2019二元一次方程组应用题专练精品教育.doc
初中数学:二元一次方程组应用题专题训练附详解(精)
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
7.永辉超市计划购进甲、乙两种体育器材,若购进甲器材3件,乙器材6件,需要480元,购进甲器材2件,乙器材3件,需要280元,销售每件甲器材的利润率为37.5%,销售每件乙器材的利润率为30%.
3.(1)甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.
(2)安排甲、乙两个装修施工队同时施工更有利于饭店
【分析】
(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,根据“若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元”,即可得出关于x,y的二元一次方程施工队,解之即可得出结论;
品种
高档
中档
低档
价格/元
20
15
10
9.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司人均捐款120元,乙公司人均捐款100元.如图是甲、乙两公司员工的一段对话.
(1)甲、乙两公司各有多少人?
(2)现甲、乙两公司共同使用这笔捐款购买 、 两种防疫物资, 种防疫物资每箱1500元, 种防疫物资每箱1200元.若购买 种防疫物资不少于20箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).
二元一次方程组应用题练习
速度问题练习题与解析
要点一
题目
甲、乙两人在环形跑道上以各自的不变速度跑步,如果两 人同时从同地相背而跑,乙跑4分钟后两人第一次相遇,已 知甲跑一周需6分钟,那么乙跑一周需多少分钟.
要点二
解析
设环形跑道的周长为$L$米,甲的速度为$a$米/分,乙的 速度为$b$米/分。根据题意可列方程组: $begin{cases}4a + 4b = L 6a = Lend{cases}$。解得: $begin{cases}a = frac{L}{6} b = frac{L}{4}end{cases}$ 。所以乙跑一周所需时间为$frac{L}{b} = frac{L}{frac{L}{4}} = 4$分钟。
工程问题
题目
一项工程,甲单独做20天完成,乙单 独做30天完成,甲先做了这项工程的 $frac{1}{3}$,剩下的由乙完成,还需 几天?
解析
设还需x天完成。根据题意,我们可以 列出以下方程组
工程问题
$begin{cases} frac{1}{20} times frac{1}{3} + frac{1}{30}x = 1
混合问题练习题与解析
题目
某车间工人加工一种轴100件,为了了解这种轴的直径 ,要从中抽取10件在同一条件下测量,如何采用简单随 机抽取的方法抽取样本?
解析
简单随机抽样的方法有抽签法和随机数法等。这里采用抽 签法更为直观易行。具体操作如下:第一步,将100件轴 分别编号1,2,…,100;第二步,准备质量相同的签100个, 并将每个轴的编号写在小纸条上放入签中;第三步,搅拌 均匀后从中抽取10个签;第四步,将对应签上的轴编号作 为样本编号,然后测量它们的直径。
方程组的性质
完整版二元一次方程组应用题经典题及答案
完整版二元一次方程组应用题经典题及答案二元一次方程组是数学中的一个重要概念,它广泛应用于解决各种实际问题。
本文将通过一道经典题及其解答,来展示如何完整地解决一道二元一次方程组的应用题。
问题:某公司有一项工程需要进行,考虑到成本问题,公司决定将工程分成两部分,分别承包给两个不同的工程队。
假设甲工程队每小时的工作效率为a,乙工程队每小时的工作效率为b,且a、b均为正整数。
若甲工程队单独完成工程需要24小时,乙工程队单独完成工程需要32小时。
问:甲、乙两工程队合作完成这项工程需要多少小时?解题思路:为了解决这个问题,我们需要先列出方程组,然后解方程组得到答案。
根据题意,我们可以列出以下方程组:24a = 1 (甲工程队单独完成工程所需时间)32b = 1 (乙工程队单独完成工程所需时间)ab + ba = 1 (甲、乙两工程队合作完成工程所需时间)接下来,我们解这个方程组。
首先,将第一个方程式两边同乘以b,得到:24ab = b (1)将第二个方程式两边同乘以a,得到:32ab = a (2)将(1)式和(2)式两边分别相加,得到:24ab + 32ab = a + b整理得到:ab = 1/56 (3)将(3)式代入(1)式或(2)式,得到:a = 6 或b = 6因此,甲、乙两工程队合作完成这项工程需要的时间为:x = 1/(1/24 + 1/32) = 19.2 小时综上所述,我们通过解二元一次方程组得到了问题的答案。
