人教版初二数学上册多变形及其内角和
八年级上册数学11.3.2多边形内角和
提示: 1.六边形的每一个外角和相邻的 内角有什么关系? 2.六边形的6个外角加上与它们相 邻的内角,所得总和是多少? 3.上述总和与六边形的内角和、 外角和有什么关系?
E 5
4
D3
F
C
6
2
A1 B
1.六边形的每一个外角和相邻的内角有什么关系? 任意一个外角加上与它相邻的内角等于180°.
2.六边形的6个外角加上与它们相邻的内角,所得总 和是多少? 每一个外角加上与它相邻的内角等于180°,所以 六个外角加上与它们相邻的内角等于180°×6.
解:(1)四边形的内角和为360°,
则x°+x°+140°+90°=360°,解得x=65.
(2)四边形的内角和为360°,
则∠1+75°+120°+80°=360°,解得∠1=85°,
因为∠1+x°=180°,所以x=95.
例4 一个多边形的各内角都等于120°,它是几边形?
解:设这个多边形的边数为n,
内角的大小,并计算出四个内角的和是多少? 经过测量发现四边形的四个内角和为360°.
试用三角形内角和定理来证明任意一个四边形的内 角和为360°.利用对角线将四边形分成三角形来求 解.
如图,在四边形ABCD中,连接对角线AC,求四边形 ABCD的内角和.
解:∵对角线AC将四边形分为△ACD和△ACB,
(2)小李同学在计算一个n边形的内角和时不小心多加了一 个内角,得到的内角之和是1 380°,则这个多边形的 边数n的值是多少?多加的这个内角度数是多少? 解:设多加的这个内角度数为α,则(n-2)·180°= 1 380°-α.∵1 380°=7×180°+120°,多边形的 内角和应是180°的倍数,∴n=9,α=120°. 答:这个多边形的边数n的值是9,多加的这个内角 度数是120°.
数学人教版八年级上册多边形内角和公式
α B'
δ O β γ
D'
C'
多边形的外角和
如果广场的形状是六边形、八 边形,那么还有类似的结论吗? 多边形 内角的一边与另一边的反 向延长线所组成的角叫做这个多 边形的外角。 在每个顶点处取这个多边形的一 个外角,它们的和叫做这个多边 形的外角和。
多边形的外角和等于 360ْ
An
A8
A1
A2 A3 A4
如图1,在四边形内任取一点P, 连接PA、PB、PC、PD将四边 形变成有一个公共顶点的四个 三角形,四边形内角和等于 180°×4 - 360°= 360°
如图2,在四边形的一边上任取一点P, 连接PB、PC,将四边形变成有一个公 共顶点的三个三角形,四边形内角和 等于180° ×3- 180° = 360°
6.若一个凸多边形的内角和等于它的外角和, 则它 的边数是_________. 7.如果一个多边形的每一个外角都相等,并 且它的内角和为2880°,那么它的内角为 _________.
练习
1、 若多边形的外角和与内角和之比为2∶9, 求这个多边形的边数及内角和。
2 、一个多边形中的各内角相等,且每个内角 与外角之差的绝对值为60°,求此多边形的边 数。 3、 已知多边形的一个内角的外角与其它 各内角的度数总和为600°,求边数.
学习了本节课你有 哪些 收获?
三角形个数
内角和
5 6 7
. . .ຫໍສະໝຸດ 2 3 4. . .3 4 5
. . .
3×180°=540 ° 4×180°=720° 5×180°=900°
. . .
n
n-3
n-2
(n-2)×180°
综上所述,设多边形的边数为n,
人教版初中数学八年级上册第十一章 多边形的内角和
(2)当多边形边数增加时,它的外角和也随着增加.( )
(3)三角形的外角和与八边形的外角和相等.
()
2.一个多边形的每一个外角都是36°,则这个多边形的边 数是 10 .
课堂检测
11.3 多边形及其内角和/
3. 如图所示,小华从点A出发,沿直线前进10米后左转 24°,再沿直线前进10米,又向左转24°,…,照这样 走下去,他第一次回到出发地点A时,走的路程一共是 ___1_5_0___米.
例2 一个多边形的内角和比四边形的内角和多720°,
并且这个多边形的各内角都相等,这个多边形的每个内
角是多少度?
解:设这个多边形边数为n,则 (n–2)•180=360+720, 解得n=8, ∵这个多边形的每个内角都相等, (8–2)×180°=1080°, ∴它每一个内角的度数为1080°÷8=135°.
