2013届九年级中考数学复习巩固练习(04)
2013年中考数学专题复习基础训练及答案(49页)
目录第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲尺规作图第4讲图形的相似第5讲解直角三角形第三部分统计与概率第七章统计与概率第1讲统计第2讲概率基础知识反馈卡·1.1时间:15分钟 满分:50分一、选择题(每小题4分,共24分) 1.-4的倒数是( )A .4B .-4 C.14 D .-142.下面四个数中,负数是( ) A .-5 B .0 C .0.23 D .6 3.计算-(-5)的结果是( )A .5B .-5 C.15 D .-154.数轴上的点A 到原点的距离是3,则点A 表示的数为( ) A .3或-3 B .3 C .-3 D .6或-65.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为( ) A .4.6×108 B .46×108 C .4.6×109 D .0.46×1010 6.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作( ) A .-500元 B .-237元 C .237元 D .500元 二、填空题(每小题4分,共12分) 7.计算(-3)2=________.8.13-=______;-14的相反数是______.9.实数a ,b 在数轴上对应点的位置如图J1-1-1,则a ______b (填“<”、“>”或“=”).图J1-1-1答题卡题号1 2 3 4 5 6 答案7.__________ 8.__________ __________ 9.__________三、解答题(共14分) 10.计算:︱-2︱+(2+1)0--113⎛⎫ ⎪⎝⎭+tan60°.基础知识反馈卡·1.2时间:15分钟满分:50分一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)结果为()A.2x-3 B.2x+9 C.8x-3 D.18x-32.衬衫每件的标价为150元,如果每件以8折(即按标价的80%)出售,那么这种衬衫每件的实际售价应为()A.30元B.60元C.120元D.150元3.下列运算不正确的是()A.-(a-b)=-a+b B.a2·a3=a6C.a2-2ab+b2=(a-b)2D.3a-2a=a二、填空题(每小题4分,共24分)4.当a=2时,代数式3a-1的值是________.5.“a的5倍与3的和”用代数式表示是____________.6.当x=1时,代数式x+2的值是__________.7.某班共有x个学生,其中女生人数占45%,用代数式表示该班的男生人数是________.8.图J1-2-1是一个简单的运算程序,若输入x的值为-2,则输出的数值为____________.输入x―→x2―→+2―→输出图J1-2-19.搭建如图J1-2-2(1)的单顶帐篷需要17根钢管,这样的帐篷按图J1-2-2(2)、(3)的方式串起来搭建,则串7顶这样的帐篷需要________根钢管.图J1-2-2答题卡题号12 3答案4.____________5.____________6.____________7.____________8.____________9.____________三、解答题(共14分)10.先化简下面代数式,再求值:(x+2)(x-2)+x(3-x),其中x=2+1.时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.计算2x +x 的结果是( ) A .3x 2 B .2x C .3x D .2x 2 2.x 3表示( )A .3xB .x +x +xC .x ·x ·xD .x +3 3.化简-2a +(2a -1)的结果是( ) A .-4a -1 B .4a -1 C .1 D .-1 4.下列不是同类项的是( )A .0与12 B .5x 与2yC .-14a 2b 与3a 2bD .-2x 2y 2与12x 2y 25.下列运算正确的是( )A .(-2)0=1B .(-2)-1=2 C.4=±2 D .24×22=28 二、填空题(每小题4分,共12分)6.单项式-x 3y 3的次数是________,系数是________. 7.计算:3-2=__________.8.计算(ab )2的结果是________.答题卡题号1 2 3 4 5 答案6.__________ __________7.__________ 8.__________三、解答题(共18分)9.先化简,再求值:3(x -1)-(x -5),其中x =2.时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.把多项式x2-4x+4分解因式,所得结果是()A.x(x-4)+4 B.(x-2)(x+2)C.(x-2)2D.(x+2)22.下列因式分解错误的是()A.x2-y2=(x+y)(x-y) B.x2+6x+9=(x+3)2C.x2+xy=x(x+y) D.x2+y2=(x+y)23.利用因式分解进行简便计算:7×9+4×9-9,正确的是()A.9×(7+4)=9×11=99 B.9×(7+4-1)=9×10=90C.9×(7+4+1)=9×12=108 D.9×(7+4-9)=9×2=184.下列各等式中,是分解因式的是()A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)C.10x2-5x=5x(2x-1)D.x2-16x+3x=(x+4)(x-4)+3x5.如果x2+2(m-1)x+9是完全平方式,那么m的结果正确的是()A.4 B.4或2C.-2 D.4或-2二、填空题(每小题4分,共16分)6.因式分解:a2+2a+1=______________.7.因式分解:m2-mn=____________.8.因式分解:x3-x=____________.9.若把代数式x2-2x-3化为(x-m)2+k的形式,其中m,k为常数,则m+k=____________.答题卡题号1234 5答案6.__________7.__________8.__________9.__________三、解答题(共14分)10.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.时间:15分钟 满分:50分一、选择题(每小题4分,共16分)1.若分式32x -1有意义,则x 的取值范围是( )A .x ≠12B .x ≠-12C .x >12D .x >-122.计算1x -1-xx -1的结果为( )A .1B .2C .-1D .-23.化简a -1a ÷a -1a2的结果是( )A.1a B .a C .a -1 D.1a -14.化简1x -1x -1可得( )A.1x 2-x B .-1x 2-x C.2x +1x 2-x D.2x -1x 2-x 二、填空题(每小题4分,共24分)5.化简:a a -b -ba -b =__________.6.化简x (x -1)2-1(x -1)2的结果是____________. 7.若分式x +12x -2的值为0,那么x 的值为__________.8.若分式-12a -3的值为正,则a 的取值范围是__________.9.化简x (x -1)2-1x -1的结果是__________. 10.化简2x 2-1÷1x -1的结果是__________.答题卡题号1 2 3 4 答案5.____________6.____________7.____________8.____________ 9.____________ 10.____________ 三、解答题(共10分)11.先化简,再求值:21211a a a -⎛⎫- ⎪+-⎝⎭÷1a +1,其中a =3+1.时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.3最接近的整数是( ) A .0 B .2 C .4 D .5 2.|-9|的平方根是( ) A .81 B .±3 C .3 D .-3 3.下列各式中,正确的是( ) A.(-3)2=-3 B .-32=-3 C.(±3)2=±3 D.32=±34.对任意实数a ,下列等式一定成立的是( ) A.a 2=a B.a 2=-a C.a 2=±a D.a 2=|a |5.下列二次根式中,最简二次根式( ) A.15B.0.5C. 5D.50二、填空题(每小题4分,共12分) 6.4的算术平方根是__________. 7.实数27的立方根是________.8.计算:12-3=________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________三、解答题(每小题9分,共18分)9.计算:|2 2-3|-212-⎛⎫- ⎪⎝⎭+18.10.计算:212-⎛⎫⎪⎝⎭-2cos45°+(3.14-π)0+128+(-2)3.时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.方程5x -2=12的解是( )A .x =-13B .x =13C .x =12D .x =22.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x -1)+3x =13B .2(x +1)+3x =13C .2x +3(x +1)=13D .2x +3(x -1)=13 3.二元一次方程组20x y x y +=⎧⎨-=⎩,的解是( )A.02x y =⎧⎨=⎩,B.11x y =⎧⎨=⎩,C.20x y =⎧⎨=⎩,D.11x y =-⎧⎨=-⎩,4.有下列各组数:①22x y =⎧⎨=⎩,;②21x y =⎧⎨=⎩,;③22x y =⎧⎨=-⎩,;④16x y =⎧⎨=⎩,,其中是方程4x +y =10的解的有( )A .1个B .2个C .3个D .4个5.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2 900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程组是( )A. 14250802900x y x y ⎧+=⎪⎨⎪+=⎩,B.158********x y x y +=⎧⎨+=⎩, C. 14802502900x y x y ⎧+=⎪⎨⎪+=⎩,D.152********x y x y +=⎧⎨+=⎩, 二、填空题(每小题4分,共16分)6.