这个问题是二元一次方程组应用的一个经典案例,通过解决这个问题,我们可以更深入地理解二元一次方程组的概念和应用。
二元一次方程组应用题经典题有答案二元一次方程组的应用题是数学中的经典题型之一,掌握这类问题的解法对于解决实际问题非常有帮助。
下面我们来看一道经典的二元一次方程组应用题,并给出相应的答案。
问题:某班共有40名学生,其中男生人数是女生人数的1.5倍。
已知每个男生每学期花费的学杂费为300元,而每个女生每学期花费的学杂费为400元。
(完整word版)二元一次方程组实际应用题
二元一次方程组实际应用题1.为建设资源节约型、环境友好型社会,切实做好节能减排工作,某市决定对居民家庭用电实行“阶梯电价”.电力公司规定居民家庭每月用电量在80千瓦时以下(含80千瓦时),1千瓦时俗称1度/时,实行“基本电价”;当居民家庭月用电量超过80千瓦时,超过部分实行“提高电价”.已知小张家2017年2月份用电100千瓦时,上缴电费68元;3月份用电120千瓦时,上缴电费88元.若7月份小张家预计用电130千瓦时,请预算小张家7月份应上缴的电费.2.某公司需要粉刷一些相同的房间,经调查3名师傅一天粉刷8个房间,还剩40m2刷不完;5名徒弟一天可以粉刷9个房间;每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的面积;(2)该公司现有36个这样的房间需要粉刷,若只聘请1名师傅和2名徒弟一起粉刷,需要几天完成?(3)若来该公司应聘的有3名师傅和10名徒弟,每名师傅和每名徒弟每天的工资分别是240元和200元,该公司要求这36个房间要在2天内粉刷完成,问人工费最低是多少?3.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.4.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的收入结余12000元,今年菠萝的收入比去年增加了20%,支出减少10%,结余今年预计比去年多11400元.请计算:(1)今年结余元;(2)若设去年的收入为x元,支出为y元,则今年的收入为元,支出为元.(以上两空用含x、y的代数式表示)(3)列方程组计算小明家今年种植菠萝的收入和支出.5.为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.6.杭州某公司准备安装完成5700辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(m>n),使得最后能刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占5%,求n的值.7.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有34吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.8.通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其中碳水化合物和矿物质占45%,矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.(1)设其中蛋白质含量是x(g),脂肪含量是y(g),请用含x或y的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量.9.工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?10.某超市为“开业三周年”举行了店庆活动,对A,B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.(1)求A、B商品的单价.(2)店庆期间,购买50件A商品和50件B商品仅需960元,这比不打折节约了多少钱?11.某校七年级(1),(2)两个班共104人去旅游,其中(1)班人数较少,不到50人,(2)班人数较多,有50多人,经估算,如果两个班都以班为单位分别购票,一共应付1240元.(1)问两个班各有学生多少名?(2)如果两个班联合起来,作为一个团体购票,若可省408元,求a的值.购票人数1~50人51~100人100人以上每人门票价13元11元a元。
苏科版数学七年级下册第10章《二元一次方程组》实际应用常考题专练(五)(附答案)
