高考复习试卷习题资料之重庆市高考数学试卷文科001
高考文科数学试题及参考答案(重庆卷)
一. 教学内容:离心现象及圆周运动的临界问题二. 学习目标:1、掌握离心运动的概念及成因,加深对于离心现象的理解。
2、掌握离心现象问题中典型题型的解题方法与思路。
2、掌握与圆周运动问题相联系的实际问题的相关题型的解法。
三. 重难点解析:(一)离心运动的成因及应用:1、离心运动做匀速圆周运动的物体,在合外力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动,叫做离心运动。
2、离心运动的成因做圆周运动的物体,由于本身的惯性,总有沿着圆周的切线方向飞出的倾向,它所以没有飞出是因为向心力持续地把物体拉到圆周上来,使物体同圆心的距离保持不变,如图所示第三种情况;若向心力突然消失,物体将沿切线方向飞出,离圆心越来越远,如图所示第一种情况;若在合力不足以提供物体做圆周运动所需的向心力时,物体同样会逐渐远离圆心,这时物体虽然不会沿切线方向飞出,但合力不足以把它拉到圆周上来,物体就沿着切线和圆周之间的某条曲线运动,离圆心越来越远,如图所示第二种情况。
说明:对于上述三种情况应做如下理解:第一种情况,是表示向心力突然消失,消失的位置在圆心O的正上方,因此小球将沿着切线方向飞出。
第二种情况,是表示由于向心力不足,这一比较小的向心力将不能使小球沿着原来的半径继续做圆周运动,在认为线速度v不变的条件下,由于惯性,向心力减小后,从这一即时的情况看,小球只能在曲率半径r较大的一小段圆弧上运动,这样,相对原来的圆心位置来说距离就远了。
第三种情况,是表示能够沿着原来的圆弧做匀速圆周运动的,所需的向心力能够得到满足,这是正常情况。
3、离心运动的应用离心运动可以给我们的生活、工作带来方便,如离心干燥器、洗衣机的脱水筒等就是利用离心运动而设计的。
离心干燥器:将湿物体放在离心干燥器的金属网笼里,当网笼转得较快时,水滴的附着力F不足以提供所需的向心力,水滴就做离心运动,穿过网孔,飞离物体,因而使物体甩去多余的水分。
常见的几种离心运动对比图示项目实物图原理图现象及结论洗衣机脱水筒当水滴跟物体附着力F不足以提供向心力时,即,水滴做离心运动汽车在水平路面上转弯当最大静摩擦力不足以提供向心力时,即,汽车做离心运动用离心机把体温计的水银甩回玻璃泡中当离心机快速旋转时,缩口处对水银柱的阻力不足以提供向心力时,水银柱做离心运动进入玻璃泡内说明:物体做离心运动并不是受到“离心力”的作用,更不是“离心力”大于向心力,而是提供的向心力不足或者突然消失。
文数高考试题答案及解析-重庆
普通高等学校招生统一考试(重庆卷)数学试题卷(文史类)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的(1)命题“若p 则q ”的逆命题是(A )若q 则p (B )若⌝p 则⌝ q (C )若q ⌝则p ⌝ (D )若p 则q ⌝(2)不等式102x x -<+ 的解集是为 (A )(1,)+∞ (B ) (,2)-∞- (C )(-2,1)(D )(,2)-∞-∪(1,)+∞ 【答案】:C 【解析】:10(1)(2)0212x x x x x -<⇒-+<⇒-<<+ 【考点定位】本题考查解分式不等式时,利用等价变形转化为整式不等式解. (3)设A ,B 为直线y x =与圆221x y += 的两个交点,则||AB =(A )1 (B (C (D )2 【答案】:D【解析】:直线y x =过圆221x y +=的圆心(0,0)C 则||AB =2 【考点定位】本题考查圆的性质,属于基础题. (4)5(13)x - 的展开式中3x 的系数为 (A )-270 (B )-90 (C )90 (D )270(5)sin 47sin17cos30cos17-(A )2-(B )12-(C )12(D )2【答案】:C 【解析】:sin 47sin17cos30sin(3017)sin17cos30cos17cos17-+-=sin 30cos17cos30sin17sin17cos30sin 30cos171sin 30cos17cos172+-====【考点定位】本题考查三角恒等变化,其关键是利用473017=+ (6)设x R ∈ ,向量(,1),(1,2),a x b ==-且a b ⊥ ,则||a b += (A(B(C)(D )10 【答案】:B(7)已知2l o g 3o g 3a =+2log 9log b =-3log 2c =则a,b,c 的大小关系是(A ) a b c =< (B )a b c => (C )a b c << (D )a b c >>【答案】:B 【解析】:222213log 3log log 3log 3log 322a =+=+=,222213log 9log 2log 3log 3log 322b =-=-=,2322log 21log 2log 3log 3c ===则a b c => 【考点定位】本题考查对数函数运算.(8)设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是【答案】:C【解析】:由函数()f x 在2x =-处取得极小值可知2x <-,()0f x '<,则()0xf x '>;2x >-,()0f x '>则20x -<<时()0xf x '<,0x >时()0xf x '>【考点定位】本题考查函数的图象,函数单调性与导数的关系,属于基础题.(9)设四面体的六条棱的长分别为1,1,1,1和a 且长为a 的棱异面,则a 的取值范围是(A ) (B ) (C )(D )【答案】:A【解析】:2BE ==,BF BE <,2AB BF =<【考点定位】本题考查棱锥的结构特征,考查空间想象能力,极限思想的应用,是中档题.. (10)设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈> {|()2},N x R g x =∈<则MN 为(A )(1,)+∞ (B )(0,1) (C )(-1,1) (D )(,1)-∞ 【答案】:D【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->所以1x <或3log 5x >;由()2g x <得322x-<即34x<所以3log 4x <故(,1)MN =-∞二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
普通高等学校招生全国统一考试文科数学试卷及答案-重庆卷
2007年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题卷(文史类)共5页,满分150分,考试时间120分钟注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色铅字笔,将答案书写在答案卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:如果事件A、B互斥,那么)()()(B P A P B A P +=+ 如果事件A 、B 相互独立,那么)(·)()·(B P A P B A P =如果事件A 在一次试验中发生的概率是P ,那么n次独立重复试验中事件A 恰好发生k 次的概率)2,1,0()1()(1n k p p C k P k n kn ,⋯=-=-一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的。
(1)在等比数列{a n }中,a 2=8,a 1=64,,则公比q为 (A)2ﻩﻩ (B)3 ﻩ(C)4 (D)8(2)设全集U =|a、b 、c 、d |,A =|a 、c |,B =|b |,则A ∩(CuB )= (A )∅ (B ){a } ﻩ (C){c }ﻩﻩﻩ(D){a,c } (3)垂直于同一平面的两条直线 (A )平行ﻩ (B)垂直ﻩ (C )相交ﻩ (D)异面(4)(2x -1)2展开式中x 2的系数为 (A )15 ﻩ (B)60 ﻩﻩ(C )120ﻩﻩﻩ(D )240 (5)“-1<x <1”是“x 2<1”的(A)充分必要条件 ﻩﻩﻩﻩ(B)充分但不必要条件 (C)必要但不充分条件 ﻩ (D )既不充分也不必要条件(6)下列各式中,值为23的是 (A )︒-︒15cos 15sin 2ﻩﻩ(B )︒-︒15sin 15cos 22(C)115sin 22-︒ﻩ ﻩﻩﻩ(D)︒+︒15cos 15sin 22(7)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为(A)41ﻩﻩ ﻩ(B)12079ﻩ (C )43ﻩ(D)2423 (8)若直线1+=kx y 与圆122=+y x 相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k的值为(A )ﻩ-3或3ﻩ(B )3(C )2或3(D )2(9)已知向量=(4,6),=(3,5),且⊥,∥,则向量= (A)⎪⎭⎫ ⎝⎛-72,73ﻩ(B )⎪⎭⎫ ⎝⎛-214,72 (C)⎪⎭⎫⎝⎛-72,73(D)⎪⎭⎫ ⎝⎛-214,72(10)设P (3,1)为二次函数)1(2)(2≥+--x b ax ax x f 的图象与其反函数)(1x f f -=的图象的一个交点,则(A)25,21==b a ﻩ ﻩ (B)25,21-==b a ﻩﻩ (C)25,21=-=b a ﻩﻩﻩﻩﻩ(D )25,21-=-=b a(11)设a a b +-113和是的等比中项,则a +3b 的最大值为 (A )1ﻩ(B)2ﻩﻩ(C )3ﻩ(D )4(12)已知以F 1(2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为(A)23ﻩ(B)62 ﻩ(C)72ﻩﻩ(D)24二、填空题:本题共4小题,每小题4分,共16分,把答案填写在答题卡相应位置上。