课堂检测
11.3 多边形及其内角和/
4. 一个多边形从一个顶点可引对角线3条,这个多边形
内角和等于( B )
A. 360°
B. 540 °
C. 720 °
D. 900 °
课堂检测
11.3 多边形及其内角和/
能力提升题
一个多边形的内角和为1800°,截去一个角后,求得到的 多边形的内角和.
解:设多边形的边数为n,则有180° × (n–2)=1800°,解得 n=12. ∴原多边形边数为12. ∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1, ∴新多边形的边数可能是11,12,13, ∴新多边形的内角和可能是1620°,1800°,1980°.
1A
B
5
2 C3
E 4
D
结论:五边形的外角和等于360°.
人教版八年级上册数学12多边形的内角和
1.任意一个外角和他相邻
1A
的内角有什么关系? B
2.五个外角加上他们分别
6
5
相邻的五个内角和是多 2
E
少? 3.这五个平角和与五边形
C
的内角和、外角和有什
3
4 D
么关系?
如图,在五边形的每个顶点处各取一个外角, 这些外角的和叫做五边形的外角和.五边形的 外角和等于多少?
5边形外角和 =5个平角 -5边形内角和 1 A
么这是( 十 )边形。
5、如果一个多边形的内角和是1440度,那么这 是 十 边形。
解:由多边形的内角和公式可得
(n - 2)·180 = 1440 (n - 2) = 8 n = 10
∴这是十边形。
如图,在五边形的每个顶点处各取一个外角,
这些外角的和叫做五边形的外角和.五边形的
外角和等于多少?
多边形分成几个三角形?
如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.五边形的外角和等于多少?
-(n-2) × 180°
3、 已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数。
四边形可分成
个三角形,其内角和是
度;
3、 已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数。
4
即:多边形的外角和等于360º
七边形 7 5 四边形可分成
个三角形,其内角和是
解:由多边形的内角和公式可得
度;
这五个平角和与五边形的内角和、外角和有什么关系?
任意一个外角和他相邻的内角有什么关系?
180° 360° 540° 720° 900°
计算规律
1 ×180° 2 ×180° 3 ×180° 4 ×180° 5 ×180°
人教版八年级数学上册11.3 多边形及其内角和 (共62张PPT)
创设情境,导入新知
多边形的定义: 在平面内,由一些线段首尾顺次相接组成的封闭图 形叫做多边形.
(在同一个平面内)
说出下面图形的名称:
四边形
六边形 五边形
八边形
(1)多边形的表示方法:
A
用它的各个顶点的字母
按顺序表示,顺时针或 B
者逆时针,如图,可表
示为五边形ABCDE或者
AEDCB。
C
E D
(2)多边形相邻两组边组成的角叫做它的内角。 如图,∠A,∠B,∠C,∠D,∠E分别是五边形 ABCDE的五个内角。
了解一下
可表示为:五边形ABCDE或
五边形DCBAE
A
内角
顶点
E
B
边 C
对角线:连接多边形不相邻的两个顶 点的线段。
D 对角线
创设情境,导入新知
如图,从五边形ABCDE 的顶点A 出发共有几条对 角线?
A
B E
C
D
1.四边形中经过每一个顶点的对角线有__1_条 其中每一条都重复了__1_次,所以,四边形 共有__2_条对角线。 41
温故而知新
1、由不在同一直线上的三条线段首尾顺次相连所 组成的图形叫做三角形
2、三角形的内角和:三角形三个内角之和为 180°
1、三角形外角的两条性质
① 三角形的一个外角等于与它不相邻 的两个内角的和。 ②三角形的一个外角大于任何一个与它 不相邻的内角。 2、三角形的外角和是360°
观察下列图案
E
小明清晨沿一个五边形广场周围的小跑, 按逆时针方向跑步的效果图. 请你观察并
2
4
思考如下几个问题:
CD
3
(1)小明每从一条街道转到下一条街道时,身
人教版八年级上册 11.3 多边形及其内角和 课件(共21张PPT)
12x = 240, x=20,
∴ 3x = 60, 4x = 80, 5x = 100. 答:∠B,∠C,∠D的度数分别为60°,80°,100°.
按角分类
锐角三角形 直角三角形 钝角三角形
按边分类
等腰三角形 等边三角形
j-腰
k -腰
1-底角
2-底角
l-底边
每个角都是锐角 两个锐角互余 有一个角是钝角 两腰相等,两底角相等 三边都相等,三个角都是60°
在 n 边形的每个顶点处各取一个外角,这些外角 的和叫做n边形的外角和.
n边形外角和= n个平角-n边形内角和 =n×180°-(n-2) × 180° =360°. n边形的外角和等于360°.