七年级下册第10章《二元一次方程组》实际应用常考题专练(五)1.如表是小丽在某路口统计20分钟各种车辆通过情况的记录表,其中空格处的字迹已模糊.电瓶车公交车货车小轿车合计(车流总量)m86 161 (第一时段)8:50~9:007n m n99(第二时段)9:00~9:10合计30 185(1)根据表格信息,在表格中填写第一时段电瓶车和货车的数量.(2)在第二时段内,电瓶车和公交车的车辆数之和恰好是第二时段车流总量的一半,且两个时段的电瓶车总数为170辆.①求m,n的值.②因为第二时段内车流总量较多,造成了交通拥堵现象,据估计,该时段内,每增加1辆公交车,可减少8辆小轿车和5辆电瓶年,若要使得第二时段和第一时段的车流总量最接近,则应增加几辆公交车?2.5G网络,是最新一代蜂窝移动通信技术,其数据传输速率远高于以前的蜂窝网络,最高可达10Gbit/s,比4G快100倍.5G手机也成为生活、工作不可缺少的移动设备,某电商公司销售两种5G手机,已知售出5部A型手机,3部B型手机的销售额为51000元;售出3部A型手机,2部B型手机的销售额为31500元.(1)求A型手机和B型手机的售价分别是多少元;(2)该电商公司在3月实行“满减促销”活动,活动方案为:单部手机满3000元减500元,满5000元减1500元(每部手机只能参加最高满减活动),结果3月A型手机的销量是B型手机的,4月该电商公司加大促销活动力度,每部A型手机按照3月满减后的售价再降a%,销量比3月增加2a%;每部B型手机按照满减后的售价再降a%,销量比3月销量增加a%,结果4月的销售总额比3月的销售总额多a%,求a的值.3.某中学共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供3000名学生就餐;同时开放1个大餐厅,1个小餐厅,可供1700名学生就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名学生就餐.(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全校4500名学生就餐?请说明理由.4.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?5.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?6.某商场用13000元购进甲、乙两种矿泉水共400箱,矿泉水的成本价与销售价如下表所示:类别成本价(元/箱)销售价(元/箱)甲25 35乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这400箱矿泉水,可获利多少元?7.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B地,已知公路运价为2元/(吨•千米),铁路运价为1.5元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?8.某家具商先准备购进A,B两种家具,已知100件A型家具和150件B型家具需要35000元,150件A型家具和100件B型家具需要37500元.(1)求A,B两种家具每件各多少元;(2)家具商现准备了8500元全部用于购进这两种家具,他有几种方案可供选择?请你帮他设计出所有的购买方案.9.某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?10.高新一中初中校区名校+教育联合体主题美术展在西安高新区都市之门举办,学校组织七年级部分学生乘车参观展览,若用2辆小客车和1辆大客车,则每次可运送学生95人;若用1辆小客车和2辆大客车,则每次可运送学生115人(注意:每辆小客车和大客车都坐满).(1)每辆小客车和大客车各能坐多少人?(2)若现在要运送500名学生,计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满,请你帮学校设计出所有的租车方案.参考答案1.解:(1)根据表格信息得,第一时段电瓶车和货车的数量分别为:(45+n﹣m)辆,(30﹣n)辆;故答案为:45+n﹣m,30﹣n;(2)①根据题意得,,解得:;②设应增加x辆公交车,根据题意得,7×16﹣5x+3+x+16+99﹣8x=161,解得:x=5,答:要使得第二时段和第一时段的车流总量最接近,则应增加6辆公交车.2.解:(1)设每部A型号手机的售价为x元,每部B型号手机的售价为y元.由题意,得,解得:,答:A型手机和B型手机的售价分别是7500元和4500元;(2)设3月B型手机的销量是m部,则A型手机的销量是m部,根据题意得,[(7500﹣1500)×(1﹣a%)][m(1+2a%)]+[(4500﹣500)×(1﹣a%)][m•(1+a%)]=[m(7500﹣1500)+m(4500﹣500)](1+a%),解得:a=30或a=0(不合题意舍去),答:a的值为30.3.解:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,依题意,得:,解得:.