重庆高考文科数学试题及答案解析.docx
普通高等学校招生全国统一考试
文科数学
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x>-1},B={x|x<2},则A∩B=
A.(-1,+∞)
B.(-∞,2)
C.(-1,2)
2.设z=i(2+i),则z=
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
3.已知向量a=(2,3),b=(3,2),则|a-b|=
A.√2
B.2
C.5√2
D.50
4.生物实验室有5只兔子,其中只有3只测量过某项指标。
若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为
A.2/3
B.3/5
C.2/3
D.1/5
5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测。
甲:我的成绩比乙高。
乙:丙的成绩比我和甲的都高。
丙:我的成绩比乙高。
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙
B.乙、甲、丙
C.丙、乙、甲
D.甲、丙、乙。
高考数学试题文数重庆卷及参考答案
2010年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题卷(文史类)共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的。
(1)4x+1)(的展开式中2x 的系数为 (A )4 (B) 6 (C) 10 (D) 20(2) 在等差数列{}n a 中,1a +9a =10则5a 的值为(A )5 (B) 6 (C) 8 (D) 10(3) 若向量a =(3,m),b =(2,-1),a ·b =0,则实数m 的值为(A )32- (B) 32(C) 2 (D) 6(4)函数y(A )[0,+∞) (B)[0,4] (C) [0,4) (D) (0,4) (5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为(A )7 (B )15(C )25 (D )35(6)下列函数中,周期为π,且在42ππ⎡⎤⎢⎥⎣⎦,上为减函数的是 (A )sin(2)2y x π=+ (B )cos(2)2y x π=+ (C )sin()2y x π=+ (D )cos()2y x π=+(7)设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为(A )0 (B )2(C )4 (D )6(8)若直线y x b =-与曲线2cos sin x y θθ=+⎧⎨=⎩,([)0,2θπ∈)有两个不同的公共点,则实数b 的取值范围为 (A)(2- (B)22⎡+⎣ (C)(,2(2)-∞-⋃++∞ (D)(22+ (9)到两互相垂直的异面直线的距离相等的点(A )只有1个 (B )恰有3个(C )恰有4个 (D )有无穷多个(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天。
2021高考重庆数学文科试卷含答案(全word版)
2021高考重庆数学文科试卷含答案(全word版) 2021高考重庆数学文科试卷含答案(全word版)2021年一般高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题卷(文史类)共5页。
满分150分。
考试时间120分钟。
留意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必需使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦洁净后,再选涂其他答案标号。
3.答非选择题时,必需使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.全部题目必需在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:假如大事A、B互斥,那么P(A+B)=P(A)+P(B).假如大事A、B相互独立,那么P(AB)=P(A)P(B).假如大事A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率Pn(K)=kmPk(1-P)n-k一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的.(1)已知{an}为等差数列,a2+a8=12,则a5等于(A)4 (B)5 (C)6(D)7(2)设x是实数,则“x>0”是“|x|>0”的(A)充分而不必要条件(C)充要条件(B)必要而不充分条件(D)既不充分也不必要条件x cos 1.(3)曲线C: ( 为参数)的一般方程为y sin 1(A)(x-1)+(y+1)=1 (C) (x-1)2+(y-1)2=122(B) (x+1)+(y+1)=1 (D) (x-1)2+(y-1)2=1222021高考重庆数学文科试卷含答案(全word版)(4)若点P分有向线段AB所成的比为-(A)-3213,则点B分有向线段PA所成的比是(C)12(B)-12(D)3(5)某交高三班级有男生500人,女生400人,为了解该班级同学的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(A)简洁随机抽样法(C)随机数表法(6)函数y=10x2-1(B)抽签法(D)分层抽样法(0<x≤1=的反函数是110)(A)y x>(C) y x 11(B)y x>110)10<x≤1 (D) y110<x≤1(7)函数f(x )=的最大值为(A)2522(B)122(D)1(8)若双曲线x316yp21的左焦点在抛物线y=2px的准线上,则p的值为2(A)2(B)3 (C)4(9)从编号为1,2, ,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为(A)18412x(B)121(C)25(D)35(10)若(x+(A)6)n的绽开式中前三项的系数成等差数,则绽开式中x4项的系数为(B)7(C)8(D)92021高考重庆数学文科试卷含答案(全word版)(11)如题(11)图,模块①-⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为(A)模块①,②,⑤ (C)模块②,④,⑥ (12)函数f(x11,] 441122(B)模块①,③,⑤ (D)模块③,④,⑤(0≤x≤2 )的值域是11332233(A)[-(B)[-,] ](C)[-,] (D)[-,二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题卡相应位置上.(C5 ,则A (13)已知集合=1,2,3,4,5 ,A= 2,3,4 ,B= 4,UB)=.14321412(14)若x 0,则(2x+3)(2x-3)-4x22-12=.(15)已知圆C:x y 2x ay 3 0(a为实数)上任意一点关于直线l:x-y+2=0 的对称点都在圆C上,则a= .(16)某人有3种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各安装一个灯泡,要求同一条线段两端的灯泡不同色,则不同的安装方法共有种(用数字作答).三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满13分,(Ⅰ)小问5分,(Ⅰ)小问8分.)设ⅠABC的内角A,B,C的对边分别为a,b,c.已知b c a222,求:2021高考重庆数学文科试卷含答案(全word版)(Ⅰ)A的大小;(Ⅰ)2sinBcosC sin(B C)的值.(18)(本小题满分13分,(Ⅰ)小问8分,(Ⅰ)小问5分.)在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:(Ⅰ)恰有两道题答对的概率;(Ⅰ)至少答对一道题的概率.(19)(本小题满分12分,(Ⅰ)小问6分,(Ⅰ)小问6分.)