ISO EN 17636中文
ISO 17636:2003中文版 焊缝的无损检验.熔焊接头的放射检验
ISO国际标准化组织ISO 17636:2003焊缝的无损检测 —— 熔化焊接头的射线检测Non-destructive testing of welds —— Radiographic testing of fusion-welded joints(翻译稿)国际标准化组织 发布ww .b z f xw .c o m国际标准化组织标准焊缝的无损检测 —— 熔化焊接头的射线检测翻译单位:哈尔滨焊接研究所 翻 译:陈宇校 对:朴东光 编 辑:朴东光2006年8月ww .b zf xw .c o1 范围本国际标准规定了金属材料熔化焊接头射线检验的基本方法。
目标是通过经济的方法得到满意的和可重复的结果。
该方法总体基于该学科中认可的实践和基本原理。
本国际标准适用于板或管的熔化焊接头检验。
它遵循ISO5579中给出的规则。
本国际标准没有规定缺陷的验收等级。
注:由于本国际标准的目的,术语“管”适用于“导管”、“管”、“水管”、“锅炉”和“压力导管”。
2 规范性引用文件下列文件对于本标准的应用是不可或缺的。
对于注日期的引用文件,只能引用指定的版本。
对于未注日期的引用文件,应采用其最新版本(包含所有修改版)。
ISO2504 焊缝射线检验和胶片观察条件——推荐模式的图象质量指示器的使用 ISO5580 无损检测——工业射线照明——最低要求ISO11699-1 无损检测——工业射线胶片——第一部分:工业射线照相系统分级ISO11699-2 无损检测——工业射线胶片——第二部分:照相过程控制,通过参考值的方法3 术语和定义由于本文件的目的,使用以下术语和定义。
3.1 公称壁厚 t指母材的公称厚度。
注:制造偏差不予考虑。
3.2 透照厚度 w射线入射方向上的材料厚度,基于公称壁厚来计算。
注:多壁透照时的透照厚度由公称壁厚计算取得。
3.3工件—胶片的距离 b在射线中心束方向上被检工件的非射线照射一侧至胶片间的距离。
3.4射线源的尺寸 d放射性源的尺寸。
ISO17635:2003_焊缝的无损检测-金属材料熔化焊焊缝的一般原则
焊缝的无损检测—— 金属材料熔化焊焊缝的一般原则
1 范围
本标准给出了金属材料熔化焊无损检测方法选择指导,主要根据材料、焊缝 厚度、焊接工艺、质量控制细则和检测范围来选择。本标准规定了金属材料不同 检测方法应用的标准,以及方法选择活验收等级总则。测量方法可以单独(或组 合)使用。
本标准适用于下列材料及其合金(或其相互组合)的熔化焊焊缝的无损检测: ——钢铁; ——铝; ——铜; ——镍; ——钛。 注:本标准可用于其他金属材料的检测,但可能需要做进一步的规定。
6 人员资格
从事焊缝无损检验和最终结果评定的人员应具有资格和能力。人员资格的评 定建议按 ISO9712 或有关工业部门相应等级的类似标准。
Page 6 of 13
应用同一种方法。
8.2 检测后的文件
8.2.1 单独的检测记录 所有的检测结果应根据书面工艺规程或用于该方法的标准进行记录。 8.2.2 最终报告 对于每个被检构件或每组被检构件,其最终报告应包含检测计划所要求的信 息,至少包括如下: —构件标识; —被检焊缝标识和/或标识这些焊缝的文件编号; —实施检测的人员和机构标识; —根据按照相关检测标准编制的所有报告; —包含状态(没有检测、合格和不合格)在内的单独的检测记录; —应用的标准在检测技术和验收等级方面的偏差记录。
表面缺欠检查应在内部缺欠检测之前进行,一旦发现不合格表面缺陷,可以 将成本降到最低。
10.4 不合格缺陷
应规定处理不合格缺陷的规程,比如参考某个应用标准。 所有修复焊缝至少要按照原始焊缝的质量等级进行检测。 附录 D 给出了在不合格缺陷检查之后附加检测指南。
Page 9 of 13
附录 A (资料性附录)
本国际标准也给出了基于质量控制目的的无损检测结果评定导则,主要根据 材料、焊缝厚度、焊接工艺、质量控制细则和检测范围来选择。
BSENISO17638-2016焊缝的无损检验.磁粒子检验
BSENISO17638-2016焊缝的⽆损检验.磁粒⼦检验EUROPEAN STANDARD NORME EUROPéENNE EUROP?ISCHE NORM EN ISO 17638 November 2016ICS 25.160.40 Supersedes EN ISO 17638:2009English VersionNon-destructive testing of welds - Magnetic particletesting (ISO 17638:2016)Contr?le non destructif des assemblages soudés - Magnétoscopie (ISO 17638:2016) Zerst?rungsfreie Prüfung von Schwei?verbindungen - Magnetpulverprüfung (ISO 17638:2016)This European Standard was approved by CEN on 2 October 2016.CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.EUROPEAN COMMITTEE FOR STANDARDIZATIONC O M I TéE UR O PéE N DE N O R M A L I SA T I O NE UR O P?I SC HE S KO M I T E E FüR N O R M UN GCEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels2016 CEN All rights of exploitation in any form and by any means reservedworldwide for CEN national Members.Ref. No. EN ISO 17638:2016 EBS EN ISO 17638:2016EN ISO 17638:2016 (E)3European forewordThis document (EN ISO 17638:2016) has been prepared by Technical Committee ISO/TC 44 “Welding and allied processes” in collaboration with Technical Committee CEN/TC 121 “Welding and allied processes” the secretariat of which is held by DIN.This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2017, and conflicting national standards shall be withdrawn at the latest by May 2017.Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.This document supersedes EN ISO 17638:2009.According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.Endorsement noticeThe text of ISO 17638:2016 has been approved by CEN as EN ISO 17638:2016 without any modification.BS EN ISO 17638:2016ISO 17638:2016(E) Contents PageForeword (iv)1 Scope (1)2 Normative references (1)3 Terms and definitions (1)4 Safety precautions (1)5 General (1)5.1 Information required prior to testing (1)5.2 Additional pre-test information (2)5.3 Personnel qualification (2)5.4 Surface conditions and preparation (2)5.5 Magnetizing (2)5.5.1 Magnetizing equipment (2)5.5.2 Verification of magnetization (3)5.6 Application techniques (3)5.6.1 Field directions and testing area (3)5.6.2 Typical magnetic testing techniques (6)5.7 Detection media (9)5.7.1 General (9)5.7.2 Verification of detection media performance (9)5.8 Viewing conditions (10)5.9 Application of detection media (10)5.10 Overall performance test (10)5.11 False indications (10)5.12 Recording of indications (10)5.13 Demagnetization (11)5.14 Test report (11)Annex A (informative) Variables affecting the sensitivity of magnetic particle testing (13)Bibliography (15)ISO 2016 – All rights reserved iiiBS EN ISO 17638:2016ISO 17638:2016(E)ForewordISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see /doc/b748db97f68a6529647d27284b73f242326c3101.html /directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see/doc/b748db97f68a6529647d27284b73f242326c3101.html /patents).Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL:/doc/b748db97f68a6529647d27284b73f242326c3101.html /iso/foreword.html. The committee responsible for this document is ISO/TC 44, Welding and allied processes, Subcommittee 5, Testing and inspection of welds.This second edition cancels and replaces the first edition (ISO 17638:2003), which has been technically revised.Requests for official interpretations of any aspect of this document should be directed to the Secretariat of ISO/TC 44/SC 5 via your national standards body. A complete listing of these bodies can be found at /doc/b748db97f68a6529647d27284b73f242326c3101.html .ISO 2016 – All rights reservedBS EN ISO 17638:2016 INTERNATIONAL STANDARD ISO 17638:2016(E)Non-destructive testing of welds — Magnetic particle testing1 ScopeThis document specifies techniques for detection of surface imperfections in welds in ferromagnetic materials, including the heat affected zones, by means of magnetic particle testing. The techniques are suitable for most welding processes and joint configurations. Variations in the basic techniques that will provide a higher or lower test sensitivity are described in Annex A.This document does not specify acceptance levels of the indications. Further information on acceptance levels for indications may be found in ISO 23278 or in product or application standards.2 Normative referencesThe following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 3059, Non-destructive testing —Penetrant testing and magnetic particle testing — Viewing conditions ISO 9934-1:2015, Non-destructive testing — Magnetic particle testing — Part 1: General principles ISO 9934-2, Non-destructive testing — Magnetic particle testing — Part 2: Detection media ISO 9934-3, Non-destructive testing — Magnetic particle testing — Part 3: Equipment3 Terms and definitionsFor the purposes of this document, the terms and definitions given in ISO 12707 and ISO 17635 apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses:— IEC Electropedia: available at /doc/b748db97f68a6529647d27284b73f242326c3101.html /— ISO Online browsing platform: available at /doc/b748db97f68a6529647d27284b73f242326c3101.html /obp4 Safety precautionsSpecial consideration shall be given to toxic, inflammable and/or volatile materials, electrical safety and unfiltered UV radiation.Magnetic particle testing often creates high magnetic fields close to the object under test and the magnetising equipment. Items sensitive to these fields should be excluded from such areas.5 General5.1 Information required prior to testingPrior to testing, the following items shall be specified (where applicable):a)specific test procedure;b)certification requirements for NDT personnel;ISO 2016 – All rights reserved 1BS EN ISO 17638:2016ISO 17638:2016(E)extent of coverage;state of manufacture;testing techniques to be used;overall performance test;any demagnetization;acceptance level;action necessary for unacceptable indications.5.2 Additional pre-test informationPrior to testing, the following additional information can also be required:type and designation of the parent and weld materials;welding process;location and extent of welds to be tested;joint preparation and dimensions;location and extent of any repairs;post-weld treatment (if any);surface