卡尔曼滤波
卡尔曼滤波 公式
卡尔曼滤波公式
卡尔曼滤波是一种用于估计状态变量的数学算法,广泛应用于各种领域,如航空航天、无人驾驶、机器人等。
以下是卡尔曼滤波的公式:
1.状态预测方程:
x[k|k-1] = A[k|k-1] * x[k-1|k-1] + B[k|k-1] * u[k]
其中,x[k|k-1]表示在时间k对时间k-1的状态预测,A[k|k-1]是状态转移矩阵,B[k|k-1]是控制矩阵,u[k]是控制向量。
2.测量更新方程:
z[k|k] = H[k|k] * x[k|k] + v[k]
其中,z[k|k]表示在时间k对时间k的测量更新,H[k|k]是量测矩阵,v[k]是测量噪声。
3.协方差预测方程:
P[k|k-1] = A[k|k-1] * P[k-1|k-1] * A[k|k-1]' + Q
其中,P[k|k-1]表示在时间k对时间k-1的协方差预测,Q是过程噪声协方差。
4.协方差更新方程:
P[k|k] = (I - K[k] * H[k|k]) * P[k|k-1]
其中,P[k|k]表示在时间k对时间k的协方差更新,K[k]是卡尔曼增益矩阵。
5.卡尔曼增益计算:
K[k] = P[k|k-1] * H[k|k]' / (H[k|k] * P[k|k-1] * H[k|k]' + R)
其中,R是测量噪声协方差。
卡尔曼滤波五个公式推导过程
卡尔曼滤波五个公式推导过程1.系统的状态方程假设我们有一个线性动态系统,可以用如下的状态方程来描述:x(k)=Ax(k-1)+Bu(k-1)+w(k-1)其中,x(k)表示系统在时刻k的状态向量,A是系统的状态转移矩阵,B是输入变量矩阵,u(k-1)是输入变量向量,w(k-1)是过程噪声。
2.系统的测量方程假设我们的系统是通过一些传感器进行测量的,测量结果表示为:z(k)=Hx(k)+v(k)其中,z(k)是系统的测量向量,H是观测矩阵,v(k)是测量噪声。
3.状态估计的预测根据系统的状态方程,我们可以预测系统在下一个时刻的状态。
预测的结果表示为:x^(k)=Ax(k-1)+Bu(k-1)其中,x^(k)表示状态的预测向量。
4.测量更新在得到测量结果后,我们可以根据测量更新系统的状态估计。
计算出的状态估计称为卡尔曼增益。
卡尔曼增益的计算公式如下:K(k)=P^(k)H^T(HP^(k)H^T+R)^-1其中,P^(k)是状态协方差的预测值,R是测量噪声的协方差。
5.状态估计的更新通过卡尔曼增益,我们可以计算出最终的状态估计。
状态估计的更新公式如下:x(k)=x^(k)+K(k)(z(k)-Hx^(k))P(k)=(I-K(k)H)P^(k)其中,I是单位矩阵,P(k)是状态协方差的最优估计。
以上就是卡尔曼滤波的五个公式的推导过程。
通过这五个公式,我们可以根据系统的状态方程和测量方程,利用预测和更新步骤,得到最优的状态估计结果。
卡尔曼滤波在各个领域都有广泛的应用,如目标跟踪、定位导航等。
卡尔曼滤波通俗理解
卡尔曼滤波通俗理解
卡尔曼滤波通俗理解
卡尔曼滤波(Kalman Filter)是一种用来估计系统状态的算法。
它是一种有效的滤波算法,被用于许多模式拟合场合,如智能位置跟踪或自动控制系统。
卡尔曼滤波的核心思想是,通过先验概率分布来估计状态,而这种先验概率分布是基于观察到的测量值,以及我们对变化过程的知识,形成的。
也就是说,卡尔曼滤波给出了一种融合当前观测值和之前观测值的知识技术,用之来估计状态变量,而不仅仅是根据当前观测值来估计。
它的工作原理是,从先前状态估计,然后反馈新观测的量,根据测量值更新估计状态。
这样就可以得到一个更准确的估计。
简而言之,卡尔曼滤波使得我们可以使用当前测量值和先前观测值的组合,以估计一个可能的状态,而不仅仅是根据当前测量值来估计。
这就是卡尔曼滤波的优势所在。
卡尔曼滤波_卡尔曼算法
卡尔曼滤波_卡尔曼算法1.引言1.1 概述卡尔曼滤波是一种用于估计系统状态的技术,通过融合传感器测量值和系统模型的预测值,提供对系统状态的最优估计。
它的应用十分广泛,特别在导航、图像处理、机器人技术等领域中发挥着重要作用。
在现实世界中,我们往往面临着各种噪声和不确定性,这些因素会影响我们对系统状态的准确估计。
卡尔曼滤波通过动态调整系统状态的估计值,可以有效地抑制这些干扰,提供更加精确的系统状态估计。
卡尔曼滤波的核心思想是利用系统模型的预测和传感器测量值之间的线性组合,来计算系统状态的最优估计。