设函数f(x) x3 ax2 9x 1(a 0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:(Ⅰ)a的值;(Ⅰ)函数f(x)的单调区间.(20)(本小题满分12分,(Ⅰ)小问6分,(Ⅰ)小问6分.)如图(20)图,和为平面,l,A ,B ,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二面角l 的大小为(Ⅰ)点B到平面的距离; (Ⅰ)异面直线l与AB所成的角(用反三角函数表示).2 3,求:(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅰ)小问7分.)如题(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满意:PM PN 2.(Ⅰ)求点P的轨迹方程;(Ⅰ)设d为点P到直线l:x12PMd的距离,若PM 2PN,求2的值.(22)(本小题满分12分,(Ⅰ)小问6分.(Ⅰ)小问6分)3设各项均为正数的数列{an}满意a1 2,an an2 1an 2(n N*).2021高考重庆数学文科试卷含答案(全word版)(Ⅰ)若a214,求a3,a4,并猜想a2021的值(不需证明);(Ⅰ)若a1a2 an 4对n≥2恒成立,求a2的值.绝密Ⅰ启用前2021年一般高等学校招生全国统一考试(重庆卷)数学试题(文史类)答案一、选择题:每小题5分,满分60分.(1)C (2)A (3)C (4)A (5)D (6)D (7)B (8)C (9)B (10)B (11)A (12)C 二、填空题:每小题4分,满分16分.(13) |2 , 3| (14) -23 (15) -2 (16) 12 三、解答题:满分74分.(17)(本小题13分)解:(Ⅰ)由余弦定理,a2 b2 c2 2bccosA,b c a2bc.222故cosA2bc2所以A6(Ⅰ) 2sinBcosC sin(B C)2sinBcosC (sinBcosC cosBsinC) sinBcosC cosBsinCsin(B C)sin( A) sinA12.(18)(本小题13分)解:视“选择每道题的答案”为一次试验,则这是4次独立重复试验,且每次试验中“选择正确”这一大事发生的概率为14.由独立重复试验的概率计算公式得:(Ⅰ)恰有两道题答对的概率为P4(2) C2()()4 4412322021高考重庆数学文科试卷含答案(全word版)27128.(Ⅰ)解法一:至少有一道题答对的概率为041 P4(0) 1 C0()() 413441812563175256.解法二:至少有一道题答对的概率为222233440 C1()() C4()() C4()() C4()() 4113131344444444108256175256.54256122561256(19)(本小题12分)解:(Ⅰ)因f(x) x2 ax2 9x 1 所以f (x) 3x2 2ax 9 a3a23(x ) 923. 即当xa3时,f (x)取得最小值9a23.因斜率最小的切线与12x y 6平行,即该切线的斜率为-12,a2所以9312,即a 9.2解得a 3,由题设a 0,所以a 3. (Ⅰ)由(Ⅰ)知a 3,因此f(x) x 3x 9x 1, f (x) 3x 6x 9 3(x 3(x 1)令f (x) 0,解得:x1 1,x2 3.当x ( , 1)时,f (x) 0,故f(x)在( ,1)上为增函数;232当x ( 1,3)时,f (x) 0,故f(x)在(1,)3上为减函数;当x (3,+ )时,f (x) 0,故f(x)在(3,)上为增函数.由此可见,函数f(x)的单调递增区间为( , 1)和(3,);单调递减区间为(1,3).2021高考重庆数学文科试卷含答案(全word版)(20)(本小题12分)解:(1)如答(20)图,过点B′CⅠA′A且使B′C=A′A.过点B作BDⅠCB′,交CB′的延长线于D.由已知AA′Ⅰl,可得DB′Ⅰl,又已知BB′Ⅰl,故lⅠ平面BB′D,得BDⅠl又因BDⅠCB′,从而BDⅠ平面α,BD之长即为点B到平面α的距离.因B′CⅠl且BB′Ⅰl,故ⅠBB′C为二面角α-l-β的平面角.由题意,ⅠBB′C=2 3.因此在RtⅠBB′D中,BB′=2,ⅠBB′D=π-ⅠBB′C=3,BD=BB′sinBB′D(Ⅰ)连接AC、BC.因B′CⅠA′A,B′C=A′A,AA′Ⅰl,知A′ACB′为矩形,故ACⅠl.所以ⅠBAC 或其补角为异面直线l与AB所成的角. 在ⅠBB′C中,B′B=2,B′C=3,ⅠBB′C=BC2 3,则由余弦定理,因BD 平面,且DC CA,由三策划线定理知AC BC.2故在ⅠABC中,ⅠBCA=,sinBAC=BCAB5.因此,异面直线l与AB所成的角为arcsin (21)(本小题12分)解:(I)由双曲线的定义,点P的轨迹是以M、N为焦点,实轴长2a=2的双曲线. 因此半焦距c=2,实半轴a=1,从而虚半轴b,2-所以双曲线的方程为xy23=1.(II)解法一:由(I)由双曲线的定义,点P的轨迹是以M、N为焦点,实轴长2a=2的双曲线. 因此半焦距e=2,实半轴a=1,从而虚半轴.2R所以双曲线的方程为x-(II)解法一:y23=1.由(I)及答(21)图,易知|PN| 1,因|PM|=2|PN|, ① 知|PM||PN|,故P为双曲线右支上的点,所以|PM|=|PN|+2. ②22021高考重庆数学文科试卷含答案(全word版)将②代入①,得2||PN|-|PN|-2=0,解得24舍去4,所以4.ca因为双曲线的离心率e==2,直线l:x=12 是双曲线的右准线,故|PN|d=e=2,所以d=12|PN|,因此|PM|2|PM|4|PN|2d|PN||PN|4|PN| 1解法:设P(x,y),因|PN| 1知|PM|=2|PN|2 2|PN||PN|,故P在双曲线右支上,所以x 1. 由双曲线方程有y2=3x2-3. 因此|PN|从而由|PM|=2|PN|2得2x+1=2(4x2-4x+1),即8x2-10x+1=0. 所以x=8(舍去x8).有|PM|=2x+1=94d=x-112=8.故|PM|d41(22)(本12分)解:(I)因a-21=2,a2=2,故由此有a(-2)01=2, a(-2)22=2(-2)4, a3=2, a4=2(-2)3, 从而猜想an的通项为a 2) n 1n 2((n N*),所以a(2)2xn2xn=2.2021高考重庆数学文科试卷含答案(全word版)(Ⅰ)令xn=log2an.则a2=2x2,故只需求x2的值。
高考试题—数学文(重庆卷)答案.pdf
18个月时,这个黑头发、蓝眼珠的男孩就开始读书。
3岁那年,布兰登就声称自己不再上幼儿园。
4岁参加钢琴比赛。
10岁高中毕业,并在11岁开始大学课程。
1996年,一次智商测试中,布兰登觉得无聊而拒绝把试题做完,但他还是得了178分——100万人里只有1个人能得174分以上,150分以上的人就被视为“天才”。
他母亲派翠西亚表示,儿子说测验太简单、无聊,没有全部答完,否则成绩不知道还高多少。
猜想他现在取得了什么成就 。
自主学习 1.为什么生活需要友情?(或友情在生活中有哪些作用) 2.闭锁心理有哪些危害?如何克服这种心理,积极寻找朋友? 3.了解什么是益友、诤友、损友。
4.怎样寻找友情? 一、友情也是我们特别渴求的一种心理需要,是我们健康成长中不可缺少的精神营养。
二、友情能使我们互相启发,取长补短,相互激励,共同进步,有助于我们增长智慧和才干,更快的全面发展; 三、友情给我们温暖和力量,让我们获得更多的幸福和快乐。
友情在生活和学习中的作用 影响与同学、朋友的正常相处和交往,容易形成自我封闭、自我孤立的孤僻性格,影响正常的学习生活 青春期闭锁心理的危害: 要消除闭锁心理,敞开自己的心扉,以积极开放的心态主动与他人沟通、交往、培养热情、开朗的性格。
应注意慎交友,努力做到善交益友,乐交诤友,不交损友。
克服青春期闭锁心理,积极寻找朋友的办法: 怎样让友谊更长久? 1、平等、尊重、真诚。
平等待人是人际交往的重要原则,是建立和发展友情的前提。
朋友之间也需要彼此尊重。
朋友相交,贵在真诚。
2、理解、宽容。
朋友之间要持宽容和理解的态度。
但是朋友之间的宽容、理解并不是不讲原则。
3、关爱、帮助。
朋友遇到困难时,应毫不犹豫的伸出援助之手,尽己所能的给予帮助。
不对。
宽容是要原谅朋友的过错,允许别人不同于自己的意见存在,但是朋友之间的理解、宽容也要讲原则。
讲原则是说要分清是非,不能帮助朋友干坏事,不能纵容朋友干坏事。
高考复习试卷习题资料之重庆市高考数学试卷文科001