conditions.Operators may ask for further information that could be helpful in determining the nature of any indications detected.5.3 Personnel qualificationMagnetic particle testing of welds and the evaluation of results for final acceptance shall be performed by qualified and capable personnel. It is recommended that personnel be qualified in accordance with ISO 9712 or an equivalent standard at an appropriate level in the relevant industry sector.5.4 Surface conditions and preparationAreas to be tested shall be dry unless appropriate products for wet surfaces are used. It may be necessary to improve the surface condition, e.g. by use of abrasive paper or local grinding to permit accurate interpretation of indications.Any cleaning or surface preparation shall not be detrimental to the material, the surface finish or the magnetic testing media. Detection media shall be used within the temperature range limitations set by the manufacturer.5.5 Magnetizing5.5.1 Magnetizing equipmentGeneral magnetization requirements shall be in accordance with ISO 9934-1:2015, Clause 8. Unless otherwise specified, for example, in an application standard, the following types of alternating current-magnetizing equipment shall be used: electromagnetic yokes;ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)b)current flow equipment with prods;c)adjacent or threading conductors or coil techniques.DC electromagnets and permanent magnets may only be used by agreement at the time of enquiry and order.The magnetizing equipment shall conform to ISO 9934-3.Where prods are used, precautions shall be taken to minimize overheating, burning or arcing at the contact tips. Removal of arc burns shall be carried out where necessary. The affected area shall be tested by a suitable method to ensure the integrity of the surface.5.5.2 Verification of magnetizationFor the verification of magnetization, see ISO 9934-1:2015, 8.2.For structural steels in welds, a tangential field between 2 kA/m to 6 kA/m (r.m.s.) is recommended. The adequacy of the surface flux density shall be established by one or more of the following methods: a)by testing a representative component containing fine natural or artificial discontinuities in the least favourable locations;b)measurement of the tangential field strength as close as possible to the surface using a Hall effect probe; the appropriate tangential field strength can be difficult to measure close to abrupt changes in the shape of a component or where flux leaves the surface of a component;c)calculation of the approximate current value in order to achieve the recommended tangential field strength; the calculation can be based on the current values specified in Figure 5 and Figure 6;d)by the use of other methods based on established principles.Flux indicators (i.e. shim-type) placed in contact with the surface under test provide a guide to the magnitude and direction of the tangential field strength, but should not be used to verify that the tangential field strength is acceptable.NOTE Information on b) is given in ISO 9934-3.5.6 Application techniques5.6.1 Field directions and testing areaThe detectability of an imperfection depends on the angle of its major axis with respect to the direction of the magnetic field. This is explained for one direction of magnetization in Figure 1.ISO 2016 – All rights reserved 3BS EN ISO 17638:2016ISO 17638:2016(E)Keymagnetic field direction αangle between the magnetic field and the direction of the imperfection optimum sensitivity αmin minimum angle for imperfection detection reducing sensitivity αi example of imperfection orientationinsufficient sensitivityFigure 1 — Directions of detectable imperfectionsTo ensure detection of imperfections in all orientations, the welds shall be magnetized in two directionsapproximately perpendicular to each other with a maximum deviation of 30°. This can be achieved using one or more magnetization methods.Testing in only one field direction is not recommended but may be carried out if specified, for example, in an application standard.When using yokes or prods, there will be an area of the component in the vicinity of each pole piece or tip that will be impossible to test due to excessive magnetic field strength. This is usually seen as furring of particles.Care shall be taken to ensure adequate overlap of the testing areas as shown in Figure 2 and Figure 3.ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)Dimensions in millimetresKeyd separation between the poles (yoke/prod )Figure 2 — Examples of effective testing area (shaded) for magnetizing with yokes and prods ? ISO 2016 – All rights reserved 5BS EN ISO 17638:2016ISO 17638:2016(E)Keyeffective area overlapFigure 3 — Overlap of effective areas5.6.2 Typical magnetic testing techniquesMagnetic particle testing techniques for common weld joint configurations are shown in Figure 4, Figure 5 and Figure 6. Values are given for guidance purposes only. Where possible, the same directions of magnetization and field overlaps should be used for other weld geometries to be tested. The width of the flux current (in case of flux current technique) or of the magnetic flow (in case of magnetic flow technique) path in the material, d , shall be greater than or equal to the width of the weld and the heat affected zone +50 mm and in all cases, the weld and the heat affected zone shall be included in the effective area. The direction of magnetization with respect to the orientation of the weld shall be specified.ISO 2016 – All rights reservedBS EN ISO 17638:2016 ISO 17638:2016(E)Dimensions in millimetresd ≥ 75b ≤ d/2β≈ 90od1 ≥ 75b1 ≤ d1/2b2 ≤ d2 – 50d2≥ 75d1 ≥ 75d2 ≥ 75b1 ≤ d1/2b2 ≤ d2 ? 50d1 ≥ 75d2 > 75b1 ≤ d1/2b2 ≤ d2 ? 50Key1longitudinal cracks2transverse cracksFigure 4 — Typical magnetizing techniques for yokes ISO 2016 – All rights reserved 7BS EN ISO 17638:2016 ISO 17638:2016(E)Dimensions in millimetresd ≥ 75b ≤ d/2β≈ 90od ≥ 75b ≤ d/2d ≥ 75b ≤ d/2d ≥ 75b ≤ d/2Figure 5 — Typical magnetizing techniques for prods, using a magnetizing current prod spacing ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)Dimensions in millimetres20 ≤ a ≤ 50 N ·I ≥ 8D 20 ≤ a ≤ 50 N ·I ≥ 8D20 ≤ a ≤ 50 N ·I ≥ 8DKeyN number of turns I current (r.m.s)a distance between weld and coil or cableFigure 6 — Typical magnetizing techniques for flexible cables or coils (for longitudinal cracks)5.7 Detection media5.7.1 GeneralDetection media may be either in dry powder form or magnetic inks in accordance with ISO 9934-2.5.7.2 Verification of detection media performanceThe detection media used shall fulfil the requirements of ISO 9934-2.ISO 2016 – All rights reserved9BS EN ISO 17638:2016ISO 17638:2016(E)Indications obtained with the medium to be verified shall be compared against those obtained from a medium having a known and acceptable performance. For this purpose, the reference indications may be real imperfections,photograph(s), andreplica(s).5.8 Viewing conditionsThe viewing conditions shall be in accordance with ISO 3059.5.9 Application of detection mediaAfter the object has been prepared for testing, the detection medium shall be applied by spraying, flooding or dusting immediately prior to and during the magnetization. Following this, time shall be allowed for indications to form before removal of the magnetic field.When magnetic suspensions are used, the magnetic field shall be maintained within the object until the majority of the suspension carrier liquid has drained away from the test surface. This will prevent any indications being washed away.Depending on the material being tested, its surface condition and magnetic permeability, indications will normally remain on the surface even after removal of the magnetic field due to residual magnetism within the part (mainly at the location of the poles). However, the