B
2 C
1
A n
F 5
3 D 4
E
知识点及时练
1.(肇庆·中考)一个多边形的内角和是外角和的2倍,
则这个多边形是( C )
知识点及时练
6 、已知两个多边形的内角和为 1440°,且两多 边形的边数之比为 1︰3,求它们的边数分别是 多少? 解:设它们的边数分别是x,y.由题意得:
180+( y -2)· 180=1440 (x-2)· x : y=1 : 3 解之得 x =3 y =9 答:它们的边数分别是3和9。
教材知识点精讲
教材知识点精讲
1. 认识多边形
对角线
读出图中所有的对角线 A E
B
C 对角线——— 连接多边形不相邻的两个顶点的线段.
D 对角线
教材知识点精讲
2. 多边形的内角和
画出多边形中从一个顶点出发的对角线,写出它的条数. 1 0
2
3
5
从n边形的一个顶点出发能画出多少条对角线? (1) (n-3) (n≥3)
人教版八年级数学上册 第11章 第3节 多边形及其内角和 课件(共40张PPT)
D
这种探索方法你掌握了吗?请完成下表
多边形的 边数
3
4
5
6
7
…
n
从一个顶 点出发对 角线数 分成的三 角形个数
0
1
1
2
2
3
3 4
4 5
…
n-3
n-2
180° 180° 180° 180° 多边形的 (n-2) ×180 180° … ×2 ×3 ×4 ×5 内角和
n边形的内角和等于(n-2).180°
多边形外角和
探索
(1)什么是三角形的外角?外角有什么性 质? (2)类似地,在多边形中找出 外角
E D C
多边形的一边与另一边的 延长线的夹角,叫做多边 形的外角。
A
B
F
(2)四边形的外角和等于多少度?
C
3 4 2 1
B
D
A
思考:任何一个外角和它相邻的内角有 什么关系?
四边形的四个外角加上与它们相邻的内 角总和是多少?
6、一个多边形的每个内角都比相邻的外 角3倍多20度,求这个多边形的边数, 7、两个多边形的边数比是1:2,两个多边形的 内角和为1440度,求这两个多边形的边数,
1. 三角形三个内角的度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一个内 角为 ( C ) A、30O B、45O C、60O D、90O 2.一个正多边形每一个内角都是120o,这个 多边形是( C ) A、 正四边形 B、正五边形 C、正六边形 D、正七边形
探究活动:
A E D
B E
C
如图, ∠A=45°, ∠B=2 ° ∠C=30 ° ,则 ∠D= 100 ° 。
人教版八年级上册_多边形及其内角和(解析版)(仅供参考)
)除以边数(n)以外,还可以通过
利用外角和( )除以边数(n),得到一个顶点处外角的度数,再拿 180 减去它即可.
易错点:每个多边形在其一个顶点处对应的外角也都只有一个,它们的和等于 .
题模一:对角线条数
例 1.1.1 若一个正 n 边形的每个内角为 144°,则这个正 n 边形的所有对角线的条数是( )
本题中,设这个多边形是 n 边形. 代入公式,得 n 3 10 , ∴ n 13 .
例 1.1.3
【答案】7 【解析】从一个 9 边形的某个顶点出发,分别连接这个点与其他顶点可以把这个 9 边形分割成三角形的个 数是 7 个
例 1.1.4
【答案】(1)2;5;9,(2)14; n(n 3) 2
D.7 或 8 或 9
拓展 4 如图,小明从点 A 出发,向前走 2 米,左拐 20 ,再向前走 2 米,再左拐 20 ,如此下去,小明能
否回到出发点 A ?如果能,第一次回到出发点共走了多少路程?
A2
2 20
2 20 2
20
拓展 5 如图,∠1=m°,∠2+∠4+∠6+∠8=n°,则∠3+∠5+∠7 的大小是__.
例 1.2.1
【答案】C 【解析】该题考查的是多边形的角度计算.
多边形内角和公式为 n 2 180 ,外角度数和为定值 360 , 本题中, n 2 180 1980 ,解得 n 13
而多边形从某一个顶点出发截去一个角,边数有两种可能,一种是边数不变,一种是边数减少 1 条,所以 原来的多边形边数可能是 13 或 14,故答案是 C.
A.2 个
B.3 个
C.4 个
D.5 个
拓展 2 一个多边形,把一个顶点与其它各顶点连接起来,把这个多边形分成了 12 个三角形,则这个多边 形的边数__________
人教版初中八年级数学上册11.3.2多边形及其内角和ppt课件
学习了本节课你有哪些 收获?