方程3x -6=0的解为__________.7.已知3是关于x 的方程3x -2a =5的解,则a 的值为________.8.在x +3y =3中,若用x 表示y ,则y =______;若用y 表示x ,则x =______. 9.对二元一次方程2(5-x )-3(y -2)=10,当x =0时,y =__________;当y =0时,x =________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ __________9.__________ __________ 三、解答题(共14分)10.解方程组: 281.x y x y +=⎧⎨-=⎩,基础知识反馈卡·2.1.2时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.分式方程2x -42+x=0的根是( )A .x =-2B .x =0C .x =2D .无实根2.分式方程12x 2-9-2x -3=1x +3的解为( )A .3B .-3C .无解D .3或-33.分式方程xx -3=x +1x -1的解为( )A .x =1B .x =-1C .x =3D .x =-34.有两块面积相同的试验田,分别收获蔬菜900 kg 和1 500 kg.已知第一块试验田每亩收获蔬菜比第二块少300 kg ,求第一块试验田每亩收获蔬菜多少千克?设第一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A.900x +300=1 500xB.900x =1 500x -300C.900x =1 500x +300D.900x -300=1 500x 5.解分式方程1x -1=3(x -1)(x +2)的结果为( )A .1B .-1C .-2D .无解 二、填空题(每小题4分,共16分)6.方程xx +2=3的解是________.7.方程1x -1=4x 2-1的解是________.8.请你给x 选择一个合适的值,使方程2x -1=1x -2成立,你选择的x =________________________________________________________________________.9.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分)10.解方程:3x -2=2x +1.基础知识反馈卡·2.1.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.已知x =1是一元二次方程x 2+mx +2=0的一个解,则m 的值是( ) A .-3 B .3 C .0 D .0或32.已知一元二次方程x 2-4x +3=0的两根为x 1,x 2, 则x 1·x 2的值为( ) A .4 B .3 C .-4 D .-3 3.方程x 2+x -1=0的一个根是( ) A .1- 5 B.1-52C .-1+ 5 D.-1+524.用配方法解一元二次方程x 2+4x =5时,此方程可变形为( ) A .(x +2)2=1 B .(x -2)2=1 C .(x +2)2=9 D .(x -2)2=95.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x .根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1-x )=121C .100(1+x )2=121D .100(1-x )2=121 二、填空题(每小题4分,共16分)6.一元二次方程3x 2-12=0的解为__________. 7.方程x 2-5x =0的解是__________.8.若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2+ x 1·x 2的值是________. 9.关于x 的一元二次方程kx 2-x +1=0有两个不相等的实数根,则k 的取值范围是_____________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分) 10.滨州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?基础知识反馈卡·2.2时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.若a <b ,则下列各式中一定成立的( )A .a -1<b -1 B.a 3>b3C .-a <-bD .ac <bc2.不等式x -1>0的解集是( ) A .x >1 B .x <1 C .x >-1 D .x <-1 3.不等式10,324x x x ->⎧⎨>-⎩的解集是( )A .x <1B .x >-4C .-4<x <1D .x >14.如图J2-2-1,数轴上表示的是下列哪个不等式组的解集( )图J2-2-1A.5,3x x ≥-⎧⎨>-⎩B.5,3x x >-⎧⎨≥-⎩C.5,3x x <⎧⎨<-⎩D.5,3x x <⎧⎨>-⎩5.小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为( )A .30x +50>280B .30x -50≥280C .30x -50≤280D .30x +50≥280 二、填空题(每小题4分,共16分)6.若不等式ax |a -1|>2是一元一次不等式,则a =______________.7.把不等式组的解集表示在数轴上,如图J2-2-2,那么这个不等式组的解集是______________.图J2-2-28.已知不等式组321,0x x a +≥⎧⎨-<⎩无解,则实数a 的取值范围是______________.9.不等式组10,240x x -≤⎧⎨+>⎩的整数解是__________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分)10.解不等式组34,26x x +>⎧⎨<⎩并把解集在如图J2-2-3的数轴上表示出来.图J2-2-3基础知识反馈卡·3.1时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.点M (-2,1)关于y 轴对称的点的坐标是( ) A .(-2,-1) B .(2,1) C .(2,-1) D .(1,-2) 2.在平面直角坐标系中,点M (2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.如果点P (a,2)在第二象限,那么点Q (-3,a )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.点M (-3,2)到y 轴的距离是( ) A .3 B .2 C .3或2 D .-35.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3) B .(2,-1) C .(4,1) D .(0,1) 二、填空题(每小题4分,共16分)6.已知函数y =2x,当x =2时,y 的值是________.7.如果点P (2,y )在第四象限,那么y 的取值范围是________.8.小明用50元钱去购买单价为5元的某种商品,他剩余的钱y (单位:元)与购买这种商品的件数x (单位:件)之间的关系式为__________________.9.如图J3-1-1,将正六边形放在直角坐标系中,中心与坐标原点重合,若A 点的坐标为(-1,0),则点E 的坐标为________.图J3-1-1答题卡题号1 2 3 4 5 答案6.________________7.________________ 8.________________ 9.________________ 三、解答题(共14分)10.在图J3-1-2的平面直角坐标系中,描出点A (0,3),B (1,-3),C (3,-5),D (-3,-5),E (3,2),并回答下列问题:(1)点A到原点O的距离是多少?(2)将点C向x轴的负方向平移6个单位,它与哪个点重合?(3)点B分别到x、y轴的距离是多少?(4)连接CE,则直线CE与y轴是什么关系?图J3-1-2基础知识反馈卡·3.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.直线y=x-1的图象经过象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.一次函数y=6x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知一次函数y=3x+b的图象经过第一、二、三象限,则b的值可以是() A.-2 B.-1C.0 D.24.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()5.若正比例函数的图象经过点(-1,2),则这个图象必经过点()A.(1,2) B.(-1,-2)C .(2,1)D .(1,-2)二、填空题(每小题4分,共16分)6.写出一个具体的y 随x 的增大而减小的一次函数解析式________.7.已知一次函数y =2x +1,则y 随x 的增大而________(填“增大”或“减小”). 8.(1)若一次函数y =ax +b 的图象经过第一、二、三象限,则a ____0,b ____0; (2)若一次函数y =ax +b 的图象经过二、三、四象限,则a ____0,b ____0. 9.将直线y =2x -4向上平移5个单位后,所得直线的表达式是____________.答题卡题号1 2 3 4 5 答案6.________7.________8.(1)______ ______ (2)______ ______ 9.____________三、解答题(共14分)10.已知直线l 1∶y 1=-4x +5和直线l 2∶y 2=12x -4.(1)求两条直线l 1和l 2的交点坐标,并判断交点落在哪一个象限内;(2)在同一个坐标系内画出两条直线的大致位置,然后利用图象求出不等式-4x +5>12x-4的解.基础知识反馈卡·3.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.