presence of residual magnetism shall not be presumed and post evaluation techniques after removal of the prime magnetic field source are only permitted when a component has been proven by an overall performance test to retain magnetic indications.5.10 Overall performance testWhen specified, an overall performance test of the system sensitivity for each procedure shall be carried out on site. The performance test shall be designed to ensure a proper functioning of the entire chain of parameters including the equipment, the magnetic field strength and direction, surface characteristics, detection media and illumination.The most reliable test is to use representative test pieces containing real imperfections of known type, location, size and size-distribution. Where these are not available, fabricated test pieces with artificial imperfections or flux shunting indicators of the cross or disc or shim-type may be used.The test pieces shall be demagnetized and free from indications resulting from previous tests.NOTE It can be necessary to perform an overall performance test of the system sensitivity for each specific procedure on site.5.11 False indicationsFalse indications which may mask relevant indications can arise for many reasons, such as changes in magnetic permeability, very important geometry variation in, for example, the heat affected zone. Where masking is suspected, the test surface shall be dressed or alternative test methods should be used.5.12 Recording of indicationsIndications can be recorded in one or more of the following ways by using: description in writing;sketches;10 ? ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)c)photography;d)transparent adhesive tape;e)transparent varnish for “freezing” the indication on the surface tested;f)peelable contrast coating;g)video recording;h)magnetic particle dispersion in an epoxy curable resin;i)magnetic tapes;j)electronic scanning.5.13 DemagnetizationAfter testing welds with alternating current, residual magnetization will normally be low and there will generally be no need for demagnetization of the object under test. If demagnetization is required, it shall be carried out using a defined method and to a predefined level. For metal cutting processes, a typical residual field strength value of H < 0,4 kA/m is recommended.5.14 Test reportA test report shall be prepared.The report should contain at least the following:a)name of the company carrying out the test;b)the object tested;c)date of testing;d)parent and weld materials;e)any post weld heat treatment;f)type of joint;g)material thickness;h)welding process(es);i)temperature of the test object and the detection media (when using media in circulation) throughout testing duration;j)identity of the test procedure and description of the parameters used, including the following:— type of magnetization;— type of current;— detection media;— viewing conditions;k)details and results of the overall performance test, where applicable;l)acceptance levels;ISO 2016 – All rights reserved 11BS EN ISO 17638:2016ISO 17638:2016(E)m)description and location of all recordable indications;test results with reference to acceptance levels;names, relevant qualification and signatures of personnel who carried out the test.12 ? ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)Annex A(informative)Variables affecting the sensitivity of magnetic particle testingA.1 Surface conditions and preparationThe maximum test sensitivity that can be achieved by any magnetic testing method is dependent on many variables but can be seriously affected by the surface roughness of the object and any irregularities present. In some cases, it can be necessary to— dress undercut and surface irregularities by grinding, and— remove or reduce the weld reinforcement.Surfaces covered with a thin non-ferromagnetic coatings up to 50 µm thickness may be tested provided the colour is contrasting with the colour of the detection medium used. Above this thickness, the sensitivity of the method decreases and may be demonstrated to be sufficiently sensitive before proceeding with the test.A.2 Magnetizing equipment characteristicsThe use of alternating current gives the best sensitivity for detecting surface imperfections. Yokes produce an adequate magnetic field in simple butt-welds but where the flux is reduced by gaps or the path is excessive through the object, as in T-joints a reduction of sensitivity can occur.For complex joint configurations, i.e. branch connections with an inclined angle of less than 90°, testing using yokes might be inadequate. Prods or cable wrapping with current flow will, in these cases, prove more suitable.A.3 Magnetic field strength and permeabilityThe field strength required to produce an indication strong enough to be detected during magnetic particle testing is dependent mainly on the magnetic permeability of the object. Generally, magnetic permeability is high in softer magnetic materials, for example, low alloy steels and low in harder magnetic materials, i.e. martensitic steels. Because permeability is a function of the magnetizing current, low permeability materials usually require application of a higher magnetization value than do softer alloys to produce the same flux density. It is essential, therefore, to establish that flux density values are adequate before beginning the magnetic particle testing.A.4 Detection mediaMagnetic particle suspensions will usually give a higher sensitivity for detecting surface imperfections than dry powders.Fluorescent magnetic detection media usually give a higher test sensitivity than colour contrast media, because of the higher contrast between the darkened background and the fluorescent indication. The sensitivity of the fluorescent method will, nevertheless, decrease in proportion to any increase in the roughness of the surface to which magnetic particles adhere and can cause a disturbing background fluorescence.ISO 2016 – All rights reserved 13BS EN ISO 17638:2016ISO 17638:2016(E)Where the background illumination cannot be adequately lowered or where background fluorescence is disturbing, coloured detection media in conjunction with the smoothing effect of a contrast aid will usually give better sensitivity.14 ? ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)Bibliography[1] ISO 9712, Non-destructive testing — Qualification and certification of NDT personnel[2] ISO 12707, Non-destructive testing — Magnetic particle testing — Vocabulary[3] ISO 17635, Non-destructive testing of welds — General rules for metallic materials[4] ISO 23278, Non-destructive testing of welds — Magnetic particle testing — Acceptance levels ? ISO 2016 – All rights reserved 15。
ISO EN 17636中文
焊缝的无损试验——熔焊接点的放射检验目录1.范围 (2)2.标准的参考文献 (2)3.术语和定义 (2)3.1额定厚度t (2)3.2穿透深度w (2)3.3 物体到胶片的距离b (3)3.4射线源大小d (3)3.5 射线源到胶片的距离SFD (3)3.6射线源到物体的距离f (3)3.7直径De (3)4符号和缩写 (3)5.放射技术的等级 (3)6概述 (4)6.1致电离射线辐射的防护 (4)6.2表面准备和生产步骤 (4)6.3在放射照片中焊缝的位置 (4)6.4 放射的标识 (4)6.5标注 (5)6.6胶片的重叠 (5)6.7图像质量指数的类型和位置 (5)6.8图像质量的评估 (6)6.9最低图像质量值 (6)6.10人员资格 (6)7进行辐射摄影建议的技术 (6)7.1检验调节 (6)7.2电压和辐射源的选择 (9)7.3胶片体系和屏幕 (10)7.4光束的调准 (12)7.5扩散辐射的减少 (12)7.6辐射源至物体的距离 (12)7.7一个单独照射的最大区域 (13)7.8辐射摄影术的色度 (14)7.9处理 (14)7.10胶片观测条件 (14)8试验报告 (15)附录A(规范化的) (16)铁材料的最低图像质量值 (16)A.1单面墙技术,IQI在辐射源边 (16)附录B(介绍性的) (20)圆形对接焊合格试验的参考曝光数量 (20)参考文献 (21)1.范围本国际标准规定了金属材料熔焊接点放射检验的基本技术。
采用最经济的方法来获得满意效果和可以复验的结果。
该技术是基于普遍认可的实践和基础性理论基础上的。
此国际标准适用于板或管上的熔焊接点的试验。
它是根据ISO5579上的基本条款的。
此国际标准没有规定读数的验收等级。
2.标准的参考文献下列参考文献是本标准应用不可缺少的部分,对于有日期的参考,只有标注日期的版本有效,对于没有标注日期的参考,采用最新的版本(包括任何的修订本)。
BSEN英国及欧洲标准中文版
DIN 2641:1975版 翻边环板式活套法兰(PN=0.6,1.0MPa)
DIN 2642:1975版 翻边环板式活套法兰(PN=0.6,1.0MPa)
DIN 2655:1975版 平焊环板式活套法兰(PN=0.25~4.0MPa)
BS EN 13709-2002版 工业阀门-一钢制截止阀和截止止回阀
BS EN 13789-2002版 工业阀门-一铸铁载止阀
DIN、BS EN标准合订本 德国及欧洲法兰标准中译本
DIN 2628~2629:1975版 颈焊法兰(PN=0.25~25.0MPa)
DIN 2638:1975 版 颈焊法兰(PN=0.25~25.0MPa)
