《比的认识》应用题 长比连比专题训练 六年级数学 (18)

合集下载

北师大版六年级上册数学第六单元-比的认识(应用题)

北师大版六年级上册数学第六单元-比的认识(应用题)

北师大版六年级上六比的认识应用题专练一.应用题(共17小题)1.一种糖是由奶糖、水果糖和酥糖按4:3:2的比混合而成的,现在要配制这种糖540千克,需要奶糖、水果糖、酥糖各多少千克?2.两地相距480千米,甲乙两辆汽车同时从两地相向开出,4小时后相遇,已知甲乙两车的速度比是7:5,甲乙两车每小时各行多少千米?3.小营小学校园中操场与花圃面积的比是7:2.已知花圃的面积比操场少360平方米,学校操场的面积是多少平方米?4.学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人,三班比一班多植树多少棵?5.甲乙两地相距360千米,一辆客车和一辆货车分别从甲、乙两地相对开出,经过3小时相遇。

已知货车和客车的速度比是5:7,客车每小时行驶多少千米?6.笑笑读一本故事书,已读与未读的页数比是2:7。

①已经读完了这本书的几分之几?②如果再读98页就读完了整本书,这本故事书一共有多少页?7.质量相同的冰和水,体积之比是10:9。

54立方分米的水结成冰后,冰的体积是多少?8.一个长方形池塘的周长是240m,长与宽的比是5:3,这个池塘的长和宽各是多少米?9.花店里的百合花和玫瑰花枝数的比是5:3,百合花和玫瑰花共有480枝.玫瑰花有多少枝?10.一个公司原计划派1的工人参加短期培训班,临时又增加了28人,使得实际参加培训的人数与剩下人数的比是1:6,原计划派多少人参加培训班?11.运输队第一天与第二天运的货物质量的比是5:3,平均每天运货物60吨,第一天和第二天各运货物多少吨?12.甲、乙两种商品的价格之比为7:4,若它们的价格分别上涨40元,价格之比变为8:5.甲、乙两种商品原价各是多少元?13.甲、乙两车同时从A、B两地相向而行,甲车行了全程的35%,乙车行的与全程的比是1:4,此时甲车比乙车正好多行5千米,A、B两地相距多少千米?14.甲、乙、丙三个修路队共同修完了一条公路。

小学六年级数学比的认识练习题集

小学六年级数学比的认识练习题集

小学六年级数学比的认识练习题集1. 判断题:(1) 两个数的比是一个确定的数值。

(2) 在比例中,被除数叫做分子,除数叫做分母。

(3) 当比的分母为0时,比的结果为0。

(4) 比的结果可以是大于1的数。

2. 填空题:(1) 口袋里有12个红苹果和6个绿苹果,红苹果与绿苹果的比是____。

(2) 好朋友小明和小红的年龄比是2:3,小明现在10岁,那么小红的年龄是___岁。

(3) 两个数的比为3:4,如果第一个数是12,那么第二个数是____。

(4) 爸爸岁数是妈妈岁数的3倍,妈妈现在36岁,那么爸爸的年龄是___岁。

3. 计算题:(1) 假设班级里有36名男生和24名女生,男生与女生的比是多少?(2) 小明和小李一起挖土,小明挖土的速度是小李的2倍,如果小李需要6小时挖完土,那么小明需要多少小时?(3) 以2:5的比例,计算出35的一半是多少。

4. 应用题:(1) 苹果和梨的价格比是3:2,如果苹果的价格是每斤9元,梨的价格是多少?(2) 某校参加篮球比赛的男生与女生的比是3:2,如果男生有24名,女生有多少名?(3) 甲校和乙校两校参加足球比赛,甲校的学生人数是乙校的2倍,如果甲校有400名学生,乙校有多少名学生?5. 综合题:小明和小红一起去超市买水果。

小明买了4个苹果和2个梨,小红买了6个苹果和5个梨。

(1) 两人一共买了多少个水果?(2) 小明买水果的比是多少?(3) 小红买水果的比是多少?(4) 小红比小明多买了几个苹果?总结:通过这些练习题,我们可以巩固和加深对比的认识和运用。

(以上为参考答案)注:根据要求,文章使用了小节论述的方式,但没有使用“小节一”、“小标题”等词语。

文章排版整洁美观,语句通顺,全文表达流畅,无影响阅读体验的问题。

《比的认识》应用题 工程工效问题专项 六年级数学 (18)

《比的认识》应用题  工程工效问题专项  六年级数学 (18)

《比的认识》应用题 工程问题专项 六年级数学1. 从家走到学校,甲用8分钟,乙用9分钟。

甲和乙每分钟行的路程的比是8:9。

( )2. 走一段路,甲用8分钟走完,乙用10分钟走完,甲乙二人速度的比是( )3. 制造一个零件,甲要6分钟,乙要5分钟,丙要4.5分钟。

现在有1590个零件,分配给他们三人,要求在相同的时间内完成。

甲、乙、丙三人各应分配多少个?4. 一段公路,甲行需4小时,乙行需5小时,甲所用时间是乙的( )%.5. 一项工程,5天能完成15,一天完成( ),( )天完成。 6. 走同一段公路,甲用2小时,乙用问题3小时,甲的速度是乙的速度的( )%。

7. 一项工程,甲独做要14天完成,乙的效率是甲的87,乙的效率是( ),乙独做需要( )天完成这项工程。

8. 单独完成同一件工作,甲要4天,乙要5天。

甲、乙的工效比是( )。

9. 做一项工程,25天可以全部完成。

要完成这项工程的54需要多少天?10.甲乙两队合做一件工作,要6小时,乙队独做要9小时,两队每小时完成这份工作的( ),甲队每小时完成这份工作的( )。

11.一辆汽车往返甲乙两地,去时用4小时,回来时,速度提高了17,回来时用( )小时。

12.甲乙两人的速度比是3:4,行的时间比是2:3,则两人所行的路程比是( )。

13.加工一批零件,三天正好完成了总数的72,每天完成总数的()()。

14.一堆货物,甲队单独运需12小时,乙队单独运2小时运了这堆货的51,甲、乙两队工效之比是5:6。

( ) 15.一件工作,单独做甲需4天,乙需5天完成.甲和乙的工作效率的比是( )。

16.一件工作,甲单独做要8天完成,乙单独做要10天完成,甲和乙的工效比( )。

①8:10 ②4:5 ③110 :18④5:4 17.三个人在同一段路上赛跑,甲用0.2分,乙用307分,丙用13秒。

( )的速度最快。

A.甲 B.乙 C.丙18.一项工作,小明6天完成全部的32,他平均每天完成这项工作的( )。

比的认识六年级练习题

比的认识六年级练习题

比的认识六年级练习题在六年级的数学学习中,认识比是一个重要的内容。

通过比,我们可以比较两个量的大小关系,从而提高我们对数值的理解和运用能力。

下面是一些六年级数学中关于比的练习题,帮助大家加深对比的认识和运用。

题目一:找出不同的比例关系小明花了15分钟做完了30道数学题,而小华用了20分钟做完了40道数学题。

请将两者的比例关系找出来。

解答:小明和小华都是在解决数学题,我们可以将题目数量和所用时间进行比较。

小明做的题目数量:30道,所用时间:15分钟小华做的题目数量:40道,所用时间:20分钟我们可以将小明做题的数量和所用时间的比例表示为:30/15 = 2/1或简化为 2:1同样地,小华做题的数量和所用时间的比例为:40/20 = 2/1 或简化为 2:1因此,小明和小华做题的比例关系是2:1。