答:1个大餐厅可供1300名学生就餐,1个小餐厅可供400名学生就餐.(2)∵3×1300+2×400=4700(名),4700>4500,∴如果3个大餐厅和2个小餐厅全部开放,那么能满足全校4500名学生的就餐要求.4.解:设甜果买了x个,苦果买了y个,依题意,得:,解得:,∴x=803,y=196.答:甜果买了657个,需要803文钱;苦果买了343个,需要196文钱.5.解:设1辆大货车一次运货x吨,1辆小货车一次运货y吨,依题意,得:,解得:,∴2x+y=11.答:2辆大货车与1辆小货车可以一次运货11吨.6.解:(1)设购进甲种矿泉水x箱,乙种矿泉水y箱,依题意,得:,解得:.答:购进甲种矿泉水100箱,乙种矿泉水300箱.(2)(35﹣25)×100+(48﹣35)×300=4900(元).答:该商场售完这400箱矿泉水,可获利4900元.7.解:(1)设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意,得:,解得:.答:该工厂从A地购买了300吨原料,制成运往B地的产品200吨.(2)5000×200﹣2000×300﹣14000﹣87000=299000(元).答:这批产品的销售款比原料费与运输费的和多299000元.8.解:(1)设A型家具每件x元,B型家具每件y元,依题意,得:,解得:.答:A型家具每件170元,B型家具每件120元.(2)设该家具商购入a件A型家具,b件B型家具,依题意,得:170a+120b=8500,∴a=50﹣b.∵a,b均为正整数,∴b为17的整数倍,∴或或或,∴该家具商总共有四种购入方案,方案一:购进A型家具38件,B型家具17件;方案二:购进A型家具26件,B型家具34件;方案三:购进A型家具14件,B型家具51件;方案四:购进A型家具2件,B型家具68件.9.解:(1)设每名熟练工每月可以安装x辆电动汽车,每名新工人每月可以安装y辆电动汽车,依题意,得:,解得:.答:每名熟练工每月可以安装4辆电动汽车,每名新工人每月可以安装2辆电动汽车.(2)设还需要招聘m名新工人才能完成一个月的生产计划,依题意,得:4×30+2m=200,解得:m=40.答:还需要招聘40名新工人才能完成一个月的生产计划.10.解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,依题意,得:,解得:.答:每辆小客车能坐25人,每辆大客车能坐45人.(2)依题意,得:25a+45b=500,∴a=20﹣b.∵a,b均为非负整数,∴当b=0时,a=20;当b=5时,a=11;当b=10时,a=2.∴学校共有3种租车方案,方案1:租用20辆小客车;方案2:租用11辆小客车,5辆大客车;方案3:租用2辆小客车,10辆大客车.。
列二元一次方程组解应用题专项练习50题(有答案)ok
27、把 3 米长的铁丝分成两段,做成一个正方形和一个长方形框,已知长方形的长是宽的 2 倍, 长 方形的长比正方形的边长长 0。3 米,求两个图形的面积。 解:设长方形框的宽为 x,则长为 2x,再设正方形的边长为 y 米,根据题意,得
28、有甲、乙两条绳子,其中甲绳长的 3/8 与乙绳长的 1/3 叠合后,全长 238 厘米,求甲乙两绳长 各是多少厘米?
归时四分行六百,风速多少才称雄?
35、现在父亲的年龄是儿子年龄的 3 倍,7 年前父亲的年龄是儿子年龄的 5 倍,问父亲、儿子现在 的年龄分别是多少岁?
36.有一个两位数,个位上的数比十位上的数大 5,如果把两个数字的位置对换,那么所得的新数 与原数的和是 143,求这个两位数.
37.有一个两位数和一个一位数, 如果在这个一位数后面多写一个 0, 则它与这个两位数的和是 146,
22、三年级有学生 246 人,其中男生比女生人数的 2 倍少 3 人,求男、女生各有多少人?
23、甲乙两条绳共长 17 米,如果甲绳子减去五分之一,乙绳增加 1 米,两条绳子相等,求甲、乙 两条绳各长多少米?
24、已知长江比黄河长 836 千米,黄河长度的 6 倍比长江长度的 5 倍多 1284 千米,求黄河、长江 各长多少千米?
25、甲乙两个商店各进洗衣机若干台,若甲店拨给乙店 12 台,则两店的洗衣机一样多,若乙店拨 给甲店 12 台, 则甲店的洗衣机比乙店洗衣机数的 5 倍还多 6 台, 求甲、 乙两店各进洗衣机多少台?
26、小红和小华各自购买新书若干本,已知小红买的比小华的 2 倍多 6 本,如果小红给小华 9 本, 则小华是小红的 2 倍,小红和小华各买新书多少本?
29、小明春节原有压岁钱若干元,先用去一部分,剩余的钱为用去的 2 倍,后来又用掉 1200 元, 最后剩下的钱为原有的三分之一,问小明原来有压岁钱多少元?