BS EN 10204-2004 金属产品—检测文件类型(METALLIC PRODUCTS - TYPES OF INSPECTION DOCUMENTS)
BS EN 1369-1997 铸造—磁粒检测(FOUNDING - MAGNETIC PARTICLE INSPECTION )
BS EN 1370-1997 铸造—目视比较仪检查表面粗糙度(FOUNDING - SURFACE ROUGHNESS INSPECTION BY VISUAL TACTILE COMPARATORS)
BS EN 287-1-2004(R2007) 焊工资格认证试验—熔化焊—第一部分:钢材(QUALIFICATION TEST OF WELDERS - FUSION WELDING - PART 1: STEELS )
BS EN 444-1994 无损检测用X和γ射线对金属材料进行射线检查的一般原则(NON-DESTRUCTIVE TESTING - GENERAL PRINCIPLES FOR RADIOGRAPHIC EXAMINATION OF METALLIC MATERIALS BY X- AND GAMMA-RAYS )
焊接工艺评定及工作试件精品文档
7 、试件的检验及评定
• 7.1 检验的范围 检验既包括无损检验(DNT)及破坏性检验,检验应符合表1
的要求。
执行标准可指定额外的试验,例如:
——焊缝纵向拉伸试验; ——焊缝金属弯曲试验或特殊焊缝金属弯曲 试 验,以测量延伸率; ——拉伸试验,用于0.2%屈服强度和(或) 延伸 率的测定; ——化学成分分析; ——十字接头的评定。
程序规范——第品1部质协分会(:www电.Pin弧Zhi.焊org)(@yIhSj31O06 分15享609-1:2004)
2、 参考标准
EN ISO 15613金属材料焊接程序的规范与认可——基 于前产品焊接测试的认可(ISO 15613:2004)
ISO 4136 金属材料焊接的破坏性试验——横向拉伸试 验
• t 材料厚度
品质协会() @yhj3106 分享
6.2.4 T型接头
试件按照图3准备。
可以用于全焊透的对接接头或角接接头。
图3 T型接头试样
注:
1焊接一面或者两面,按照 预焊接工艺规范(pWPS) 制备和清理焊接接头
a 最小值150mm b 最小值300mm t 材料厚度
试样和对接接头横向拉伸试验按照ISO 4136规定执行。
对外径大于50mm的管材,应该打磨管材 内外两侧的焊缝超高金属,使试样厚度与管 壁厚度相等。
对于小于等于50mm的管材,当使用全截 面小直径管材时,管材内表面的超高焊缝金 属可以保留不打磨。
品质协会() @yhj3106 分享
品质协会() @yhj3106 分享
图8 管材支管连接或角焊的试样选取区域
注: α 分支角度 在A、A1、B和B1位置选取宏观试样 在A位置选取微观试样
家具出口欧洲英国美国-测试及认证标准大全
家具出口欧洲英国美国-测试及认证标准大全家具出口欧洲/英国/美国测试认证标准对照表欧洲市场相关机械测试标准EN 1335-1: 办公家具–办公室工作椅–第一部分: 尺寸EN 1335-2: 办公家具–办公室工作椅–第二部分: 安全要求EN 1335-3: 办公家具–办公室工作椅–第三部分: 测试方法EN 1728: 家用–座椅–测试方法 -强度和耐久测试prEN 12521: 家具 - 强度,耐久和安全 - 家用桌子的要求DIN 68877: 工作转椅; 安全要求测试EN 13761: 办公家具–访客椅EN 1730: 家用家具–桌子 - 强度,耐久与平衡性测试方法EN 15372: 家具–强度,耐久与安全 -非家用桌子要求EN 527-1: 办公家具–工作台和桌子 - 第一部分: 尺寸EN 527-2: 办公家具–工作台和桌子 - 第二部分: 机械安全要求EN 527-3: 办公家具–工作台和桌子 - 第三部分: 平衡性和结构机械强度测试方法EN 14074: 办公家具–台,桌和储物家具 - 可移动部件的强度和耐久测试方法EN 14073-1: 办公家具–储物家具 - 第一部分: 尺寸EN 14073-2: 办公家具–储物家具 - 第二部分: 安全要求EN 14073-3: 办公家具–储物家具 - 第三部分: 平衡性和结构强度测试方法 EN 13453-1: 家具–非家居使用双层床和高床–第一部分: 安全,强度和耐久要求EN 13453-2: 家具–非家居使用双层床和高床–第二部分: 测试方法EN 1023-1: 办公家具–屏风 - 第一部分: 尺寸EN 1023-2: 办公家具–屏风 - 第二部分: 机械安全要求EN 1023-3: 办公家具–屏风 - 第三部分: 测试方法BS 4875-8 家具–强度和平衡性–非家居使用家具的平衡性测试方法美国市场相关机械测试标准ANSI/BIFMA X5.1-办公家具美国国家标准-普通用途办公椅ANSI/BIFMA X5.3-办公家具美国国家标准-直立式档案柜ANSI/BIFMA X5.4-办公家具美国国家标准-休闲椅ANSI/BIFMA X5.5-办公家具美国国家标准-工作台,办公桌ANSI/BIFMA X5.6-办公家具美国国家标准-组合式办公系统ANSI/BIFMA X5.9-办公家具美国国家标准-储物家具ANSI/SOHO S6.5-办公家具美国国家标准-小办公室/家庭办公室户外家具欧洲市场相关机械测试标准EN 581-1: 户外家具–露营,家居和公共场合使用座椅和桌子–第一部分: TESTINGCNAS L3428一般安全要求EN 581-2: 户外家具-露营,家居和公共场合使用座椅和桌子–第二部分: 座椅机械安全要求和测试方法EN 581-3: 户外家具-露营,家居和公共场合使用座椅和桌子–第三部分: 桌子机械安全要求和测试方法EN 1022: 家居–座椅–平衡性美国市场相关机械测试标准ASTM F 1988: 带或不带可移动扶手, 带可调整靠背的户外塑料休闲椅性能要求标准,ASTM F 1561: 户外塑料椅性能要求标准ASTM F 1838: 户外儿童塑料椅性能要求标准ASTM F 1858: 带可调整靠背或后仰装置的多位户外塑料椅子性能要求标准青少年/儿童家具欧洲市场相关机械测试标准EN 1729-1: 家具–教育机构使用座椅与桌子–第一部分: 功能尺寸EN 1729-2: 家具–教育机构使用座椅与桌子–第二部分: 安全要求与测试方法EN 716-1: 儿童家用轻便小床和折叠床–第一部分:安全要求EN 716-2: 儿童家用轻便小床和折叠床–第二部分:测试方法EN 14988-1: 儿童高脚椅 - 第一部分:安全要求EN 14988-2: 儿童高脚椅 - 第二部分:测试方法;EN 747-1: 家具–家居使用双层床和高床–第一部分: 安全,强度和耐久要求EN 747-2: 家具–家居使用双层床和高床–第二部分:测试方法EN 1130-1: 家具–家用婴儿床和摇篮 - 第一部分:安全要求EN 1130-2: 家具–家用婴儿床和摇篮 - 第二部分:测试方法EN 12221-1: 家居使用换尿布台–第一部分:安全要求EN 12221-2: 家居使用换尿布台–第二部分:测试方法美国市场相关机械测试标准16 CFR 1500: 有害物质16 CFR 1303: 含铅禁令16 CFR 1501: 小部件窒息或吞食鉴别16 CFR 1500.48/49: 锐边/锐角16 CFR 500: 包装和标签法令FPLA16 CFR 1508: 标准尺寸婴儿床要求16 CFR 1509: 非标准尺寸婴儿床要求16 CFR 1213: 双层床夹伤危险的安全标准16 CFR 1513: 双层床要求ASTM F 1169: 标准尺寸标准规范ASTM F 1427: 双层床安全标准规范ASTM F 1917: 婴儿被褥和相关配件的消费安全性能标准规范ASTM F 1967a: 婴儿沐浴座椅的消费安全标准规范ASTM F 2613: 儿童折叠椅消费安全标准规范ASTM F 404: 高脚椅安全规范标准ASTM F 406: 非标准尺寸婴儿床/游乐园安全规范标准UL 2275: 标准尺寸婴儿床测试标准家用家具欧洲市场相关机械测试标准EN 1730: 家用家具–桌子–强度,耐久和平衡性的测试方法EN 12521: 家具 - 强度,耐久和安全–家用桌子要求EN 1022: 家用–座椅–平衡性EN 1728: 家用–座椅–测试方法–强度和耐久prEN 12520: 强度,耐久和安全 - 家用座椅要求EN 14749: 家用和厨房储物家具和操作面 - 安全要求和测试方法EN 1725 : 家用家具–床和床垫–安全要求和测试方法BS 4875-1: 家具–强度和平衡性–家居座椅结构的强度和耐久要求BS 4875-5: 家具–强度和平衡性–家用手推车和桌子的强度,耐久和平衡性要求美国市场相关机械测试标准ASTM F 1912: 豆袋椅安全规范标准ASTM F 2057: 柜,门柜和梳妆台的安全规范标准家具五金配件欧洲市场相关机械测试标准EN 15570: 家具五金 - 铰链与其配件的强度和耐久测试–垂轴固定的门铰 EN 15338: 家具五金 - 可拉伸部件与其配件的强度和耐久测试EN 12529/12527: 脚轮我中心出具检测报告权威专业可靠,全球认可。
BSENISO17638-2016焊缝的无损检验.磁粒子检验
EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN ISO 17638 November 2016ICS 25.160.40 Supersedes EN ISO 17638:2009English VersionNon-destructive testing of welds - Magnetic particletesting (ISO 17638:2016)Contrôle non destructif des assemblages soudés - Magnétoscopie (ISO 17638:2016) Zerstörungsfreie Prüfung von Schweißverbindungen - Magnetpulverprüfung (ISO 17638:2016)This European Standard was approved by CEN on 2 October 2016.CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.EUROPEAN COMMITTEE FOR STANDARDIZATIONC O M I TÉE UR O PÉE N DE N O R M A L I SA T I O NE UR O PÄI SC HE S KO M I T E E FÜR N O R M UN GCEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels© 2016 CEN All rights of exploitation in any form and by any means reservedworldwide for CEN national Members.Ref. No. EN ISO 17638:2016 EBS EN ISO 17638:2016EN ISO 17638:2016 (E) 3European forewordThis document (EN ISO 17638:2016) has been prepared by Technical Committee ISO/TC 44 “Welding and allied processes” in collaboration with Technical Committee CEN/TC 121 “Welding and allied processes” the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2017, and conflicting national standards shall be withdrawn at the latest by May 2017. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes EN ISO 17638:2009. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. Endorsement noticeThe text of ISO 17638:2016 has been approved by CEN as EN ISO 17638:2016 without any modification.BS EN ISO 17638:2016ISO 17638:2016(E) Contents PageForeword (iv)1 Scope (1)2 Normative references (1)3 Terms and definitions (1)4 Safety precautions (1)5 General (1)5.1 Information required prior to testing (1)5.2 Additional pre-test information (2)5.3 Personnel qualification (2)5.4 Surface conditions and preparation (2)5.5 Magnetizing (2)5.5.1 Magnetizing equipment (2)5.5.2 Verification of magnetization (3)5.6 Application techniques (3)5.6.1 Field directions and testing area (3)5.6.2 Typical magnetic testing techniques (6)5.7 Detection media (9)5.7.1 General (9)5.7.2 Verification of detection media performance (9)5.8 Viewing conditions (10)5.9 Application of detection media (10)5.10 Overall performance test (10)5.11 False indications (10)5.12 Recording of indications (10)5.13 Demagnetization (11)5.14 Test report (11)Annex A (informative) Variables affecting the sensitivity of magnetic particle testing (13)Bibliography (15)© ISO 2016 – All rights reserved iiiBS EN ISO 17638:2016ISO 17638:2016(E)ForewordISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see /directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see /patents).Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: /iso/foreword.html. The committee responsible for this document is ISO/TC 44, Welding and allied processes, Subcommittee 5, Testing and inspection of welds.This second edition cancels and replaces the first edition (ISO 17638:2003), which has been technically revised.Requests for official interpretations of any aspect of this document should be directed to the Secretariat of ISO/TC 44/SC 5 via your national standards body. A complete listing of these bodies can be found at .