高考复习试卷习题资料之重庆市高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5 B.8 C.10 D.142.(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.2504.(5分)下列函数为偶函数的是()A.f(x)=x﹣1 B.f(x)=x2+x C.f(x)=2x﹣2﹣x D.f(x)=2x+2﹣x5.(5分)执行如图所示的程序框图,则输出s的值为()A.10 B.17 C.19 D.366.(5分)已知命题:p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根;则下列命题为真命题的是()A.p∧¬q B.¬p∧q C.¬p∧¬q D.p∧q7.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.308.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|﹣|PF2|)2=b2﹣3ab,则该双曲线的离心率为()A.B.C.4 D.9.(5分)若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+410.(5分)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,] B.(﹣,﹣2]∪(0,] C.(﹣,﹣2]∪(0,] D.(﹣,﹣2]∪(0,]二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上.11.(5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=.12.(5分)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•=.13.(5分)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f ()=.14.(5分)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B两点,且AC⊥BC,则实数a的值为.15.(5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答).三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(13分)已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.(Ⅰ)求an及Sn;(Ⅱ)设{bn}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0.求{bn}的通项公式及其前n项和Tn.17.(13分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.18.(13分)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.19.(12分)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f (1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.20.(12分)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.21.(12分)如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.重庆市高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5 B.8 C.10 D.14【分析】由题意可得a4=5,进而可得公差d=1,可得a7=a1+6d,代值计算即可.【解答】解:∵在等差数列{an}中a1=2,a3+a5=10,∴2a4=a3+a5=10,解得a4=5,∴公差d==1,∴a7=a1+6d=2+6=8故选:B.【点评】本题考查等差数列的通项公式,属基础题.2.(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数的几何意义,即可得到结论.【解答】解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.【点评】本题主要考查复数的几何意义,比较基础.3.(5分)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.250【分析】计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n 值.【解答】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.【点评】本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是关键.4.(5分)下列函数为偶函数的是()A.f(x)=x﹣1 B.f(x)=x2+x C.f(x)=2x﹣2﹣x D.f(x)=2x+2﹣x【分析】根据偶函数的定义,依次分析选项,先分析函数的定义域,再分析f(﹣x)=f (x)是否成立,即可得答案.【解答】解:根据题意,依次分析选项:A、f(x)=x﹣1,其定义域为R,f(﹣x)=﹣x﹣1,f(﹣x)≠f(x),不是偶函数,不符合题意;B、f(x)=x2+x,其定义域为R,f(﹣x)=x2﹣x,f(﹣x)≠f(x),不是偶函数,不符合题意;C、f(x)=2x﹣2﹣x,其定义域为R,f(﹣x)=2﹣x﹣2x,f(﹣x)=﹣f(x),是奇函数不是偶函数,不符合题意;D、f(x)=2x+2﹣x,其定义域为R,f(﹣x)=2﹣x+2x,f(﹣x)=f(x),是偶函数,符合题意;故选:D.【点评】本题考查函数奇偶性的判断,注意要先分析函数的定义域.5.(5分)执行如图所示的程序框图,则输出s的值为()A.10 B.17 C.19 D.36【分析】根据框图的流程模拟运行程序,直到不满足条件k<10,跳出循环体,计算输出S 的值.【解答】解:由程序框图知:第一次循环S=2,k=2×2﹣1=3;第二次循环S=2+3=5,k=2×3﹣1=5;第三次循环S=5+5=10,k=2×5﹣1=9;第四次循环S=10+9=19,k=2×9﹣1=17,不满足条件k<10,跳出循环体,输出S=19.故选:C.【点评】本题考查了当型循环结构程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.6.(5分)已知命题:p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根;则下列命题为真命题的是()A.p∧¬q B.¬p∧q C.¬p∧¬q D.p∧q【分析】判定命题p,q的真假,利用复合命题的真假关系即可得到结论.【解答】解:根据绝对值的性质可知,对任意x∈R,总有|x|≥0成立,即p为真命题,当x=1时,x+2=3≠0,即x=1不是方程x+2=0的根,即q为假命题,则p∧¬q,为真命题,故选:A.【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础.7.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.30【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断三棱柱的高及消去的三棱锥的高,判断三棱锥与三棱柱的底面三角形的形状及相关几何量的数据,把数据代入棱柱与棱锥的体积公式计算.【解答】解:由三视图知:几何体是三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∴几何体的体积V=×3×4×5﹣××3×4×3=30﹣6=24.故选:C.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|﹣|PF2|)2=b2﹣3ab,则该双曲线的离心率为()A.B.C.4 D.【分析】根据(|PF1|﹣|PF2|)2=b2﹣3ab,由双曲线的定义可得(2a)2=b2﹣3ab,求得a=,c==b,即可求出双曲线的离心率.【解答】解:∵(|PF1|﹣|PF2|)2=b2﹣3ab,∴由双曲线的定义可得(2a)2=b2﹣3ab,∴4a2+3ab﹣b2=0,∴a=,∴c==b,∴e==.故选:D.【点评】本题主要考查了双曲线的简单性质,考查学生的计算能力,属于基础题.9.(5分)若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+4【分析】利用对数的运算法则可得>0,a>4,再利用基本不等式即可得出【解答】解:∵3a+4b>0,ab>0,∴a>0.b>0∵log4(3a+4b)=log2,∴log4(3a+4b)=log4(ab)∴3a+4b=ab,a≠4,a>0.b>0∴>0,∴a>4,则a+b=a+=a+=a+3+=(a﹣4)++7+7=4+7,当且仅当a=4+2取等号.故选:D.【点评】本题考查了对数的运算法则、基本不等式的性质,属于中档题.10.(5分)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,] B.(﹣,﹣2]∪(0,] C.(﹣,﹣2]∪(0,] D.