通过动态地更新状态估计值,卡尔曼滤波可以在对系统状态的准确估计和对传感器测量值的实时响应之间进行平衡。
卡尔曼滤波算法包括两个主要步骤:预测和更新。
在预测步骤中,通过系统模型和上一时刻的状态估计值,预测当前时刻的系统状态。
在更新步骤中,将传感器测量值与预测值进行比较,然后根据测量误差和系统不确定性的权重,计算系统状态的最优估计。
卡尔曼滤波具有很多优点,例如它对传感器噪声和系统模型误差具有鲁棒性,可以提供较为稳定的估计结果。
此外,卡尔曼滤波还可以有效地处理缺失数据和不完全的测量信息,具有较高的自适应性和实时性。
尽管卡尔曼滤波在理论上具有较好的性能,但实际应用中还需考虑诸如系统模型的准确性、测量噪声的特性等因素。
因此,在具体应用中需要根据实际情况进行算法参数的调整和优化,以提高估计的准确性和可靠性。
通过深入理解卡尔曼滤波的原理和应用,我们可以更好地应对复杂环境下的估计问题,从而在实际工程中取得更好的效果。
本文将介绍卡尔曼滤波的基本原理和算法步骤,以及其在不同领域的应用案例。
希望通过本文的阅读,读者们可以对卡尔曼滤波有一个全面的了解,并能够在实际工程中灵活运用。
1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文将围绕卡尔曼滤波和卡尔曼算法展开论述。
首先,我们会在引言部分对卡尔曼滤波和卡尔曼算法进行简要概述,介绍其基本原理和应用领域。
卡尔曼滤波的r、q参数
卡尔曼滤波的r、q参数(最新版)目录1.卡尔曼滤波简介2.卡尔曼滤波中的 r、q 参数含义3.r、q 参数对卡尔曼滤波效果的影响4.如何设置 r、q 参数5.实际应用案例及注意事项正文一、卡尔曼滤波简介卡尔曼滤波(Kalman filter)是一种线性最优递归滤波算法,用于估计动态系统的状态变量。
它是在维纳滤波(Wiener filter)的基础上引入了系统模型信息,从而提高了滤波效果的一种滤波方法。
卡尔曼滤波广泛应用于导航定位、机器人控制、自动驾驶等领域。
二、卡尔曼滤波中的 r、q 参数含义在卡尔曼滤波中,有两个重要的参数:r 和 q。
它们分别表示状态变量的协方差矩阵 R 和系统噪声矩阵 Q。
其中,- R(State Covariance Matrix)表示系统状态变量的不确定性,是由系统自身的噪声引起的。
它包含了状态变量的方差信息,用于描述状态变量之间的相关性。
- Q(System Noise Covariance Matrix)表示系统噪声的影响,是由外部环境因素引起的。
它包含了噪声的方差信息,用于描述噪声之间的相关性。
三、r、q 参数对卡尔曼滤波效果的影响r 和 q 参数对卡尔曼滤波效果具有重要影响。
它们分别决定了状态变量的不确定性和系统噪声的影响程度。
具体来说:- r 参数越小,表示状态变量的不确定性越小,滤波器对状态变量的估计越精确。
然而,r 参数过小可能导致滤波器过于敏感,对噪声过度响应,从而降低滤波效果。
- q 参数越小,表示系统噪声的影响越小,滤波器对噪声的抑制能力越强。
然而,q 参数过小可能导致滤波器对系统噪声的估计不足,从而降低滤波效果。
四、如何设置 r、q 参数在实际应用中,r、q 参数的设置需要根据具体情况进行调整。
一般可以通过以下方法进行设置:1.根据实际系统的噪声特性和测量误差,估计状态变量的协方差矩阵R 和系统噪声矩阵 Q。
2.结合实际应用需求,调整 r、q 参数以达到较好的滤波效果。
第三章卡尔曼(Kalman)滤波
引入
在讨论维纳滤波时,提出一个基本概念: 任何具有有理功率谱密度的随机信号都可看作 是白色噪声通过一个线性网络所形成。 由此得到维纳滤波器的信号模型
w(n)
s(n)
A(z)
v(n)
w(n)
s(n)
x(n)
A(z)
w(n)
B(z)
x(n)
为了得到卡尔曼过滤的信号模型,必须 首先讨论状态方程和量测方程。
当已知初始状态x(0)、激励e j以及A与B矩阵,
即可求得x(k )。。
如果用k0表示起始点的k值从x(k )开始递推,从而有
k 1
x(k) k,k0x(k0 ) k, j1Be( j) j k0
k0 0:表示从初始状态x(0)开始递推。
k ,k 0:代表从k0状态到k 状态的转移矩阵。
在卡尔曼滤波中: 希望得到xk的估计值xˆk与xk间 最小均方误差。有了xˆk也就得到了sˆk。
提问:sk 和xk的关系?
