排列的数的集合。

-项数与前n项和:第n项表示数列中的第n个数,前n项和表示数列前n项的和。

-通项公式与递推公式:通项公式是指可以通过给定的项数n来直接计算某一项的公式,递推公式则是通过前一项或前几项来计算下一项的公式。

2. 常见数列:
-等差数列:数列中的每个数都与其前一个数之差相等。

-等比数列:数列中的每个数都与其前一个数之比相等。

-斐波那契数列:数列中的每个数都是前两个数之和,即第三项开始满足an = an-1 + an-2。

3. 数列的性质和运算:
-数列的有界性:数列可以是有界的(上有界、下有界)、无界的或发散的。

-数列的单调性:数列可以是递增的、递减的或保持不变。

-数列的极限:数列可能有极限(有限或无穷)或不存在极限。

4. 数列的求和:
-等差数列的求和公式:利用等差数列的性质,可以得到等差数列前n项和的通用公式。

-等比数列的求和公式:利用等比数列的性质,可以得到等比数列前n项和的通用公式。

5. 数列的应用:
-常见问题的建模与解决:通过将实际问题转化为数列的形式,利用数列的性质和公式来解决问题。

以上是高考数学中与数列相关的主要知识点。

掌握这些知识点,能够帮助学生在解答数列相关题目时更加熟练和准确。

需要注意的是,除了理论知识,还需要进行大量的练习和实践,以提高对数列概念的理解和应用能力。

等差、等比数列-2021届新高考数学复习知识点总结与题型归纳(原卷版)

等差、等比数列-2021届新高考数学复习知识点总结与题型归纳(原卷版)

第14讲 等差、等比数列考点1:等差数列一、等差数列的基本概念和公式1. 定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,通常用字母d 表示.2. 等差中项:如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项,即A =x+y 2.3.通项公式:a n =a 1+(n −1)d =a m +(n −m)d ,(n ∈N ∗,m ∈N ∗,m ≤n)⇒d =a n −a m n−m(n,m ∈N ∗,n ≠m)4. 前n 项和公式:S n =n(a 1+a n )2=na 1+n(n−1)2d ,(n ∈N ∗);二、等差数列的性质:1. a m =a n +(m −n)d ,d =a m −a n m−n,(n ∈N ∗,m ∈N ∗);2. 若p +q =m +n ,则有a p +a q =a m +a n ;若2m =p +q ,则有2a m =a p +a q (p ,q ,m ,n ∈N ∗);3. {a n }为等差数列,S n 为前n 项和,则S 2n−1=(2n −1)a n ;{b n }为等差数列,S n ′为前n 项和,S 2n−1′=(2n −1)b n ;有a nb n=S 2n−1S 2n−1′.4. 若{a n },{b n }均为等差数列,且公差分别为d 1,d 2,则数列{pa n },{a n +q },{a n ±b n }也为等差数列,且公差分别为pd 1,d 1,d 1±d 2.5. 在等差数列中,等距离取出若干项也构成一个等差数列,即a n ,a n+m ,a n+2m ,....,为等差数列,公差为md .6. 等差数列的前n 项和也构成一个等差数列,即S n ,S 2n −S n ,S 3n −S 2n ,⋯⋯为等差数列,公差为n 2d ,(n ∈N ∗);三、等差数列的单调性以及前n 项和的最值探讨1. 在等差数列{a n }中,若公差d >0,则等差数列{a n }为递增数列;若公差d <0,则等差数列{a n }为递减数列;若公差d =0,则等差数列{a n }为常数列; 补充:更一般性的情况,研究任一数列的增减性可以利用逐项作差法,即构造f (n )=a n+1−a n ,然后研究自变量n 变化时函数值f (n )的符号.2. 有关等差数列{a n }的前n 项和为S n 的最值问题: 若a 1>0,d <0,则前n 项和为S n 存在最大值 若a 1<0,d >0,则前n 项和为S n 存在最小值3. 如何求最值:方法一:(任何数列都通用)通过{a n ≥0a n+1≤0解出n 可求前n 项和为S n 的最大值;通过{a n ≤0a n+1≥0解出n 可求前n 项和为S n 的最小值; 方法二:利用等差数列前n 项和S n 的表达式为关于n 的二次函数且常数项为0(若为一次函数,数列为常数列,则前n 项和S n 不存在最值),利用二次函数求最值的方法进行求解;有以下三种可能:若对称轴n 正好取得正整数,则此时n 就取对称轴;若对称轴不是正整数,而是靠近对称轴的相邻的两个整数的中点值,则n 取这两个靠近对称轴的相邻的两个整数;若对称轴即不是正整数,又不是靠近对称轴的相邻的两个整数的中点值,则n 就取靠近对称轴的那个正整数;四、等差数列的判断方法1. 定义法:a n −a n−1=d (常数)(n ∈N +,n ≥2)⇔{a n }为等差数列;2. 等差中项法:2a n =a n−1+a n+1(n ∈N +,n ≥2)⇔{a n }为等差数列;3. 通项公式法:a n =kn +b (k ,b 是常数)⇔数列{a n }是等差数列;4. 前n 项和法:数列{a n }的前n 项和S n =An 2+Bn ,(A ,B 是常数,A 2+B 2≠0) ⇔数列{a n }是等差数列;若数列{a n }的前n 项和S n =An 2+Bn +C(A ,B 是常数,C ≠0),则数列{a n }从第二项起是等差数列.典例精讲【典例1】已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7=( ) A .2 B .7 C .14 D .28【典例2】已知等差数列{a n }的公差为4,且a 2,a 3,a 6成等比数列,则a 10=( ) A .26 B .30 C .34 D .38【典例3】设等差数列{a n }的前n 项和为S n ,首项a 1>0,公差d <0,a 10•S 21<0,则S n 最大时,n 的值为( )A .11B .10C .9D .8【典例4】.已知等差数列{}n a 满足225910a a +,则12345a a a a a ++++的最大值为( ) A.B .20 C .25 D .100【典例5】.已知等差数列{}n a 满足10a >,201920200a a +>,201920200a a <.其前n 项和为n S ,则使0n S >成立时n 最大值为( ) A .2020B .2019C .4040D .4038【典例6】.等差数列{}n a 中,36a =,816a =,n S 是数列{}n a 的前n 项和,则122020111(S S S ++⋯+= ) A .20172018B .20182019C .20192020D .20202021【典例7】已知数列{}n a 是等差数列,{}n b 是等比数列,22a b m ==,33a b n ==,若m ,n 为正数,且m n ≠,则( ) A .11a b < B .11a b > C .11a b = D .1a ,1b 的大小关系不确定【典例8】已知等差数列{a n }的各项均为正数,a 1=1,且a 2+a 6=a 8.若p ﹣q =10.则a p ﹣a q =【典例9】设数列{a n }为等差数列,其前n 项和为S n ,已知a 1+a 4+a 7=60,a 2+a 5+a 8=51,若对任意n ∈N *,都有S n ≤S k 成立,则正整数k 的值为 .考点2:等比数列一、等比数列的基本概念和基本公式1. 定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q(q ≠0)表示.等比数列中的项不为0.2. 通项公式:a n =a 1q n−1=a m q n−m (n ∈N ∗,n ≥2) ;3. 前n 项和公式:S n ={na 1 (q =1)a 1(1−q n )1−q=a 1−a n q 1−q(q ≠1).二、等比数列的性质(其中公比为q ):1. a n =a m q n−m ,q =√na mn−m(n ∈N ∗,m ∈N ∗) ; 2. 若p +q =m +n ,则有a p ⋅a q =a m ⋅a n ;若2m =p +q ,则有a m2=a p ⋅a q ; 3. 等距离取出若干项也构成一个等比数列,即a n ,a n+m ,a n+2m ,⋯⋯为等比数列,公比为q m .4. 若a ,G ,b 成等比数列,则称G 为a 、b 的等比中项,G 2=ab ,当且仅当两个数a 和b 同号 才存在等比中项.5. 若数列{a n },{b n }都是等比数列且项数相同,则c n =a n s b n t (st ≠0)仍为等比数列.三、等比数列的判断方法1.定义法:a 1≠0,a nan−1=q (常数)(n ∈N ∗,n ≥2) ⇔{a n }为等比数列.2. 等比中项法:a n 2=a n−1a n+1,(n ∈N ∗,n ≥2) ⇔{a n }为等比数列.3. 前n 项和法:数列{a n }的前n 项和S n =A −Aq n (A 是常数,A ≠0,q ≠0,q ≠1)⇔数列{a n }为等比数列;典例精讲【典例1】已知数列{a n }为等比数列,其中a 5,a 9为方程x 2+2016x +9=0的二根,则a 7的值( )A .﹣3B .3C .±3D .9【典例2】“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是100−200(910)n 万元,则n 的值为( )A .7B .8C .9D .10【典例3】各项为正数的等比数列{a n }中,a 2与a 10的等比中项为√33,则log 3a 4+log 3a 8= .【典例4】已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比为 .【典例5】已知正项等比数列{}n a ,向量3(a a =,8)-,7(b a =,2),若a b ⊥,则212229log log log (a a a ++⋯+= )A .12B .16C .18D .26log 5+【典例6】.在正项等比数列{}n a 中,374a a =,数列2{log }n a 的前9项之和为( ) A .11B .9C .15D .13【典例7】.已知n S 是等比数列{}n a 的前n 项和,且3S ,9S ,6S 成等差数列,256a a +=,则8a = .【典例8】.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a =,且4a 与72a 的等差中项为34,则5S = .综合练习一.选择题(共5小题)1.设正项等差数列{a n}的前n项和为S n,若S2019=6057,则1a2+4a2018的最小值为()A.1 B.23C.136D.322.设S n为等差数列{a n}的前n项和,已知a1=S3=3,则S4的值为()A.﹣3 B.0 C.3 D.63.在等差数列{a n}中,S n表示{a n}的前n项和,若a3+a6=3,则S8的值为()A.3 B.8 C.12 D.244.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m、a n,使得a m a n=16a12,则1m +9n的最小值为()A.32B.83C.114D.不存在5.已知等比数列{a n}的前n项积为T n,若a1=﹣24,a4=−89,则当T n取最大值时,n的值为()A.2 B.3 C.4 D.6二.填空题(共1小题)6.已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则b2a1+a2的值为.三.解答题(共2小题)7.已知{a n}为等差数列,且a1+a3=8,a2+a4=12.(1)求数列{a n}的通项公式;(2)记的{a n}前n项和为S n,若a1,a k,S k+2成等比数列,求正整数k的值.8.已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n log12a n,S n=b1+b2+b3+…+b n,对任意正整数n,S n+(n+m)a n+1<0恒成立,试求m的取值范围.。