若双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是( )A .k >12B .k <12C .k =12D .不存在2.下列各点中,在函数y =-6x图象上的是( )A .(-2,-4)B .(2,3)C .(-1,6) D.1,32⎛⎫- ⎪⎝⎭3.对于反比例函数y =1x ,下列说法正确的是( )A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大4.已知如图J3-3-1,A 是反比例函数y =kx的图象上的一点,AB ⊥x 轴于点B ,且△ABO 的面积是2,则k 的值是( )图J3-3-1A .2B .-2C .4D .-45.函数y =2x 与函数y =-1x在同一坐标系中的大致图象是( )二、填空题(每小题4分,共16分)6.如图J3-3-2,已知点C 为反比例函数y =-6x上的一点,过点C 向坐标轴引垂线,垂足分别为A ,B ,那么四边形AOBC 的面积为____________.图J3-3-2 图J3-3-3 图J3-3-47.如图J3-3-3,点P 是反比例函数y =-4x上一点,PD ⊥x 轴,垂足为D ,则S △POD=__________.8.(2012年江苏盐城)若反比例函数的图象经过点P (-1,4),则它的函数关系是________. 9.如图J3-3-4所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为_______________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分) 10.如图J3-3-5,已知直线y =-2x 经过点P (-2,a ),点P 关于y 轴的对称点P ′在反比例函数y =kx(k ≠0)的图象上.图J3-3-5(1)求a 的值;(2)直接写出点P ′的坐标; (3)求反比例函数的解析式.基础知识反馈卡·3.4时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.抛物线y =-(x +2)2+3的顶点坐标是( ) A .(2,-3) B .(-2,3) C .(2,3) D .(-2,-3)2.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( ) A .先向左平移2个单位,再向上平移3个单位 B .先向左平移2个单位,再向下平移3个单位 C .先向右平移2个单位,再向下平移3个单位 D .先向右平移2个单位,再向上平移3个单位3.二次函数y =x 2-2x -3的图象如图J3-4-1.当y >0时,自变量x 的取值范围是( ) A .-1<x <3 B .x <-1 C .x >3 D .x <-1或x >3图J3-4-1图J3-4-24.如图J3-4-2,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫ ⎪⎝⎭,下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④a +b +c <0.其中正确的个数是( )A .1B .2C .3D .45.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( ) A .y =(x -2)2+1 B .y =(x +2)2+1 C .y =(x -2)2-3 D .y =(x +2)2-3 二、填空题(每小题4分,共16分)6.将二次函数y =x 2-4x +5化为y =(x -h )2+k 的形式,则y =__________. 7.将抛物线y =x 2+1向下平移2个单位,则此时抛物线的解析式是____________. 8.若二次函数y =-x 2+2x +k 的部分图象如图J3-4-3,则关于x 的一元二次方程-x 2+2x +k =0的一个解x 1=3,另一个解x 2=________.9.y=2x2-bx+3的对称轴是直线x=1,则b的值为________.答题卡题号1234 5答案6.__________7.__________8.__________9.__________三、解答题(共14分)10.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),求该抛物线的表达式.基础知识反馈卡·4.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下面四个图形中,∠1与∠2是对顶角的图形为()2.如图J4-1-1,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是()A.80°B.100°C.120°D.150°图J4-1-1图J4-1-23.一只因损坏而倾斜的椅子,从背后看到的形状如图J4-1-2,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是()A.75°B.115°C.65°D.105°4.如图J4-1-3,AB∥CD,∠C=65°,CE⊥BE,垂足为点E,则∠B的度数为() A.15°B.25°C.35°D.75°图J4-1-3图J4-1-45.将一直角三角板与两边平行的纸条如图J4-1-4所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共16分)6.线段AB=4 cm,在线段AB上截取BC=1 cm,则AC=__________cm.7.有如下命题:①三角形三个内角的和等于180°;②两直线平行,同位角相等;③矩形的对角线相等;④相等的角是对顶角.其中属于假命题的有__________.8.如图J4-1-5,请填写一个适当的条件:____________,使得DE∥AB.图J4-1-5图J4-1-69.如图J4-1-6,AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC=________度.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-1-7,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.图J4-1-7基础知识反馈卡·4.2.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列各组线段能组成三角形的一组是()A.5 cm,7 cm,12 cm B.6 cm,8 cm,10 cmC.4 cm,5 cm,10 cm D.3 cm,4 cm,8 cm2.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线3.如图J4-2-1,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()图J4-2-1A.BC=EF B.∠A=∠DC.AC∥DF D.AC=DF4.在△ABC内部取一点P,使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线的交点()A.高B.角平分线C.中线D.垂直平分线5.下列说法中不正确的是()A.全等三角形一定能重合B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等二、填空题(每小题4分,共16分)6.如图J4-2-2,要测量的A,C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E,F,量得E,F两点间的距离等于23米,则A,C两点间的距离为__________米.图J4-2-27.如图J4-2-3,△ABC≌△ABD,且△ABC的周长为12,若AC=4,AB=5,则BD =________.图J4-2-3图J4-2-4图J4-2-58.将一副三角尺按如图J4-2-4所示放置,则∠1=________度.9.已知:如图J4-2-5,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________°.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-2-6,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.图J4-2-6基础知识反馈卡·4.2.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.有一个内角是60°的等腰三角形是()A.钝角三角形B.等边三角形C.直角三角形D.以上都不是2.下列关于等腰三角形的性质叙述错误的是()A.等腰三角形两底角相等B.等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合C.等腰三角形是中心对称图形D.等腰三角形是轴对称图形3.如图J4-2-7,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于() A.3 cm B.4 cm C.1.5 cm D.2 cm图J4-2-7图J4-2-84.如图J4-2-8,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,则∠BDC 为()A.55°B.65°C.75°D.85°5.边长为4的正三角形的高为()A.2 B.4 C. 3 D.2 3二、填空题(每小题4分,共16分)6.如图J4-2-9,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=50°,则∠A=________度,∠B=________度.图J4-2-97.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是____________.8.已知等腰三角形的一个内角为80°,则另两个角的度数是______________.9.如图J4-2-10,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC 边上一点,且BE=BP,CP=CF,则∠EPF=________度.图J4-2-10答题卡题号1234 5答案6.