二元一次方程组应用题经典题及答案
实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题 【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米? 解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得: x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题 【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩? 解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表: A B进价(元/件)12001000售价(元/件)13801200(注:获利 = 售价 — 进价)求该商场购进A、B两种商品各多少件;解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略类型四:列二元一次方程组解决——银行储蓄问题 【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是3.24%-X,则有: 2000*X*(1-20%)+1000*(3.24%-X)*(1-20%)=43.92即:1600X+25.92-800X=43.92800X=18X=2.25%3.24%-2.25%=0.99%所以,2000的存款利率是2.25%,1000的存款的利息率是0.99%.法二:也可用二元一次方程组解。
二元一次方程组应用题归类与精选例题
二元一次方程组精选应用题库二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、列二元一次方程组来加以解决。
列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.现将中考中常见的几种题型归纳如下:一、市场营销问题例1(2005年省实验区)某商场购进甲、乙两种服装后,都加价40%标价出售. “春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售. 某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元. 问这两种服装的进价和标价各是多少元?解:设甲种服装的标价为x 元,则进价为4.1x 元;乙种服装的标价为y 元,则进价为4.1y 元. 由题意,得 ⎩⎨⎧=+=+.1829.08.0,210y x y x 解得,⎩⎨⎧==.140,70y x 所以,4.1x =50(元),4.1y =100(元). 故甲种服装的进价和标价分别为50元、70元,乙种服装的进价和标价分别为100元、140元.二、生产问题例2(2005年市实验区)某工厂第一季度生产两种机器共480台. 改进生产技术后,计划第二季度生产两种机器共5544台,其中甲种机器产量要比第一季度增产10%,乙种机器产量要比第一季度增产20%. 该厂第一季度生产甲、乙两种机器各多少台?解:设该厂第一季度生产甲种机器x 台,乙种机器y 台.由题意,得⎩⎨⎧-=+=+.480540%20%10,480y x y x 解得,⎩⎨⎧==.260,220y x 故该厂第一季度生产甲种机器220台,乙种机器260台.三、校舍改造问题例3为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建造新校舍每平方米需700元. 计划在年拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?分析:本题可以设一个未知数列方程来解决,但关系复杂,转化起来比较繁杂.因此,选用列二元一次方程组来解决.其中有两个很明显的相等关系:一是原计划拆、建总面积,二是实施当中,拆、建的总面积.解:(1)设原计划拆除旧校舍x 平方米,新校舍y 平方米. 由题意,得⎩⎨⎧=++=+.7200%80%)101(,7200y x y x 解得,⎩⎨⎧==.2400,4800y x (2)实际比原计划拆除与新建校舍节约资金为:(4800×80+2400×700)-[4800×(1+10%)×80+2400×80%]×700 = 297600.用此资金可绿化面积为297600÷200 = 1488(平方米).四、方案选择问题例4(2005年市实验区)明家和刚家都从甲、乙两供水点购买同样的一种桶装矿泉水,明家第一季度从甲、乙两供水点分别购买了8桶和12桶,且在乙供水点比在甲供水点多花18元钱. 若只考虑价格因素,通过计算说明到哪家供水点购买这种桶装矿泉水更便宜一些?解:设这种矿泉水在甲、乙两处每桶的价格分别为x 、y 元.由题意,得⎩⎨⎧=-=+.18812,51610x y y x 解得,⎩⎨⎧==.5.3,3y x 由于3.5 > 3,所以到甲供水点购买便宜一些.开动脑筋,做一做:1、(2005年市实验区)某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40kg 到2、(2005年省实验区)随着我国人口速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某区2003年和2004年小学儿童人数之比为8 : 7,且2003年入学人数的2倍比2004年入学人数的3倍少1500人,某人估计2005年入学儿童数将超过2300人,请你通过计算,判断他的估计是否符合当前的变化趋势.五、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14. 点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.六、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y y x y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩, 因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.七、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 八、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则 ()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.九、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.十、工程问题例6 某服装厂接到生产一种工作服的订货任务,要求在规定期限完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.十一【典题精析】(2006年市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x 辆,小型汽车有y 辆.由题意,得⎩⎨⎧=+=+.23046,50y x y x 解得,⎩⎨⎧==.35,15y x故中型汽车有15辆,小型汽车有35辆.例2(2006年省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天刚好加工完140吨蔬菜,则应如何分配加工时间?解:(1)全部直接销售获利为:100×140=14000(元);全部粗加工后销售获利为:250×140=35000(元);尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元).(2)设应安排x 天进行精加工, y 天进行粗加工.由题意,得⎩⎨⎧=+=+.140166,15y x y x 解得,⎩⎨⎧==.5,10y x 故应安排10天进行精加工,5天进行粗加工.十二【跟踪练习】为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:(1)原计划拆、建面积各是4800平方米、2400平方米;(2)可绿化面积为1488平方米.。
二元一次方程组应用题专练
21、 东风农场的两块试验田,去年共产花生470kg.改用良种后,今年 共产花生523kg,已知第一块田的产量比去年增产16%,第二块田的产 量比去年增产10%,这两块田改良种前每块田产量分别为多少千克?今 年每块田各增产多少千克?