© ISO 2016 – All rights reservedBS EN ISO 17638:2016 INTERNATIONAL STANDARD ISO 17638:2016(E)Non-destructive testing of welds — Magnetic particle testing1 ScopeThis document specifies techniques for detection of surface imperfections in welds in ferromagnetic materials, including the heat affected zones, by means of magnetic particle testing. The techniques are suitable for most welding processes and joint configurations. Variations in the basic techniques that will provide a higher or lower test sensitivity are described in Annex A.This document does not specify acceptance levels of the indications. Further information on acceptance levels for indications may be found in ISO 23278 or in product or application standards.2 Normative referencesThe following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 3059, Non-destructive testing — Penetrant testing and magnetic particle testing — Viewing conditions ISO 9934-1:2015, Non-destructive testing — Magnetic particle testing — Part 1: General principles ISO 9934-2, Non-destructive testing — Magnetic particle testing — Part 2: Detection media ISO 9934-3, Non-destructive testing — Magnetic particle testing — Part 3: Equipment3 Terms and definitionsFor the purposes of this document, the terms and definitions given in ISO 12707 and ISO 17635 apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses:— IEC Electropedia: available at /— ISO Online browsing platform: available at /obp4 Safety precautionsSpecial consideration shall be given to toxic, inflammable and/or volatile materials, electrical safety and unfiltered UV radiation.Magnetic particle testing often creates high magnetic fields close to the object under test and the magnetising equipment. Items sensitive to these fields should be excluded from such areas.5 General5.1 Information required prior to testingPrior to testing, the following items shall be specified (where applicable):a)specific test procedure;b)certification requirements for NDT personnel;© ISO 2016 – All rights reserved 1BS EN ISO 17638:2016ISO 17638:2016(E)extent of coverage;state of manufacture;testing techniques to be used;overall performance test;any demagnetization;acceptance level;action necessary for unacceptable indications.5.2 Additional pre-test informationPrior to testing, the following additional information can also be required:type and designation of the parent and weld materials;welding process;location and extent of welds to be tested;joint preparation and dimensions;location and extent of any repairs;post-weld treatment (if any);surface conditions.Operators may ask for further information that could be helpful in determining the nature of any indications detected.5.3 Personnel qualificationMagnetic particle testing of welds and the evaluation of results for final acceptance shall be performed by qualified and capable personnel. It is recommended that personnel be qualified in accordance with ISO 9712 or an equivalent standard at an appropriate level in the relevant industry sector.5.4 Surface conditions and preparationAreas to be tested shall be dry unless appropriate products for wet surfaces are used. It may be necessary to improve the surface condition, e.g. by use of abrasive paper or local grinding to permit accurate interpretation of indications.Any cleaning or surface preparation shall not be detrimental to the material, the surface finish or the magnetic testing media. Detection media shall be used within the temperature range limitations set by the manufacturer.5.5 Magnetizing5.5.1 Magnetizing equipmentGeneral magnetization requirements shall be in accordance with ISO 9934-1:2015, Clause 8. Unless otherwise specified, for example, in an application standard, the following types of alternating current-magnetizing equipment shall be used: electromagnetic yokes;© ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)b)current flow equipment with prods;c)adjacent or threading conductors or coil techniques.DC electromagnets and permanent magnets may only be used by agreement at the time of enquiry and order.The magnetizing equipment shall conform to ISO 9934-3.Where prods are used, precautions shall be taken to minimize overheating, burning or arcing at the contact tips. Removal of arc burns shall be carried out where necessary. The affected area shall be tested by a suitable method to ensure the integrity of the surface.5.5.2 Verification of magnetizationFor the verification of magnetization, see ISO 9934-1:2015, 8.2.For structural steels in welds, a tangential field between 2 kA/m to 6 kA/m (r.m.s.) is recommended. The adequacy of the surface flux density shall be established by one or more of the following methods: a)by testing a representative component containing fine natural or artificial discontinuities in the least favourable locations;b)measurement of the tangential field strength as close as possible to the surface using a Hall effect probe; the appropriate tangential field strength can be difficult to measure close to abrupt changes in the shape of a component or where flux leaves the surface of a component;c)calculation of the approximate current value in order to achieve the recommended tangential field strength; the calculation can be based on the current values specified in Figure 5 and Figure 6;d)by the use of other methods based on established principles.Flux indicators (i.e. shim-type) placed in contact with the surface under test provide a guide to the magnitude and direction of the tangential field strength, but should not be used to verify that the tangential field strength is acceptable.NOTE Information on b) is given in ISO 9934-3.5.6 Application techniques5.6.1 Field directions and testing areaThe detectability of an imperfection depends on the angle of its major axis with respect to the direction of the magnetic field. This is explained for one direction of magnetization in Figure 1.© ISO 2016 – All rights reserved 3BS EN ISO 17638:2016ISO 17638:2016(E)Keymagnetic field direction αangle between the magnetic field and the direction of the imperfection optimum sensitivity αmin minimum angle for imperfection detection reducing sensitivity αi example of imperfection orientationinsufficient sensitivity Figure 1 — Directions of detectable imperfectionsTo ensure detection of imperfections in all orientations, the welds shall be magnetized in two directions approximately perpendicular to each other with a maximum deviation of 30°. This can be achieved using one or more magnetization methods.Testing in only one field direction is not recommended but may be carried out if specified, for example, in an application standard.When using yokes or prods, there will be an area of the component in the vicinity of each pole piece or tip that will be impossible to test due to excessive magnetic field strength. This is usually seen as furring of particles.Care shall be taken to ensure adequate overlap of the testing areas as shown in Figure 2 and Figure 3.© ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)Dimensions in millimetresKeyd separation between the poles (yoke/prod )Figure 2 — Examples of effective testing area (shaded) for magnetizing with yokes and prods © ISO 2016 – All rights reserved 5BS EN ISO 17638:2016ISO 17638:2016(E)Keyeffective area overlap Figure 3 — Overlap of effective areas5.6.2 Typical magnetic testing techniquesMagnetic particle testing techniques for common weld joint configurations are shown in Figure 4, Figure 5 and Figure 6. Values are given for guidance purposes only. Where possible, the same directions of magnetization and field overlaps should be used for other weld geometries to be tested. The width of the flux current (in case of flux current technique) or of the magnetic flow (in case of magnetic flow technique) path in the material, d , shall be greater than or equal to the width of the weld and the heat affected zone +50 mm and in all cases, the weld and the heat affected zone shall be included in the effective area. The direction of magnetization with respect to the orientation of the weld shall be specified.