题目二:判断比例关系是否正确小明用2个小时做完了120道题,而小华用4个小时做完了180道题。

判断下列比例关系是否正确:2:1 = 120:180解答:我们可以比较两者做题的时间和题目数量,来判断比例关系是否正确。

小明做的题目数量是120道,所用时间是2小时,我们可以用比例来表示为:120/2 = 60而小华做的题目数量是180道,所用时间是4小时,比例为:180/4 = 45比较两者的比例关系:60 ≠ 45因此,2:1 ≠ 120:180 的比例关系是不正确的。

题目三:计算比例小明和小华两人在操场上进行短跑比赛,小明跑100米用时12秒,小华跑200米用时30秒。

计算两者的速度比。

解答:我们可以比较两者跑的距离和所用时间来计算速度比。

小明的跑步速度:100米/12秒 = 25/3 m/s小华的跑步速度:200米/30秒 = 20/3 m/s根据以上计算,我们可以得出小明和小华的速度比为:25/3 : 20/3为了简化比例,我们可以将其化为最简形式:25/3 : 20/3 = 5:4因此,小明和小华的速度比是5:4。

六年级数学上册《比的认识》综合练习题+答案,学习

六年级数学上册《比的认识》综合练习题+答案,学习

六年级数学上册《比的认识》综合练习题+答案,学习检测《比的认识》综合练习题1.填一填。

(1)小丽练习打字,5分钟打了250个字,字数与时间的比是(50∶1),比值是(50),这个比值表示的是(每分钟打字的个数)。

(2)买5个足球花了120元,总价钱与球的个数的比是(24∶1),比值是(24),这个比值表示的是(每个足球的价钱)。

(3)3/7=(3)∶(7)(4)把一批零件按2∶3分给甲、乙两个工人加工,甲加工这批零件的(2/5),乙加工这批零件的(3/5)。

(5)20克糖完全溶解在180克水中,糖与糖水的质量比是(1∶10)。

(6)甲、乙两数的和是30,甲数与乙数的比是1∶5,甲数是(5 )。

2. 判一判。

(1) 比的前项和后项都乘以2,比值不变。

(√)(2) 化简12∶6的比值是2∶1。

(×)(3) 除法运算可以写成比的形式。

(√)(4)某次足球比赛,甲、乙两队的得分比是4∶2,这个比可以化简成2∶1。

(√)3.一个圆的半径是另一个圆的半径的2/3,这两个圆的半径比是 ( 2∶3),周长比是( 2∶3),面积比是( 4∶9) 。

4.一种农药,在使用时要将它用水稀释,规定农药与水的体积比在1∶200~1∶300。

(1) 现有150毫升的农药,至少要加多少升水?30 升(2) 在10升的水里,最多可以加多少毫升农药?50 毫升(3) 在10毫升的农药,可以加多少毫升的水?2000~3000 毫升5.一个长方形的长与宽的比是5∶4,周长是162cm,这个长方形的长和宽各是多少厘米?162÷2÷(5+4)=9cm长:9×5=45cm宽:9×4=36cm6.甲、乙两车从东、西两站同时相对开出,2小时后甲车到达两站的中点,此时甲、乙两车所行驶的路程之比为5∶3,乙车离东站还有140千米。

东、西两站相距多少千米?200 千米。

北师大版六年级上册数学比的认识应用题专题训练

北师大版六年级上册数学比的认识应用题专题训练

北师大版六年级上册数学比的认识应用题专题训练1.新华书店里《七彩阅读》本数的35与(趣味数学》本数的49相等,这两种书共有141本。

它们各有多少本?2.读一本书,已读了总页数的16,如果再读30页,则已读的和未读的比是3∶5,这本书共有多少页?3.氢和氧按1∶8的重量化合成了水。

630千克的水含氢和氧各多少千克?4.爸爸的身高为180厘米,小明的身高是爸爸的79,小明和妈妈的身高比是7∶8。

妈妈的身高为多少厘米?5.奶粉冲调适宜的浓度,取决于配方奶粉中各种营养成分的比例和宝宝不同生长阶段的消化吸收能力,一周后的宝宝,奶粉和水的调配比例一般是1∶4,若调制300克牛奶,需要奶粉多少克?水多少克?6.一批零件,已加工的个数与未加工的个数比是1∶3,如果再加工150个,刚好完成了这批零件的40%。

这批零件一共有多少个?7.如图在一块扇形菜地上种西瓜、西红柿和茄子。

西瓜的种植面积为60平方米,剩下的面积按1∶5的比值种植西红柿和茄子。

西红柿和茄子的种植面积分别是多少平方米?8.淘气看一本故事书,第一天看了的页数与剩下的页数的比是1∶4,第二天又看了50页,这时他看完的页数与总页数的比是3∶5。

(1)画图表示数量关系。

(2)这本数一共有多少页?9.一个长方形的长与宽的比是5∶4,周长是18cm,它的面积是多少平方厘米?10.新华书店里《七彩阅读》本数的35与(趣味数学》本数的49相等,这两种书共有141本。

它们各有多少本?11.汽车从甲地开往乙地,已行驶了80千米,这时已经行驶的路程和剩下的路程比是4∶5,甲乙两地相距多少千米?12.实验小学一年级与二年级的人数比是7∶6,二年级与三年级的人数比是5∶4,写出三个年级人数的最简整数比。

13.爸爸出差买回了一罐高档糖果,爸爸按照5∶4的比例把糖果分给了晓冬和晓妮。

已知晓冬比晓妮多分到5颗糖果,那么这罐糖果共有几颗?14.快递员小张今天上午送了12份快递,已经送的与下午还要送的快递份数比是3∶4,小张今天下午要送多少份快递?15.六(1)班男、女生人数的比是7∶5,已知男生比女生多8人。

【应用题专项】北师大版六年级数学上册 第6单元 《比的认识》(讲义)(知识梳理+典例精讲+专项训练)

【应用题专项】北师大版六年级数学上册 第6单元 《比的认识》(讲义)(知识梳理+典例精讲+专项训练)

第六单元比的认识(讲义)小学数学六年级上册专项训练(知识梳理+典例精讲+专项训练)1.比的意义。

两个数相除,又叫作这两个数的比。

2.比的读、写法。

a :b读作a比b,a比b写作a :b。

3.比的各部分名称。

(1)比号:“:”叫作比号,读作“比”。

(2)比的前项和后项:在两个数的比中,比号前面的数叫作比的前项,比号后面的数叫作比的后项。

(3)比值:比的前项除以比的后项所得的商,叫作比值。

4.求比值的方法。

用比的前项除以后项,所得的商就是比值。

5.比和除法、分数的联系与区别。

6.比的基本性质。

比的前项和后项同时乘或除以同一个不为0的数,比值的大小不变。

7.化简比的意义。

把两个数的比化成最简单的整数比(即比的前项和后项除1以外没有其他公因数),叫作化简比,也叫作比的化简。

8.化简比的方法。

(1)整数比的化简方法。

方法一:先把比改写成分数的形式,再把这个分数进行约分。

方法二:比的前项和后项同时除以它们的最大公因数。

(2)分数比的化简方法。

方法一:先利用比与除法的关系,将比转化成除法算式,再求出结果,最后将得数转化成最简整数比的形式。

方法二:比的前项和后项同时乘它们分母的最小公倍数,先转化成整数比,再进行化简。

(3)小数比的化简方法。

方法一:利用比与除法的关系,将两个小数的比转化成两个小数相除的形式,根据商不变的规律,先将被除数与除数同时扩大相同的倍数(0除外),转化成整数除法后,再进行化简。