43、 汽车在相距70km的甲、乙两地之间往返行驶,因为行程中有一坡 度均匀的小山,该汽车从甲地到乙地需要2小时30分钟,而从乙地回到 甲地需要2小时48分钟,已知汽车在平地每小时行30km,上坡路每小时 行20km,下坡路每小时行40km,求从甲地到乙地的行程中,平路、上 坡路、下坡路各是多少?
44、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样 大时,您才出生;您到我这么大时,我已经37岁了。”请问老师、学生 今年多大年龄了呢?
40、一快车长168米,一慢车长184米,如果两车相向而行,从相遇到离 开需4秒;如果同向而行,从快车追及慢车到离开需16秒,求两车的速 度。
41、某铁桥长1 000米,一列火车从桥上通过,从车头到桥到车尾离桥 共用一分钟时间,整列火车完全在桥上的时间为40秒钟,求火车车身的 总长和速度.
42、 甲乙两人以不变的速度在环形路上跑步,相向而行每隔两分钟相 遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑的快,求甲、乙 每分钟各跑多少圈?
45、一个两位数的数字之和是9,如果这个两位数加上45,所得的和正 好是原两位数交换个位数字与十位数字所得的数,求原来的这个两位 数?
二元一次方程组练习题(含答案)word
二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+ (4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x 2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3); (4)(5). (6)(7)(8)(9)(10); 2.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a 看成了什么,乙把b 看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x ,y 的值.考点: 解二元一次方程组. 分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x ,求出y 的值,继而求出x 的值.解答:解:由题意得:,由(1)×2得:3x ﹣2y=2(3),由(2)×3得:6x+y=3(4), (3)×2得:6x ﹣4y=4(5), (5)﹣(4)得:y=﹣, 把y 的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b 的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。
二元一次方程组应用题经典题.doc
二元一次方程组应用题经典题实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。
④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。
⑥利息税:利息的税款叫做利息税。
(完整版)二元一次方程组应用题汇总内容很全面,推荐文档
二元一次方程组实际问题知识点概括:
一、相遇问题:两人从不同地点出发,相向而行,直到相遇。 二、追击问题:
建议收藏下载本文,以便随时学习! ①两人同地不同时,同向而行,直到后者追上前者,其等量关系是:两人所走路程相等, (两人所用时间不同) ②两人同时不同地,同向而行,直到后者追上前者,其等量关系是:两人所走的路程之差 等于已知两地距离。(两人所用时间相同) ③两人不同时不同地,同向而行,直到后者追上前者,其等量关系是:两人所走路程之差 等于两地的距离。(两人所用时间不同) 注意环路与直路的区别,例如在环路问题中,若两人同时同地出发,同向而行,当 第一次相遇时,两人所走路程差为一周长。 三、 水路行船问题:顺水速度 =静水速度+水流速度; 逆水速度=静水速度-水流速度。 解行程问题的应用题时,通常采用线段图或列表进行分析,从而正确地找出等量关系, 列出方程(组)解决问题。 2、解有关增长率问题时,要掌握下面的基本等量关系式: 原量×(1+增长率)=增长后的量, 原量×(1-减少率)=减少后的量。 3、解有关配套问题,要根据配套的比例,依据特定的数量关系列方程(组)求解题。 4、含有两个未知量的应用题,一般列出二元一次方程组比列一元一次方程要容易些,解 应用题时要养成检 验的良好习惯,一是检验所求得解是否符合方程组,二是检验是否符合实际 意义。
8、现有 190 张铁皮做盒子,每张铁皮做 8 个盒身或做 22 个盒底,一个盒身与两个盒底配 成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完 整的盒子?