(﹣,﹣2]∪(0,]【分析】由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),作出两个函数的图象,利用数形结合即可得到结论.【解答】解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)和y=h(x)=m(x+1)的图象如图:由图象可知f(1)=1,h(x)表示过定点A(﹣1,0)的直线,当h(x)过(1,1)时,m=此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤,当h(x)过(0,﹣2)时,h(0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当h(x)与f(x)相切时,两个函数只有一个交点,此时,即m(x+1)2+3(x+1)﹣1=0,当m=0时,x=,只有1解,当m≠0,由△=9+4m=0得m=﹣,此时直线和f(x)相切,∴要使函数有两个零点,则﹣<m≤﹣2或0<m≤,故选:A.【点评】本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法.二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上.11.(5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B={3,5,13}.【分析】根据题意,分析集合A、B的公共元素,由交集的意义即可得答案.【解答】解:根据题意,集合A={3,4,5,12,13},B={2,3,5,8,13},A、B公共元素为3、5、13,则A∩B={3,5,13},故答案为:{3,5,13}.【点评】本题考查集合交集的运算,注意写出集合的形式.12.(5分)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•= 10.【分析】利用向量的模、夹角形式的数量积公式,求出即可【解答】解:∵=(﹣2,﹣6),∴,∴=2=10.故答案为:10.【点评】本题考查了向量的数量积公式,属于基础题.13.(5分)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f ()=.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得sin(2ωx+φ﹣ω)=sinx,可得2ω=1,且φ﹣ω=2kπ,k∈z,由此求得ω、φ的值,可得f(x)的解析式,从而求得f()的值.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象.再把所得图象再向右平移个单位长度得到函数y=sin[2ω(x﹣)+φ)]=sin(2ωx+φ﹣ω)=sinx的图象,∴2ω=1,且φ﹣ω=2kπ,k∈Z,∴ω=,φ=+2kπ,∴f(x)=sin(x+),∴f()=sin(+)=sin=.故答案为:.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.14.(5分)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B两点,且AC⊥BC,则实数a的值为0或6.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.【解答】解:圆的标准方程为(x+1)2+(y﹣2)2=9,圆心C(﹣1,2),半径r=3,∵AC⊥BC,∴圆心C到直线AB的距离d=,即d==,即|a﹣3|=3,解得a=0或a=6,故答案为:0或6.【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.15.(5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答).【分析】设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,则小张比小王至少早5分钟到校事件A={(x,y)|y﹣x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.【解答】解:设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,对应的面积S=20×20=400,则小张比小王至少早5分钟到校事件A={x|y﹣x≥5}作出符合题意的图象,则符合题意的区域为△ABC,联立得C(45,50),联立得B(30,35),则S△ABC=×15×15,由几何概率模型可知小张比小王至少早5分钟到校的概率为=,故答案为:.【点评】本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(13分)已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.(Ⅰ)求an及Sn;(Ⅱ)设{bn}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0.求{bn}的通项公式及其前n项和Tn.【分析】(Ⅰ)直接由等差数列的通项公式及前n项和公式得答案;(Ⅱ)求出a4和S4,代入q2﹣(a4+1)q+S4=0求出等比数列的公比,然后直接由等比数列的通项公式及前n项和公式得答案.【解答】解:(Ⅰ)∵{an}是首项为1,公差为2的等差数列,∴an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.;(Ⅱ)由(Ⅰ)得,a4=7,S4=16.∵q2﹣(a4+1)q+S4=0,即q2﹣8q+16=0,∴(q﹣4)2=0,即q=4.又∵{bn}是首项为2的等比数列,∴..【点评】本题考查等差数列的性质,考查了等差数列和等比数列的通项公式、前n项和公式的求法,是基础题.17.(13分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.【分析】(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求.(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.【解答】解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005.(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=.【点评】本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题.18.(13分)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.【分析】(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值.【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.【点评】此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.19.(12分)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f (1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.【分析】(Ⅰ)由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x可得f′(1)=﹣2,可求出a的值;(Ⅱ)根据(I)可得函数的解析式和导函数的解析式,分析导函数的符号,进而可得函数f(x)的单调区间与极值.【解答】解:(Ⅰ)∵f(x)=+﹣lnx﹣,∴f′(x)=﹣﹣,∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.∴f′(1)=﹣a﹣1=﹣2,解得:a=.(Ⅱ)由(Ⅰ)知:f(x)=+﹣lnx﹣,f′(x)=﹣﹣=(x>0),令f′(x)=0,解得x=5,或x=﹣1(舍),∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,故函数f(x)的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值﹣ln5.【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数研究函数的极值,是导数的综合应用,难度中档.21.(12分)如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆心及半径,从而可得圆的方程.