来估计信号的当前值 以均方误差最小条件下求解 系统的传递函数H(z)或单位冲激响应h(
只根据前一个估计值 xˆk -1 和最近一个观察数据 yk 来估计信号的当前值 它是用状态空间法描述系统, 即由状态方程和量测方程组成。
解是以估计值(是状态变量的估计值)的形式给出的
第三章 卡尔曼(Kalman)滤波
第一节 引言
卡尔曼生平
卡尔曼全名Rudolf Emil Kalman,匈 牙利数学家,1930年出生于匈牙利 首都布达佩斯。1953,1954年于麻 省理工学院分别获得电机工程学士 及硕士学位。1957年于哥伦比亚大 学获得博士学位。我们在现代控制 理论中要学习的卡尔曼滤波器,正 是源于他的博士论文和1960年发表 的论文《A New Approach to Linear Filtering and Prediction Problems》 (线性滤波与预测问题的新方法)。
卡尔曼滤波 正弦函数 matlab
一、介绍卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的线性动态系统的方法。
它是由朗迪·卡尔曼在1960年提出的。
卡尔曼滤波是一种递归滤波器,通过使用过去时刻的状态和测量,以及系统动态的模型,来预测当前时刻的状态。
二、卡尔曼滤波原理1. 状态更新步骤:在状态更新步骤中,卡尔曼滤波使用系统的动态方程来预测下一个时刻的状态。
这一步骤包括预测状态、预测状态协方差和计算卡尔曼增益。
2. 测量更新步骤:在测量更新步骤中,卡尔曼滤波使用最新的测量值来修正之前的预测。
这一步骤包括计算测量预测、计算残差、计算卡尔曼增益和更新状态估计。
三、正弦函数及其在卡尔曼滤波中的应用正弦函数是一种周期性变化的函数,具有良好的数学性质和广泛的应用。
在卡尔曼滤波中,正弦函数可以用于模拟系统的动态特性,对系统的状态进行预测和更新。
四、matlab中的卡尔曼滤波实现matlab是一种用于科学计算和工程应用的高级技术计算语言和交互环境。
在matlab中,可以很方便地实现和应用卡尔曼滤波算法。
1. 使用matlab进行线性动态系统建模在matlab中,可以使用state-space模型来表示线性动态系统的状态空间方程。
通过定义系统的状态方程、测量方程、过程噪声和观测噪声,可以建立系统的状态空间模型。
2. 使用matlab实现卡尔曼滤波算法在matlab中,可以使用kalman滤波器函数来实现卡尔曼滤波算法。
首先需要定义系统的状态转移矩阵、测量矩阵、过程噪声协方差矩阵和观测噪声协方差矩阵。
然后利用kalman滤波器函数,输入系统模型和测量值,即可得到卡尔曼滤波器的输出。
3. 使用matlab对正弦函数进行卡尔曼滤波在matlab中,可以构建一个包含正弦函数的模拟系统,并对其进行卡尔曼滤波。
通过比较卡尔曼滤波的结果和真实正弦函数的值,可以评估卡尔曼滤波算法的性能。
五、结论卡尔曼滤波是一种用于估计系统状态的有效方法,在很多领域都有广泛的应用。
Kalman滤波原理及算法
Kalman滤波原理及算法kalman滤波器一(什么是卡尔曼滤波器卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯, 我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
二.卡尔曼滤波器算法的介绍以下是卡尔曼滤波器核心的5个式子。
X(k|k-1)=A X(k-1|k-1)+B U(k) (1)P(k|k-1)=A P(k-1|k-1) A’+Q (2)X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)P(k|k)=(I-Kg(k) H)P(k|k-1) (5)下面我们详细介绍卡尔曼滤波的过程。
首先,我们要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances来估算系统的最优化输出。
首先我们要利用系统的过程模型,来预测下一状态的系统。
卡尔曼滤波器的五个公式