________________________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-2-11,已知在直角三角形ABC中,∠C=90°,BD平分∠ABC且交AC 于点D,∠BAC=30°.(1)求证:AD=BD;(2)若AP平分∠BAC且交BD于点P,求∠BP A的度数.图J4-2-11基础知识反馈卡·4.3.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.平行四边形一边长是6厘米,周长是28厘米,则这条边的邻边长为()A.22厘米B.16厘米C.11厘米D.8厘米2.如图J4-3-1所示,在□ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是()图J4-3-1A.AC⊥BD B.AB=CD C.BO=OD D.∠BAD=∠BCD3.若一个多边形的内角和等于900°,则这个多边形的边数是()A.6 B.7 C.8 D.94.已知ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A B C D5.下列条件中,不能判别四边形是平行四边形的是()A.一组对边平行且相等B.两组对边分别相等C.两条对角线垂直且相等D.两条对角线互相平分二、填空题(每小题4分,共16分)6.五边形的外角和等于________度.7.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是________.8.已知平行四边形ABCD的面积为4,O为两对角线的交点,则△AOB的面积是________.9.如果一个多边形的内角和与外角和相等,则此多边形是________.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-3-2,已知E,F是四边形ABCD的对角线AC上的两点,AE=CF,BE =DF,BE∥DF.求证:四边形ABCD是平行四边形.图J4-3-2基础知识反馈卡·4.3.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.矩形,菱形,正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直2.如图J4-3-3,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20 B.24 C.28 D.40图J4-3-3图J4-3-4图J4-3-53.如图J4-3-4,把矩形ABCD沿EF对折,若∠1=60°,则∠AEF等于()A.115°B.130°C.120°D.65°4.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是() A.AB=CD B.AD=BC C.AB=BC D.AC=BD 5.如图J4-3-5,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB =4 cm,则AC的长为()A.4 cm B.8 cm C.12 cm D.4 5 cm二、填空题(每小题4分,共16分)6.如图J4-3-6,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=5,则图中阴影部分的面积为________.图J4-3-67.如图J4-3-7,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD =8 cm,则这个菱形的面积是________cm2.图J4-3-7 图J4-3-88.如图J4-3-8所示,已知□ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明□ABCD是矩形的有____________(填写序号).9.已知四边形ABCD中,∠A=∠B=∠C=90°,添加条件_____________________,此四边形即为正方形(填一个即可).答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-3-9,矩形ABCD中,已知对角线AC与BD交于点O,△OBC的周长为16,其中BC=7,求矩形对角线AC的长.图J4-3-9基础知识反馈卡·4.3.3时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列说法正确的是()A.平行四边形是一种特殊的梯形B.等腰梯形的两底角相等C.等腰梯形可能是直角梯形D.有两邻角相等的梯形是等腰梯形2.如图J4-3-10,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是()A.40°B.45°C.50°D.60°图J4-3-10 图J4-3-113.下面命题错误的是()A.等腰梯形的两底平行且相等B.等腰梯形的两条对角线相等C.等腰梯形在同一底上的两个角相等D.等腰梯形是轴对称图形4.有一等腰梯形纸片ABCD(如图J4-3-11),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下,由△DEC与四边形ABED不一定能拼成的图形是()A.直角三角形B.矩形C.平行四边形D.正方形5.如图J4-3-12,等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,则图中相等的线段共有()图J4-3-12A.2对B.3对C.4对D.5对二、填空题(每小题4分,共16分)6.如图J4-3-13,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.图J4-3-137.等腰梯形的中位线长是15 ,一条对角线平分一个60°的底角,则梯形的周长为______.8.如图J4-3-14,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,则梯形ABCD的周长是________.图J4-3-149.顺次连接等腰梯形四边中点所得的四边形是________形.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.已知:如图J4-3-15,在梯形ABCD中,AD∥BC,AB=DC,P是AD中点.求证:BP=PC.图J4-3-15基础知识反馈卡·5.1时间:15分钟满分:50分一、选择题(每小题4分,共16分)1.如图J5-1-1,点A,B,C都在⊙O上,若∠AOB=40°,则∠C=()A.20°B.40°C.50°D.80°图J5-1-1图J5-1-2图J5-1-3图J5-1-42.如图J5-1-2,AB为⊙O的直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A 的度数为()A.70°B.35°C.30°D.20°3.如图J5-1-3,⊙O的弦AB垂直平分半径OC,若AB=6,则⊙O的半径为()A. 2 B.2 2 C.22 D.624.如图J5-1-4,∠AOB=100°,点C在⊙O上,且点C不与点A,B重合,则∠ACB 的度数为()A.50°B.80°或50°C.130°D.50°或130°二、填空题(每小题4分,共20分)5.如图J5-1-5,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A,B两点,点P在优弧AB上,且与点A,B不重合,连接P A,PB,则∠APB的大小为________度.图J5-1-5图J5-1-6图J5-1-76.如图J5-1-6,AB是⊙O的弦,OC⊥AB于点C,若AB=8 cm,OC=3 cm,则⊙O 的半径为________cm.7.如图J5-1-7,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=______.8.如图J5-1-8,在⊙O的内接四边形ABCD中,若∠BCD=110°,则∠BOD=______度.图J5-1-8图J5-1-99.如图J5-1-9,点O为优弧ACB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,若BD=BC,则∠D=________度.答题卡题号123 4答案5.________6.________7.________8.________9.________三、解答题(共14分)10.某市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图J5-1-10,污水水面宽度为60 cm,水面至管道顶距离为10 cm,问:修理人员应准备内径多大的管道?图J5-1-10基础知识反馈卡·5.2时间:15分钟满分:50分一、选择题(每小题4分,共24分)1.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()A B C D2.如图J5-2-1,四边形ABCD内接于⊙O,若∠C=30°,则∠A的度数为()图J5-2-1A.36°B.56°C.72°D.144°3.若线段OA=3,⊙O的半径为5,则点A与⊙O的位置关系为()A.点在圆外B.点在圆上C.点在圆内D.不能确定4.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是() A.相切B.相离C.相离或相切D.相切或相交5.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离6.如图J5-2-2,两个同心圆的半径分别为4 cm和5 cm,大圆的一条弦AB与小圆相切,则弦AB的长为()图J5-2-2A.3 cmB.4 cmC.6 cmD.8 cm二、填空题(每小题4分,共12分)7.如图J5-2-3,P A,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC =25°,则∠P=________度.图J5-2-3图J5-2-4图J5-2-58.如图J5-2-4,在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r=________.9.如图J5-2-5,点P是⊙O外一点,P A是⊙O的切线,切点为A,⊙O的半径OA =2 cm,∠P=30°,则PO=______cm.答题卡题号12345 6答案7.__________8.__________9.