方法二:通常把比的前、后项的小数点同时向右移动相同的位数,先转化成整数比,再进行化简。

9.按比分配的意义。

把一个数量按照一定的比进行分配,这种分配的方法叫作按比分配。

10.按比分配问题的解题方法。

方法一:先求出总份数,再求出各部分量占总量的几分之几,最后求出各部分量。

方法二:先求出每份是多少,再用每份量乘各部分量所占的份数,求出各部分量。

【典例一】白菜和芹菜的单价比是3∶7,数量比是5∶4,白菜和芹菜的总价比是多少?【分析】题中存在两种量,分别是单价和数量,要求总价的比,根据“总价=单价×数量”,可以用3×5表示白菜的总价,用7×4表示芹菜的总价,所以白菜和芹菜的总价比是(3×5)∶(7×4)。

六年级数学上册试题 - 《比的认识》习题-北师大版(含答案)

六年级数学上册试题 - 《比的认识》习题-北师大版(含答案)

《比的认识》习题1一、填空。

1、比号前面的数叫做比的 ,比号后面的数叫做比的 。

比的前项除以后项所得的商叫做 。

2、比的前项和后项同时乘以或除以相同的数(0除外) 不变。

3、已知一个比的前项和后项相等(不等于0),则比值是( );已知一个比的后项与比值互为倒数,则前项是( )。

4、在一个比例中,两个内项互为倒数,一个外项是32,另一个外项是( )。

5、如果3a=2b ,那么a :b=( ):( )6、3:5=18÷( ) =35)( =( )%=( )(填小数)。

7、长方形的周长是30cm ,长是9cm ,长与宽的最简整数比是( ),它的面积是( )。

8、把15克糖溶解在135克水中,糖与水的质量比是( ),糖与糖水的质量比是( )。

9、从学校到图书馆,甲用15分钟,乙用18分钟,甲、乙所用时间比是( ),乙与甲每分钟所走的路程比是( )。

10、山羊只数比绵羊多25%,山羊只数和绵羊只数的比是( ),绵羊比山羊少( )%。

二、判断。

1、最简整数比,就是比的前项和后项没有公约数。

( )2、正方体的棱长总和与棱长的比是12:1。

( )3、两个数的比值是76,这两个数都缩小3倍,比值变成72 。

( )4、把一根木料锯成10段,每段所用的时间与总时间的比是1:10。

( )5、52既可以表示比,也可以表示比值。

( ) 三、计算。

1、化简比5:3.5 1:1.8 9分钟:0.4小时2、求出比值75:1 1.35:2.4 2:33、解比例7:x =4.8:9.6 x :3=12:1四、解决问题。

1、等腰三角形的顶角与底角的比是2:5,它的顶角与底角各是多少度?2、红、黄、蓝三种铅笔支数的比是2:1:3,红铅笔是12支,黄铅笔、蓝铅笔各有多少支?3、一杯盐水,盐和水的质量比是1:5,其中水有100克,那么这杯盐水质量有多少克?4、一杯盐水,盐和水的质量比是1:5,其中水比盐多80克,这杯盐水质量有多少克?5、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5:4,求甲、乙、丙三人各有图书多少本?6、阿派、欧拉的图书比是5:3,阿派给欧拉15本后,两人图书本数相同,两人原来各有多少本图书?7、一个长方体棱长总和为 96 厘米,高为4厘米,长与宽的比是 3:2 ,这个长方体的体积是多少?8、工程队三天修完全长1200千米的公路,第一天修了全长的30%,第二天和第三天修的米数比是4:3,第二天和第三天各修多少米?答案一、填空。

北师大版六年级上册第六单元《比的认识》单元专项训练——应用题(含答案)

北师大版六年级上册第六单元《比的认识》单元专项训练——应用题(含答案)

第六单元《比的认识》单元专项训练——应用题1.五味子枸杞茶由五味子和枸杞按1∶4的质量比并加水配制而成。

一包含18克枸杞的五味子枸杞茶,含五味子多少克?2.一种什锦糖是用玉米糖、软糖、奶糖按1∶2∶5混合而成的。

(1)如果要配制210千克这种什锦糖,需要玉米糖、软糖、奶糖各多少千克?(2)玉米糖、软糖、奶糖各有30千克,要配制这种什锦糖,当软糖用完时,玉米糖还剩下多少千克?又增加了多少千克的奶糖?3.省体操队一共有252人,为联络方便,设计了这样一种联络方式:一旦有表演活动,由导演同时通知2名队长,这2名队长再分别同时通知2名队员,依此类推……如果同时通知2名队员需要1分,7分能通知到所有队员吗?,后来又4.“双减”后,六年级学生踊跃参加体育社团活动,参加的同学是六年级总人数的13有20人参加,这时参加的同学与未参加的人数的比是3:4。

六年级一共有多少人?(1)写出混凝土的三种材料是按怎样的比配制的。

(2)如果配制18吨混凝土,需要石子多少吨?6.足球是由黑色五边形皮和白色六边形皮共同围成的,黑色五边形皮和白色六边形皮的块数比是35:,已知黑色五边形皮有12块,白色六边形皮有多少块?7.一根长72厘米的铁丝焊接成一个长方体框架,已知长、宽、高的比是4∶2∶3,求这个长方体的体积。

8.读一本书,已读了总页数的1,如果再读30页,则已读的和未读的比是3∶5,这本书共有多6少页?9.红梅小学四年级6个班进行年级足球比赛,每两个班之间都要进行一场比赛。

请你先画一画,再列式算一算四年级一共要进行多少场比赛?10.我国有悠久的青铜器铸造史,古籍《考工记》记载了青铜器铸造的锡、铜的质量比。

经查阅资料可知:鼎的锡、铜的质量比是1∶5;大刀的锡、铜的质量比是1∶2。

(1)一个鼎的质量是360千克,它含铜和锡各多少千克?(2)一把大刀含铜的质量是840千克,这把大刀的质量是多少千克?11.甲、乙两车同时从两地相对开出,2.5时后相遇。