随堂练习
求下列图形中x的值:
140 0
x0
x0
(1)
120 0 80 0
75 0
x0
(3)
150 0 120 0
(2)
2x0
x0
D
E
x0
150 0
60 0
C
135 0
A
B
(4)
AB∥CD
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””
人教版八年级数学上册:11.3.2多边形及其内角和(教案)
四、教学流程
(一)导入边形及其内角和》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多边形内角和的情况?”比如,在设计一个多边形的花园或地板图案时,我们可能需要知道所有内角的总和。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索多边形内角和的奥秘。
3.通过实际操作,让学生掌握如何利用内角和计算公式解决多边形相关问题。
4.案例分析,结合实际生活中的多边形问题,运用所学知识进行解答。
本节课将结合教材内容,注重培养学生的实际操作能力和解决问题的能力,使学生在掌握多边形内角和知识的基础上,能够灵活运用到实际生活中。
二、核心素养目标
1.培养学生的空间观念和几何直观,通过多边形的认识,提高学生对平面图形的理解和运用能力。
3.重点难点解析:在讲授过程中,我会特别强调多边形的定义和内角和的计算公式这两个重点。对于难点部分,如内角和公式的推导,我会通过分割多边形为三角形的例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与多边形内角和相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用硬纸板制作一个多边形,并测量计算其内角和。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“多边形内角和在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
・3. 2多边形的内角和
[教学目标]1、了解多边形的内角、外角等概念:2、能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.
【重点难点】女边形的内角和与姜边形的外角和公式是直点:多边形的内角和定理的推导是难点。
[教学过程]
一、复习导入
我们已经证明了三角形的内角和为180* ,在小学我们用量角器呈过四边形的内角的度数, 知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?"
二.多边形的内角和
(投影1)如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和「等于多少度?
可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角fn=AZlBD的内角和
+ABDC 的内角和=2X180° =360°。
类似地,你能知道五边形、六边形……n边形的内勿和是多少度吗?
(投影2)观察下面的图形,填空:
从五边形一个顶点出发可以引—对角线,它们将五边形分成_三角形,五边形的内角和等于; 从六边形一个顶点出发可以引_对角线,它们将六边形分成_三角形,六边形的内角和等于: (投影3)从n边形一个顶点岀发,町以引—对角线,它们将n边形分成_三角形,n边形的内角和等于 _________________ 。
n边形的内角和等于(n-2).180°・
从上面的讨论我们知道,求n边形的内角和町以将n边形分成若干个三角形来求。
现在以五边形为例,你还有其它的分法吗?
分法一(投影3)如图1,在五边形ABCDE内任取一点0,连结OA、OB、OC、OD、OE, .则得五个三角形。
・•・五边形的内角和为5X180°— 2X180° = (5—2) X18O0 =540°。
A
图1 图2
分法二(投影4)如图2,在边AB上取一点0,连0E、0D、0C,则可以(5~1)个三角形。
・•・五边形的内角和为(5—1) X180' 一180° = (5—2) X180°
如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n — 2) X18O0・
三、例题
(投影6)例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?
如图,己知四边形ABCD中,ZA+ZC=180° ,求ZB与ZD的关系.
分析:ZA、ZB、ZC、ZD有什么关系?
解:VZA+ZB+ZC+ZD= (4-2) X180° =360°
又ZA+ZC=180‘
AZB4-ZD= 360°一(ZA+NC) =180°
这就是说,如果四边形一组对角互补,那么另一组对角也互补.
(投影7)例2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
如图,己知Zl, Z2, Z3, Z4, Z5, Z6分别为六边形ABCDEF的外角,求Z1+Z2+Z3+ Z4+Z5+Z6 的值.分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?
Z2+ZABC=180°Z3+ZBAD=1801>
Z5+ZDEF=18Q Z6+ZEFA=180'
/.Zl+ZBAF+Z2+ZABC+Z3+ZBAD+Z4+ZCDE+Z5+ZDEF+Z6+ZEFA=6X180,
又Zl+Z2+Z3+Z4+Z5+Z6=4X180°
.•.ZBAF+ZABC+ZBAD+ZCDE+ZDEF+ZEFA=6X180 -4X180° =360°
这就是说,六边形形的外角和为360° o
如果把六边形换成n边,形可以得到同样的结•果:
n边形的外角和等于360。
.
对此,我们也町以这样来理解。
(投影8)如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的以个角的和就是* 边形的外角和,由于走了一周,所得的各个•角的和等于一个周角,所以多.边形的外角和等于3WT・。