__________三、解答题(共14分)10.如图J5-2-6,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.求证:(1)∠CAB=∠BOD;(2)△ABC≌△ODB.图J5-2-6基础知识反馈卡·5.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.在半径为12的⊙O 中,60°圆心角所对的弧长是( ) A .6π B .4π C .2π D .π2.一条弦分圆周为5∶4两部分,则这条弦所对的圆周角的度数为( ) A .80° B .100° C .80°或100° D .以上均不正确 3.如图J5-3-1,半径为1的四个圆两两相切,则图中阴影部分的面积为( ) A .4-π B .8-π C .2(4-π) D .4-2π图J5-3-1 图J5-3-2 图J5-3-34.如图J5-2-2是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是( ) A .60° B .90° C .120° D .180°5.如图J5-3-3,P A ,PB 是⊙O 的切线,切点是A ,B ,已知∠P =60°,OA =3,那么∠AOB 所对的弧的长度为( )A .6πB .5πC .3πD .2π 二、填空题(每小题4分,共16分)6.圆锥底面半径为12,母线长为2,它的侧面展开图的圆心角是______.7.正多边形的一个内角为120°,则该多边形的边数为________.8.已知扇形的半径为3 cm ,扇形的弧长为π cm ,则该扇形的面积是________cm 2,扇形的圆心角为________度.9.如图J5-3-4,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是________.图J5-3-4答题卡题号1 2 3 4 5 答案6.________7.________8.________ ________ 9.________ 三、解答题(共14分)10.如图J5-3-5,⊙O 的半径为1,弦AB 和半径OC 互相平分于点M .求扇形OACB 的面积(结果保留π).图J5-3-5基础知识反馈卡·6.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列图形中,是轴对称图形的有()①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2个B.3个C.4个D.5个2.下列几种运动属于平移的有()①水平运输带上的砖在运动;②升降机上下做机械运动;③足球场上足球的运动;④超市里电梯上的乘客;⑤平直公路上行驶的汽车.A.2种B.3种C.4种D.5种3.如图J6-1-1,香港特别行政区区徽是由五个同样的花瓣组成的,它可以看作是由其中一个花瓣通过怎样的变化而得到的()A.平移B.对称C.旋转D.先平移,后旋转图J6-1-1图J6-1-24.如图J6-1-2,△ABC与△A′B′C′关于点O成中心对称,下列结论不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′5.下列既是轴对称图形又是中心对称图形的是()A B C D二、填空题(每小题4分,共16分)6.正五角星的对称轴的条数是________.7.如图J6-1-3,△ABC按逆时针方向旋转一定的角度后到达△AB′C′的位置,则旋转中心是点________,旋转角度是________度.图J6-1-3 图J6-1-4 图J6-1-58.如图J6-1-4,△ABC 中,AB =AC =14 cm ,D 是AB 的中点,DE ⊥AB 于点D ,交AC 于点E ,△EBC 的周长是24 cm ,则BC =________.9.正方形ABCD 在坐标系中的位置如图J6-1-5,将正方形ABCD 绕点D 按顺时针方向旋转90°后,点B 的坐标为________.答题卡题号1 2 3 4 5 答案6.______________7.______________ ______________ 8.______________ 9.______________ 三、解答题(共14分) 10.画图题.如图J6-1-6,将△ABC 绕点O 顺时针旋转180°后得到△A 1B 1C 1,请你画出旋转后的△A 1B 1C 1 ;图J6-1-6。
2013届九年级中考数学复习巩固练习(02)
- 1 -初三数学复习巩固练习(02)实数班级_____姓名______一、选择题1、-2是2的().A 、相反数B 、倒数C 、绝对值D 、算术平方根2、-8的立方根是().A 、2B 、-2C 、21D 、-213、下列各数中是负数的是().()A 、-(-3)B 、-(-3)2C 、-(-2)3D 、|-2|4、下列各组数中互为相反数的一组是()A 、2与38 B 、2与2(2)C 、2与12D 、2与25、数字..323.0,45cos ,8,,31,21中无理数的个数是()A 、1B 、2C 、3D 、46、如在实数0,-3,32,|-2|中,最小的是().A .32 B .-3C .0D .|-2|7、下列命题中正确的个数有()①实数不是有理数就是无理数② a <a +a ③121的平方根是±11④在实数范围内,非负数一定是正数⑤两个无理数之和一定是无理数A 、1 个B 、2 个C 、3 个D 、4 个8、如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是()A 、0abB 、0ba C 、0b aD 、0||||b a 9、已知| x |=3,| y |=7,且 xy <0,则 x +y 的值等于()A 、10B 、4C 、±10D 、±410、估算56的值应在()A 、6.5~7.0之间B、7.0~7.5之间10 -1 a b B A- 2 -C 、7.5~8.0之间D 、8.0~8.5之间11、若实数m 满足0m m,则m 的取值范围是()A 、0m ≥ B 、0mC 、0m ≤ D 、0m12、实数a 在数轴上的位置如图所示,则a ,a ,1a,2a 的大小关系是()A 、21a aaa B 、21aaaa C 、21a aa aD 、21aa aa13、下列运算正确的是()A 、(1)1x xB 、954C 、3223 D、222()ab a b14、若a 有意义,则a 是一个()A 、正实数B 、负实数 C、非正实数 D 、非负实数15、若31.38a,313.8ab,则b 等于()A 、1000000B 、1000 C、10 D、1000016、要使33(4)4m m ,m 的取值为()A 、m ≤4B 、m ≥ 4C 、0≤m ≤4 D、一切实数17、由四舍五入法得到的近似数8.8×103,下列说法中正确的是().A 、精确到十分位,有2个有效数字 B 、精确到个位,有2个有效数字C 、精确到百位,有2个有效数字 D、精确到千位,有4个有效数字二、填空1、-2 的倒数是____,4 的平方根是____,-27 的立方根是____,3-2 的绝对值是____.2、11、在1,-2,-3,0,π五个数中最小的数是____3、若将三个数11,7,3表示在数轴上,其中能被如图所示的墨迹覆盖的数是543210-1-2。
2013届中考数学预测试题4
中考数学预测试题四(时间:100分钟,满分150分)一、选择题(每小题4分,共20分)1.若a b =35 ,则a +b b 的值是( )A 、85B 、35C 、32D 、582.计算tan602sin 452cos30︒+︒-︒的结果是( ) A .2BCD .13.如图,是一个正在绘制的扇形统计图,整个圆表示某班参加体育 活动的总人数,那么表示参加立定跳远训练的人数占总人数的 35%的扇形是( ) A.MB.NC.QD. P4.下列图中是太阳光下形成的影子是( )(A)(B)(C)(D)5.哥哥身高1.68米,在地面上的影子长是2.1米,同一时间弟弟的影子长1.8米,则弟弟身高是( )A.1.44米 B.1.52米 C.1.96米D.2.25米6.一个三角形的两边长为3和6,第三边的长是方程0)4)(2(=--x x 的根,则这个三角形的周长是( ) A.11B.13C.11或13D.11和137.如图,天平右盘中的每个砝码的质量为10g ,则物体M 的质量m(g)的取值范围在数轴上可表示为( )8.如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B , PA =8,OA =6,sin ∠APO 的值为( )A . 43B . 53C . 54 D. 34二、填空题:(每空4分,共20分)PQMN 3题图20 30A20 30 A 20 30 B 20 30 C 20 30 D9.计算:=-+)2332)(2332( .10.用科学记数法表示:1纳米=10-9米,则0.0305纳米= 米。
11.方程)12(2)12(3+=+x x x 的根为 .12.⊙O 的半径为5cm ,点P 是⊙O 外一点,OP =8cm ,以P 为圆心作一个圆与⊙O 相切,则这个圆的半径是 .13.如图,一条公路的转弯处是一段圆弧(图中的AB 弧),点O 是这段弧的圆心,AB =120m ,C 是AB 弧是一点,OC ⊥AB 于D ,CD =20m ,则该弯路的半径为 . 三、解答题(每题 7分,共35分)14.计算:15、 化简:2()xy x -÷222x xy y xy-+÷2x x y -16、 已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在空地上种植草皮,经测量∠A =90°,AB =3m ,BC =12m ,CD =13m ,DA =4m ,若每平方米草皮需要200元,问需要多少投入?17、 列方程解应用题:A 、B 两地的距离是80公里,一辆公共汽车从A 地驶出3小时后,一辆小汽车也从A 地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B 地,求DCBAO两车的速度。
2013届九年级中考数学复习巩固练习(09)