© ISO 2016 – All rights reservedBS EN ISO 17638:2016 ISO 17638:2016(E)Dimensions in millimetresd ≥ 75b ≤ d/2β ≈ 90ºd1 ≥ 75b1 ≤ d1/2b2 ≤ d2 – 50d2≥ 75d1 ≥ 75d2 ≥ 75b1 ≤ d1/2b2 ≤ d2 − 50d1 ≥ 75d2 > 75b1 ≤ d1/2b2 ≤ d2 − 50Key1longitudinal cracks2transverse cracksFigure 4 — Typical magnetizing techniques for yokes© ISO 2016 – All rights reserved 7BS EN ISO 17638:2016 ISO 17638:2016(E)Dimensions in millimetresd ≥ 75b ≤ d/2β ≈ 90ºd ≥ 75b ≤ d/2d ≥ 75b ≤ d/2d ≥ 75b ≤ d/2Figure 5 — Typical magnetizing techniques for prods, using a magnetizing current prod spacing© ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)Dimensions in millimetres20 ≤ a ≤ 50 N ·I ≥ 8D 20 ≤ a ≤ 50 N ·I ≥ 8D20 ≤ a ≤ 50 N ·I ≥ 8DKeyN number of turns I current (r.m.s)a distance between weld and coil or cableFigure 6 — Typical magnetizing techniques for flexible cables or coils (for longitudinal cracks)5.7 Detection media5.7.1 GeneralDetection media may be either in dry powder form or magnetic inks in accordance with ISO 9934-2.5.7.2Verification of detection media performanceThe detection media used shall fulfil the requirements of ISO 9934-2.© ISO 2016 – All rights reserved9BS EN ISO 17638:2016ISO 17638:2016(E)Indications obtained with the medium to be verified shall be compared against those obtained from a medium having a known and acceptable performance. For this purpose, the reference indications may be real imperfections,photograph(s), andreplica(s).5.8 Viewing conditionsThe viewing conditions shall be in accordance with ISO 3059.5.9 Application of detection mediaAfter the object has been prepared for testing, the detection medium shall be applied by spraying, flooding or dusting immediately prior to and during the magnetization. Following this, time shall be allowed for indications to form before removal of the magnetic field.When magnetic suspensions are used, the magnetic field shall be maintained within the object until the majority of the suspension carrier liquid has drained away from the test surface. This will prevent any indications being washed away.Depending on the material being tested, its surface condition and magnetic permeability, indications will normally remain on the surface even after removal of the magnetic field due to residual magnetism within the part (mainly at the location of the poles). However, the presence of residual magnetism shall not be presumed and post evaluation techniques after removal of the prime magnetic field source are only permitted when a component has been proven by an overall performance test to retain magnetic indications.5.10 Overall performance testWhen specified, an overall performance test of the system sensitivity for each procedure shall be carried out on site. The performance test shall be designed to ensure a proper functioning of the entire chain of parameters including the equipment, the magnetic field strength and direction, surface characteristics, detection media and illumination.The most reliable test is to use representative test pieces containing real imperfections of known type, location, size and size-distribution. Where these are not available, fabricated test pieces with artificial imperfections or flux shunting indicators of the cross or disc or shim-type may be used.The test pieces shall be demagnetized and free from indications resulting from previous tests.NOTE It can be necessary to perform an overall performance test of the system sensitivity for each specific procedure on site.5.11 False indicationsFalse indications which may mask relevant indications can arise for many reasons, such as changes in magnetic permeability, very important geometry variation in, for example, the heat affected zone. Where masking is suspected, the test surface shall be dressed or alternative test methods should be used.5.12 Recording of indicationsIndications can be recorded in one or more of the following ways by using: description in writing;sketches;10 © ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)c)photography;d)transparent adhesive tape;e)transparent varnish for “freezing” the indication on the surface tested;f)peelable contrast coating;g)video recording;h)magnetic particle dispersion in an epoxy curable resin;i)magnetic tapes;j)electronic scanning.5.13 DemagnetizationAfter testing welds with alternating current, residual magnetization will normally be low and there will generally be no need for demagnetization of the object under test.If demagnetization is required, it shall be carried out using a defined method and to a predefined level. For metal cutting processes, a typical residual field strength value of H < 0,4 kA/m is recommended.5.14 Test reportA test report shall be prepared.The report should contain at least the following:a)name of the company carrying out the test;b)the object tested;c)date of testing;d)parent and weld materials;e)any post weld heat treatment;f)type of joint;g)material thickness;h)welding process(es);i)temperature of the test object and the detection media (when using media in circulation) throughout testing duration;j)identity of the test procedure and description of the parameters used, including the following:— type of magnetization;— type of current;— detection media;— viewing conditions;k)details and results of the overall performance test, where applicable;l)acceptance levels;© ISO 2016 – All rights reserved 11BS EN ISO 17638:2016ISO 17638:2016(E)m)description and location of all recordable indications;test results with reference to acceptance levels;names, relevant qualification and signatures of personnel who carried out the test.12 © ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)Annex A(informative)Variables affecting the sensitivity of magnetic particle testingA.1 Surface conditions and preparationThe maximum test sensitivity that can be achieved by any magnetic testing method is dependent on many variables but can be seriously affected by the surface roughness of the object and any irregularities present. In some cases, it can be necessary to— dress undercut and surface irregularities by grinding, and— remove or reduce the weld reinforcement.Surfaces covered with a thin non-ferromagnetic coatings up to 50 µm thickness may be tested provided the colour is contrasting with the colour of the detection medium used. Above this thickness, the sensitivity of the method decreases and may be demonstrated to be sufficiently sensitive before proceeding with the test.A.2 Magnetizing equipment characteristicsThe use of alternating current gives the best sensitivity for detecting surface imperfections. Yokes produce an adequate magnetic field in simple butt-welds but where the flux is reduced by gaps or the path is excessive through the object, as in T-joints a reduction of sensitivity can occur.For complex joint configurations, i.e. branch connections with an inclined angle of less than 90°, testing using yokes might be inadequate. Prods or cable wrapping with current flow will, in these cases, prove more suitable.A.3 Magnetic field strength and permeabilityThe field strength required to produce an indication strong enough to be detected during magnetic particle testing is dependent mainly on the magnetic permeability of the object. Generally, magnetic permeability is high in softer magnetic materials, for example, low alloy steels and low in harder magnetic materials, i.e. martensitic steels. Because permeability is a function of the magnetizing current, low permeability materials usually require application of a higher magnetization value than do softer alloys to produce the same flux density. It is essential, therefore, to establish that flux density values are adequate before beginning the magnetic particle testing.A.4 Detection mediaMagnetic particle suspensions will usually give a higher sensitivity for detecting surface imperfections than dry powders.Fluorescent magnetic detection media usually give a higher test sensitivity than colour contrast media, because of the higher contrast between the darkened background and the fluorescent indication. The sensitivity of the fluorescent method will, nevertheless, decrease in proportion to any increase in the roughness of the surface to which magnetic particles adhere and can cause a disturbing background fluorescence.© ISO 2016 – All rights reserved 13BS EN ISO 17638:2016ISO 17638:2016(E)Where the background illumination cannot be adequately lowered or where background fluorescence is disturbing, coloured detection media in conjunction with the smoothing effect of a contrast aid will usually give better sensitivity.14 © ISO 2016 – All rights reservedBS EN ISO 17638:2016ISO 17638:2016(E)Bibliography[1] ISO 9712, Non-destructive testing — Qualification and certification of NDT personnel[2] ISO 12707, Non-destructive testing — Magnetic particle testing — Vocabulary[3] ISO 17635, Non-destructive testing of welds — General rules for metallic materials[4] ISO 23278, Non-destructive testing of welds — Magnetic particle testing — Acceptance levels © ISO 2016 – All rights reserved 15This page deliberately left blank。