高考数学复习热点07 数列与不等式(原卷版)

高考数学复习热点07  数列与不等式(原卷版)

热点07 数列与不等式【命题趋势】 在目前高考卷的考点中,数列主要以两小或一大为主的考查形式,在小题中主要以等差数列和等比数列为主,大题与三角函数,解三角形的内容交替考查,早在2014年和2015年卷中,以数列的通项与求和为主,而近3年的第17题(即解答题的第1题的位置),完全是考查解三角形.但是数列仍然作为解答题第一题的热点.由于三角函数与数列均属于解答题第一题,考查的内容相对比较简单,这一部分属于必得分,对于小题部分,一般分布为一题简单题一道中等难度题目,对于不等式一般以线性规划以及作为一个工具配合其他知识点出现.主要是以基本不等式作为切入点形式出现,题目难度中等本.专题针对高考中数列,不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式.请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结.【知识点分析以及满分技巧】等差数列如果记住基本的通项公式以及求和公式,所有的等差数列问题都可以解决.数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若是等差数列,是等比数列,求.{}n a {}n b 1122n n a b a b a b ++⋅⋅⋅(3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有,,()11111n n n n =-++()1111222n n n n ⎛⎫=- ⎪++⎝⎭等.()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和.(5)倒序相加法.对于基本不等式类的题目应注意等号成立地条件.【考查题型】选择,填空,解答题(数列)【限时检测】(建议用时:50分钟)1.(2021·全国高三专题练习(理))定义:在数列中,若满足({}n a 211n n n na a da a +++-=为常数),称为“等差比数列”,已知在“等差比数列”中,*,n N d ∈{}n a {}n a ,则等于( )1231,3a a a ===20202018a a A .4×20162-1B .4×20172-1C .4×20182-1D .4×201822.(2021·全国高三专题练习(理))已知数列满足,且,{}n a ()*111n na n N a +=-∈12a =则()2017a =A .B .C .D .21-12323.(2021·全国高三专题练习(理))已知数列中,,,则{}n a 11a =()11n n n a na ++=( )12a =A .11B .12C .13D .144.(2021·全国高三专题练习(理))已知数列满足:,{}n a 113a=,,则下列说法正确的是( )1(1)21n n n a na n ++-=+*n N ∈A .1n na a +≥B .1n na a +≤C .数列的最小项为和{}n a 3a 4a D .数列的最大项为和{}n a 3a 4a 5.(2021·全国高三专题练习(理))已知数列的前项和为,,且满足{}n a n n S 15a =,若,,,则的最小值为( )122527n na a n n +-=--p *q ∈N p q >p q S S -A .B .C .D .06-2-1-6.(2021·全国高三专题练习(理))已知等比数列的前n 项和为S n ,则下列命题一定{}n a 正确的是( )A .若S 2021>0,则a 3+a 1>0B .若S 2020>0,则a 3+a 1>0C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>07.(2021·全国高三其他模拟(理))等比数列中,且,,成等差数{}n a 11a =14a 22a 3a 列,则的最小值为( )()*na n N n ∈A .B .C .D .1162549128.(2021·全国高三专题练习(理))已知a ,b ∈R ,a 2+b 2=15-ab ,则ab 的最大值是( )A .15B .12C .5D .39.(2021·银川市·宁夏银川二十四中高三月考(理))函数的图像恒过定点,若点在直线上,()()log 310,1a y x a a =+->≠A A 10mx ny ++=其中,则的最小值为()0mn >12m n +A .B .C .D .7891010.(2021·全国高三专题练习(理))已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n11.(2021·全国高三其他模拟(理))已知数列满足,.设{}n a 112a =*11()2n n a a n N +=∈,,且数列是单调递增数列,则实数的取值范围是( )2n n n b a λ-=*n N ∈{}n b λA .B .C .D .(,1)-∞3(1,2-3(,)2-∞(1,2)-12.(2021·全国高三专题练习(理))已知f (x )=,则f (x )在上的最小值221x x x -+1,32⎡⎤⎢⎥⎣⎦为()A .B .1243C .-1D .013.(2021·福建高三其他模拟)已知,,,则的最小值为0x >0y >23x y +=23x yxy +()A .B .CD3-1+11+14.(2021·全国高三专题练习(理))已知a >0,b >0,若不等式恒成立,313m a b a b +≥+则m 的最大值为( )A .9B .12C .18D .2415.(2021·全国高三专题练习(理))若是面积为的内的一点(不含边界),若P 1ABC ∆和的面积分别为,则的最小值是( ),PAB PAC ∆∆PBC ∆,,x y z 1y z x y z +++A .B C .D313二、解答题16.(2020·威远中学校高三月考(理))已知数列是等差数列,前项和为,且{}n a n n S .53463,8S a a a =+=(1)求;n a (2)设,求数列的前项和.2nn n b a =⋅{}n b n n T 17.(2020·四川省绵阳南山中学高三月考(理))设公差不为零的等差数列的前项和{}n a n 为,已知,且,,成等比数列.n S 39S =2a 5a 14a (1)求数列的通项公式;{}n a (2)对任意的正整数,都有成立,求实数的取值范围.n 20nn m a ⋅->m18.(2020·胶州市教育体育局教学研究室高三期中)已知正项数列的前项和为{}n a n .2*111,1,,n n n n S a S S a n N ++=+=∈(1)求的通项公式;{}n a (2)若数列满足:,求数列{}n b 1122222...22n n n n a b a b a b a b +++++=-的前项和.221log n n a b +⎧⎫⎪⎪⎨⎬⋅⎪⎪⎩⎭n n T 19.(2020·黑龙江高三月考(理))已知数列的前项和为,.{}n a n n S 22n n S a =-(1)求数列的通项公式;{}n a (2)设,,记数列的前项和.若对,2log n n b a =11n n n c b b +={}n c n nT*n N ∈恒成立,求实数的取值范围.()4n T k n ≤+k 20.(2020·咸阳市高新一中高三月考(理))已知等差数列满足,.{}n a 22a=145a a +=(1)求数列的通项公式;{}n a (2)若数列满足:为等比数列,求数列的前n 项和.{}n b {}123,6,n n b b b a ==-{}n b nT。