初三数学复习巩固练习(09)方程组(解法)一、选择题1、已知{21x y ==是二元一次方程组{81m x ny nx m y +=-=的解,则2m-n 的算术平方根为( )A 、2±B 、、2 D 、42、若2(341)3250x y y x +-+--=则x -y 的值( )A 、-1B 、1C 、2D 、-2 3、已知1x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ) A 、 1 B 、-1 C 、2 D 、3 4、已知代数式133m x y --与52n m nx y+是同类项,那么m n 、的值分别是( )A 、21m n =⎧⎨=-⎩B 、21m n =-⎧⎨=-⎩C 、21m n =⎧⎨=⎩D 、21m n =-⎧⎨=⎩5、关于x 的方程组⎩⎨⎧=+=nmy x m x y -3的解是⎩⎨⎧==11y x ,则|m-n|的值是( )A 、5B 、3C 、2D 、1 二、填空题1、将方程527x y -=变形成用y 的代数式表示x ,则x =______.再用x 的代数式表示y ,则y =______.2、在432-=x y 中,如果x =6,那么y =____;如果y =—2,那么x =___3、写出一个以23x y =⎧⎨=⎩为解的二元一次方程组__________________ .4、已知ax=by + 2012的一个解是⎩⎨⎧-==11y x ,则a +b=________________5、已知二元一次方程x + 3y =10,请写出一组正整数解______________6、若0)2(|6|2=-+-y x x ,则=+y x 。
7、在y kx b =+中,当1x =时,4y =,当2x =时,10y =,则k = ,b = 。
8、关于x 、y 的方程组⎩⎨⎧-=+=-225453by ax y x 与⎩⎨⎧=--=+8432by ax y x 有相同的解,则()ba -= 。
2013届九年级中考数学复习巩固练习(22)
初三数学复习巩固练习(022)反比例函数(2)1、已知矩形的面积为10,则它的长y 与宽x 之间的关系用图像大致可表示为( )A B C D2、反比例函数xk y =(k >0)在第一象限内的图像如图所示,P为该图像上任意一点,PQ 垂直于x 轴,垂足为Q ,设△POQ 的面积为S ,则S 的值与k 之间的有关系是 ( )3、在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( )A 、1-B 、0C 、1D 、24、如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( )A 、逐渐增大B 、不变C 、逐渐减小D 、先增大后减小 5、如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( )A 、12B 、9C 、6D 、4x6、如图,正比例函数y =kx (k >0)与反比例函数xy 4=的图象相交于A ,C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( )A 、2B 、4C 、6D 、87、如图,在反比例函数xy 2=(x >0))的图象上,有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3=______.第6题 第7题 第8题8、如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数k y x=的图象相交于C , D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ;④A C B D =.其中正确的结论是 .(把你认为正确结论的序号都填上) 9、已知反比例函数xk y =(k 为常数,k ≠0)的图象经过点P (3,3),O 为坐标原点.(1)求k 的值;(2)过点P 作PM ⊥x 轴于M ,若点P 在反比例函数图象上,并且S △QOM =6,试求Q 点的坐标.y2y x =xOP 1P 2P 3P 41 23410、已知反比例函数y =xk 的图像经过点A (-3,1).(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30︒得到线段OB .判断点B 是否在此反比例函数的图像上,并说明理由;(3)已知点P (m ,3m +6)也在此反比例函数的图像上(其中m <0),过P 点作x 轴的垂线,交 x 轴于点M .若线段PM 上存在一点Q ,使得△OQM 的面积是21,设Q 点的纵坐标为n ,求n 2-23n +9的值.11、如图,在平面直角坐标系xOy 中,梯形AOBC 的边OB 在x 轴的正半轴上,AC ∥OB ,BC ⊥OB ,过点A 的双曲线xk y =的一支在第一象限交梯形对角线OC 于点D ,交边BC 于点E.(1)填空:双曲线的另一支在第 象限,k 的取值范围是 ;(2)若点C 的坐标为(2,2),当点E 在什么位置时?阴影部分面积S 最小? (3)若21=OCOD ,2=∆OAC S ,求双曲线的解析式.12、●探究 (1) 在图1中,已知线段AB ,CD ,其中点分别为E ,F . ①若A (-1,0), B (3,0),则E 点坐标为__________; ②若C (-2,2), D (-2,-1),则F 点坐标为__________;(2)在图2中,已知线段AB 的端点坐标为A (a ,b ) ,B (c ,d ),求出图中AB 中点D 的坐标(用含a ,b ,c ,d 的代数式表示),并给出求解过程.●归纳 无论线段AB 处于直角坐标系中的哪个位置,当其端点坐标为A (a ,b ),B (c ,d ), AB 中点为D (x ,y ) 时,x =_________,y =___________.(不必证明)●运用 在图2中,一次函数2-=x y 与反比例函数xy 3=的图象交点为A ,B .①求出交点A ,B 的坐标;②若以A ,O ,B ,P 为顶点的四边形是平行四边形,请利用上面的结论求出顶点P 的坐标.3。
2013届九年级数学复习题业(06-011)
(1)特殊情况,探索结论
当点 E 为 AB 的中点时,如图 1,确定线段 AE 与 DB 的大小关系,请你直接写出结
论: AE
DB (填“>”,“<”或“=”).
D、 3 8 =-2
4、若 5 =a, 17 =b,则 0.85 的值用 a、b 可表示为
(
)
A、 a b 10
B、 b a 10
C、 ab 10
D、 b a
5、若代数式 (1 a)2 (3 a)2 的值等于常数 2,则 a 的取值范围是( )
A、a≥3
B、a≤1
C、1≤a≤3
D、a=1 或 a=3
) C、x=1 或 x=-2
D、x=1
3、如果把 5x 的 x 与 y 都扩大 10 倍,那么这个代数式的值( ) x y
A、不变
B、扩大 50 倍
4、下列计算错误的是( )
C、扩大 10 倍
D、缩小为原来的 1 10
A、 0.2a b 2a b 0.7a b 7a b
B、 x3 y 2 x x2 y3 y
一、选择题
1、下列二次根式中与 24 是同类二次根式的是
(
)
A、 18
B、 30
C、 48
D、 54
2、使代数式 x 有意义的 x 的取值范围是( ) 2x 1
A、x≥0
B、x≠ 1 2
3、下列计算正确的是( )
C、x≥0 且 x≠ 1 2
D、一切实数
A、a6÷a2=a3
B、(a3)2=a2
C、 25 =±5
x 2x
1
,并从-1≤x≤3
中选一个你认为适合
的整数 x 代入求值.
17、先化简,再求值:
2013届九年级中考数学复习巩固练习(20)
初三数学复习巩固练习(020)三个“一次”的关系1、如果a<b<0,下列不等式中错误..的是( ) A 、ab >0 B 、a+b<0 C 、ba <1 D 、 a-b<02、不等式组⎩⎨⎧<-≤-122x x 的解集在数轴上表示正确的是( )3、如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .4、如图,直线y =3x,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按此做法进行下去,点A 5的坐标为(_______,_______).5、为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费.设某用户月用水量x 吨,自来水公司的应收水费为y 元.(1)试写出y (元)与x (吨)之间的函数关系式;(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?A . B-C-D136、某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.7、甲车从A地出发以60km/h的速度沿公路匀速行驶,0.5小时后,乙车也从A地出发,以80km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.请建立一次....函数关系....解决上述问题.8、某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?9、荆州素有“中国淡水鱼都”之美誉.某水产经销商在荆州鱼博会上批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?)。
《数学阅读理解问题》专题深化ok 4
《数学阅读理解问题》专题深化湖北竹溪城关中学2013届中考数学专题复习一、掌握新知识能力的阅读理解题1、【高中求和符号“∑”的意义】 (2012山东省临沂市)读一读:式子“1+2+3+4+……+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为∑=1001n n ,这里“∑”是求和符号,通过以上材料的阅读,计算∑=+20121n 1)(n 1n = .2、【高中对数的意义】(攀枝花)先阅读下列材料,再解答后面的问题材料:在23=8中,我们规定:3叫做以2为底8的对数,记为()38log 8log 22=即;在5 2 =25中,我们规定:2叫做以5为底25的对数,记为Log52 (即Log525 = 2 ) 。
这样,若()0,10>≠>=b a a b a n 且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即。
问题:(1)填空:===64log 16log 4log 222(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满 足怎样的关系式是: 。