二元一次方程组应用题经典题有答案
二元一次方程组应用题经典题有答案VIP免费欢迎下载实际问题与二元一次方程组题型归纳(5)知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速率-水速=船的逆水速率;③顺水速度-逆水速度=2×水速。
注意:飞机飞行问题同样会出现顺风飞行和逆风飞行,解题方法与船顺水飞行、逆水飞行问题类似。
2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右侧为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。
④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组应用题专练以下是查字典数学网为您推荐的二元一次方程组应用题专练,希望本篇文章对您学习有所帮助。
二元一次方程组应用题专练1、有两种药水,一种浓度为60%,另一种浓度为90%,现要配制浓度为70%的药水300克,问各种各需多少克?2、甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,则乙盒球就是甲盒球数的6倍,若从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?3、一个两位数字,个位数字比十位数字大5,如果把这两数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.4、甲、乙两人在东西方向的公路上行走,甲在乙的西边300米,若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟后相遇,问甲、乙两人的速度是多少?5、某铁桥长1 000米,一列火车从桥上通过,从车头到桥到车尾离桥共用一分钟时间,整列火车完全在桥上的时间为40秒钟,求火车车身的总长和速度.6、某牛奶加工厂现有100吨鲜牛奶准备加工后上市销售,该工厂的加工能力是,如果制成奶片每天可加工鲜奶10吨,如果制成酸奶每天可加工鲜奶30吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部加工完毕.该厂应安排几天制奶片,几天制酸奶,才能使任务在4天内正好完成?如果制成奶片销售每吨奶可获利2 000元,制成酸奶销售每吨奶可获利1 200元,那么该厂出售这些加工后的鲜牛奶共可获利多少元?7、某酒店客房部有三人间、双人间客房,收费数据如下表. 普通(元/间/天) 豪华(元/间/天)三人间 150 300双人间 140 400为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?8、甲乙两人以不变的速度在环形路上跑步,相向而行每隔两分钟相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑的快,求甲乙每分钟跑多少圈?9、我区某学校原计划向内蒙察右旗地区的学生捐赠3 500册图书,实际共捐赠了4 125册,其中初中学生捐赠了原计划的,高中学生捐赠了原计划的,问初中学生和高中学生各比原计划多捐赠了图书多少册?10、某学校现有校舍面积20 000m ,计划拆除部分旧校舍,改建新教学楼,使校舍面积增加30%,若建造新教学楼的面积为拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,新教学楼面积是多少?(单位为m )作物品种每公顷需劳动力每公顷需投入资金水稻 4人 1万元棉花 8人 1万元蔬菜 5人 2万元11、某农场有300名职工,耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植各作物每公顷所需劳动力人数及投入的资金如下表:已知该农场计划投入资金67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?12、某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元.若要求每种广告播放不少于2次.问:⑴两种广告的播放次数有几种安排方式?⑵电视台选择哪种方式播放收益较大?13、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润可达4 500元;经精加工后销售,每吨利润涨至7 500元.当地一家农工商公司收购这种蔬菜140吨,该公司的加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部加工或加工完毕,为此公司研制了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成.你认为选择哪种方案获利最多?为什么?14、二果问价:九百九十九文钱,甜果苦果买一千。
甜果九个十一文,苦果七个四文钱。
试问甜苦果几个,又问各该几个钱。
(注:文钱,也称文,古代的一种货币单位)15、一列快车长168米,一列慢车长184米,如果两车相同而行,从相遇到离开需4秒;如果同向而行,从快车追及慢车到离开需16秒,求两车的速度。