高考数学复习考点题型专题讲解9 数列求和的常用方法

高考数学复习考点题型专题讲解9 数列求和的常用方法

高考数学复习考点题型专题讲解专题9 数列求和的常用方法高考定位 近几年高考,数列求和常出现在解答题第(2)问,主要考查通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档.1.(2021·新高考Ⅰ卷)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm×12 dm 的长方形纸,对折1次共可以得到10 dm×12 dm,20 dm×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm×12 dm ,10 dm×6 dm,20 dm×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么∑nk =1S k =________ dm 2. 答案 5 240⎝⎛⎭⎪⎫3-n +32n解析 依题意得,S 1=120×2=240(dm 2);S 2=60×3=180(dm 2);当n =3时,共可以得到5 dm×6 dm,52 dm×12 dm,10 dm×3 dm,20 dm×32 dm 四种规格的图形,且5×6=30,52×12=30,10×3=30,20×32=30,所以S 3=30×4=120(dm 2);当n =4时,共可以得到5 dm×3 dm,52 dm×6 dm,54 dm×12 dm,10 dm×32 cm ,20 dm×34dm 五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15,52×6=15,54×12=15,10×32=15,20×34=15,所以S 4=15×5=75(dm 2); ……所以可归纳S k =2402k ·(k +1)=240(k +1)2k(dm 2). 所以∑nk =1S k =240⎝⎛⎭⎪⎫1+322+423+…+n 2n -1+n +12n ,① 所以12×∑n k =1S k =240×⎝ ⎛⎭⎪⎫222+323+424+…+n 2n +n +12n +1,② 由①-②得,12·∑n k =1S k =240⎝ ⎛⎭⎪⎫1+122+123+124+…+12n -n +12n +1 =240⎝ ⎛⎭⎪⎪⎫1+122-12n×121-12-n +12n +1=240⎝ ⎛⎭⎪⎫32-n +32n +1,所以∑nk =1S k =240⎝⎛⎭⎪⎫3-n +32n dm 2. 2.(2021·新高考Ⅰ卷)已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.解 (1)因为b n =a 2n ,且a 1=1,a n +1=⎩⎨⎧a n +1,n 为奇数,a n +2,n 为偶数,所以b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5. 因为b n =a 2n ,所以b n +1=a 2n +2=a 2n +1+1=a 2n +1+1=a 2n +2+1=a 2n +3, 所以b n +1-b n =a 2n +3-a 2n =3,所以数列{b n }是以2为首项,3为公差的等差数列, 所以b n =2+3(n -1)=3n -1,n ∈N *. (2)因为a n +1=⎩⎨⎧a n +1,n 为奇数,a n +2,n 为偶数,所以k ∈N *时,a 2k =a 2k -1+1=a 2k -1+1, 即a 2k =a 2k -1+1,①a 2k +1=a 2k +2,② a 2k +2=a 2k +1+1=a 2k +1+1, 即a 2k +2=a 2k +1+1,③所以①+②得a 2k +1=a 2k -1+3,即a 2k +1-a 2k -1=3,所以数列{a n }的奇数项是以1为首项,3为公差的等差数列; ②+③得a 2k +2=a 2k +3,即a 2k +2-a 2k =3,又a 2=2,所以数列{a n }的偶数项是以2为首项,3为公差的等差数列.所以数列{a n }的前20项和S 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)=10+10×92×3+20+10×92×3=300. 3.(2022·新高考Ⅰ卷)记S n 为数列{a n }的前n 项和,已知a 1=1,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n a n 是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n<2.(1)解 法一 因为a 1=1,所以S 1a 1=1,又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n a n 是公差为13的等差数列,所以S n a n =1+(n -1)×13=n +23.因为当n ≥2时,a n =S n -S n -1, 所以S n S n -S n -1=n +23(n ≥2),所以S n -S n -1S n =3n +2(n ≥2),整理得S n S n -1=n +2n -1(n ≥2), 所以S 2S 1·S 3S 2·…·S n -1S n -2·S n S n -1=41×52×…·n +1n -2·n +2n -1=n (n +1)(n +2)6(n ≥2),所以S n =n (n +1)(n +2)6(n ≥2),又S 1=1也满足上式, 所以S n =n (n +1)(n +2)6(n ∈N *),则S n -1=(n -1)n (n +1)6(n ≥2),所以a n =n (n +1)(n +2)6-(n -1)n (n +1)6=n (n +1)2(n ≥2),又a 1=1也满足上式, 所以a n =n (n +1)2(n ∈N *).法二 因为a 1=1,所以S 1a 1=1,又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n a n 是公差为13的等差数列,所以S n a n =1+(n -1)×13=n +23,所以S n =n +23a n .因为当n ≥2时,a n =S n -S n -1=n +23a n -n +13a n -1,所以n +13a n -1=n -13a n (n ≥2),所以a n a n -1=n +1n -1(n ≥2),所以a 2a 1·a 3a 2·…·a n -1a n -2·a n a n -1=31×42×53×…·n n -2·n +1n -1=n (n +1)2(n ≥2), 所以a n =n (n +1)2(n ≥2),又a 1=1也满足上式, 所以a n =n (n +1)2(n ∈N *).(2)证明 因为a n =n (n +1)2,所以1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以1a 1+1a 2+…+1a n =2[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1n +1]=2⎝⎛⎭⎪⎫1-1n +1<2.热点一 分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.例1(2022·济宁一模)已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 7=49. (1)求数列{a n }的通项公式;(2)设b n =⎩⎨⎧a n ,n ≤10,2b n -10,n >10,求数列{b n }的前100项和.解 (1)设等差数列{a n }的公差为d , 则⎩⎨⎧a 1+4d =9,7a 1+21d =49,解得⎩⎨⎧a 1=1,d =2, 所以a n =1+2(n -1)=2n -1(n ∈N *). (2)因为b n =⎩⎨⎧a n ,n ≤10,2b n -10,n >10,所以数列{b n }的前100项和为(b 1+b 2+…+b 10)+(b 11+b 12+…+b 20)+(b 21+b 22+…+b 30)+…+(b 91+b 92+…+b 100)=(a 1+a 2+…+a 10)+2(a 1+a 2+…+a 10)+22(a 1+a 2+…+a 10)+…+29(a 1+a 2+…+a 10)=(1+2+22+…+29)(a 1+a 2+…+a 10)=1-2101-2×10×(1+19)2 =102 300.规律方法 分组求和的基本思路是把各项中结构相同的部分归为同一组,然后再求和. 训练1 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n (n ∈N *). (2)由(1)知a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2(n ∈N *). 热点二 裂项相消法求和裂项常见形式:(1)分母两项的差等于常数 1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; 1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k . (2)分母两项的差与分子存在一定关系 2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=14⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. (3)分母含无理式1n +n +1=n +1-n .例2 已知数列{a n }满足a 1+2a 2+3a 3+…+na n =(n -1)2n +1+2. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1log 2a n log 2a n +2的前n 项和T n .解 (1)由题意可知a 1+2a 2+3a 3+…+na n =(n -1)2n +1+2,① 当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)2n +2,② ①-②得na n =(n -1)2n +1-(n -2)2n , 即a n =2n ,当n =1时,a 1=2满足上式, 所以a n =2n (n ∈N *).(2)因为log 2a n =log 2 2n =n ,所以1log 2a n ·log 2a n +2=1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.所以T n=12⎝⎛1-13+12-14+13-15+…+⎭⎪⎫1n-1-1n+1+1n-1n+2=12⎝⎛⎭⎪⎫1+12-1n+1-1n+2=34-2n+32(n+1)(n+2).规律方法裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项抵消.训练2(2022·武汉模拟)已知正项等差数列{a n}满足:a3n=3a n(n∈N*),且2a1,a3+1,a8成等比数列.