(3)由(2)的结果,你能归纳出一个一般性的结论是: ()0,0,10log log >>≠>=+N M a a N M a a 且3、【高中一元二次不等式、分式不等式的解法】(04十堰市)先阅读理解下列例题,再按例题解一元二次不等式:6220x x -->解:把622x x --分解因式,得622x x --=(3x -2)(2x -1)又6220x x -->,所以(3x -2)(2x -1)>0 由有理数的乘法法则“两数相乘,同号得正”有 (1) 320210x x ->⎧⎨->⎩ 或(2)320210x x -<⎧⎨-<⎩解不等式组(1)得x>23 解不等式组(2)得x <12-所以(3x -2)(2x -1)>0的解集为x>23或x <12- 作业题:求分式不等式5123x x +-< 0的解集。
2013年历年初三数学中考模拟试卷及答案
2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。
2013届九年级数学复习题业
2013届中考数学总复习家庭作业 初三数学复习巩固练习(06)分式编写:徐建华 施建军 班级_____姓名______一、选择题1、若分式12+a 有意义,则a 的取值范围是( ) A 、a =0 B 、a =1 C 、a ≠-1 D 、a ≠0 2、若分式21+-x x 的值为0,则( ) A 、x =-2 B 、x =0 C 、x =1或x =-2 D 、x =1 3、如果把yx x+5的x 与y 都扩大10倍,那么这个代数式的值( ) A 、不变 B 、扩大50倍 C 、扩大10倍 D 、缩小为原来的1014、下列计算错误的是( )A 、b a b a b a b a -+=-+727.02.0B 、y x y x y x =3223C 、1-=--a b b aD 、cc c 321=+5、化简1211222+--÷-+a a a a a a 的结果是( )A 、a 1 B 、a C 、11-+a a D 、11+-a a 6、化简111212-÷⎪⎭⎫ ⎝⎛+-x x 的结果是( ) A 、2)1(1+x B 、2)1(1-x C 、(x +1)2 D 、(x -1)2 二、填空题7、若分式11||+-x x 的值为0,则x 的值为____ 8、若分式392+-a a 的值为0,则a 的值为_____ 9、化简123162--m m 得_____,当m =-1时,原式的值为_____10、已知实数x 满足31=+x x ,则221xx +的值为____ 11、若n m n m +=+711,则nm m n +的值为____12、已知三个数x 、y 、z 满足34,34,2-=+=+-=+x z zx z y yz y x xy ,则zxyz xy xyz++的值为_____三、解答题,13、计算:(1)aa a a a +-÷-2211 (2))13(112+++⋅-x x x x x14、先化简,再求值(1)b a bb a b ab a ++-+-22222,其中a =-2,b =1.(2)13)2)(1(4212-+÷⎥⎦⎤⎢⎣⎡-+-+x x x x x ,其中x =6.(3)已知x =3+1,y =3-1,求22222y x y xy x -+-的值.(4)112122+÷⎪⎭⎫ ⎝⎛-+++a a a a a ,其中a =(-1)2012+tan60°.(5)化简分式1211222+--÷⎪⎭⎫ ⎝⎛---x x x x x x x x,并从-1≤x ≤3中选一个你认为适合的整数x 代入求值.15、化简代数式x x xx x 12122-÷+-,并判断当x 满足不等式组⎩⎨⎧->-<+6)1(212x x 时该代数式的符号.16、先化简⎪⎭⎫⎝⎛-÷-+-x x x x x x 424422,然后从-5<x <5的范围内选取一个合适的整数作为x 的值代入求值.17、先化简,再求值:⎪⎭⎫ ⎝⎛--+÷--2526332m m m m m ,其中m 是方程x 2+3x -1=0的根.2013届中考数学总复习家庭作业初三数学复习巩固练习(07)二次根式编写:徐建华 施建军 班级_____姓名______一、选择题1、下列二次根式中与24是同类二次根式的是( )A 、18B 、30C 、48D 、542、使代数式12-x x有意义的x 的取值范围是( )A 、x ≥0B 、x ≠21 C 、x ≥0且x ≠21D 、一切实数 3、下列计算正确的是( )A 、a 6÷a 2=a 3B 、(a 3)2=a 2C 、25=±5D 、38-=-24、若5=a ,17=b ,则85.0的值用a 、b 可表示为 ( )A 、10b a + B 、10a b - C 、10ab D 、ab5、若代数式22)3()1(a a -+-的值等于常数2,则a 的取值范围是( )A 、a ≥3B 、a ≤1C 、1≤a ≤3D 、a =1或a =36、化简aa 1-的结果是 ( )A 、aB 、a -C 、-aD 、-a -7、能使等式22-=-x x x x成立的x 的取值范围是 ( )A 、x ≠2B 、x ≥0C 、x >2D 、x ≥2 8、下列计算正确的是 ( ) A 、0(2)0-=B 、239-=- C3= D=9、已知实数x ,y 满足8|4|-+-y x =0,则以x ,y 的值为两边长的等腰三角形的周长是( )A 、20或16B 、20C 、16D 、以上答案均不对 二、填空题1x 应满足的条件是 2、若y =22-+-x x +4,则xy 的平方根为_______3、当x 满足______时,0)3(11--++x xx 有意义4、x 取值范围是________. 5、若|x +y +4|+2)2(-x =0,则3x +2y =_____6、若y =x x x 21)1(122-+-+-,则(x +y )2008=_____7、实数a 、b 在数轴上的位置如图所示,则化简a b a ++2)(的结果为____81-=_______.9___________. 三、解答题1、计算(3)()138121-+-+ (4)()2321122101---+-⎪⎭⎫⎝⎛--(7))2352)(2352(-+ (8)0)2013(45sin 48-+︒-(9)2312127)3(0++-+-- (10)()18145cos 2183-⎪⎭⎫⎝⎛-︒-+-π(11)()10)30(sin 5813121-︒--+-+--(12)()20130)1(5152033-+---π3、数学课上,李老师出示了如下框中的题目.A小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AE DB (填“>”,“<”或“=”).CDD(2解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作//EF BC ,交AC 于点F .(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).2013届中考数学总复习家庭作业初三数学复习巩固练习(08)整式方程(解法)编写:徐建华 施建军 学号____姓名_____一、选择题1、已知x =-2是方程2x +m -4=0的一个根,则m 的值是 ( ) A 、8 B 、-8 C 、0 D 、22、关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值 为( ) A 、1 B 、-1 C 、1或-1 D 、213、方程032=-x 的根是( )A 、3=xB 、3,321-==x xC 、3=xD 、3,321-==x x4、已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( )A 、abB 、abC 、a b +D 、a b - 5、下列方程中,是关于x 的一元二次方程的是( )A 、3(x +1)2=2(x +1)B 、xx 112+-2=0 C 、ax 2+bx +c =0 D 、x 2+2x =x 2-1 6、方程(x +1)2=9的根为 ( ) A 、x =2 B 、x =-4 C 、x 1=2,x 2=-4 D 、x 1=0,x 2=47、一元二次方程x (x -2)=2-x 的根是( ) A 、-1 B 、2 C 、1和2 D 、-1和2 8、用配方法解方程x 2-2x -5=0时原方程变形为 ( ) A 、(x +1)2=6 B 、(x -1)2=6 C 、(x +2)2=9 D 、(x -2)2=99、若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为 ( ) A 、1 B 、2 C 、-1 D 、-2 二、填空题1、把方程4 —x 2 = 3x 化为ax 2 + bx + c = 0(a ≠0)形式为 ,则该方程的二次项系数、一次项系数和常数项分别为 。
数学九年级巩固第四单元测试题
数学九年级巩固第四单元测试题
由. 24.(10分)BE、CD是△ABC的高,F是BC边的中点,求证:△DEF是等腰三角形。
25.(10分)已知:△ABC中,AB=AC,B=30,BF=2,AB的垂直平分线EF交AB于E,交BC于F,求CF的长。
26.(10分)一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,这时测得BD的长为0.5米,求梯子顶端A下滑了多少米? 27.(10分)已知:ABC在同一直线上,BEAC,AB=BE,AD=CE 求证:①E ②AFCE 28.(10分)下表是学校数学兴趣小组测量教学楼高的实验报告的部分内容。
①完成上表中的平均值数据。
②若测量仪器高度为1.52m,根据上表数据求教学楼高AB。
2019年初中数学中考第一轮复习教学案 -------三角形单元测试参考答案一、
1.B
2.A
3.D
4.A
5.D
6.C
7.C
8.A
9.C 10.B
相关推荐
初三数学测试题之概率的计算测试题
初三数学练习题:命题与证明试题。
2013届九年级中考数学复习巩固练习(01)
- 1 -
初三数学复习巩固练习(
01)
有理数
班级_____姓名______
一、选择题
1、已知a 为实数,则下列四个数中一定为非负数的是()
A 、a
B 、-a
C 、|-a|
D 、-|-a|
2、-3的绝对值是()
A 、3 B
、-3 C
、-
3
1 D
、3
13、如果零2℃记作+2℃,那么零下3℃记作()
A 、-3℃
B 、-2℃
C 、+3℃
D 、+2℃
4、某年哈尔滨市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的
平均气温比一月份的平均气温高(
).