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C,设C(0,y0)由F1P1,F2P2是圆C的切线,知CP1⊥F1P1,得•=﹣1,而|y1|=|x1+1|=,故y0=,故圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.20.(12分)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.【分析】(Ⅰ)连接OB,根据底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=,结合菱形的性质,余弦定理,勾股定理,可得OM⊥BC及PO⊥BC,进而由线面垂直的判定定理得到BC⊥平面POM;(Ⅱ)设PO=a,利用勾股定理和余弦定理解三角形求出PO的值,及四棱锥P﹣ABMO的底面积S,代入棱锥体积公式,可得答案.【解答】证明:(Ⅰ)∵底面是以O为中心的菱形,PO⊥底面ABCD,故O为底面ABCD的中心,连接OB,则AO⊥OB,∵AB=2,∠BAD=,∴OB=AB•sin∠BAO=2sin()=1,又∵BM=,∠OBM=,∴在△OBM中,OM2=OB2+BM2﹣2OB•BM•cos∠OBM=,即OB2=OM2+BM2,即OM⊥BM,∴OM⊥BC,又∵PO⊥底面ABCD,BC⊂底面ABCD,∴PO⊥BC,又∵OM∩PO=O,OM,PO⊂平面POM,∴BC⊥平面POM;(Ⅱ)由(Ⅰ)可得:OA=AB•cos∠BAO=2cos()=,设PO=a,由PO⊥底面ABCD可得:△POA为直角三角形,故PA2=PO2+OA2=a2+3,由△POM也为直角三角形得:PM2=PO2+OM2=a2+,连接AM,在△ABM中,AM2=AB2+BM2﹣2AB•BM•cos∠ABM==,由MP⊥AP可知:△APM为直角三角形,则AM2=PA2+PM2,即a2+3+a2+=,解得a=,即PO=,此时四棱锥P﹣ABMO的底面积S=S△AOB+S△BOM=•AO•OB+•BM•OM=,∴四棱锥P﹣ABMO的体积V=S•PO=【点评】本题考查的知识点是棱锥的体积,直线与平面垂直的判定,难度中档.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高考复习试卷习题资料之重庆市高考数学试卷文科1
高考复习试卷习题资料之重庆市高考数学试卷(文科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一个选项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<03.(5分)函数y=的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,4)∪(4,+∞)4.(5分)设P是圆(x﹣3)2+(y+1)2=4上的动点,Q是直线x=﹣3上的动点,则|PQ|的最小值为()A.6 B.4 C.3 D.25.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.66.(5分)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.67.(5分)关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.8.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.180 B.200 C.220 D.2409.(5分)已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg (lg2))=()A.﹣5 B.﹣1 C.3 D.410.(5分)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是()A.B.C.D.二.填空题:本大题共5小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)已知复数z=1+2i(i是虚数单位),则|z|=.12.(5分)若2、a、b、c、9成等差数列,则c﹣a=.13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.14.(5分)OA为边,OB为对角线的矩形中,,,则实数k=.15.(5分)设0≤α≤π,不等式8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(13分)设数列{an}满足:a1=1,an+1=3an,n∈N+.(Ⅰ)求{an}的通项公式及前n项和Sn;(Ⅱ)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b3=a1+a2+a3,求T20.17.(13分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,,,其中,为样本平均值,线性回归方程也可写为.18.(13分)在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+bc.(Ⅰ)求A;(Ⅱ)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.20.(12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.重庆市高考数学试卷(文科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一个选项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<0【分析】根据全称命题“∀x∈M,p(x)”的否定为特称命题:“∃x0∈M,¬p(x)”即可得出.【解答】解:根据全称命题的否定是特称命题可得:命题“对任意x∈R,都有x2≥0”的否定为“∃x0∈R,使得”.故选:A.【点评】熟练掌握全称命题“∀x∈M,p(x)”的否定为特称命题“∃x0∈M,¬p(x)”是解题的关键.3.(5分)函数y=的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,4)∪(4,+∞)【分析】根据“让解析式有意义”的原则,对数的真数大于0,分母不等于0,建立不等式,解之即可.【解答】解:要使原函数有意义,则,解得:2<x<3,或x>3所以原函数的定义域为(2,3)∪(3,+∞).故选:C.【点评】本题主要考查了函数的定义域及其求法,求定义域常用的方法就是根据“让解析式有意义”的原则,属于基础题.4.(5分)设P是圆(x﹣3)2+(y+1)2=4上的动点,Q是直线x=﹣3上的动点,则|PQ|的最小值为()A.6 B.4 C.3 D.2【分析】过圆心A作AQ⊥直线x=﹣3,与圆交于点P,此时|PQ|最小,由此能求出|PQ|的最小值.【解答】解:过圆心A作AQ⊥直线x=﹣3,与圆交于点P,此时|PQ|最小,由圆的方程得到A(3,﹣1),半径r=2,则|PQ|=|AQ|﹣r=6﹣2=4.故选:B.【点评】本题考查线段的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.5.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a <,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.(5分)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.6【分析】由茎叶图10个原始数据数据,数出落在区间[22,30)内的个数,由古典概型的概率公式可得答案.【解答】解:由茎叶图10个原始数据,数据落在区间[22,30)内的共有4个,包括2个22,1个27,1个29,则数据落在区间[22,30)内的概率为=0.4.故选:B.【点评】本题考查古典概型及其概率公式,涉及茎叶图的应用,属基础题.7.(5分)关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.【分析】利用不等式的解集以及韦达定理得到两根关系式,然后与已知条件化简求解a的值即可.【解答】解:因为关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),所以x1+x2=2a…①,x1•x2=﹣8a2…②,又x2﹣x1=15…③,①2﹣4×②可得(x2﹣x1)2=36a2,代入③可得,152=36a2,解得a==,因为a>0,所以a=.故选:A.【点评】本题考查二次不等式的解法,韦达定理的应用,考查计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.180 B.200 C.220 D.240【分析】由三视图可知:该几何体是一个横放的直四棱柱,高为10;其底面是一个等腰梯形,上下边分别为2,8,高为4;据此可求出该几何体的表面积.【解答】解:由三视图可知:该几何体是一个横放的直四棱柱,高为10;其底面是一个等腰梯形,上下边分别为2,8,高为4.