人教版小学六年级数学上册《比的应用》练习题及答案

人教版小学六年级数学上册《比的应用》练习题及答案

人教版小学六年级数学上册《比的应用》练习题及答案一、填空。

1.六年级一班男生和女生人数的比是2∶3,则男生占全班人数的()/(),女生占全班人数的()/()。

2.甲、乙两数的和是26,甲、乙两数的比是5∶8,则甲数是(),乙数是()。

3.男生人数和全班人数的比是5∶11。

(1)男生人数和女生人数的比是()。

(2)男生人数是女生人数的()。

(3)女生人数是男生人数的()。

4.一个直角三角形两个锐角度数的比是3∶2,这两个锐角分别是()和()。

5.按1:10配置一杯220ml的蜂蜜水。

(1)1:10是()和()的体积比,指()占1份,()占10份。

(2)蜂蜜和蜂蜜水的体积比是():(),蜂蜜占蜂蜜水体积的()/()。

(3)蜂蜜有()ml,水有()ml。

二、小明要调制2200克咖啡,咖啡和奶的质量比是2∶9,需要咖啡和奶各多少克?三、一个足球的表面是由黑色五边形和白色五边形皮围成的。

黑色皮和白色皮的块数的比是3∶5,白色皮有20块,黑色皮有多少块?四、丽丽调制了两杯蜂蜜水,第一杯蜂蜜和水的体积比是1∶8,第二杯蜂蜜和水的体积比是3∶25。

1.第一杯蜂蜜水的体积是450毫升,那么蜂蜜和水各多少毫升?2.按第二杯比配制,如果加入蜂蜜27毫升,那么需要水多少毫升?3.按第二杯的比配制,用500毫升水能配制这种蜂蜜水多少毫升?五、学校举行“小小歌手”比赛,对进入决赛的选手按2:3的比拼出一、二等奖,如果获奖的有20名选手,则获一等奖和二等奖的选手各有多少名?六、一个等腰三角形,顶角与底角的度数之比是2:1.这个三角形的三个内角的度数分别是多少?参考答案【拓展资料】小学6年级数学知识点包括分数的乘法与除法、方向与距离、圆的认识、百分数、圆柱与圆锥等。

六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

北师大新版六年级上册比的认识专项练习

北师大新版六年级上册比的认识专项练习

北师大新版六年级上册比的认识专项练习比的认识专项练习注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一.选择题(共16小题)1.甲、乙两数的平均数是56,甲数与乙数的比是4:3,甲数是( )A .32B .48C .64D .1122.如图四个情景中的比可以用2:3表示的共有( )个.A .1B .2C .3D .43.如果A :B=,那么(A ×11):(B ×11)=( )A .1B .C .无法确定4.把 3:4 的前项增加 6,要使比值不变,后项可以( ) A .增加 6B .增加 12C .乘 35.打一稿件,甲单独打需要8小时,乙单独打需要4小时,甲、乙两人的工作效率比是( )A .3:1B .1:2C .2:1 6.从甲堆煤中取出给乙堆,则两堆煤相等,原来甲、乙两堆重量的比是( ) A .7:5B .7:2C .7:3D .9:77.甲数比乙数少25%,甲数比乙数的最简整数比是( ) A .1:4B .4:1C .3:4D .4:38.从甲堆煤中取出给乙堆,这时两堆煤的质量相等.原来甲、乙两堆煤的质量之比是( ) A .3:4B .7:5C .5:7D .8:69.一杯糖水,糖与水的比是1:16,喝掉一半后,糖与水的比是( ) A .1:8B .1:32C .1:16D .无法比较10.甲数的等于乙数的(甲数、乙数不为0),那么甲数与乙数的比是( ) A .:B .6:5C .5:6D .:11.小圆的直径是2CM ,大圆的直径是3cm ,它们的面积之比是( ) A .3:2B .2:3C .4:9D .9:412.大圆与小圆的周长之比是4:3,小圆的面积是18平方厘米,大圆面积是( ) A .24平方厘米 B .126平方厘米C .32平方厘米D .72平方厘米13.淘气配了两杯糖水如图,下面说法正确的是( ) A .甲杯甜 B .乙杯甜C .甲杯糖与水的比是1:3D .一样甜14.有大小两个圆,大圆半径是5厘米,小圆半径是4厘米,小圆面积和大圆面积的比是( ) A .5:4B .4:5C .25:16D .16:2515.在3:2中,如果前项加上6,要使比值不变,后项应( ) A .加上6B .乘以6C .乘以316.比的前项扩大到原来的2倍,后项缩小到原来的,比值( )A B .扩大到原来的4倍C .不变第Ⅱ卷(非选择题)二.填空题(共14小题)17.2.5:的比值是 ,化成最简整数比是 .18.a 除b 的商是0.875,a 与b 的比是 ,如果两数的和是30,则b 是 .19.学校合唱队男生人数与女生的比是3:4,男生人数比女生少 %.20.吨:600千克化成最简整数比是 .21.大圆与小圆半径的比是4:3,小圆面积与大圆面积的比是 .22.40克糖溶解在160克水中,水与糖水的比是 : ,这种糖水的含糖率是 .23.甲乙两车先后从A 地出发到B 地,当甲到达中点时,乙走了全程的,当甲到达B 地时,乙走了全程的;甲乙两车的速度比是 .24.8:15比的前项扩大3倍,要使比值不变,比的后项也应该扩大 倍.25.一段路,甲走需要0.5小时,乙走需要20分钟,甲和乙的速度比是 .26.一件工作,小明要5小时可做完,小华要6小时可做完.小华和小明的工作时间比是 ,工作效率比是 .27.学校六年级女生人数是男生人数的,男生人数与女生人数的比是 ,女生人数比男生人数少 %. 28.含盐率为20%的盐水中,盐与水的比是 .29.如图,梯形上底是下底的,阴影部分三角形与空白部分平行四边形面积比是 .30.如图,已知圆的半径和长方形的宽都是2厘米,圆和长方形的面积相等,长方形的长是 厘米,阴影部分面积与圆的面积最简整数比是 .三.判断题(共7小题)31.甲有10元钱,乙有4元钱,甲给了乙2元,现在甲和乙钱数的比是4:3. .32.等腰三角形的一个底角40度,则另一个底角和顶角的比是5:2. .33.比的前项增加10%,要使比值不变,后项应乘1.1.34.4:5的后项增加10,要使比值不变,前项应增加8. 35.甲地到乙地,客车需8小时,货车需10小时,客车与货车的速度比是5:4. . 36.任意两个圆的圆周长与直径的比都相等 .37.从A 地到B 地,甲要4分钟,乙要5分钟,甲乙的速度比是4:5.四.应用题(共3小题) 38.网块花布,一块正方形,边长是8分米,一块是长方形,长是10分米,宽是6分米,写出正方形和长方形周长的比、面积的比.39.三个连续偶数的和是90,这三个数写成的连比是多少?40.甲数与乙数的比是3:4,乙数与丙数的比是6:7,甲数与丙数的比是多少?甲数、乙数与丙数三个数的比是多少?.41. 一个长文体,它的长、宽、高的比是4:3:2,它的棱长总和为108㎝,这个长方体的表面积和体积各是多少?42、甲、乙、丙三个数的平均数是60。