卡尔曼滤波器的五个公式
卡尔曼滤波器(Kalman Filter)的五个公式如下:
1. 预测状态:
x̂_k = F_k * x̂_k-1 + B_k * u_k
其中,x̂_k为当前时刻k的状态估计值,F_k为状态转移矩阵,x̂_k-1为上一时刻k-1的状态估计值,B_k为外部输入矩阵,u_k为外部输入。
2. 预测误差协方差:
P_k = F_k * P_k-1 * F_k^T + Q_k
其中,P_k为当前时刻k的状态估计误差协方差矩阵,P_k-1为上一时刻k-1的状态估计误差协方差矩阵,Q_k为系统过程噪声的协方差矩阵。
3. 计算卡尔曼增益:
K_k = P_k * H_k^T * (H_k * P_k * H_k^T + R_k)^-1
其中,K_k为当前时刻k的卡尔曼增益矩阵,H_k为观测矩阵,R_k为观测噪声的协方差矩阵。
4. 更新状态估计值:
x̂_k = x̂_k + K_k * (z_k - H_k * x̂_k)
其中,z_k为当前时刻k的观测值。
5. 更新状态估计误差协方差:
P_k = (I - K_k * H_k) * P_k
其中,I为单位矩阵。
卡尔曼滤波原理
卡尔曼滤波原理卡尔曼滤波(Kalman Filtering)是一种用于估计、预测和控制的最优滤波方法,由美国籍匈牙利裔数学家卡尔曼(Rudolf E. Kalman)在1960年提出。
卡尔曼滤波是一种递归滤波算法,通过对测量数据和系统模型的融合,可以得到更准确、更可靠的估计结果。
在各种应用领域,如导航、机器人、航空航天、金融等,卡尔曼滤波都被广泛应用。
1. 卡尔曼滤波的基本原理卡尔曼滤波的基本原理是基于状态空间模型,将系统的状态用随机变量来表示。
它假设系统的状态满足线性高斯模型,并通过线性动态方程和线性测量方程描述系统的演化过程和测量过程。
具体而言,卡尔曼滤波算法基于以下两个基本步骤进行:1.1 预测步骤:通过系统的动态方程预测当前时刻的状态,并计算预测的状态协方差矩阵。
预测步骤主要是利用前一时刻的状态和控制输入来预测当前时刻的状态。
1.2 更新步骤:通过系统的测量方程,将预测的状态与实际测量值进行融合,得到最优估计的状态和状态协方差矩阵。
更新步骤主要是利用当前时刻的测量值来修正预测的状态。
通过不断迭代进行预测和更新,可以得到连续时间上的状态估计值,并获得最优的估计结果。
2. 卡尔曼滤波的优势卡尔曼滤波具有以下几个优势:2.1 适用于线性系统与高斯噪声:卡尔曼滤波是一种基于线性高斯模型的滤波方法,对于满足这些条件的系统,卡尔曼滤波能够给出最优的估计结果。
2.2 递归计算:卡尔曼滤波是一种递归滤波算法,可以在每个时刻根据当前的测量值和先前的估计结果进行迭代计算,不需要保存过多的历史数据。
2.3 最优性:卡尔曼滤波可以通过最小均方误差准则,给出能够最优估计系统状态的解。
2.4 实时性:由于卡尔曼滤波的递归计算特性,它可以实时地处理数据,并及时根据新的测量值进行估计。
3. 卡尔曼滤波的应用卡尔曼滤波在多个领域都有广泛的应用,以下是一些典型的应用例子:3.1 导航系统:卡尔曼滤波可以用于导航系统中的位置和速度估计,可以结合地面测量值和惯性测量传感器的数据,提供精确的导航信息。
卡尔曼滤波
卡尔曼滤波卡尔曼滤波(Kalman filtering ) 一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。
由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。
卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerli ng (1958), Kalman (I960) 与Kalma n and Bucy (1961) 发表。