1764316中文资料
Extract from the onlinecatalogMSTB 2,5/ 9-STZ-5,08Order No.: 1764316The figure shows a 10-position version of the producthttp://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=1764316Plug component, nominal current: 12 A, rated voltage: 250 V, pitch: 5.08 mm, no. of positions: 9, type of connection: Screw connectionhttp://Please note that the data givenhere has been taken from theonline catalog. For comprehensiveinformation and data, please referto the user documentation. TheGeneral Terms and Conditions ofUse apply to Internet downloads. Technical dataDimensions / positionsPitch 5.08 mmDimension a40.64 mmNumber of positions9Screw thread M 3Tightening torque, min0.5 NmTechnical dataInsulating material group IRated surge voltage (III/3) 4 kVRated surge voltage (III/2) 4 kVRated surge voltage (II/2) 4 kVRated voltage (III/2)320 VRated voltage (II/2)630 VConnection in acc. with standard EN-VDENominal current I N12 ANominal voltage U N250 VNominal cross section 2.5 mm2Maximum load current12 A (with 2.5 mm2 conductor cross section) Insulating material PAInflammability class acc. to UL 94V0Internal cylindrical gage A3Stripping length7 mmConnection dataConductor cross section solid min.0.2 mm2Conductor cross section solid max. 2.5 mm2Conductor cross section stranded min.0.2 mm2Conductor cross section stranded max. 2.5 mm2Conductor cross section stranded, with ferrule0.25 mm2without plastic sleeve min.Conductor cross section stranded, with ferrule2.5 mm2without plastic sleeve max.Conductor cross section stranded, with ferrule0.25 mm2with plastic sleeve min.Conductor cross section stranded, with ferrule2.5 mm2with plastic sleeve max.Conductor cross section AWG/kcmil min.24Conductor cross section AWG/kcmil max122 conductors with same cross section, solid min.0.2 mm22 conductors with same cross section, solid max. 1 mm22 conductors with same cross section, stranded0.2 mm2min.2 conductors with same cross section, stranded1.5 mm2max.2 conductors with same cross section, stranded,0.25 mm2ferrules without plastic sleeve, min.2 conductors with same cross section, stranded,1 mm2ferrules without plastic sleeve, max.2 conductors with same cross section, stranded,0.5 mm2TWIN ferrules with plastic sleeve, min.2 conductors with same cross section, stranded,1.5 mm2TWIN ferrules with plastic sleeve, max.Certificates / ApprovalsCSANominal voltage U N300 VNominal current I N10 AAWG/kcmil28-12CULNominal voltage U N300 VNominal current I N10 AAWG/kcmil30-12ULNominal voltage U N300 VNominal current I N10 AAWG/kcmil30-12Certification CB, CSA, CUL, GOST, UL, VDE-PZIAccessoriesItem Designation DescriptionGeneral1733169EBP 2- 5Insertion bridge, fully insulated, for plug connectors with 5.0 or5.08 mm pitch, no. of positions: 2Marking0804293SK 5,08/3,8:FORTL.ZAHLEN Marker card, printed horizontally, self-adhesive, 12 identicaldecades marked 1-10, 11-20 etc. up to 91-(99)100, sufficient for120 terminal blocksPlug/Adapter1734634CP-MSTB Coding profile, is inserted into the slot on the plug or invertedheader, red insulating materialTools1205053SZS 0,6X3,5Screwdriver, bladed, matches all screw terminal blocks up to 4.0mm² connection cross section, blade: 0.6 x 3.5 mm, without VDEapprovalAdditional productsItem Designation DescriptionGeneral1873427FKIC 2,5/ 9-ST-5,08Plug component, nominal current: 12 A, rated voltage: 320 V,pitch: 5.08 mm, no. of positions: 9, type of connection: Spring-cage connection1823914ICC 2,5/ 9-STZ-5,08Plug component, nominal current: 12 A, rated voltage: 250 V,pitch: 5.08 mm, no. of positions: 9, type of connection: Crimpconnection1762444MDSTB 2,5/ 9-G1-5,08Header, nominal current: 10 A, rated voltage: 250 V, pitch: 5.08mm, no. of positions: 9, mounting: Soldering1762570MDSTBV 2,5/ 9-G1-5,08Header, nominal current: 10 A, rated voltage: 250 V, pitch: 5.08mm, no. of positions: 9, mounting: Soldering1770782MSTB 2,5/ 9-G-5,08-LA Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.08mm, no. of positions: 9, mounting: Soldering1757310MSTBA 2,5/ 9-G-5,08Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.08mm, no. of positions: 9, mounting: Soldering1768011MSTBA 2,5/ 9-G-5,08-LA Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.08mm, no. of positions: 9, mounting: Soldering1788790MSTBVK 2,5/ 9-G-5,08Header, nominal current: 12 A, rated voltage: 320 V, pitch: 5.08mm, no. of positions: 9, mounting: Mounting rail1788606MVSTBU 2,5/ 9-GB-5,08Header, nominal current: 12 A, rated voltage: 320 V, pitch: 5.08mm, no. of positions: 9, mounting: Direct mounting1769531SMSTB 2,5/ 9-G-5,08Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.08mm, no. of positions: 9, mounting: Soldering1767449SMSTBA 2,5/ 9-G-5,08Header, nominal current: 12 A, rated voltage: 250 V, pitch: 5.08mm, no. of positions: 9, mounting: Soldering3002034UK 3-MSTB-5,08Modular terminal blocks with plug entry, cross section: 0.2 - 2.5mm², AWG: 30 - 12, width: 5.1 mm, color: gray3002076UK 3-MVSTB-5,08Modular terminal blocks with plug entry, cross section: 0.2 - 2.5mm², AWG: 26 - 12, width: 5.1 mm, color: gray3002102UK 3-MVSTB-5,08-LA 24RD Modular terminal block with plug entry, nominal current: 12 A,rated voltage: 320 V, pitch: 5.08 mm, no. of positions: 1, mounting:mounting rail, with red light indicator, voltage light indicator: 24 VAC/DC, current light indicator: 3.3 mA3002063UK 3-MVSTB-5,08/EK Modular terminal blocks with plug entry, cross section: 0.2-2.5mm², AWG: 26-12, width: 5.1 mm, color: blue3002131UK 3D-MSTBV-5,08Modular terminal blocks with vertical plug entry, cross section: 0.2- 2.5 mm, AWG: 30 - 12, width: 5.1 mm, color: gray3002144UK 3D-MSTBV-5,08-LA 24RD Modular terminal block with vertical plug entry, color: Gray, withred light indicator, voltage light indicator: 24 V AC/DC, current lightindicator: 3.3 mA3002173UK 3D-MSTBV-5,08/EK Modular terminal blocks with plug entry, cross section: 0.2 - 2.5mm², AWG: 30 - 12, width: 5.1 mm, color: blue2770888UKK 3-MSTB-5,08Modular terminal blocks with 2 horizontal plug entries, crosssection: 0.2 - 2.5 mm, AWG: 30 - 12, width: 5.1 mm, color: gray 1876615UKK 3-MSTB-5,08-PE Ground terminal block, with 2 horizontal plug entries, nominalcurrent: 12 A, rated voltage: 320 V, pitch: 5.08 mm, no. ofpositions: 1, mounting: mounting rail.2770846UKK 3-MSTBVH-5,08Modular terminal blocks with vertical and horizontal plug entry,cross section: 0.2 - 2.5 mm, AWG: 30 - 12, width: 5.1 mm, color:gray1788185UMSTBVK 2,5/ 9-G-5,08Header, nominal current: 12 A, rated voltage: 320 V, pitch: 5.08mm, no. of positions: 9, mounting: Mounting rail1873016ZFKK 1,5-MSTBV-5,08Modular terminal blocks with plug entry, cross section: 0.2 - 1.5mm², width: 5.1 mm, color: grayDrawingsDimensioned drawingAddressPHOENIX CONTACT GmbH & Co. KGFlachsmarktstr. 832825 Blomberg,GermanyPhone +49 5235 3 00Fax +49 5235 3 41200http://www.phoenixcontact.de© 2008 Phoenix ContactTechnical modifications reserved;。
ISO 17639-2003 中文版 金属材料焊缝的破坏性试验-焊缝宏观和微观检验
7 试样的截取
试样的截取方向一般垂直于焊缝轴线(横截面),试样包括焊缝熔敷金属和
焊缝两侧的热影响区。然而,也可以从其它方向截取试样。
在试验前应确定试件的位置、方向和数量,例如参照应用标准。
表 1 宏观和微观检验评定特性指南
特征
根据 ISO6521-1 不腐蚀宏 腐蚀宏观 不腐蚀微
8.5 腐蚀剂