六年级数学上册《比的应用题》重点训练

六年级数学上册《比的应用题》重点训练

《比的应用题》重点训练例1:一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?①96÷4=24厘米②24÷(1+2+3)=4厘米③长:4×3=12厘米宽:4×2=8厘米高:4×1=4厘米④体积:长×宽×高=12×8×4=384立方厘米例2:甲乙两数比是6:5,甲丙两数比是4:9,甲乙丙三个数的比是多少?甲比乙——6:5=12:10甲比丙——4:9=12:27甲乙丙之比——12:10:27例3:红花和黄花共70朵,红花与黄花的比是2:5,求红花与黄花各是多少朵?①70÷(5+2)=10朵②10×2=20朵——红③10×5=50朵——黄《比的应用题》重点训练1、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15300÷15=2020×4=80(本),20×5=100(本),20×6=120(本)答:四年级得80本,五年级得100本,六年级得120本。

2、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=1015050÷101=50(千克)答:需要盐水50千克。

3、五年级有140人,六年级有130人,从六年级调多少人到五年级,才能使五年级、六年级的人数比为5∶1?解:140+130=270(人)5+1=6270÷6=45(人)130-45=85(人)答:从六年级调85人到五年级。

《比的应用题》重点训练4、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=1015656÷101=56(千克)答:需石灰56千克。

5、体育室有200根跳绳,按人数分配给六年级一、二两个班,一班有52人,二班有48人,两个班各得跳绳多少根?解:52+48=100(人)200÷100=2(根)52×2=104(根)48×2=96(根)答:一班可得跳绳104根,二班可得跳绳96根。

【比的应用】18题专项(含答案)

【比的应用】18题专项(含答案)

六年级上册数学1.一个等腰三角形的底角与顶角的度数比是1:4,这个三角形的顶角是多少度?2.张奶奶的长方形麦地,周长200米,长和宽的比是3:2,这块麦地的长是多少米?3.水果店运来,梨和苹果一共84箱,梨和苹果的箱数比是5:7,梨和苹果各有多少箱?4.水果店运来梨比苹果少14箱,梨和苹果的箱数比是5:7,梨和苹果各有多少箱?4.长方形的周长是32厘米,长与宽的比是9:7,长方形的面积是多少平方厘米?6.有1080千克饲料,按照耕牛的头数卖给两个养牛专业户,第一户有4头牛,第二户有6头牛,两户各买多少千克饲料?7.等腰三角形的周长是55厘米,其中两边的比是2:1,腰是多少厘米?8.三个数的平均数是180,三个数的比是2:3:4,个数各是多少?9.水果店运来桃、梨和苹果共156箱,其中桃有65箱,梨和苹果的箱数比是3:4,苹果和梨各有多少箱?10.一批图书按3:4:5分给甲,乙,丙三个学校,甲校比乙校少分480本,这批书一共多少本?10.一批图书按3:4:5,分给甲、乙、丙三个学校,乙校和丙校一共分到450本,甲校比丙校少分多少本?12.甲乙两袋大米,一共120千克,如果把甲袋大米的1/5倒入乙袋,两袋质量正好相等,甲袋大米原有多少千克?13.客货两车同时从相距315千米的两地相对开出,3.5小时相遇。

已知客货两车的速度比是5:4,客车每小时比货车多行多少千米?14.甲仓存粮100吨,乙仓存粮80吨,从甲仓调出多少吨给乙仓,才能使甲,乙两仓的存粮比是7:11?14.本月笑笑妈妈的手机话费比家中固定电话费多40元,手机费与固定话费的比是5:3,手机费与固定话费一共多少钱?15.一辆大巴从甲地开往乙地,行了一段路程后,离乙地还有210千米,接着又行了全程的1/5,这时已行与未行的路程比是3:2,甲乙两地相距多少千米?16.小华读一本书,第一天读了总页数的1/3,第二天读的页数与第一天读的页数的比是6:7,还剩80页没读,全书共多少页?18.老爷爷准备用一块地的2/5种西红柿,剩下的按3:5的比种黄瓜和茄子,茄子的面积是120平方米,这块地是多少平方米?。

六年级数学同步练习《比的认识与应用》

六年级数学同步练习《比的认识与应用》

六年级数学同步练习《比的认识与应用》古话说得好读书破万卷,下笔如有神,只有积累了一定的经验,才可能提炼出思维的规律,查字典数学网编辑了六年级数学同步练习《比的认识与应用》,欢迎阅读!一、想想填填。

1、两个数( ),又叫做两个数的比。

在6∶5=1.2中,6是比的( ),5是比的( ),1.2是比的( )。

2、比的前项相当于除法里的( ),相当于分数里的( )。

3、比的前项和后项同时( 或)同一个数( ),比值( ),这叫做比的基本性质。

4、六(2)班女生人数是男生的,也就是说这个班女生人数与男生人数的比是( ),女生人数与全班人数的比是( ),男生人数与全班人数的比是( )。

5、一项工程,甲队单独施工16天完成,乙队单独施工12天完成。

甲、乙两队的工作时间的比是( ),比值是( );工作效率的比是( ),比值是( )。

6、小圆半径3cm,大圆半径9cm,小圆和大圆直径的比是( ),周长的比是( ),面积的比是( )。

7、2=( )∶( )= 27( )=8、跑48千米大约需要2时,路程与时间的比大约是( ),比值是( ),这个比值表示的是( )。

9、一天某车间的出勤48人,请假1人,公出1人,这个车间的出勤人数与缺勤人数的比是( ),出勤率是( )%。

二、小小法官。

(对的打,错的打)1、甲正方形边长是6厘米,乙正方形边长是12厘米,那么它们的面积和周长比都是1∶2。

( )2、甲数比乙数少,甲数与乙数的比是1∶5。

( )3、一个圆周长与直径的比的比值一定是。

( )三、想想选选。

(选择正确答案的序号填入括号内)1、在糖水中,糖占糖水的,糖和水的比是( )。

A、1∶8B、1∶9C、1∶10D、1∶112、一个三角形三个内角度数的比是2∶1∶1,这个三角形是( )。

A、钝角三角形B、锐角三角形C、等腰直角三角形D、等边三角形3、甲数除以乙数,商是2,甲数与乙数的最简整数比是( )A、2∶1B、1∶2C、2∶4D、4∶24、在一个班上,女生占全班人数的40%,男生、女生人数的比是( )A、2∶3B、3∶2C、2∶5D、5∶2四、写写算算。

6年级上册比的认识试卷【含答案】

6年级上册比的认识试卷【含答案】

6年级上册比的认识试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个选项是比的基本性质?A. 比的前项和后项同时乘或除以相同的数,比值不变B. 比的前项和后项同时加或减相同的数,比值不变C. 比的前项和后项同时乘或除以不同的数,比值不变D. 比的前项和后项同时加或减不同的数,比值不变2. 若a:b=c:d,则ad等于?A. bcB. bdC. acD. bd3. 下列哪个选项是正确的?A. 若a:b=c:d,则a与c成正比B. 若a:b=c:d,则b与d成反比C. 若a:b=c:d,则a与d成正比D. 若a:b=c:d,则b与c成反比4. 若5:8=15:x,则x等于?A. 24B. 25C. 26D. 275. 若a:b=3:4,b:c=4:5,则a:c等于?A. 3:5B. 3:4C. 4:5D. 5:6二、判断题(每题1分,共5分)1. 若a:b=c:d,则a与c成正比。