数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态•由于,它便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理,Kalman滤波是目前应用最为广泛的滤波方法,在通信,导航,制导与控制等多领域得到了较好的应用•中文名卡尔曼滤波器,Kalman滤波,卡曼滤波外文名KALMAN FILTER表达式X(k)=A X(k-1)+B U(k)+W(k)提岀者斯坦利施密特提岀时间1958应用学科天文,宇航,气象适用领域范围雷达跟踪去噪声适用领域范围控制、制导、导航、通讯等现代工程斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。
卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导—航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerling (1958), Kalman (1960)与Kalma n and Bucy (1961) 发表。
2定义传统的滤波方法,只能是在有用信号与噪声具有不同频带的条件下才能实现. 20世纪40年代,N .维纳和A. H .柯尔莫哥罗夫把信号和噪声的统计性质引进了滤波理论,在假设信号和噪声都是平稳过程的条件下,利用最优化方法对信号真值进行估计,达到滤波目的,从而在概念上与传统的滤波方法联系起来,被称为维纳滤波。
卡尔曼滤波计算速度
卡尔曼滤波计算速度摘要:1.卡尔曼滤波简介2.卡尔曼滤波的计算速度3.影响卡尔曼滤波计算速度的因素4.如何提高卡尔曼滤波的计算速度5.结论正文:一、卡尔曼滤波简介卡尔曼滤波(Kalman filter)是一种线性最优递归滤波算法,主要用于实时估计动态系统的状态变量。
其主要优点是在观测数据存在噪声的情况下,能够实现对系统状态的精确估计。
卡尔曼滤波在许多领域都有广泛应用,如导航定位、信号处理、机器人控制等。
二、卡尔曼滤波的计算速度卡尔曼滤波的计算速度主要取决于以下几个因素:1.系统的规模:卡尔曼滤波的计算复杂度与系统状态变量的数量成正比。
状态变量越多,需要计算的矩阵乘法和加法运算越多,计算速度相对较慢。
2.观测数据的数量和质量:观测数据越多,卡尔曼滤波的计算速度会相应提高。
同时,如果观测数据的质量较高,即噪声较小,那么卡尔曼滤波的收敛速度也会较快。
3.滤波器的参数:卡尔曼滤波的计算速度还与滤波器的参数选择有关。
例如,选择合适的滤波器增益可以加速收敛速度,但过大的增益可能导致滤波器不稳定。
三、影响卡尔曼滤波计算速度的因素1.系统矩阵的规模:系统矩阵的规模直接影响卡尔曼滤波的计算速度。
如果系统矩阵较大,那么计算复杂度也会相应增加,导致计算速度较慢。
2.观测矩阵的规模:观测矩阵的规模也会影响卡尔曼滤波的计算速度。
观测矩阵越大,需要的矩阵乘法和加法运算越多,计算速度越慢。
3.噪声水平:观测数据的噪声水平会影响卡尔曼滤波的收敛速度。
噪声越大,滤波器需要更多的迭代次数才能达到预定的收敛精度,计算速度相应降低。
四、如何提高卡尔曼滤波的计算速度1.优化系统模型:通过选择合适的系统模型,可以降低系统矩阵的规模,从而提高卡尔曼滤波的计算速度。
2.采用近似计算方法:对于大规模的系统,可以采用近似计算方法,如矩阵分解、Cholesky 分解等,以降低计算复杂度。
3.并行计算:利用现代计算机的多核处理器,可以实现卡尔曼滤波的并行计算,从而提高计算速度。
卡尔曼滤波参数 p
卡尔曼滤波参数 p1. 什么是卡尔曼滤波卡尔曼滤波是一种用于估计动态系统状态的最优滤波方法。
它通过融合传感器测量值和系统模型,提供对系统状态的最优估计。
卡尔曼滤波在许多领域中都有广泛的应用,如航天、导航、机器人等。
2. 卡尔曼滤波的基本原理卡尔曼滤波的基本原理是基于贝叶斯推断和线性系统模型。
它假设系统的状态和观测值都是线性的,并且满足高斯分布。
卡尔曼滤波通过迭代的方式,根据上一时刻的状态估计和当前的观测值,更新系统的状态估计。
卡尔曼滤波的基本步骤如下: 1. 初始化状态估计和协方差矩阵。
2. 预测系统的状态和协方差矩阵,利用系统模型和上一时刻的状态估计。
3. 根据当前的观测值,校正预测的状态估计和协方差矩阵,得到最优的系统状态估计和协方差矩阵。