∴S表面积=2××(2+8)×4+2×5×10+2×10+8×10=240.故选:D.【点评】本题考查由三视图还原直观图,由三视图求面积、体积,由三视图正确恢复原几何体是解决问题的关键.9.(5分)已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg (lg2))=()A.﹣5 B.﹣1 C.3 D.4【分析】由题设条件可得出lg(log210)与lg(lg2)互为相反数,再引入g(x)=ax3+bsinx,使得f(x)=g(x)+4,利用奇函数的性质即可得到关于f(lg(lg2))的方程,解方程即可得出它的值【解答】解:∵lg(log210)+lg(lg2)=lg1=0,∴lg(log210)与lg(lg2)互为相反数则设lg(log210)=m,那么lg(lg2)=﹣m令f(x)=g(x)+4,即g(x)=ax3+bsinx,此函数是一个奇函数,故g(﹣m)=﹣g (m),∴f(m)=g(m)+4=5,g(m)=1∴f(﹣m)=g(﹣m)+4=﹣g(m)+4=3.故选:C.【点评】本题考查函数奇偶性的运用及求函数的值,解题的关键是观察验证出lg (log210)与lg(lg2)互为相反数,审题时找准处理条件的方向对准确快速做题很重要10.(5分)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是()A.B.C.D.【分析】不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,由满足条件的直线只有一对,得,由此能求出双曲线的离心率的范围.【解答】解:不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,如图,又∵满足条件的直线只有一对,当直线与x轴夹角为30°时,双曲线的渐近线与x轴夹角大于30°,双曲线与直线才能有交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于30°,则无交点,则不可能存在|A1B1|=|A2B2|,当直线与x轴夹角为60°时,双曲线渐近线与x轴夹角大于60°,双曲线与直线有一对交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于60°,也满足题中有一对直线,但是如果大于60°,则有两对直线.不符合题意,∴tan30°,即,∴,∵b2=c2﹣a2,∴,∴,∴,∴双曲线的离心率的范围是.故选:A.【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.二.填空题:本大题共5小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)已知复数z=1+2i(i是虚数单位),则|z|=.【分析】直接利用复数的模的求法公式,求解即可.【解答】解:复数z=1+2i(i是虚数单位),则|z|==.故答案为:.【点评】本题考查复数的模的求法,考查计算能力.12.(5分)若2、a、b、c、9成等差数列,则c﹣a=.【分析】由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.【解答】解:由等差数列的性质可得2b=2+9,解得b=,又可得2a=2+b=2+=,解之可得a=,同理可得2c=9+=,解得c=,故c﹣a=﹣==故答案为:【点评】本题考查等差数列的性质和通项公式,属基础题.13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.【分析】甲、乙两人相邻,可以把两个元素看做一个元素同其他元素进行排列,然后代入古典概率的求解公式即可求解【解答】解:记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站,把甲和乙当做一个整体,甲和乙的排列有种,然后把甲乙整体和丙进行排列,有种,因此共有=4种站法∴=故答案为:【点评】本题考查排列组合及简单的计数问题及古典概率的求解,本题解题的关键是把相邻的问题作为一个元素同其他的元素进行排列,本题是一个基础题.14.(5分)OA为边,OB为对角线的矩形中,,,则实数k= 4.【分析】由题意可得OA⊥AB,故有=0,即==0,解方程求得k的值.【解答】解:由于OA为边,OB为对角线的矩形中,OA⊥AB,∴=0,即==(﹣3,1)•(﹣2,k)﹣10=6+k﹣10=0,解得k=4,故答案为 4.【点评】本题主要考查两个向量的数量积的运算,两个向量垂直的性质,两个向量的加减法及其几何意义,属于基础题.15.(5分)设0≤α≤π,不等式8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为[0,]∪[,π].【分析】由题意可得,△=64sin2α﹣32cos2α≤0即2sin2α﹣(1﹣2sin2α)≤0,解不等式结合0≤α≤π可求α的取值范围.【解答】解:由题意可得,△=64sin2α﹣32cos2α≤0,得2sin2α﹣(1﹣2sin2α)≤0∴sin2α≤,﹣≤sinα≤,∵0≤α≤π∴α∈[0,]∪[,π].故答案为:[0,]∪[,π].【点评】本题主要考查了一元二次不等式的解法、二次函数的恒成立问题,属于中档题.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(13分)设数列{an}满足:a1=1,an+1=3an,n∈N+.(Ⅰ)求{an}的通项公式及前n项和Sn;(Ⅱ)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b3=a1+a2+a3,求T20.【分析】(Ⅰ)由题意可得数列{an}是以1为首项,以3为公比的等比数列,则其通项公式与前n项和可求;(Ⅱ)由b1=a2=3,b3=a1+a2+a3=1+3+9=13,可得等差数列{bn}的公差,再由等差数列的前n项和求得T20.【解答】解:(Ⅰ)由an+1=3an,得,又a1=1,∴数列{an}是以1为首项,以3为公比的等比数列,则,;(Ⅱ)∵b1=a2=3,b3=a1+a2+a3=1+3+9=13,∴b3﹣b1=10=2d,则d=5.故.【点评】本题考查数列递推式,考查等比关系的确定,训练了等差数列和等比数列前n项和的求法,是中档题.17.(13分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,,,其中,为样本平均值,线性回归方程也可写为.【分析】(Ⅰ)由题意可知n,,,进而可得,,代入可得b值,进而可得a值,可得方程;(Ⅱ)由回归方程x的系数b的正负可判;(Ⅲ)把x=7代入回归方程求其函数值即可.【解答】解:(Ⅰ)由题意可知n=10,===8,===2,故lxx==720﹣10×82=80,lxy==184﹣10×8×2=24,故可得b=═=0.3,a==2﹣0.3×8=﹣0.4,故所求的回归方程为:y=0.3x﹣0.4;(Ⅱ)由(Ⅰ)可知b=0.3>0,即变量y随x的增加而增加,故x与y之间是正相关;(Ⅲ)把x=7代入回归方程可预测该家庭的月储蓄为y=0.3×7﹣0.4=1.7(千元).【点评】本题考查线性回归方程的求解及应用,属基础题.18.(13分)在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+bc.(Ⅰ)求A;(Ⅱ)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.【分析】(Ⅰ)由余弦定理表示出cosA,将依照等式变形后代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由(Ⅰ)求出sinA的值,由三角形的面积公式及正弦定理列出关系式,表示出S,代入已知等式中提取3变形后,利用两角和与差的余弦函数公式化为一个角的余弦函数,由余弦函数的图象与性质即可求出S+3cosBcosC的最大值,以及此时B的值.【解答】解:(Ⅰ)由余弦定理得:cosA===﹣,∵A为三角形的内角,∴A=;(Ⅱ)由(Ⅰ)得sinA=,由正弦定理得:b=,csinA=asinC及a=得:S=bcsinA=••asinC=3sinBsinC,则S+3cosBcosC=3(sinBsinC+cosBcosC)=3cos(B﹣C),则当B﹣C=0,即B=C==时,S+3cosBcosC取最大值3.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及余弦函数的图象与性质,熟练掌握定理及公式是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.【分析】(Ⅰ)由等腰三角形的性质可得BD⊥AC,再由PA⊥底面ABCD,可得PA⊥BD.再利用直线和平面垂直的判定定理证明BD⊥平面PAC.(Ⅱ)由侧棱PC上的点F满足PF=7FC,可得三棱锥F﹣BCD的高是三棱锥P﹣BCD的高的.求出△BCD的面积S△BCD,再根据三棱锥P﹣BDF的体积V=VP﹣BCD﹣VF﹣BCD=﹣,运算求得结果.