()2. 若a:b=c:d,则b与d成反比。

()3. 比的前项和后项同时乘或除以相同的数,比值不变。

()4. 比的前项和后项同时加或减相同的数,比值不变。

()5. 若a:b=3:4,b:c=4:5,则a:c=3:5。

()三、填空题(每题1分,共5分)1. 若a:b=2:3,则b等于a的____倍。

2. 若5:8=15:x,则x等于____。

3. 若a:b=3:4,b:c=4:5,则a:c等于____。

4. 若a:b=c:d,则ad等于____。

5. 比的前项和后项同时乘或除以相同的数,比值____。

四、简答题(每题2分,共10分)1. 请简述比的基本性质。

2. 请简述如何求解比例中的未知项。

3. 请简述如何判断两个比是否相等。

4. 请简述如何求解比例中的比例关系。

5. 请简述如何判断两个比是否成反比。

五、应用题(每题2分,共10分)1. 若a:b=2:3,b:c=4:5,求a:c。

2. 若5:8=15:x,求x。

《比的认识》应用题 比与长方体 六年级数学 (18)

《比的认识》应用题  比与长方体   六年级数学 (18)

《比的认识》应用题比与长方体六年级数学1.一个长方体的棱长之和是600厘米,其中长宽高的比是7:1:7,求这个长方体的体积2.一个长方体的棱长之和是304厘米,其中长宽高的比是9:5:5,求这个长方体的体积3.一个长方体的棱长之和是480厘米,其中长宽高的比是4:5:3,求这个长方体的体积4.用40厘米长的铁丝围成一个长方体的框架,它的长宽高的比是4:3:3,它的高是多少厘米?5.一个长方体的棱长总和是120厘米,长、宽、高的比是5:3:2,这个长方体长( )厘米,宽( )厘米,高( )厘米。6.一个长方体的棱长之和是216厘米,其中长宽高的比是2:3:4,求这个长方体的体积7.用48米长的铁丝做一个长方体的框架,长、宽、高的比是3∶2∶1,这个长方体的长、宽、高各是多少米?8.一个长方体的棱长之和是240厘米,其中长宽高的比是7:4:4,求这个长方体的体积9.一个长方体的棱长之和是480厘米,其中长宽高的比是10:8:6,求这个长方体的体积10.一个长方体的棱长之和是160厘米,其中长宽高的比是9:9:2,求这个长方体的体积11.一个长方体的棱长之和是240厘米,其中长宽高的比是2:5:8,求这个长方体的体积12.一个长方体,它的长、宽、高的比是4:3:2,它的棱长总和为108㎝,这个长方体的表面积和体积各是多少?13.一个长方体的棱长之和是76厘米,其中长宽高的比是9:6:4,求这个长方体的体积14.一个长方体的棱长之和是88厘米,其中长宽高的比是6:1:4,求这个长方体的体积15.一个长方体棱长总长是80厘米,长、宽、高的比是2:3:5,这个长方体的表面积是( )体积是( ),如果把这个长方体削成最大的圆柱体,这个圆柱体的底面半径是( ) 16.一个长方体的棱长之和是76厘米,其中长宽高的比是6:6:7,求这个长方体的体积17.用一条长48厘米的铁丝做一个长方体的框架,要求做成的长方体的长、宽、高长度的比是3:2:1,那么这个长方体框架的长、宽、高各是多少厘米?(接头处忽略不计)18.一个长方体的棱长之和是200厘米,其中长宽高的比是4:1:5,求这个长方体的体积19.一个长方体的棱长之和是800厘米,其中长宽高的比是5:5:10,求这个长方体的体积20.一个长方体的棱长之和是20分米,长、宽、高的比是5∶3∶2,这个长方体的体积是( )立方分米。21.把两根长120分米的铁丝分别焊成一个正方体和一个长宽高的比是3:2:1的长方体,比较它们的表面积22.一个长方体的棱长之和是96厘米,其中长宽高的比是1:4:7,求这个长方体的体积23.一个长方体的棱长之和是48厘米,其中长宽高的比是2:3:1,求这个长方体的体积24.一个长方体的棱长之和是440厘米,其中长宽高的比是9:6:7,求这个长方体的体积25.一个长方体的棱长之和是360厘米,其中长宽高的比是6:2:10,求这个长方体的体积26.一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2。求它的长宽高。27.一个长方体的棱长之和是68厘米,其中长宽高的比是6:5:6,求这个长方体的体积28.一个长方体的所有棱长之和为1.8米,长、宽、高的比是6:5:4。把这个长方体截成两个小长方体,表面积最多可以增加( )平方米。29.一个长方体的棱长之和是64厘米,其中长宽高的比是6:9:1,求这个长方体的体积30.一个长方体棱长总和是120厘米,长、宽、高的比是5∶3∶2。这个长方体的体积是( )立方厘米。31.一个长方体的棱长之和是44厘米,其中长宽高的比是6:2:3,求这个长方体的体积32.用一根长12米的铁丝做一个长、宽、高的比是3:2:1的长方体包装柜架,做成的这个包装柜架的体积是多少立方米?33.一个长方体,它的棱长和是480厘米,长、宽、高的比是4:3:1,这个长方体的体积是多少?34.一个长方体的棱长之和是880厘米,其中长宽高的比是9:3:10,求这个长方体的体积35.一个长方体棱长总和是72分米,它的长、宽、高的比是2∶3∶4,求它的体积。36.一个长方体的棱长之和是48厘米,其中长宽高的比是1:1:2,求这个长方体的体积37.一个长方体长、宽、高的比是3:2:1,已知长方体的棱长总和为72分米,这个长方体的体积是多少立方分米? 38.一个长方体零件的高是3厘米,底面周长是28厘米,长和宽的比是4:3。这个长方体零件的体积是多少立方厘米?39.一个长方体的棱长之和是72厘米,长、宽、高的比是4:3:2,它的体积是多少?40.一个长方体的棱长总和是60厘米,长、宽、高的比为7∶5∶3,这个长方体的体积是( )立方厘米。41.一个长方体的棱长之和是68厘米,其中长宽高的比是8:5:4,求这个长方体的体积42.一个长方体的棱长之和是44厘米,其中长宽高的比是4:1:6,求这个长方体的体积43.一个长方体的棱长之和是760厘米,其中长宽高的比是4:8:7,求这个长方体的体积44.一个长文体,它的长、宽、高的比是4:3:2,它的棱长总和为108㎝,这个长方体的表面积和体积各是多少?45.一个长方体的棱长之和是96厘米,长、宽、高的比是5:4:3,它的体积有多大?46.用120厘米的铁丝做一个长方体的框架。长、宽、高的比是3∶2∶1。这个长方体的长、宽、高分别是多少?体积是多少?47.一个长方体的棱长之和是800厘米,其中长宽高的比是8:7:5,求这个长方体的体积48.一个长方体的模型,所有棱长的和是72分米,长、宽、高的比是4∶3∶2,这个长方体模型的体积是多少立方分米?49.一个长方体的棱长之和是760厘米,其中长宽高的比是6:3:10,求这个长方体的体积50.一个长方体的长、宽、高之比是3:2:1,若它的高是2厘米,体积是( )。