A 、16℃
B 、20℃ C
、一16℃ D
、一20℃
★5、在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树
与树、树与灯间的距离都是
10m ,如图,第一棵树左边
5m 处有一个路牌,则从此路牌起向
右510m~500m 之间树与灯的排列顺序是(
)
6、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是()
A 、0
ab B 、0
a b C 、
1
a b
D 、0
a
b
7、如图,数轴的单位长度为
1,如果点
A ,B
表示的数的绝对值相等,那么点A 表示的数是(
)
A 、-4
B 、-2
C 、0
D 、40
★8、下面是按一定规律排列的一列数:
a
b。
甘肃省兰州市九年级2013届中考数学模拟试卷(四)
word中考模拟试卷(四)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各式:①a 0=1 ②a 2·a 3=a 5③ 2–2= –41 ④–(3-5)+(–2)4÷8×(–1)=0 ⑤x 2+x 2=2x 2, 其中正确的是 ( )A ①②③B ①③⑤C ②③④D ②④⑤2.“恒盛”超市购进一批大米,大米的标准包装为每袋30kg ,售货员任选6袋进行了称重检验,超过标准重量的记作“+”, 不足标准重量的记作“-”,他记录的结果是0.5+,0.5-,0,0.5-,0.5-,1+,那么这6袋大米重量..的平均数和极差分别是 A .0,1.5B .29.5,1C . 30,1.5D .30.5,03.有如下图:①函数y=x -1的图象②函数y=x1的图象③一段圆弧④平行四边形,其中一定 是轴对称图形的有A. 1个B. 2个C. 3个D. 4个 4.如图是一个正六棱柱的主视图和左视图,则图中的a =( )A .23B .3C .2D .15.下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是A .甲比乙的成绩稳定 B. 乙比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D. 无法确定谁的成绩更稳定△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB= ( ) A 、125B 、512 C 、135 D 、1312 7.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于 A .20°B .30°C .40°D .50°第7题8.在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是A .1B .34 C .12 D .149.如图,将二次函数228999931+-=x x y 的图形画在坐标平面上,判断方程式ABDOC 班级______________________________________ 某某____________________ 考场号________________ 考号_______________----------------------------------------------------密---------------------------------封--------------------------------线------------------------------------------------0899993122=+-x x 的两根,下列叙述何者正确?第9题A .两根相异,且均为正根B .两根相异,且只有一个正根C .两根相同,且为正根D .两根相同,且为负根10.设m >n >0,m 2+n 2=4mn ,则m 2-n 2mn=【 】A .2 3B . 3C . 6D .311.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A2m B.3mC.6m D.9m12.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( )第12题A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)13.y (度),运行时间为t (分),当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是().14.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值X 围是( )第14题O第11题30 O 180 y (度 t (分)165 A.30 O180y (度 t (分)B.30 O180y 度 t (分)195 C.30 O180y (度 t (分)D.(-1,1)1y (2,2)2yxyO…A 1 AA 2 A 3B B 1B 2 B 3C C 2 C 1C 3DD 2D 1 D 3第15题A .x <-1B .—1<x <2C .x >2D . x <-1或x >215.如图,四边形ABCD 中,AC=a,BD=b,且AC ⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去,得到四边形A n B n D n .下列结论正确的有( )①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长4b a +; ④四边形A n B n D n 的面积是12+n abA.①②B.②③C.②③④D.①②③④二、填空题:本大题共5小题,每小题4分,共20分,把答案填写在题中横线上. 16.在中国旅游日(5月19日),我市旅游部门对2011年第一季度游客在某某的旅游时间作抽样调查,统计如下: 旅游时间 当天往返 2~3天 4~7天 8~14天 半月以上 合计 人数(人)7612080195300若将统计情况制成扇形统计图,则表示旅游时间为“2~3天”的扇形圆心角的度数为. 17.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x ___(写出一个即可)18.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF,旋转角为a (0°<a <180°),则∠a=______.19.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学复习巩固练习(04) 从面积到乘法公式(1)
一、选择题
1、已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是 ( )
A 、6
B 、2m -8
C 、2m
D 、-2m 2、若(x -3y)2
=(x +3y)2
+M ,则M 等于 ( )
A 、6xy
B 、-6xy
C 、±12xy
D 、-12xy
3、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A 、222()2a b a ab b +=++ B 、222()2a b a ab b -=-+ C 、22()()a b a b a b -=+- D 、22(2)()2a b a b a ab b +-=+- o
4、下列各式中计算正确的是
( )
A 、(2a +b )2=4a 2+b 2
B 、(m -n )2=m 2-n 2
C 、(-5x +2y )2=25x 2+10xy +4y 2
D 、(-x -y )2=x 2+2xy +y 2 5、x (1+x )-x (1-x )等于
( )
A 、0
B 、2x
C 、2x 2
D 、2x 2-2x 6、已知x +y =10,xy =24,则x 2+y 2的值为
( )
A 、52
B 、58
C 、76
D 、148 7、下列运算中正确的是
( )
A 、x 5+x 5=2x 10
B 、-(-x )3·(-x )5=-x 8
C 、(-2x 2y )3·4x -3=-24x 3y 3
D 、(
2
1x -3y )(-
2
1x +3y )=
4
1x 2-9y 2
8、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是: ( )
A 、()2222——b ab a b a +=
B 、()2
22
2b ab a b a ++=+
C 、()ab a b a a 2222+=+
D 、()()22——b a b a b a =+
a
图乙
图甲
9、计算()()b a b a --+33等于:
( )
A 、2269b ab a --
B 、2296a ab b --—
C 、229a b -
D 、229b a - 10、()
()212-+-x mx
x 的积中
x 的二次项系数为零,则m 的值是 ( )
A 、1
B 、-1
C 、-2
D 、2 二、填空题
1、a 2
+b 2
=(a -b )2
+ 2、(2a )3·(-3ab 2)=
3、若a -b =13, a 2
-b 2
=39,则a 2
+b 2
+2ab =
4、已知x m =9, x n =6,x k =2,则x m -2n +3k =
5、当a =3,a -b =1时,代数式a 2-ab 的值是______
6、已知a +b =5,ab =4,则代数式a 3b +2a 2b 2+ab 3的值是______
7、利用如图所示几何图形的面积可以表示的公式为_____
8、计算:()()=⨯⨯⨯24103105________;(用科学记数法表示)
()()b a b b a a --+=_____________.
9、(1) ·c b a c ab 532243—=; (2)()22——a b a = 22b ab +
10、计算:)(-23
9
13x x ∙
=________;24
(2)a --=________.
11、若a —b=2,3a +2b=3,则3a(a —b)+2b(a —b)= . 三、简答题
1、先化简,再求值:(2)(1)(1)x x x x +-+-, 其中12
x =-.
2、先化简,再求值:2
2
()()()2a b a b a b a +-++-,其中133
a b ==-,.
3、已知0342=+-x x ,求)x 1(21x 2
+--)(的值.
4、求值:22)32()32)(32(2)32(b a b a b a b a ++-+--,其中2-=a ,3
1=b
5、计算:
(1)2)32(n m -; (2))2)(2()3)(3(a b a b a b b a +-+-+-;
(3))2(6)2(23332x x x x x ++-; (4)2
2
34
3
)6
2()
2
1()2(---÷⨯+-
--;
(5)3
2
2
3
7
)()()(a a a a -÷-⋅÷-。
6、化简下列各式,并求值: (1)-2
1a 2bc ·4ab 2c 3
,其中a=-1,b=1,c =-
2
1.
(2)2(y -4)(3y +2)+5(-3y +7)(y +1),其中y=-3
1.
7、已知(a +b )2=7,(a -b )2=3,求下列各式的值. ①ab ②a 2+b 2
★8、阅读下列材料:
小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB 的中点O 旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG .请你参考小明的做法解决下列问题:
(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并 指明拼接成的平行四边形(画出一个..符合条件的平行四边形即可);
(2)如图4,在面积为2的平行四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,分别连结AF 、BG 、CH 、DE 得到一个新的平行四边形MNPQ .请在图4中探究平行四边形MNPQ 面积的大小(画图..并直接写出结果).
图1
图2
图3
A
D
G
C B
E Q
H
F
M N P 图4。