ISO/TR16060 给出了不同母材、焊缝熔敷金属、检验目的和种类。 根据要求的信息,腐蚀剂的种类和浓度以及腐蚀温度和时间取决于检验材料 和类型。 相同的接头可以使用不同的腐蚀剂。
8.6 安全措施
Page 6 of 11
应遵守下列安全措施: —采取合适的保护眼或脸的措施; —使用合适的手套或夹钳处理腐蚀剂; —在排烟柜里或在排烟罩下配腐蚀剂; —总是把酸倒入水中,决不能相反操作; —总是把溶质倒入溶剂中,例如少量(溶质)倒入大量(溶剂)。
8.3 表面抛光
表面抛光的要求取决于下述因素: —检验类型; —材料种类; —记录(例如照片)。 注:有关研磨和抛光的方法和使用介质的详细信息在 ISO/TR16060 给出。
8.4 腐蚀方法
在腐蚀前先确定腐蚀方法。常用的的方法有: —把试样浸入腐蚀剂中腐蚀; —擦拭试样表面腐蚀; —电解腐蚀。 可以使用其它方法,但应符合规定,例如参照应用标准。 当腐蚀完成时,试样应清洗和干燥。
11 试验报告
试验报告至少应包括下列内容: a)参照的国际标准,例如 ISO17639; b)检验说明; c)试样的位置和方向以及检验表面; d)焊接工艺认可报告(WPAR)或如果不能做到至少应给出使用的母材和 焊接材料和焊后热处理和/或腐蚀; e)腐蚀剂的类型和腐蚀方法; f)如果需要,说明检验表面; g)如果要求,金相照片和/或草图、放大倍数。 典型的实验报告实例在附录 A 给出。
IWE标准汇总
IWE标准汇总标准汇总材料及工艺:EN10020 钢的分类EN10027-1和ECISS IC10材料符号标记S235J2G—铸钢S-结构钢;P-P用钢;L-管道钢;E-机械制造用钢;R-钢轨用钢EN10027-2 材料的数字标号例:1. 10 16 1-钢;0-纯铁;2-重金属;3-轻金属EN10025-2 普通碳钢及优质碳钢EN10025-2 S355J0C+NEN10025-3 正火细晶粒结构钢N EN10025-3 S355NLEN10025-4 热机械轧制细晶粒轧制钢M En10025-4 S355MLEN10025-5 耐候钢EN10025-5 S355J0W+N(+AR)EN10025-6 调制细晶粒结构钢Q EN10025-6 S460QLEN10028 锅炉压力容器用钢EN10028-1 压力容器一般用钢EN10028-2 碳钢和低合金钢的热强钢EN10028-3 正火细晶粒钢EN10028-4 Ni基低温韧性钢EN10028-5 热轧细晶粒钢EN10028-6 调制细晶粒钢EN10028-7 无δ铁素体的奥氏体钢EN573-1 Al合金分类及标记分类:1-纯铝;2-Cu;3-Mn;4-Si;5-Mg;6-Mg-Si;7-Zn;8-其他;EN10088 不锈钢ISO18273 铝ISO1803/EN1563 球墨铸铁分类ISO4063 焊接方法分类ISo9692 破口准备-1钢111、13、3、141、能量束焊;-2钢12;-3 Al及合金的13、141ISO9013 火焰切割质量要求ISO9013-231(u为区域2,Rz5为区域3,工件尺寸偏差1级)ISO60974 焊接电源ISO14175/EN439 熔化焊和切割用气体ISO5175/EN730 可燃气体、氧气和压缩空气规定EN1011-2 钢材电弧焊基本要求EN10083 T1 T2 T3 特殊优质钢/优质碳钢/加硼钢的技术供货条件Re大于500N/mm2钢ISO18275/EN757 111用药皮焊条(高强钢)ISO18275-A-E 62 7 Mn1Ni B TISO18276/EN12535 MSG药芯焊丝(高强钢)EN12535-T 62 5 Mn1.5Ni B M TEN12534 MSG焊丝、焊棒(高强钢)EN12534-G 62 6 M MnNi1Mo TEN14295 UP用焊丝(高强钢)Re小于500N/mm2钢ISO 2560/EN449 111用药皮焊条(碳及细)ISO2560-A E 46 3 1Ni B 5 4 H5EN12536 气焊焊丝(非合金钢和热强刚)ISO636/EN668 TIG焊中的焊棒、焊丝(非及细)ISO 636-A W 46 3 W3Si1ISO14341/EN440 实芯焊丝(非及细)ISO 14341-A G 46 5 M G3Si1ISO17632/EN758 MSG和自保护电弧焊药芯焊丝(非及细)ISO 17632-A T 46 3 1Ni B M H5ISO14171/EN756 UP用焊丝ISO 14171-A S 46 3 AB S2;ISO14171-A S 4T 2 AB S2Mo热强钢ISO3580/EN1599 111用药皮焊条(热强钢)ISO3580-A-E CrMo1 B 4 4 H5ISO21952/EN12070 UP/TIG/MSG用焊丝(1类热强钢等,2类A等)ISO21952 W CrMo1ISO14174/EN760 UP用焊剂(1类热强钢等,2类A等)ISO14174 S F CS 1 AC H10ISO17634/EN12071 药芯焊丝(热强钢)ISO17634-A-T CrMo 1 B M铝EN ISO18273焊材选择铝及铝合金实心焊丝EN ISO 18273-S Al 4043母材EN573-3 焊材选材E:DIN1732 G:DIN1732TIG 、MIG:ISO18273;ISO14175;DIN1732;EN439不锈钢和耐热钢ISO3581/EN1600 111用焊条(不锈钢和耐热钢)ISO3581-A E 19 12 2 R 3 4ISO14343 /EN12072 电弧焊用焊丝、焊棒(不锈钢和耐热钢) ISO14343-A G 20 10 3ISO17633 / EN127073 金属电弧焊药芯焊丝(不锈钢和耐热钢) ISO17633-A T 19 12 3L R M 3 其他EN10210 普通结构钢的焊接管和无缝管EN10217 具有特殊要求的碳钢焊接管EN10216 具有特殊要求的碳钢无缝管EN10219 结构钢冷制空心型材EN10208 T2 可燃液体和气体长途管道用钢管结构及生产:ISO14732/EN418 自动焊焊工考试ISO9606-1/EN287-1 熔化焊焊工考试-1钢材;-2铝及铝合金;-3铜及铜合金;-4镍及镍合金;-5钛及钛合金ISO9606-1 111 P BW 1.2 B t09 PF ss nbISO9606-2 143 T BW 21 S nm t02 D20 PA ss mbISO15609/EN288 金属材料焊接工艺规程-1电弧焊;-2气焊;ISO15614/EN288 焊接工艺评定-1钢、镍及镍合金;-2铝及铝合金;ISO15613 基于预生产焊接的工艺评定EN ISO6974 焊接位置ISO4136/EN895 横向拉伸试验的试样和试验ISO5173 弯曲试验的试验和试验ISO17639 低倍金相检验ISO 9016/EN875 冲击试验ISO9015 硬度试验ISO2553 焊缝符号ISO17635/EN12062 焊缝无损检测-金属熔化焊EN571-1 渗透检测EN1289 渗透检测验收等级ISO17638/EN1290 磁粉检测EN1291 磁粉检测验收等级ISO17636/EN1435 射线检测ISO5817 钢、镍、钛及其合金的熔化焊接头缺欠质量分级ISO10042 铝及其合金的熔化焊接头缺欠质量分级ISO9712/EN473 无损检测人员的培训与鉴定DIN18800 钢结构设计制造(即将被EN1090-1 钢结构和铝结构的施工代替)ISO14731 焊接管理—任务与职责ISO3834 金属材料熔化焊的质量要求-1选用指南;-2完整质量要求;-3一般质量要求;-4基本质量要求;-5满足2/3/4所需文件EN15085 轨道车辆焊接标准CEN ISO/TR15608 材料组别标准工艺部分火焰技术气压焊(已被闪光对焊代替):原理:圆形截面型材在加热和力的共同作用下形成焊缝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊缝的无损试验——熔焊接点的放射检验目录1.范围 (2)2.标准的参考文献 (2)3.术语和定义 (2)3.1额定厚度t (2)3.2穿透深度w (2)3.3 物体到胶片的距离b (3)3.4射线源大小d (3)3.5 射线源到胶片的距离SFD (3)3.6射线源到物体的距离f (3)3.7直径De (3)4符号和缩写 (3)5.放射技术的等级 (3)6概述 (4)6.1致电离射线辐射的防护 (4)6.2表面准备和生产步骤 (4)6.3在放射照片中焊缝的位置 (4)6.4 放射的标识 (4)6.5标注 (5)6.6胶片的重叠 (5)6.7图像质量指数的类型和位置 (5)6.8图像质量的评估 (6)6.9最低图像质量值 (6)6.10人员资格 (6)7进行辐射摄影建议的技术 (6)7.1检验调节 (6)7.2电压和辐射源的选择 (9)7.3胶片体系和屏幕 (10)7.4光束的调准 (12)7.5扩散辐射的减少 (12)7.6辐射源至物体的距离 (12)7.7一个单独照射的最大区域 (13)7.8辐射摄影术的色度 (14)7.9处理 (14)7.10胶片观测条件 (14)8试验报告 (15)附录A(规范化的) (16)铁材料的最低图像质量值 (16)A.1单面墙技术,IQI在辐射源边 (16)附录B(介绍性的) (20)圆形对接焊合格试验的参考曝光数量 (20)参考文献 (21)1.范围本国际标准规定了金属材料熔焊接点放射检验的基本技术。
采用最经济的方法来获得满意效果和可以复验的结果。
该技术是基于普遍认可的实践和基础性理论基础上的。
此国际标准适用于板或管上的熔焊接点的试验。
它是根据ISO5579上的基本条款的。
此国际标准没有规定读数的验收等级。
2.标准的参考文献下列参考文献是本标准应用不可缺少的部分,对于有日期的参考,只有标注日期的版本有效,对于没有标注日期的参考,采用最新的版本(包括任何的修订本)。
ISO 2504,焊缝摄影和胶片观察条件——图象质量显示器(I.Q.I)推荐图谱的利用;ISO5580,无损检验——工业用射线摄影照明装置——最低限度要求ISO11699-1,无损检验.——工业射线摄影胶片——.第1部分:工业辐射摄影术用胶片系统的特性ISO11699-2,无损检验.——. 工业射线摄影胶片——第2部分:利用参考值控制胶片加工3.术语和定义本标准采用下列的属于和定义。
3.1额定厚度t母材的额定厚度注:加工公差不考虑在内。
3.2穿透深度w在额定厚度基础上计算的辐射线束方向的材料厚度。
注:对于多层屏障技术,穿透厚度的计算来自额定厚度。
3.3 物体到胶片的距离b测试物体辐射面发出射线面到胶片表面之间的距离,沿辐射射线光束的中心轴测量。
3.4射线源大小d射线源大小3.5 射线源到胶片的距离SFD射线源和胶片的距离,按光束的方向测量3.6射线源到物体的距离f射线源和测试物体射线源边之间的距离,沿沿射线光束的中心轴测量。
3.7直径De管额定的外部直径4符号和缩写本标准采用表1中给出的符号和缩写:5.放射技术的等级放射技术分为两级:——A级:基本技术——B级:改良的技术技术的选择要在试验前选定,在A级技术不能很好的感光时采用B级技术。
注:有比B级还好的技术,但是没有包含在国际标准范围内。
如果因为技术原因,不能够满足B级规定的条件之一,如,射线源的类型或射线源到物体的距离f, 可以采用A级规定的条件。
但是,损失的感光度要通过增加最小密度至3.0或者采用更高的对比度的胶片系统来弥补。
由于和A级更好的感光度相比,试验样品可能被作为B级来检验,但是如果特定减少的SFD,如7.6试验调节所述,这就并不适用了,需要采用7.14和7.15.6概述6.1致电离射线辐射的防护当采用致电离射线时,必须严格实施地区、国家或国际的安全预防措施。
警告:人体任何部位暴露在放射或γ射线下将导致对身体严重伤害。
无论在哪里使用放射设备或辐射源,必须满足法律要求。
6.2表面准备和生产步骤在缺陷表面或涂层难以检查缺陷的地方,表层要打磨光滑或者去除涂层,否则,表面准备就没有必要了。
除非其它规定,放射将在最后一步加工步骤之后进行,如,在打磨或热处理之后。
6.3在放射照片中焊缝的位置在放射照片没有清楚的展示焊缝的地方,高密度的标识将放在焊缝的任何一边。
6.4 放射的标识符号要固定到进行X照片的每一面上,这些符号的图像将出现在放射照片外区域上,确保其每一面的标识清楚。
6.5符号为了正确的查出每个放射照片的位置,要在被检测的物体上做上上永久性的符号。
在材料的特性和/或服务条件不允许永久性符号的地方,分布图可以用精确的素描的方式进行记录。
6.6胶片的重叠在照射照相的一个地方有两个或更多个单独的胶片时,胶片要求完全重叠,确保中心范围能够完整的被照到。
这将通过出现在每个胶片上的物体表面高密度的符号进行验证。
6.7图像质量显示器的类型和位置图像的质量通过采用IQI进行验证,根据ISO2504.使用的IQI更多是放在检验物体射线源的一边,与物体表面接近。
IQI置于一均匀厚度面上,以胶片上均匀的光学密度为特征。
根据IQI的型号,按照以下要求进行放置:a) 当使用有线性IQI时,线要垂直于焊缝,并且其位置要保证至少10mm 的线的长度能够在均匀的光学密度上显示出来,这通常在临近焊缝的金属母材上。
在曝光时,根据7.1.6和7.1.7,IQI可以放置为线穿过管中心轴,但是它们伸出至焊缝图像内。
b) 当使用梯形/孔型IQI时,要按照能够使要求的孔的数量紧挨焊缝的方法进行放置。
在根据7.1.6和7.1.7进行在曝光时,IQI可以放在射线源或胶片的任何一边。
如果不能将根据以上a 所述的条件放置IQI,IQI将放在胶片的一边,图像质量则与放在放射源一边和在相同条件下放在胶片一边的作比较而得。
对于双面曝光,当IQI放置在胶片一边时,以上试验则没有必要了,在这种情况下,参考表A.1至A.12.在IQI放置在胶片一边时,字母”F”要置于接近IQI的位置,且这要记录在试验报告中。
如果采用了能够保证相似试验物体和区域的辐射摄影术能够产生完全相同的曝光和工艺技术,并在图像质量值上无任何差别,图像质量不需要每个都进行鉴定,但是,图像质量的鉴定范围要在试验前进行规定。
对于管的直径大于等于200毫米,且射线源集中发射,在其周围至少要均匀放置3个IQI,显示IQI图像的胶片则视为全部周长的代表。
6.8图像质量的评估曝光的胶片根据ISO5580进行观察。
要对辐射摄像影术上的IQI图像进行检验,判定能够辨认的最小线或孔的数量。
如果在均匀感光密度上有至少连续10毫米的能够清楚可见的线的图像,则为合格的。
在台阶型和孔型的IQI情况下,如果有两个相同直径的孔,两个都要能够看得清楚以便梯形也能看得见。
获取的图像质量要记录在试验报告上,也要清楚的陈述所采用的IQI的类型。
6.9最低图像质量值表A.1至A.12给出了铁材料的最低图像质量值。
国际标准的使用者要根据EN462-4判定这些值是否能够用在其他材料的上。
6.10人员资格最终焊缝验收的无损检验和结果的评估要由有资质有能力的人员进行操作,建议人员根据ISO9712的要求或者同级标准,满足相关工业部门满足适当等级的的要求。
7进行辐射摄影建议的技术7.1检验调节7.1.1概述建议的摄影技术根据7.1.2至7.1.9根据7.1.6椭圆的技术(双面/双图像)不能应用于外直径大于100毫米,厚度大于8毫米,焊缝宽度大于四分之一直径的情况。
如果直径小于0.12,两个替换的90°图像已满足要求了,两个焊缝图像之间的距离大约为一个焊缝的宽度。
当很难进行椭圆直径小于等于100毫米的检验,可以采用根据7.1.7垂直技术(见图12),在这种情况下,要求三次曝光分开,120°或60°。
当检验调节根据图11、13和14时,要尽可能的降低光束的偏差,以防止两个图像的重叠。
放射源与物体的距离也要根据7.6保持在最小,IQI放在临近胶片有一个铅字母“F”的地方。
当物体几何外形或材料厚度不允许采用7.1.2至7.1.9所列出的技术时,可能会用到其它摄影技术,多胶片技术不能用于减少在均匀平面上的曝光时间。
注:获取管上对接焊整个周长合格射线覆盖有效范围的辐射摄像的最小数量在附录B中给出。
7.1.2辐射源位于物体前,胶片在另一边见图1注:1 辐射源2 胶片图1——平板壁和单面穿透的试验调节7.1.3辐射源位于物体以外,胶片以内见图2-4注:1 辐射源2 胶片图2——弯曲物体单面穿透的试验调节注:1 辐射源2 胶片图3——弯曲物体单面穿透的试验调节(插入的焊缝)注:1 辐射源2 胶片图4——弯曲物体单面穿透的试验调节(相接的焊缝)7.1.4辐射源集中在物体以内中心位置,胶片以外见图5-7注:1 辐射源2 胶片图5——弯曲物体单面穿透的试验调节注:1 辐射源2 胶片图6——弯曲物体单面穿透的试验调节(插入的焊缝)注:1 辐射源2 胶片图7——弯曲物体单面穿透的试验调节(相接的焊缝)7.1.5辐射源位于物体内,偏离中心,胶片以外见图8-10注:1 辐射源2 胶片图8——弯曲物体单面穿透的试验调节注:1 辐射源2 胶片图9——弯曲物体单面穿透的试验调节(插入的焊缝)注:1 辐射源2 胶片图10——弯曲物体单面穿透的试验调节(相接的焊缝)7.1.6椭圆技术见图11注:1 辐射源2 胶片图11——弯曲物体两面评估的双面穿透,双个图像的试验调节(辐射源和胶片都在检验物体以外)7.1.7垂直技术见图12注:1 辐射源2 胶片图12——弯曲物体两面进评估的双面穿透,双个图像的试验调节(辐射源和胶片都检验物体以外)7.1.8辐射源位于物体以外,胶片在另一边见图13-18注:1 辐射源2 胶片图13——弯曲物体对紧邻胶片面进行评估的双面穿透,单个图像的试验调节,IQI挨着胶片注:1 辐射源2 胶片图14——弯曲物体双面穿透,单个图像的试验调节注:1 辐射源2 胶片图15——弯曲物体纵向焊缝的双面穿透,单个图像的试验调节注:1 辐射源2 胶片图16——弯曲物体对紧邻胶片面进行评估的双面穿透,单个图像的试验调节注:1 辐射源2 胶片图17——角焊缝穿透的试验调节注:1 辐射源2 胶片图18——角焊缝穿透的试验调节7.1.9不同材料厚底的技术见图19注:1 辐射源2 胶片图19——多胶片技术7.2电压和辐射源的选择7.2.1 500kv的X射线设备为获得良好缩孔感光度,X射线管电压要尽可能的低,最大值对应的厚度在图20中给出。
在有些被摄影区域的厚度不同的应用中,可以使用一种能稍微调高电压的技术,但是必须要注意,过高的电压将导致缺陷检查感光度的减少。