51.一个长方体的棱长之和是480厘米,其中长宽高的比是8:1:3,求这个长方体的体积52.一个长方体的棱长之和是68厘米,其中长宽高的比是6:6:5,求这个长方体的体积53.一个长方体的棱长之和是360厘米,其中长宽高的比是3:6:6,求这个长方体的体积54.一个长方体的棱长之和是56厘米,其中长宽高的比是1:2:4,求这个长方体的体积55.一个长方体的棱长之和是60厘米,其中长宽高的比是6:7:2,求这个长方体的体积56.一个长方体的棱长之和是256厘米,其中长宽高的比是4:3:9,求这个长方体的体积57.一个长方体的棱长总和是120厘米,长、宽、高的比是5:3:2,这个长方体长( )厘米,宽( )厘米,高( )厘米。58.一个长方体,长宽高的比是3:2:1,长方体的棱长之和是12分米,它的体积是多少?59.一个长方体的棱长之和是84厘米,其中长宽高的比是5:3:2,求这个长方体的体积60.做一个长方体的木箱,它的所有棱长之和为112厘米,它的长、宽、高之比为6:5:3。这个木箱的占地面积最大是多少平方厘米?61.用120cm的铁丝做一个长方体的框架。长、宽、高的比是3:2:1。这个长方体的长、宽、高分别是多少?62.将一根长540厘米的铁丝,截取六分之五焊接成一个长方体,长,宽,高的比是8∶5∶2,这个长方体的体积是( )立方厘米。63.一个长方体的棱长之和是104厘米,其中长宽高的比是4:2:7,求这个长方体的体积64.一个长方体的棱长之和是176厘米,其中长宽高的比是9:6:7,求这个长方体的体积65.一个长方体的棱长之和是560厘米,其中长宽高的比是6:7:7,求这个长方体的体积66.用40厘米长的一根铁丝,剪断后焊成一个长方体,要求长宽高的比为5:3:2.这个长方体的体积是多少?表面积是多少?67.一个长方体的棱长之和是88厘米,其中长宽高的比是2:4:5,求这个长方体的体积68.一个长方体的长、宽、高的比是5∶3∶4,已知它的高是8厘米,它的体积是( )立方厘米69.一个长方体的棱长之和是144厘米,长宽高的比是5:4:3,这个长方体的体积是多少立方厘米?70.一个长方体所有棱长的和是96厘米,它的长宽高的比是5:4:3。它的表面积( )平方厘米,体积是立方厘米。71.一个长方体的棱长之和是360厘米,其中长宽高的比是4:5:9,求这个长方体的体积72.判断:一根铁丝长240厘米,焊成一个长方体框架,长、宽高的比是3∶2∶1,它的体积是6000立方厘米。 ( ) 73.一个长方体的棱长之和是420厘米,其中长宽高的比是74.用一根长120厘米的铁丝围城一个长方体,长方体长宽高的比是7∶3∶5;这个长方体最大那个面的面积是多少?75.一个长方体的棱长之和是308厘米,其中长宽高的比是3:3:5,求这个长方体的体积76.一个长方体的棱长之和是360厘米,其中长宽高的比是1:7:7,求这个长方体的体积77.一个长方体的棱长之和是800厘米,其中长宽高的比是3:7:10,求这个长方体的体积78.一个长方体的棱长总和是60厘米,长、宽、高的比为7∶5∶3,这个长方体的体积是( )立方厘米。79.一个长方体的棱长之和是308厘米,其中长宽高的比是5:1:5,求这个长方体的体积80.长方体的棱长总和为220厘米,已知长、宽、高的比为5:4:2,这个长方体的体积和表面积各是多少?81.一个长方体的棱长之和是480厘米,其中长宽高的比是3:5:4,求这个长方体的体积82.一个长方体的棱长之和是360厘米,其中长宽高的比是6:4:5,求这个长方体的体积83.一个长方体的棱长之和是800厘米,其中长宽高的比是10:9:6,求这个长方体的体积84.一个长方体的棱长之和是400厘米,其中长宽高的比是85.一个长方体的棱长之和是576厘米,其中长宽高的比是2:7:7,求这个长方体的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《比的认识》应用题 长比连比专题训练六年级数学1. 建筑工人用2份水泥,3份沙子和5份石子配制一种混凝土,配制6000千克,这种混凝土需要水泥沙子石子各多少千克?2. 某校四五六三个年级准备为学校图书馆捐书,计划捐2500本,四年级有350人,五年级有650人,六年级有250人,按人数分配,各年级应捐书多少本?3. 把63吨化肥,按4:2:3分配给甲、乙、丙三个乡,甲乡比乙乡多分( )吨4. 甲、乙、丙三位同学向贫困地区的希望小学捐赠图书,已知他们捐赠的图书数之比为7:5:8,且共捐书200本,问三位同学各捐书多少本?5. 学校开展植树活动,将180棵树苗,按2:3:4分给四五六年级,每个年级各分多少棵?6. 建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?7. 一堆化肥共6吨,按1:3:4分给甲、乙、丙三个村,甲村分得这堆化肥的() ()(),乙村分得( )吨。8. 我国民间常用生姜、红糖和水煎服以防治感冒。生姜、红糖和水一般按照2:5:75的质量比配好后煎熬。小军每次喝246克的姜汤,那么每次需要准备生姜、红糖各多少克?9. 小王、小明、小军春游结束后,三人从学校共乘出租车回家。三人商定,出租车费要合理分摊。小王在全程的14处下车,小明在全程的32处下车,小军在终点下车,车费共46元。请你设计三人车费的分摊方案。10. 甲、乙、丙三个村庄合修一条水渠,计划需要176个劳动力,由于各村人口多少不等,只有按2:3:6的比例摊派才较合理,问甲、乙、丙三个村庄各派出多少个劳动力?11. 学校新购进一批图书,按4∶5∶6分给四、五、六三个年级,已知四年级比六年级少分得40本,五年级分得图书多少本?12. 某小学为抢救大熊猫共捐款240元,低、中、高年级捐款钱数的比是3∶4∶5.低、中、高年级各捐款多少元?13. 配置一种火药,火硝、硫磺、木炭的比是15∶2∶3,三种材料各有9千克,如果木炭正好用完,火硝还需要多少千克?硫磺还剩多少千克?14. 某化工厂第一、二、三车间人数的比为8:12:21,第一车间人数比第二车间人数少80人,三个车间各有多少人?15. 王家,李家和张家共用一只水表,王家有3人,李家有3人,张家有5人,九月份水费是44元,按人数分水费,三家各付多少钱?16. 甲、乙、丙三堆煤的重量比是2∶3∶5,三堆煤共重15吨,甲比乙少多少吨?17.一种什锦糖是由酥糖、水果糖和奶糖按2:3:5混合而成,现在已知酥糖比水果糖少20千克,需要这三种糖果各多少千克?18.把120枚阳光卡按人数分给一、二年级的小朋友,一年级有34人,二年级有46人。一、二年级小朋友各分得多少枚阳光卡?19.六(2)中队少先队员订《少年科学》杂志,全中队共交了792元,各小队订阅情况如下表,请用自己喜欢的方法算出各小队应交的钱数.20.学校把360棵树苗按2:3:4分配给四、五、六年级学生去种,每个年级各种多少棵?21.