(1)求{a n}的通项公式;(2)设c n=2a n+1(1+2a n)(1+2a n+1),求数列{c n}的前n项和R n.解(1)设等差数列{a n}的公差为d,由a3n=3a n得a1+(3n-1)d=3[a1+(n-1)d].则a1=d,所以a n=a1+(n-1)d=nd.又2a1,a3+1,a8成等比数列,所以(a3+1)2=2a1·a8,即(3d+1)2=2d·8d.所以7d2-6d-1=0,解得d=1或d=-17,因为{a n}为正项数列,所以d>0,所以d=1,所以a n =n (n ∈N *).(2)由(1)可得c n =2a n +1(1+2a n )(1+2a n +1)=2n +1(1+2n )(1+2n +1)=2⎝ ⎛⎭⎪⎫11+2n -11+2n +1, 所以R n =2⎣⎢⎡⎝ ⎛⎭⎪⎫11+21-11+22+⎦⎥⎤⎝ ⎛⎭⎪⎫11+22-11+23+…+⎝ ⎛⎭⎪⎫11+2n -11+2n +1 =2⎝ ⎛⎭⎪⎫13-11+2n +1. 热点三 错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.例3(2022·广州调研)从①S n ,2S n +1,3S n +2成等差数列,且S 2=49;②a 2n +1=13a n (2a n -5a n+1),且a n >0;③2S n +a n -t =0(t 为常数)这三个条件中任选一个补充在横线处,并给出解答.已知数列{a n }的前n 项和为S n ,a 1=13,________,其中n ∈N *.(1)求{a n }的通项公式;(2)记b n =log 13a n +1,求数列{a n ·b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分. 解 (1)若选条件①.因为S n ,2S n +1,3S n +2成等差数列,所以4S n +1=S n +3S n +2, 即S n +1-S n =3(S n +2-S n +1), 所以a n +1=3a n +2, 又S 2=49,a 1=13,所以a 2=S 2-a 1=19,即a 2=13a 1,所以a n +1=13a n ,即a n +1a n =13,又a 1=13,所以数列{a n }是首项为13,公比为13的等比数列,所以a n =13n (n ∈N *).若选条件②.由a 2n +1=13a n (2a n -5a n +1), 得3a 2n +1=a n (2a n -5a n +1),即3a 2n +1+5a n +1a n -2a 2n =0,所以(a n +1+2a n )(3a n +1-a n )=0, 因为a n >0,所以3a n +1-a n =0,即a n +1a n =13,又a 1=13, 所以数列{a n }是首项为13,公比为13的等比数列,所以a n =13n (n ∈N *).若选条件③.因为2S n +a n -t =0,所以n ≥2时,2S n -1+a n -1-t =0, 两式相减并整理, 得a n =13a n -1(n ≥2),即a n a n -1=13(n ≥2),又a 1=13, 所以数列{a n }是首项为13,公比为13的等比数列,所以a n =13n (n ∈N *).(2)由(1)知,a n +1=13n +1, 所以b n =log 13a n +1=log 1313n +1=n +1,所以a n ·b n =(n +1)×13n =n +13n ,所以T n =23+332+433+…+n +13n ,所以13T n =232+333+434+…+n +13n +1,两式相减,得23T n =23+⎝ ⎛⎭⎪⎫132+133+…+13n -n +13n +1=23+132⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n -11-13-n +13n +1=23+13×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n -1-n +13n +1=56-12×13n -n +13n +1, 所以T n =⎝ ⎛⎭⎪⎫56-12×13n -n +13n +1×32=54-2n +54×3n .易错提醒 一要先“错项”再“相减”;二要注意最后一项的符号.训练3(2022·潍坊模拟)已知等比数列{a n}的前n项和为S n,且a1=2,S3=a3+6.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求数列{a n b n}的前n项和T n.解(1)设数列{a n}的公比为q,由a1=2,S3=a3+6,得a1(1+q+q2)=6+a1q2,解得q=2,所以a n=2n(n∈N*).(2)由(1)可得b n=log2a n=n,所以a n b n=n·2n,Tn=1×2+2×22+3×23+…+n×2n,2T n=1×22+2×23+…+(n-1)2n+n·2n+1,所以-T n=2+22+…+2n-n·2n+1=2(1-2n)1-2-n·2n+1=2n+1-2-n·2n+1,所以T n=(n-1)2n+1+2.一、基本技能练1.已知数列{a n}满足a n+1-a n=2(n∈N*),a1=-5,则|a1|+|a2|+…+|a6|=( )A.9B.15C.18D.30答案 C解析∵a n+1-a n=2,a1=-5,∴数列{a n}是公差为2的等差数列,∴a n=-5+2(n-1)=2n-7,数列{a n}的前n项和S n=n(-5+2n-7)2=n2-6n(n∈N*).令a n=2n-7≥0,解得n≥7 2,∴n≤3时,|a n|=-a n;n≥4时,|an|=a n.则|a1|+|a2|+…+|a6|=-a1-a2-a3+a4+a5+a6=S6-2S3=62-6×6-2×(32-6×3)=18.2.(2022·深圳模拟)在数列{a n}中,a1=3,a m+n=a m+a n(m,n∈N*),若a1+a2+a3+…+ak=135,则k等于( )A.10B.9C.8D.7答案 B解析令m=1,由a m+n=a m+a n可得a n+1=a1+a n,所以a n+1-a n=3,所以{a n}是首项为a1=3,公差为3的等差数列,an=3+3(n-1)=3n,所以a1+a2+a3+…+a k=k(a1+a k)2=k(3+3k)2=135,整理可得k2+k-90=0,解得k=9或k=-10(舍去).3.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830 答案 D解析 因为a n +1+(-1)n a n =2n -1,故有a 2-a 1=1,a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 50-a 49=97.从而可得a 3+a 1=2,a 4+a 2=8,a 5+a 7=2,a 8+a 6=24,a 9+a 11=2,a 12+a 10=40,a 13+a 15=2,a 16+a 14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列. 所以{a n }的前60项和为15×2+⎝ ⎛⎭⎪⎫15×8+15×142×16=1 830. 4.在等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}(n ∈N *)的前2 023项和为( ) A.1 011 B.1 010 C.-2 023 D.-2 022 答案 C解析 由题意得a 3+a 5=2a 4=a 4+7,解得a 4=7, 所以公差d =a 10-a 410-4=19-76=2,则a 1=a 4-3d =7-3×2=1, 所以a n =2n -1,设b n=a n cos nπ,则b1+b2=a1cos π+a2cos 2π=-a1+a2=2,b3+b4=a3cos 3π+a4cos 4π=-a3+a4=2,……,∴数列{a n cos nπ}(n∈N*)的前2 023项和S2 023=(b1+b2)+(b3+b4)+…+(b2 021+b2 022)+b2 023=2×1 011-4 045=-2 023.5.已知函数f(x)=x a的图象过点(4,2),令a n=1f(n+1)+f(n)(n∈N*),记数列{a n}的前n项和为S n,则S2 023等于( ) A. 2 023+1 B. 2 024-1C. 2 023-1D. 2 024+1答案 B解析函数f(x)=x a的图象过点(4,2),则4a=2,解得a=12,则f(x)=x,a n =1f(n+1)+f(n)=1n+1+n=n+1-n,则S2 023=(2-1)+(3-2)+…+( 2 023- 2 022)+( 2 024- 2 023)=2 024-1.6.(多选)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是( )A.a5=1B.S n最小时n=3C.S1=S6D.S n存在最大值答案AC解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A ,a 5=-3+4×1=1,故A 正确. 对于选项B ,a n =-3+n -1=n -4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0, 所以S n 的最小值为S 3或S 4,故B 错误. 对于选项C ,S 6-S 1=a 2+a 3+a 4+a 5+a 6=5a 4, 又因为a 4=0,所以S 6-S 1=0,即S 1=S 6,故C 正确. 对于选项D ,因为S n =-3n +n (n -1)2=n 2-7n2,所以S n 无最大值,故D 错误.7.(2022·无锡模拟)12+12+4+12+4+6+12+4+6+8+…+12+4+6+…+2 022=________. 答案1 0111 012解析 根据等差数列的前n 项和公式, 可得2+4+6+…+2n =n (2+2n )2=n (n +1),因为1n (n +1)=1n -1n +1,所以12+12+4+12+4+6+12+4+6+8+…+12+4+6+…+2 022=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫11 011-11 012=1-11 012=1 0111 012.8.(2022·嘉兴测试)数列{a n }满足a 1+2a 2+3a 3+…+na n =2n,则a 1a 24+a 2a 342+…+a 9a 1049的值为________. 答案710解析 对于a 1+2a 2+3a 3+…+na n =2n ,当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=2n -1, 两式相减得na n =2n -1,则a n =2n -1n,n ≥2,又a 1=21=2不符合上式,则a n=⎩⎨⎧2,n =1,2n -1n ,n ≥2,当k ≥2时,a k a k +14k=2k -1·2k (k +1)k ·22k =12·1k (k +1)=12·⎝⎛⎭⎪⎫1k -1k +1, ∴a 1a 24+a 2a 342+…+a 9a 1049=14a 1a 2+12×⎝ ⎛⎭⎪⎫12-13+12×⎝ ⎛⎭⎪⎫13-14+…+12×⎝ ⎛⎭⎪⎫19-110 =14×2×22-12+12×⎝ ⎛⎭⎪⎫12-110=710. 