4. 重复步骤2和步骤3,直到达到收敛条件。
3. 卡尔曼滤波参数 p在卡尔曼滤波中,参数 p 是指协方差矩阵的初始值。
协方差矩阵描述了系统状态估计的不确定性,即系统状态估计与真实状态之间的误差。
协方差矩阵的初始值会影响卡尔曼滤波的性能,因此选择合适的初始值是很重要的。
协方差矩阵的初始值 p 可以通过以下方式确定: 1. 如果对系统的初始状态有较好的先验知识,可以根据先验知识来选择初始值。
2. 如果没有先验知识,可以通过实验或者经验来选择初始值。
一般情况下,可以选择一个较大的初始值,表示对系统状态的估计不确定性很高。
3. 在实际应用中,也可以通过调整初始值来优化卡尔曼滤波的性能。
可以通过模拟实验或者实际应用中的反馈来确定最佳的初始值。
卡尔曼滤波的性能很大程度上取决于参数 p 的选择。
如果初始值选择不合适,可能会导致滤波结果不准确或者收敛速度慢。
因此,在实际应用中,需要根据具体的系统和应用场景来选择合适的初始值。
4. 卡尔曼滤波参数 p 的调优方法为了选择合适的协方差矩阵初始值 p,可以采用以下方法进行调优: 1. 模拟实验:可以通过建立系统模型,并进行模拟实验来评估不同初始值下的滤波性能。
(完整)卡尔曼滤波介绍
卡尔曼滤波一、卡尔曼滤波的起源谈到信号的分析与处理,就离不开滤波两个字。
通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以把FIR滤波器或者IIR滤波器设计成合适的频带滤波器,进行频域滤波。
但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。
虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的.人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”.为了“估计",要事先确定某种准则以评定估计的好坏程度.最小均方误差是一种常用的比较简单的经典准则。
对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的.当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作,这项研究是用于防空火力控制系统的.维纳滤波器是基于最小均方误差准则的估计器。
为了寻求维纳滤波器的冲激响应,需要求解著名的维纳–霍夫方程。
这种滤波理论所求的是使均方误差最小的系统最佳冲激响应的明确表达式。
从维纳–霍夫方程来看,维纳滤波算法是十分低效的。
这种算法要求设置大量的存储器来保存过去的测量数据,一个新的数据到来后,要进行刷新,重新计算自相关和互相关序列。
再者,求解这个方程需要耗费大量时间对高阶矩阵求逆。
因此,维纳滤波算法难以运用于实时处理中,尤其是无法用于军事、航空航天等领域。
为此,许多科技工作者进行了多方探索,但在解决非平稳过程的滤波问题时,能给出的方法很少。
到20世纪50年代中期,随着空间技术的发展,要求对卫星轨道进行精确地测量,这种方法越来越不能满足实际应用的需要。
为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精炼算法。
1960年和1961年,卡尔曼(R. E. Kalman)和布西(R. S。
Bucy)提出了递推滤波算法,成功的将状态变量引入到滤波理论中来,用消息与干扰的状态空间模型代替了通常用来描述它们的协方差函数,将状态空间描述与离散数间刷新联系起来,适于计算机直接进行计算,而不是去寻求滤波器冲激响应的明确公式。
卡尔曼滤波详解
卡尔曼滤波详解卡尔曼滤波是一种常用的状态估计方法,它可以根据系统的动态模型和观测数据,对系统的状态进行估计。
卡尔曼滤波广泛应用于机器人导航、飞行控制、信号处理等领域。
本文将详细介绍卡尔曼滤波的原理、算法及应用。
一、卡尔曼滤波原理卡尔曼滤波的基本思想是利用系统的动态模型和观测数据,对系统的状态进行估计。
在卡尔曼滤波中,系统的状态被表示为一个向量,每个元素表示系统的某个特定状态量。