16、某船的载重为260吨,容积为1000 m3.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m3,乙种货物每吨体积为2m3,若要充分利用这艘船的载重与容积,甲、乙两种货物应各装多少吨?(设装运货物时无任何空隙)17、某市为更有效地利用水资源,制定了用水标准:如果一户三口之家每月用水量不超过Mm3,按每m3水1.30元计算;如果超过Mm3,超过部分按每m3水2.90元收费,其余仍按每m3水1.30元计算.小红一家三人,1月份共用水12m3,支付水费22元.问该市制定的用水标准M为多少?小红一家超标使用了多少m3的水?18、某乐园的门票价格规定如下表所列.某校初一(1)、(2)两个班共104人去游长风乐园其中(1)班人数较少,不到50人,(2)班人数较多,有50多人.经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱.问两班各有多少名学生?购票人数 150人 51100人 100人以上每人门票价 13元 11元 9元1、打折前,买60件商品和30件商品用了1080元,买50件商品和10件商品用了840元,打折后,买50件商品和50件商品用了960元,比不打折少花多少钱?2、甲、乙两人各有书若干本,如果甲从乙处拿来10本,那么甲拥有的书是乙所剩书的5倍;如果乙从甲处拿来10本,那么乙所有的书与甲所剩的书相等,问甲、乙两人原来各有几本书?3、张老师去文具店给美术小组的30名学生买铅笔和橡皮,到了商店后发现,若给全组每人都买2支铅笔和1块橡皮,则要按零售价计算,共需付款30元;若给全组每人都买3支铅笔和2块橡皮,则可按批发价,共需付款40.5元.已知铅笔每支批发价比零售价低0.05元,橡皮每块批发价比零售价低0.1元,求这家文具店每支铅笔和每块橡皮的批发价是多少?4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生.⑴求平均每分钟一道正门和一道侧门各可以通过多少名学生?⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.5、汽车在相距70km的甲、乙两地之间往返行驶,因为行程中有一坡度均匀的小山,该汽车从甲地到乙地需要2小时30分钟,而从乙地回到甲地需要2小时48分钟,已知汽车在平地每小时行30km,上坡路每小时行20km,下坡路每小时行40km,求从甲地到乙地的行程中,平路、上坡路、下坡路各是多少?6、某中学组织一批学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车租金每辆220元,60座客车租金为每辆300元,试问:⑴这批学生人数是多少?原计划租用45座客车多少辆?⑵若租用同一种车,要使每位学生都有座位,怎样租用更合算?7、某旅社在黄金旅游期间为一旅游团体安排住宿,若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住了4人,且空两间宿舍,求该团体有多少人和宿舍间数.8、有甲、乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?9、李明与王云分别从、两地相向而行,若两人同时出发,则经过80分钟两人相遇;若李明出发60分钟后王云再出发,则经过40分钟两人相遇,问李明与王云单独走完全程各需多少小时?10、在一次足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某队在足球比赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?11、东风农场的两块试验田,去年共产花生470kg.改用良种后,今年共产花生523kg,已知第一块田的产量比去年增产16%,第二块田的产量比去年增产10%,这两块田改良种前每块田产量分别为多少千克?今年每块田各增产多少千克?12、某种口服液礼品盒有大盒、小盒两种包装,现在知道3大盒、4小盒共装了108瓶;2大盒、3小盒共装了76瓶,现在有一个人一共买了6大盒、6小盒,问他一共买了多少瓶?13、学校书法兴趣小组准备到文具店购买、两种类型的毛笔,文具店的销售方法是:一次性购买型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.(1)如果全组共有20名同学,若每人各买1支型毛笔和2支型毛笔,共支付145元;若每人各买2支型毛笔和1支型毛笔,共支付129元.这家文具店的、两种类型毛笔的零售价各是多少?(2)为了促销,该文具店对型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少支,一律按原零售价(即(1)中所求得的型毛笔的零售价)的出售.现要购买型毛笔支( ),在新的销售方法和原来的销售方法中,应选择哪种方法购买花钱较少?并说明理由.14、某市根据信息产业部调整因特网的资费要求,规定如下:上因特网的费用为电话费0.22元/3分钟。
上网费为每月不超过a小时,按4元/时计算;超过a小时部分按8元/时计算。
现在网民李先生有一个月的上网费用为736元,上网时间为80小时,(1)你知道该市规定时间a为多少?李先生上网超过a多少小时?(2)该市还有一种上网方式宽带网,收费标准如下:电话费0.22元/3分钟,上网费为388元/半年,一次交安装费240元。
若李先生每月上网时间均为80小时,他改上宽带网合适吗?15、某学校社会实践小分队走访100户家庭,发现一般洗衣水的浓度以0.2%0.5%为合适,即100千克洗衣水里含201900克的洗衣粉比较合适。
因为这时表面活性最大,去污效果最好。
现有一个洗衣缸可容纳15千克洗衣水(包括衣服),已知其中衣服重4千克,所用洗衣水的浓度为0.4%,已放了两匙洗衣粉,(1匙约0.02千克)。