9.设各项均为正数的等差数列{a n }首项为1,前n 项的和为S n ,且S n =(a n +1)24(n ∈N *),设b n =2n ·a n ,则数列{b n }的前n 项和T n =________. 答案 (2n -3)2n +1+6(n ∈N *) 解析 由题意4S n =(a n +1)2,① 4S n +1=(a n +1+1)2,②两式相减得4a n +1=(a n +1+1)2-(a n +1)2, 即(a n +1-a n -2)(a n +1+a n )=0,∵a n>0,∴a n+1+a n≠0,a n+1-a n=2,∴{a n}是公差为2的等差数列,∵a1=1,∴a n=a1+(n-1)d=2n-1,b n=2n a n=(2n-1)2n.由错位相减法可求得T n=(2n-3)2n+1+6(n∈N*).10.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{a n}满足:a1=a2=1,a n+2=a n+a n(n∈N*),则1+a3+a5+a7+a9+…+a2 023是斐波那契数列{a n}中的第________项. +1答案 2 024解析依题意,得1+a3+a5+a7+a9+…+a2 023=a2+a3+a5+a7+a9+…+a2 023=a4+a5+a7+a9+…+a2 023=a6+a7+a9+…+a2 023=…=a2 022+a2 023=a2 024.11.已知等差数列{a n}的前n项和为S n,且S4=S5=-20.(1)求数列{a n}的通项公式;(2)已知数列{b n}是以4为首项,4为公比的等比数列,若数列{a n}与{b n}的公共项为a m,记m由小到大构成数列{c n},求{c n}的前n项和T n.解(1)设等差数列{a n}的公差为d,由S4=S5=-20,得4a1+6d=5a1+10d=-20,解得a1=-8,d=2,则a n =-8+2(n -1)=2n -10(n ∈N *).(2)数列{b n }是以4为首项,4为公比的等比数列, ∴b n =4·4n -1=4n (n ∈N *). 又依题意2m -10=4n , ∴m =10+4n2=5+22n -1,则T n =5n +2(1-4n )1-4=5n +22n +1-23.12.已知各项均为正数的等差数列{a n }满足a 1=1,a 2n +1=a 2n +2(a n +1+a n ).(1)求{a n }的通项公式;(2)记b n =1a n +a n +1,求数列{b n }的前n 项和S n .解 (1)各项均为正数的等差数列{a n }满足a 1=1,a 2n +1=a 2n +2(a n +1+a n ),整理得(a n +1+a n )(a n +1-a n ) =2(a n +1+a n ), 由于a n +1+a n ≠0, 所以a n +1-a n =2,故数列{a n }是以1为首项,2为公差的等差数列. 所以a n =2n -1. (2)由(1)可得b n =1a n +a n +1=12n -1+2n +1=2n +1-2n -12,所以S n =12×(3-1+5-3+…+2n +1-2n -1)=12(2n +1-1).二、创新拓展练13.(多选)(2022·扬州调研)已知数列{a n }的前n 项和为S n ,则下列说法正确的是( )A.若S n =n 2-1,则{a n }是等差数列 B.若S n =2n -1,则{a n }是等比数列 C.若{a n }是等差数列,则S 99=99a 50D.若{a n }是等比数列,且a 1>0,q >0,则S 2n -1·S 2n +1>S 22n 答案 BC解析 对于A ,若S n =n 2-1,则有a 1=S 1=0,a 2=S 2-S 1=22-12=3,a 3=S 3-S 2=32-22=5,2a 2≠a 1+a 3,此时数列{a n }不是等差数列,故A 错误;对于B ,若S n =2n -1,则当n =1时,有a 1=S 1=1,当n ≥2时,有a n =S n -S n -1=2n -2n-1=2n -1,故a n =2n -1,a n +1a n=2,此时数列{a n }是等比数列,故B 正确; 对于C ,由等差数列的性质可得S 99=99(a 1+a 99)2=99a 50,故C 正确;对于D ,因为当a 1>0,q =1时,有a n =a 1,S 2n -1·S 2n +1=(2n -1)(2n +1)a 21=(4n 2-1)a 21,S 22n =(2na 1)2=4n 2a 21,此时S 2n -1·S 2n +1<S 22n ,故D 错误.综上,故选BC.14.已知数列{a n }满足a 1+2a 2+4a 3+…+2n -1a n =n2,将数列{a n }按如下方式排列成新数列:a 1,a 2,a 2,a 2,a 3,a 3,a 3,a 3,a 3,…,,…,则新数列的前70项和为________. 答案4716解析 由a 1+2a 2+4a 3+…+2n -1a n =n2,①得a 1+2a 2+4a 3+…+2n -2a n -1=n -12(n ≥2),②①-②得2n -1a n =12,即a n =12n (n ≥2),又a 1=12,即a n =12n ,由1+3+5+…+(2n -1)=n 2=64, 得n =8.令S =12+322+523+ (1528)则12S =122+323+…+1328+1529, 两式相减得12S =12+2×122+2×123+…+2×128-1529=12+12⎝⎛⎭⎪⎫1-1271-12-1529,∴S =749256,所以新数列的前70项和为749256+629=4716. 15.函数y =[x ]称为高斯函数,[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.已知数列{a n }满足a 3=3,且a n =n (a n +1-a n ),若b n =[lg a n ],则数列{b n }的前2 023项和为________. 答案 4 962解析 因为a n =n (a n +1-a n ), 所以(1+n )a n =na n +1, 即a n +1n +1=a nn, 所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 为常数数列,所以ann=a33=1,所以a n=n,记{b n}的前n项和为T n,当1≤n≤9时,0≤lg a n<1,b n=0;当10≤n≤99时,1≤lg a n<2,b n=1;当100≤n≤999时,2≤lg a n<3,b n=2;当1 000≤n≤2 023时,3≤lg a n<4,b n=3;所以T2 023=[lg a1]+[lg a2]+…+[lg a2 023]=9×0+90×1+900×2+1 024×3=4 962.16.对于任意一个有穷数列,可以通过在该数列的每相邻两项之间插入这两项的和,构造一个新的数列.现对数列1,5进行构造,第1次得到数列1,6,5,第2次得到数列1,7,6,11,5,依次类推,第n次得到数列1,x1,x2,x3,…,5.记第n次得到的数列的各项之和为S n,则{S n}的通项公式S n=________.答案3+3n+1解析由题意可知,第n次得到数列1,x1,x2,x3, (5)第1次得到数列1,6,5,第2次得到数列1,7,6,11,5,第3次得到数列1,8,7,13,6,17,11,16,5,第4次得到数列1,9,8,15,7,20,13,19,6,23,17,28,11,27,16,21,5. ……第n次得到数列1,x1,x2,x3, (5)所以S1=6+6=6+2×31,S 2=6+6+18=6+2×31+2×32,S 3=6+6+18+54=6+2×31+2×32+2×33,S 4=6+6+18+54+162=6+2×31+2×32+2×33+2×34, ……,即S n =6+2(31+32+…+3n ) =6+2×3(1-3n )1-3=3+3n +1.17.(2022·泰州模拟)在①S n =2a n +1-3,a 2=94,②2S n +1-3S n =3,a 2=94,③点(a n ,S n )(n ∈N *)在直线3x -y -3=0上这三个条件中任选一个,补充到下面的问题中,并解答. 已知数列{a n }的前n 项和为S n ,________. (1)求{a n }的通项公式;(2)若b n =na n,求{b n }的前n 项和T n . 解 (1)方案一 选条件①. ∵S n =2a n +1-3,∴当n ≥2时,S n -1=2a n -3, 两式相减,整理得a n +1=32a n (n ≥2).∵a 2=94,∴a 1=S 1=2a 2-3=32,a 2=32a 1,∴a n +1a n =32(n ∈N *),∴数列{a n }是以32为首项,32为公比的等比数列,∴a n =32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n(n ∈N *). 方案二 选条件②. ∵2S n +1-3S n =3,∴当n ≥2时,2S n -3S n -1=3, 两式相减,整理得a n +1=32a n (n ≥2).∵2(a 1+a 2)-3a 1=3,a 2=94,∴a 1=32,a 2=32a 1,∴a n +1a n =32(n ∈N *), ∴数列{a n }是以32为首项,32为公比的等比数列,∴a n =32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n(n ∈N *). 方案三 选条件③.∵点(a n ,S n )(n ∈N *)在直线3x -y -3=0上, ∴S n =3a n -3,∴S n +1=3a n +1-3, 两式相减,整理得a n +1=32a n ,当n =1时,a 1=3a 1-3,得a 1=32,∴数列{a n }是以32为首项,32为公比的等比数列,∴a n =32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n(n ∈N *). (2)由(1)可得b n =n ·⎝ ⎛⎭⎪⎫23n,则T n =1·⎝ ⎛⎭⎪⎫231+2·⎝ ⎛⎭⎪⎫232+…+n ·⎝ ⎛⎭⎪⎫23n,∴23T n =1·⎝ ⎛⎭⎪⎫232+2·⎝ ⎛⎭⎪⎫233+…+n ·⎝ ⎛⎭⎪⎫23n +1,两式相减得13T n =23+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫233+…+⎝ ⎛⎭⎪⎫23n -n ·⎝ ⎛⎭⎪⎫23n +1=23×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n1-23-n ·⎝ ⎛⎭⎪⎫23n +1=2-2n +63×⎝ ⎛⎭⎪⎫23n,∴T n =6-(2n +6)×⎝ ⎛⎭⎪⎫23n.。