例如,一个机器人的状态向量可能包括机器人的位置、速度、方向等信息。
卡尔曼滤波的基本假设是系统的动态模型和观测数据都是线性的,而且存在噪声。
系统的动态模型可以表示为:x(t+1) = Ax(t) + Bu(t) + w(t)其中,x(t)表示系统在时刻t的状态向量,A是状态转移矩阵,B是控制矩阵,u(t)表示外部控制输入,w(t)表示系统的过程噪声。
观测数据可以表示为:z(t) = Hx(t) + v(t)其中,z(t)表示系统在时刻t的观测向量,H是观测矩阵,v(t)表示观测噪声。
卡尔曼滤波的目标是根据系统的动态模型和观测数据,估计系统的状态向量x(t)。
为了达到这个目标,卡尔曼滤波将状态估计分为两个阶段:预测和更新。
预测阶段:根据系统的动态模型,预测系统在下一个时刻的状态向量x(t+1)。
预测的过程可以表示为:x^(t+1|t) = Ax^(t|t) + Bu(t)其中,x^(t|t)表示在时刻t的状态向量的估计值,x^(t+1|t)表示在时刻t+1的状态向量的预测值。
卡尔曼滤波还需要对状态的不确定性进行估计,这个不确定性通常用协方差矩阵P(t)表示。
协方差矩阵P(t)表示状态向量估计值和真实值之间的差异程度。
预测阶段中,协方差矩阵也需要进行更新,更新的过程可以表示为:P(t+1|t) = AP(t|t)A' + Q其中,Q表示过程噪声的协方差矩阵。
更新阶段:根据观测数据,更新状态向量的估计值和协方差矩阵。
更新的过程可以表示为:K(t+1) = P(t+1|t)H'(HP(t+1|t)H' + R)^-1x^(t+1|t+1) = x^(t+1|t) + K(t+1)[z(t+1) - Hx^(t+1|t)]P(t+1|t+1) = (I - K(t+1)H)P(t+1|t)其中,K(t+1)表示卡尔曼增益,R表示观测噪声的协方差矩阵,I是单位矩阵。
卡尔曼滤波
或者估计的历史信息。
卡尔曼滤波器与大多数我们常用的滤波 器不同之处,在于它是一种纯粹的时域滤波 器,不需要像低通滤波器等频域滤波器那样, 需要在频域设计再转换到时域实现。
5.卡尔曼滤波器的软硬件实现
目前,卡尔曼滤波器已经有很多不同的实 现形式。卡尔曼最初提出的形式现在一般称 为简单卡尔曼滤波器。除此以外,还有施密特 扩展卡尔曼滤波器,信息滤波器以及平方根滤 波器。最常见的卡尔曼滤波器是锁相环 ,采 用FPGA硬件可以实现卡尔曼滤波器。
卡尔曼滤波控制系统结构图
由于系统的状态x是不确定的,卡尔曼滤波器的 任务就是在有随机干扰w和噪声v的情况下给出系统 状态x的最优估算值 ,它在统计意义下最接近状
ˆ x 态的真值x,从而实现最优控制u( )的目的。 ˆ x
4.什么是卡尔曼滤波:
卡尔曼滤波是美国工程师Kalman 在线性
最小方差估计的基础上,提出的在数学结构 上比较简单的而且是最优线性递推滤波方法, 具有计算量小、存储量低,实时性高的优点。 特别是对经历了初始滤波后的过渡状态,滤 波效果非常好。
从被污染的系统中恢复系统的本来面目。
卡尔曼滤波特点: 卡尔曼滤波是解决状态空间模型估计与 预测的有力工具之一,它不需存储历史数据, 就能够从一系列的不完全以及包含噪声的测 量中,估计动态系统的状态。卡尔曼滤波是 一种递归的估计,即只要获知上一时刻状态 的估计值以及当前状态的观测值就可以计算 出当前状态的估计值,因此不需要记录观测
卡尔曼滤波特点
卡尔曼滤波是一种常用的非线性滤波方法,适用于处理存在噪声和不确定性的信号。
其主要特点包括:
1. 线性化:卡尔曼滤波将非线性系统转化为线性系统,从而简化了滤波过程。
这一步骤通常通过引入适当的变换矩阵实现。
2. 状态估计:卡尔曼滤波通过对系统状态的估计,预测未来的系统行为,并对当前的系统状态进行修正。
这一步骤通常通过引入状态向量和状态转移矩阵实现。
3. 观测值建模:卡尔曼滤波将观测值建模为噪声项,并通过引入观测值矩阵和观测值噪声协方差矩阵实现。
4. 滤波过程:卡尔曼滤波通过对状态估计和观测值的加权平均,得到滤波后的输出值。
这一步骤通常通过引入卡尔曼增益矩阵实现。
5. 适应性:卡尔曼滤波可以自适应地调整滤波参数,以适应不同的系统特性和噪声水平。