学校要把522个果冻按人数分给五、六两个年级的学生,已知五年级有84人,六年级有90人。那么五、六年级各分得多少个果冻?22.一种混凝土的水泥、黄沙、石子的质量比是2:3:5,⑴要配制120吨这样的混凝土,三种材料各需要多少吨?⑵如果这三种材料都有18吨,当黄沙全部用完时,水泥还剩多少吨,石子又增加了多少吨?23.体育场买来16个篮球和12个足球,共付出760元。已知篮球与足球的单价比是5:6,体育场买篮球和足球各付出多少元?24.一种什锦糖是由水果糖、奶糖、软糖按5:3:2混合而成的。(1)如果先称20千克的水果糖,奶糖与软糖各需多少千克?(2)如果先称出15千克的奶糖,水果糖与软糖各需多少千克?25.配制黑火药用的原料是火硝、硫磺和木炭。这三种原料重量的比是15∶2∶3,要配制320千克这种黑火药,需要木炭多少千克?26.把一根长120米长的绳子按3:4:5的比例分成三段,这三段依次长多少米?27.三、四、五年级共植树180棵,三、四、五年级植树的棵树比是3∶5∶7。那么三个年级各植树多少棵?28.京华中学有教师120人,老、中、青教师的人数比是1:3:4,有中年教师( )人。29.果园里的苹果树、梨树和龙眼树的比是5:2:1,梨树和龙眼树共有870棵,苹果树有多少棵?30.阳山小学参加植树活动,把240棵树按2∶3∶5分配给四、五、六三个年级。六年级比四年级多植了多少棵? 31.一个晒盐厂用100克海水可晒出3克盐。如果一块盐田一次放入5850吨海水,可以晒出多少吨盐?32.一种混凝土是由石子、沙子、水泥按5:3:2配制而成,现在要搅拌40吨这样的混凝土,需要石子( )吨,沙子( )吨和水泥( )吨。33.光明小学六一中队少先队员订《学科学》杂志,全中队共应缴135元。各小队订阅情况分别是一小队14本,二小队16本,三小队15本。请你帮助计算一下各小队应交的钱数。34.张、李、王三人合伙办企业,张出资10万元,李出资12万元,王出资15万元,一年中共盈利3.7万元,如果按出资比例分配盈利,三人各分得多少元?35.同学位们分组采集树种,第一组、第二组、第三组采集的树种的质量比是5:3:4,第一级组采集15千克,第二三组各采集多少千克?36.王叔叔卖梨、苹果、桔子三种水果,它们的重量比是3:4:6,其中桔子比苹果多80千克,梨有多少千克?37.四年级3个班共做好事180次,一、二、三班做好事次数的比是4:5:6。三个班各做好事多少次?38.学校把植树180棵的任务交给五年级两个班,五1班46人,五2班44人,按照两班人数的比,五2班应植树( )棵。39.某化肥厂甲、乙、丙三个车间共有工人820人。如果三个车间人数的比是8∶12∶21,问甲、乙、丙车间各有多少工人?40.甲乙丙三人同去银行存款,他们所存的钱数的比是5:2:1,已知丙和乙两人共存款8700元,甲存款多少元?41.一车水果重1.8吨,按2:3:5的比例分配给甲、乙、丙三 )。个水果店,乙水果店分得这批水果的( 42.五年级共有学生90人,按4:5:6分成甲,乙,丙三个小组参加植树,这三个小组各有多少人?43.甲、乙、丙三个同学体重总和是110千克,他们的体重比是6:9:7。最重的一个同学达多少千克?44.甲乙丙三个数的比是2:3:5,甲数比丙数少45,求甲乙丙三个数的和是多少?45.有三户人家共用一个水表,高家有4口人,李家有3口人,赵家有5口人,八月份共付水费84元,若按人口计算,三家各付水费多少元?46.学校买来一批皮球,按7:3:2分给了一、二、三年级,结果二年级比一年级少分得36只,学校共买皮球多少只? 47.图书馆买来180本儿童故事书,按1∶2∶3分给低、中、高年级同学阅读.低、中、高年级各分到多少本?48.学校图书馆买来294本课外书,决定借给六年级3个班,一班45人,二班50人,三班52人,如果按人数分配,每个班各借到多少本?49.爸爸和朋友两人合作做生意,爸爸出资16000元,朋友出资12000元,一年后赢利14000元。爸爸和朋友应该怎么分这笔钱?50.六年级有学生108人,他们分成三组去汽车厂,电影厂和自行车厂参观,这三组的人数的比是4:3:2,去三个厂参观的学生各有多少人?51.学校买来一批皮球,按7:3:2分给了一、二、三年级,结果二年级比一年级少分得36只,学校共买皮球多少只? 52.学校把栽280棵树的任务按照六年级三个班的人数,分配给各班,一班有47人,二班有45人,三班有48人,三个班各应栽树多少棵?53.学校把450张知识长片按一年级三个月的人分给班,一班有48人二班有52人,三班有50人,三个班各应分得多少张?54.学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。三个班各应栽多少棵树?55.建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?56.新华路小学四、五、六年级学生共同为希望工程捐款4950元,它们的钱数比是2:3:6。每个年级各捐款多少元?57.在一个花蓝里,有郁金香、百合、康乃馨,且这三种花是按4:3:2搭配的.如果这个花蓝中一共有90朵花,那么这三种花各有多少朵?58.某化工厂第一二三车间的人数的比是8:12:21,第一车间比第二车间人数少80人,三个车间各有多少人?59.甲乙丙三数的比是5:6:7,乙数是84,求甲数和丙数。60.买来糖110块,按大、中、小班人数的8∶9∶5分给三个班,小班得到多少块?61.现在有5400台电脑的生产任务,按1:2:3分配给甲、乙、丙三个公司生产。每个公司各应生产多少台电脑?62.一个养鱼塘按1:2:3养殖草鱼、鲤鱼、白脸鱼,已知鲤鱼养了6666尾,草鱼和白脸鱼各养了多少尾?63.一个养鸡专业户养鸡、鸭、鹅共3600只,鸡、鸭、鹅只数的比是7:4:1,鸡鸭鹅各养多少只?64.某品牌冰淇淋是由水、奶油、糖按7:2:2混合成的。(1)如果先称出6千克糖,水与奶油各需多少千克?(2)制成4.4千克该品牌的冰淇淋,需要糖多少千克?65.甲乙丙三个小朋友按1:2:3分水果糖,若乙分得6颗,那么丙分得( ) 颗。66.六一班和六二班建校劳动,六一班37人,六二班38人,共运送1500块砖。平均每班搬运( );如果按每班人数分配,六一班应搬运( ),六二班应搬运( )。67.甲出资金2400元,乙出资金4000元,合资经商得利润1700元,因甲特别劳累,先提取利润的十七分之一作酬劳,其余按本金比例分配。问甲乙各得红利多少元(红利金额不包括酬劳金额)?68.水泥、沙子和石子的比是2:3:5。要搅拌20吨这样的混凝土,需要水泥、沙子和石子各是多少吨?69.一个梯形的上底,下底和高共长48厘米,它们长度的比是3:4:5求这个梯形的面积?70.甲、乙、丙三个养猪专业户共养猪840头,养猪头数比是9:10:11。求各户养猪的头数。。

相关文档
最新文档