贵州高考数学知识点

贵州高考数学知识点

贵州高考数学知识点贵州高考数学知识点解析贵州高考数学作为高中数学的重要组成部分,对于考生而言是必须要掌握的知识点之一。

为了帮助考生更好地复习和应对高考数学,本文将依次介绍贵州高考数学的几个重要知识点,包括函数与图像、数列与数表、平面向量等,旨在帮助考生全面了解并掌握这些知识。

函数与图像是数学的基础部分,贵州高考数学中也占有重要地位。

函数的概念是指一种关系,即自变量和因变量之间的关系。

函数可以用公式、图像或者图表来表示。

在函数与图像的考题中,通常需要考生进行函数求导、函数图像的分析等。

这些问题旨在考察考生对函数的理解和运用能力。

数列与数表是贵州高考数学中另一个重要的考点。

数列是一种按照一定规律排列的数的序列,数列中的每一个数称为项。

常见的数列有等差数列和等比数列等。

在解题过程中,需要考生根据题目要求,找出数列的通项公式、确定数列的等差或等比关系等。

通过熟练掌握数列与数表的知识,考生可以快速解决数列题目。

平面向量也是贵州高考数学中常见的知识点。

在平面向量的学习中,考生需要了解平面向量的定义、加减乘除等运算规则,并且需要学会将问题抽象为向量的形式进行求解。

平面向量的学习不仅能够帮助考生解答相关题目,还能培养考生的逻辑思维和解决实际问题的能力。

在解题过程中,考生还需要注意提高自己的思维能力和逻辑推理能力。

贵州高考数学对考生的思维能力要求较高,需要考生能够灵活运用已经学习的知识,通过推理和分析解决问题。

考生在复习过程中可以多做一些思维导图、总结归纳,以加深对知识点的理解和记忆。

此外,贵州高考数学中还有几何与证明、概率与统计等知识点也是考生必须要掌握的内容。

几何与证明主要考察考生对几何形状的理解和推理能力,而概率与统计则要求考生具备概率计算和统计分析的能力,在这些知识点上的练习也是考生复习的重点之一。

总之,贵州高考数学的知识点涵盖了函数与图像、数列与数表、平面向量等多个方面。

通过对这些知识点的深入学习和掌握,考生可以全面提升自己的数学能力,并且在高考数学中取得好成绩。

2021年高考数学考点30等比数列及其前n项和必刷题理含解析

2021年高考数学考点30等比数列及其前n项和必刷题理含解析

考点30 等比数列及其前n项和1.已知数列的前项和为,满足,则的通项公式()A. B. C. D.【答案】B【解析】当时,,当时,,因此,选B.2.已知数列为正数项的等比数列,是它的前项和,若,且,则()A. 34 B. 32 C. 30 D. 28【答案】C3.已知各项均不相等的等比数列成等差数列,设为数列的前n项和,则等于A. B. C. 3 D. 1【答案】A【解析】设等比数列{a n}的公比为q,∵3a2,2a3,a4成等差数列,∴2×2a3=3a2+a4,∴4a2q=3,化为q2﹣4q+3=0,解得q=1或3.q=1时,,q=2时,.故选:A.4.已知数列的前项和,则数列的前项和为()A. B. C. D.【答案】C5.已知等比数列的前项和,且,,则A. B. C. D.【答案】C【解析】由题得.故答案为:C6.已知等比数列中,,,为方程的两根,则()A. 32 B. 64 C. 256 D.【答案】B7.等比数列中,公比,记(即表示数列的前项之积),中值为正数的个数是A. B. C. D.【答案】B【解析】等比数列{a n}中a1>0,公比q<0,故奇数项为正数,偶数项为负数.∴Π11<0,Π10<0,Π9>0,Π8>0.故答案为:B8.已知等比数列的前n项和为,若,且,,成等差数列,则A. 10 B. 12 C. 18 D. 30【答案】A【解析】在等比数列中,由,得,即,又,,成等差数列,,即,联立得:舍或..则.故选:A.9.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是( )A. 29 B. 30 C. 31 D. 32【答案】C10.已知各项均为正数的等比数列的前项和为,且满足成等差数列,则 ( ) A. 3 B. 9 C. 10 D. 13【答案】C【解析】设各项均为正数的等比数列的公比为,满足成等差数列,,,解得,则,故选C.11.已知数列的前n项和为,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前n项和为,,点在直线上,若存在,使不等式成立,求实数m的最大值.【答案】(Ⅰ)(Ⅱ)4③-④得,∴.∵.∴为递增数列,且,∴.∴,实数m的最大值为4.12.数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足:,求数列{b n}的通项公式;(3)令(n∈N*),求数列{c n}的前n项和T n.【答案】(1);(2);(3) .(3)c n===n•3n+n,令数列{n•3n}的前n项和为A n,则A n=3+2×32+3×33+…+n•3n,∴3A n=32+2×33+…+(n﹣1)•3n+n•3n+1,∴﹣2A n=3+32+…+3n﹣n•3n+1=﹣n•3n+1,可得A n=.∴数列{c n}的前n项和T n=+.13.已知数列中,且.(Ⅰ)求,,并证明是等比数列;(Ⅱ)设,求数列的前项和.【答案】(1)见解析;(2),②①-②得所以,.14.已知α为锐角,且,函数,数列的首项,.(1)求函数的表达式;(2)求证:数列为等比数列;(3)求数列的前n项和.【答案】(1);(2) 见解析;(3).∴15.已知数列的前项和,.(1)求;(2)若,且数列的前项和为,求.【答案】(1);(2).16.在等差数列{a n}中,,其前n项和为,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,.(Ⅰ)求a n与b n;(Ⅱ)求的取值范围.【答案】(Ⅰ);(Ⅱ)。