总的来说,卡尔曼滤波具有良好的适应性、鲁棒性和稳定性,能够在复杂的非线性系统中实现精确的状态估计和滤波。
卡尔曼滤波
卡尔曼滤波卡尔曼滤波器是一种由卡尔曼(Kalman )提出的用于时变线性系统的递归滤波器。
这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。
卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。
卡尔曼滤波的基本概念一个实际的系统可用如下形式表示:设向量非平稳序列1-k x 和1-k y 用下面的动态方程描述:)0(111,≥⎩⎨⎧+=+Φ=---k v x C y w x x kk k k k k k k k (1—1)k x 是状态向量,k y 是观测向量,k w 是输入噪声,k v 是观测噪声,1,-Φk k 是从1-k 时刻到k 时刻的状态转移阵。
上述动态方程可由系统的机理推导得来或由实验数据辨识得到。
现假设已知。
有如下假设:1)k w 和k v 为零均值白噪声即:()[]0,[,][]0,[,]()Tk k j k j k kj T k k j k j k kjE w Cov w w E w w Q E v Cov v v E v v R δδ⎧===⎪⎨===⎪⎩其中k Q 对称半正定k R 对称正定,均为已知。
2)k w 和k v 不相关即()[,]0(,)T k j kjC o v w v E w vk j==∀ 3)初始状态0x 是随机向量,且与k w 、k v 不相关,即000000[,][()]0[,][()]0Tk k Tk kCov x w E x Ex w Cov x v E x Ex v ⎧=-=⎪⎨=-=⎪⎩ 卡尔曼滤波:——状态估计在已知动态方程(1—1)(状态和观测方程)和样本观测数据k y ,1-k y ,…情况下,求随机序列样本——状态k x 的估计值k xˆ。
卡尔曼通过对下一步预测观测误差——新息的修正加之最小均方误差调整准则很好地解决了带有噪声的状态估计问题。
卡尔曼的递推思想与新息:递推计算和新息是卡尔曼滤波的基本思想,请看如:)(11111211k k k k k y y k y k y y y y -++=++++=+++平均计算变成一种递推计算,大大减少了计算量,把1+k 估计看成是在k 基础上的修正,修正项11()1k k y y k +-+。
第五讲:卡尔曼滤波
第五讲:卡尔曼滤波
11
二、Kalman滤波
20.01.2021
第五讲:卡尔曼滤波
12
2.1 卡尔曼滤波方程
目 录 1. 离散系统的数学描述
设离散化后的系统状态方程和量测方程分别为:
概述 标准 KF 扩展 KF
Xk
X k,k 1 k 1
k 1Wk 1
Zk Hk Xk Vk
Schmidt KF
自适应 KF 平滑算法
标准卡尔曼滤波的线性假设在标准的卡尔曼滤波中观测模型假设为线性z是x的线性函数但实际情况往往并非如此如gnss导航滤波器中观测模型是强非线性的在标准卡尔曼滤波中系统模型也被假设为线性的x的时间导数是x的线性函数问题
卡尔曼滤波算法及应用
第五讲:卡尔曼滤波
目录
一. 概述
二. 标准卡尔曼滤波
卡尔曼滤波方程
滤波器估值的
以模某型种一导般航系都是线主导性要航的部参分数即误是差
统输出导航参
的估值
数的误差为主
要状态
24
目 录 2. 开环卡尔曼滤波
概述 标准 KF
用导航参数误差的估值 Xˆ去校正系统输出的导航参数,得到综 合导航系统的导航参数估值 Xˆ
扩展 KF Schmidt KF 自适应 KF 平滑算法
惯性系统 其他导航系统
描述了观测向量与状态向量间的函数关系。
第五讲:卡尔曼滤波
9
目录 概述
标准 KF 扩展 KF Schmidt KF 自适应 KF
1组观测向量
是一组针对同一时刻的系统特性的测量值,例如观测量可以包括GNSS系 统的位置测量值,或者INS与GNSS位置结果的差值。
1个算法:
卡尔曼滤波算法 使用观测向量、观测模型和系统模型来获得状态向量的最优估计,分为系