【高考复习】2021年高考数学知识点总结:数列

【高考复习】2021年高考数学知识点总结:数列

【高考复习】2021年高考数学知识点总结:数列一、排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1・n2・n3・…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)2. 排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)­…(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题) 间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+­…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。

贵州省遵义航天高级中学2021年高考数学数列多选题之知识梳理与训练含答案

贵州省遵义航天高级中学2021年高考数学数列多选题之知识梳理与训练含答案

贵州省遵义航天高级中学2021年高考数学数列多选题之知识梳理与训练含答案一、数列多选题1.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2C .0D .2【答案】AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.2.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦【答案】BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12为首项,12为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=+, 令1nn n F b-=⎝⎭,则11n n b ++, 所以1n n b b +=-,所以n b ⎧⎪⎨⎪⎪⎩⎭以510-所以1n n b -+, 所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.3.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.4.已知数列{}n a ,{}n b 满足1n n n a a +-=,21n n n b a nb ⋅+=,且11a =,n S 是数列{}n b 的前n 项和,则下列结论正确的有( )A .m +∃∈N ,55m m a a a +=+B .n +∀∈N ,33314n a n +≥ C .m +∃∈N ,16m b = D .n +∀∈N ,113n S ≤<【答案】BD 【分析】用累加法得到222n n n a -+=,代入21n n n b a nb ⋅+=,得11212n b n n ⎛⎫=- ⎪++⎝⎭, 代入5m a +5m a a =+求出m 可判断A ;代入33n a n+求最值可判断B ; 令1121612m b m m ⎛⎫=-= ⎪++⎝⎭解出m 可判断C ;裂项相消后可求出n S 的范围可判断D.【详解】因为1n n n a a +-=,所以211a a -= 322a a -=11(2)n n n a a n -=-≥-以上各式累加得1121(1)2n a a nn n =+++-=--,所以(1)12n n n a -=+,当1n =时,11a =成立, 所以2(1)2122n n n n a n --+=+=,由21n n n b a nb ⋅+=,得112112(1)1222(1)(2)12n n b a n n n n n n n n ⎛⎫====- ⎪+++++⎝-+⎭+,对于A ,()()5254922122m a m m m m ++++++==,25(1)5(51)2411222m a a m m m m -⨯--+=+++=+ , 当55m m a a a +=+时,222492222m m m m -+++=,得15m +=∉N ,A 错误; 对于B,(1)1(13333343411)22222n n n n a n n n n n ++==+=+-≥--+, 当且仅当268n =取等号,因为n +∀∈N ,所以8n =时,8333184a +=, 所以B 正确;对于C ,令1121612m b m m ⎛⎫=-=⎪++⎝⎭得,215308m m ++=,解得m +=N ,所以C 错误;对于D , n +∀∈N ,1231111112233412n S b b b n n ⎛⎫=+++=-+-++- ⎪++⎝⎭112211222n n ⎛⎫=-=-< ⎪++⎝⎭,可以看出n S 是关于n 递增的,所以1n =时有最小值13, 所以113n S ≤<,D 正确. 故选:BD. 【点睛】本题考查了由递推数列求通项公式、裂项相消求数列和,关键点是用累加法求出n a ,然后代入求出n b ,考查了学生的推理能力、计算能力.5.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=- C .1n n a a +> D .当400t =时,33800a >【答案】BC 【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-, 第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t ta a a t a a t t --+-=--=-=-+-=-,因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确; 当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC 【点睛】解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.6.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列 【答案】AB 【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.7.记数列{}n a 的前n 项和为n S ,*n ∈N ,下列四个命题中不正确的有( ) A .若0q ≠,且对于*212,n n n n a a a ++∀∈=N ,则数列{}n a 为等比数列B .若nn S Aq B =+(非零常数q ,A ,B 满足1q ≠,0A B +=),则数列{}n a 为等比数列C .若数列{}n a 为等比数列,则232,,,n n n n n S S S S S --仍为等比数列D .设数列{}n a 是等比数列,若123a a a <<,则{}n a 为递增数列 【答案】AC 【分析】若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,可判断A ;利用n a 与n S 的关系,可求得数列{}n a 的通项公式,可判断B ;若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,可判断C ;设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,分类讨论10a >与10a <两种情况,可判断D ; 【详解】对于A ,若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,故A 错误;对于B ,当2n ≥时,()111(1)nn n n n n a S S Aq B AqB Aq q ---=-=+-+=-且1q ≠;当1n =时,0A B +=,则()111a S Aq B A q ==+=-符合上式,故数列{}n a 是首项为()1A q -公比为q 的等比数列,故B 正确;对于C ,若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,不为等比数列,故C 错误;对于D ,设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,若10a >,可得21q q <<,即1q >,则{}n a 为递增数列;若10a <,可得21q q >>,即01q <<,则{}n a 为递增数列;故D 正确;故选:AC 【点睛】结论点睛:本题考查等比数列通项公式及和的性质,等比数列和的性质:公比为1q ≠-的等比数列{}n a 的前n 项和为n S ,则232,,,n n n n n S S S S S --仍成等比数列,其公比为n q ;同理等差数列和的性质:公差为d 的等差数列{}n a 的前n 项和为n S ,数列232,,,m m m m m S S S S S --构成等差数列,公差为md ,考查学生的分析能力,属于中档题.8.已知数列{}n a ,下列结论正确的有( ) A .若12a =,11n n a a n +++=,则20211a =.B .若11132n n a a a ++=,=,则71457a =C .若12nn S =3+,则数列{}n a 是等比数列 D .若11212n n n a a a a ++=,=()*n N ∈,则15215a = 【答案】AB 【分析】直接利用叠加法可判断选项A ,从而判断,利用构造新数列可求出B,D 中数列的通项公式,可判断,选项C 求出数列的前3项从而可判断. 【详解】选项A. 由11n n a a n +=++,即11n n a a n +-=+ 则()()()()19191818120207121a a a a a a a a a a =-+-+-++-+20191822211=+++++=故A 正确.选项B. 由132n n a a +=+,得()1311n n a a +=++,所以数列{}1n a +是以112a +=为首项,3为公比的等比数列.则1123n n a -+=⨯,即1231n n a -=⨯-,所以672311457a =⨯-=,故B 正确.选项C. 由12nn S =3+,可得当1n =时,11722a =+=3 当2n =时,得2211193622a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 当3n =时,得332112791822a S S ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭, 显然2213a a a ≠,所以数列{}n a 不是等比数列,故C 错误. 选项D. 由122nn n a a a +=+,可得11112n n a a +-= 所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,12为公差的等差数列. 所以()1111122n n n a +=+-=,则1511826a ==,即1518a =,故D 错误. 故选:AB 【点睛】关键点睛:本题考查利用递推关系求数列的通项公式,解答的关键是掌握求数列通项公式的常见方法,由叠加法可得()()()()19191818120207121a a a a a a a a a a =-+-+-++-+,利用构造新数列()1311n n a a +=++,11112n n a a +-=解决问题,属于中档题.9.(多选)设数列{}n a 是等差数列,公差为d ,n S 是其前n 项和,10a >且69S S =,则( ) A .0d > B .80a =C .7S 或8S 为n S 的最大值D .56S S >【答案】BC【分析】根据69S S =得到80a =,再根据10a >得到0d <,可得数列{}n a 是单调递减的等差数列,所以7S 或8S 为n S 的最大值,根据6560S S a -=>得65S S >,故BC 正确. 【详解】由69S S =得,960S S -=, 即7890a a a ++=,又7982a a a +=,830a ∴=,80a ∴=,∴B 正确;由8170a a d =+=,得17a d =-,又10a >,0d ∴<, ∴数列{}n a 是单调递减的等差数列,()()0,70,9n n a n N n a n N n **⎧>∈≤⎪∴⎨<∈≥⎪⎩, 7S ∴或8S 为n S 的最大值,∴A 错误,C 正确; 6560S S a -=>,65S S ∴>,所以D 错误.故选:BC . 【点睛】关键点点睛:根据等差中项推出80a =,进而推出0d <是解题关键.10.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <【答案】BD 【分析】根据22n n S a =-,利用数列通项与前n 项和的关系得1,1,2n nS n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=,又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列,所以2n n a =,24n n a =,数列{}2n a 的前n 项和为()141444143n n n S +--'==-, 则22log log 2nn n b a n ===, 所以()1111111n n b b n n n n +==-⋅⋅++, 所以 1111111...11123411n T n n n =-+-++-=-<++, 故选:BD【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。

贵州省高三数学知识点

贵州省高三数学知识点

贵州省高三数学知识点
一、导数与函数的极值
1.导数的定义及计算方法
2.函数的极值及求解
3.函数图像的特征
二、不等式与函数的图像
1.不等式的性质及解法
2.函数的图像及性质
3.利用图像解决不等式问题
三、导数与函数的特性
1.导数与函数的单调性
2.导数与函数的凸凹性
3.导数与函数的最值问题
四、三角函数与复数
1.三角函数的基本性质与图像
2.三角函数的运算与求解
3.复数的定义及性质
五、数列与数列的极限
1.数列的概念与性质
2.数列的极限定义及性质
3.计算数列的极限
六、函数的连续性与导数运算
1.函数连续性的概念与判断
2.连续函数的性质与例题解析
3.导数运算的基本法则与应用
七、平面向量与空间向量
1.平面向量的定义与运算
2.平面向量的共线与垂直
3.空间向量的概念与运算
八、几何知识与方程应用
1.图形的相似与全等性质
2.平面几何中的方程及应用
3.空间几何中的方程及应用
九、概率与统计
1.概率基本概念与性质
2.概率计算与应用
3.统计数据的处理与分析
十、立体几何
1.空间图形的计算与判断
2.空间几何体的性质与体积计算
3.空间向量在立体几何中的应用十一、平面解析几何
1.平面直角坐标系与方程
2.直线与圆的方程及应用
3.曲线的方程及应用
以上是贵州省高三数学知识点的大致范围和内容,希望对你的学习有所帮助。

2021高考数学数列

2021高考数学数列

2021高考数学数列数列是数学中的重要概念之一,也是高考数学考查的重点内容之一。

在2021年的高考数学考试中,数列仍然是必考的知识点。

本文将围绕2021高考数学数列展开讨论,从数列的定义、分类、性质以及解题方法等方面进行分析和总结,帮助考生更好地掌握数列相关知识,为高考取得优异成绩提供帮助。

一、数列的定义和分类数列是按照一定规律排列的一组数的集合。

通常用数学公式表示为{a₁, a₂, a₃, ...},其中a₁, a₂, a₃, ...是数列的项。

数列可以分为等差数列和等比数列两大类。

等差数列是指数列中相邻两项之差保持恒定的数列。

例如,{1, 3, 5, 7, 9, ...}就是一个等差数列,其中公差为2。

等比数列是指数列中相邻两项之比保持恒定的数列。

例如,{2, 4, 8, 16, 32, ...}就是一个等比数列,其中公比为2。

二、数列的性质数列具有一些重要的性质,掌握这些性质对于解题非常有帮助。

1. 公差/公比的性质:对于等差数列,任意两项的差等于公差;对于等比数列,任意两项的比等于公比。

2. 通项公式:数列中的每一项可以通过通项公式来表示。

对于等差数列,通项公式为an=a₁+(n-1)d;对于等比数列,通项公式为an=a₁r^(n-1),其中an表示第n项,a₁表示首项,d表示公差,r表示公比。

3. 前n项和公式:数列的前n项和表示为Sn=a₁+a₂+...+an。

对于等差数列,前n项和公式为Sn=(a₁+an)n/2;对于等比数列,前n项和公式为Sn=a₁(1-r^n)/(1-r)。

三、数列的解题方法解题时,需要根据题目给出的条件来确定数列的类型,然后利用数列的性质进行分析和计算。

1. 求第n项:如果已知数列的通项公式,可以通过将n代入公式中计算出第n项的值。

2. 求前n项和:如果已知数列的通项公式,可以通过将n代入前n 项和公式中计算出前n项和的值。

3. 求公差/公比:如果已知数列的前几项,可以利用这些项之间的关系来求出公差或公比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年贵州省高考数学重难点热点复习:数列
1.已知等比数列{a n }是递减数列,a 1a 4=
132,a 2+a 3=38
. (1)求数列{a n }的通项公式;
(2)若b n =﹣(n +1)log 2a n ,求数列{1b n }的前n 项和T n .
【解答】解:(1)等比数列{a n }是递减数列,设公比为q ,
a 1a 4=132,a 2+a 3=38,可得a 2a 3=132,
解得a 2=14,a 3=18,满足a 2>a 3,
解得a 1=q =12,则a n =(12)n ; (2)b n =﹣(n +1)log 2a n =﹣(n +1)•(﹣n )=n (n +1),
1
b n =1n(n+1)=1n −1n+1
, 可得前n 项和T n =1−12+12−13+⋯+1n −1n+1=1−1n+1=n n+1.
2.已知{a n }是公差为1的等差数列,数列{b n }满足b 1=1,b 2=12
,a n b n +1+b n +1=nb n .
(1)求数列{b n }的通项公式;
(2)设c n =b n b n +1,求数列{c n }的前n 项和S n .
【解答】解:(1)由题意,可知a 1b 2+b 2=b 1,
即12a 1+12=1,解得a 1=1. 又∵数列{a n }是公差为1的等差数列,
∴a n =1+n ﹣1=n .
∴a n b n +1+b n +1=(n +1)b n +1=nb n ,
∴数列{nb n }是常数数列,即nb n =1•b 1=1,
∴b n =1n ,n ∈N *.
(2)由(1)知,c n =b n b n +1=1n(n+1)=1n −1n+1,
故S n =c 1+c 2+…+c n
=1−12+12−13+⋯+1n −1n+1
=1−1n+1
=n n+1
. 3.已知等比数列{a n }的前n 项和为S n ,且a 1=m ,a n +1=S n +1(n ∈N *).
(1)求实数m 的值和数列{a n }的通项公式;
(2)设b n ={a n (n 为奇数)log 2a n (n 为偶数)
(n ∈N ∗),求数列{b n }的前2n 项和T 2n . 【解答】解:(1)a 2=S 1+1=a 1+1=m +1,
由a n +1=S n +1得a n =S n ﹣1+1(n ≥2),
相减可得a n +1﹣a n =a n (n ≥2)即a n +1=2a n (n ≥2).
又{a n }是等比数列,则公比q =2,
则a 2=2a 1即m +1=2m ,可得m =1,
故a n =2n−1(n ∈N ∗).
(2)由b n ={a n (n 为奇数)log 2a n (n 为偶数),得b n ={2n−1(n 为奇数)n −1(n 为偶数)
(n ∈N ∗). 则T 2n =(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+b 6+…+b 2n )
=(20+22+24+…+22n ﹣
2)+[1+3+5+…+(2n ﹣1)] =1−4n 1−4−+12
n (1+2n ﹣1) =4n −13+n 2.
4.设数列{a n }前n 项和为S n 且2a 1=a 2=2,等差数列{b n }满足b 1=1,b 2+b 5=b 8且b 2S n +1+b 5S n
﹣1=b 8S n (n ≥2,n ∈N *).
(1)求{a n }和{b n }的通项公式;
(2)求数列{a n b n }的前n 项和T n .
【解答】解:(1)设公差为d 的等差数列{b n }满足b 1=1,b 2+b 5=b 8, 则b 1+d +b 1+4d =b 1+7d ,解得d =12,
所以b n =1+12(n −1)=12(n +1).
数列{a n }前n 项和为S n 且2a 1=a 2=2,且b 2S n +1+b 5S n ﹣1=b 8S n ,
整理得32
S n+1+3S n−1=92S n , 即32(S n +1﹣S n )=3(S n ﹣S n ﹣1),n ≥2,。

相关文档
最新文档