【解答】解:(Ⅰ)∵BC=CD=2,∴△BCD为等腰三角形,再由,∴BD⊥AC.再由PA⊥底面ABCD,可得PA⊥BD.而PA∩AC=A,故BD⊥平面PAC.(Ⅱ)∵侧棱PC上的点F满足PF=7FC,∴三棱锥F﹣BCD的高是三棱锥P﹣BCD的高的.△BCD的面积S△BCD=BC•CD•sin∠BCD==.∴三棱锥P﹣BDF的体积V=VP﹣BCD﹣VF﹣BCD=﹣=×==.【点评】本题主要考查直线和平面垂直的判定定理的应用,用间接解法求棱锥的体积,属于中档题.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.【分析】(Ⅰ)设椭圆方程为,将左焦点横坐标代入椭圆方程可得y=,则,又②,a2=b2+c2③,联立①②③可求得a,b;(Ⅱ)设Q(t,0)(t>0),圆的半径为r,直线PP′方程为:x=m(m>t),则圆Q的方程为:(x﹣t)2+y2=r2,联立圆与椭圆方程消掉y得x的二次方程,则△=0①,易求P 点坐标,代入圆的方程得等式②,由①②消掉r得m=2t,则,变为关于t的函数,利用基本不等式可求其最大值及此时t 值,由对称性可得圆心Q在y轴左侧的情况;【解答】解:(Ⅰ)设椭圆方程为,左焦点F1(﹣c,0),将横坐标﹣c代入椭圆方程,得y=,所以①,②,a2=b2+c2③,联立①②③解得a=4,,所以椭圆方程为:;(Ⅱ)设Q(t,0)(t>0),圆的半径为r,直线PP′方程为:x=m(m>t),则圆Q的方程为:(x﹣t)2+y2=r2,由得x2﹣4tx+2t2+16﹣2r2=0,由△=0,即16t2﹣4(2t2+16﹣2r2)=0,得t2+r2=8,①把x=m代入,得,所以点P坐标为(m,),代入(x﹣t)2+y2=r2,得,②由①②消掉r2得4t2﹣4mt+m2=0,即m=2t,=×(m﹣t)=×t=≤×=2,当且仅当4﹣t2=t2即t=时取等号,此时t+r=+<4,椭圆上除P、P′外的点在圆Q外,所以△PP'Q的面积S的最大值为,圆Q的标准方程为:.当圆心Q、直线PP′在y轴左侧时,由对称性可得圆Q的方程为,△PP'Q 的面积S的最大值仍为为.【点评】本题考查圆、椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,难度较大.20.(12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.【分析】(I)由已知中侧面积和底面积的单位建造成本,结合圆柱体的侧面积及底面积公式,根据该蓄水池的总建造成本为12000π元,构造方程整理后,可将V表示成r的函数,进而根据实际中半径与高为正数,得到函数的定义域;(Ⅱ)根据(I)中函数的定义值及解析式,利用导数法,可确定函数的单调性,根据单调性,可得函数的最大值点.【解答】解:(Ⅰ)∵蓄水池的侧面积的建造成本为200•πrh元,底面积成本为160πr2元,∴蓄水池的总建造成本为200•πrh+160πr2元即200•πrh+160πr2=12000π∴h=(300﹣4r2)∴V(r)=πr2h=πr2•(300﹣4r2)=(300r﹣4r3)又由r>0,h>0可得0<r<5故函数V(r)的定义域为(0,5)(Ⅱ)由(Ⅰ)中V(r)=(300r﹣4r3),(0<r<5)可得V′(r)=(300﹣12r2),(0<r<5)∵令V′(r)=(300﹣12r2)=0,则r=5∴当r∈(0,5)时,V′(r)>0,函数V(r)为增函数当r∈(5,5)时,V′(r)<0,函数V(r)为减函数且当r=5,h=8时该蓄水池的体积最大【点评】本题考查的知识点是函数模型的应用,其中(Ⅰ)的关键是根据已知,求出函数的解析式及定义域,(Ⅱ)的关键是利用导数分析出函数的单调性及最值点.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考重庆卷文科数学试题及答案
2010年高考重庆卷文科数学试题及答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中.只有一项是符合题目要求的. 1-10 BADC B ACDDC(1)4(1)x +的展开式中2x 的系数为(A)4 (B)6 (C)10 (D )20解析:由通项公式得2234T C 6x x ==(2)在等差数列{}n a 中,1910a a +=,则5a 的值为(A)5 (B)6 (C )8 (D)10 解析:由角标性质得1952a a a +=,所以5a =5(3)若向量(3,)a m =,(2,1)b =-,0a b =,则实数m 的值为 (A)32-(B)32(C)2 (D)6 解析:60a b m =-=,所以m =6(4)函数y =的值域是(A)[0,)+∞ (B)[0,4] (C)[0,4) (D)(0,4) 解析:[)40,0164160,4x x >∴≤-<(5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 (A)7 (B )15 (C )25 (D )35 解析:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为715715=(6)下列函数中,周期为π,且在[,]42ππ上为减函数的是 (A )sin(2)2y x π=+ (B )cos(2)2y x π=+ (C)sin()2y x π=+(D)cos()2y x π=+ 解析:C 、D 中函数周期为2π,所以错误当[,]42x ππ∈时,32,22x πππ⎡⎤+∈⎢⎥⎣⎦,函数sin(2)2y x π=+为减函数而函数cos(2)2y x π=+为增函数,所以选A(7)设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为(A)0 (B)2 (C)4 (D )6 解析:不等式组表示的平面区域如图所示,ﻩ当直线32z x y =-过点B时,在y轴上截距最小,z最大 由B(2,2)知max z =4 (8)若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为(A)(2(B)[22-+(C)(,2(22,)-∞-++∞(D)(22解析:2cos ,sin x y θθ=+⎧⎨=⎩化为普通方程22(2)1x y -+=,表示圆,1,<解得22b <<法2:利用数形结合进行分析得22AC b b =-∴=同理分析,可知22b <<(9)到两互相垂直的异面直线的距离相等的点(A )只有1个 (B)恰有3个 (C)恰有4个 (D)有无穷多个解析:放在正方体中研究,显然,线段1OO 、E F、F G、GH 、H E的中点到两垂直异面直线AB 、CD 的距离都相等, 所以排除A 、B 、C,选D亦可在四条侧棱上找到四个点到两垂直异面直线AB 、CD 的距离相等(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A)30种 (B )36种 (C )42种 (D )48种解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法即2212116454432C C C C C C -⨯+=42法二:分两类甲、乙同组,则只能排在15日,有24C =6种排法甲、乙不同组,有112432(1)C C A +=36种排法,故共有42种方法二.填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. (11){}|10x x -<< (12)min 2y =- (13)BF =2 (14)370 (15)12-(11)设{}{}|10,|0A x x B x x =+>=<,则A B =____________ .解析:{}{}{}|1|0|10x x x x x x >-⋂<=-<<(12)已知0t >,则函数241t t y t -+=的最小值为____________ .解析:241142(0)t t y t t t t-+==+-≥->,当且仅当1t =时,min 2y =- (13)已知过抛物线24y x =的焦点F 的直线交该抛物线于A 、B两点,2AF =,则BF =____________ .解析:由抛物线的定义可知12AF AA KF === AB x ∴⊥轴 故AF =BF =2率分别为170、169、168,且各(14)加工某一零件需经过三道工序,设第一、二、三道工序的次品道工序互不影响,则加工出来的零件的次品率为____________ .解析:加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得 加工出来的零件的次品率6968673170696870p =-⨯⨯=(15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311coscossin sin3333αααααα++-=____________ . 解析:232312311coscossinsincos33333ααααααααα++++-=又1232αααπ++=,所以1231cos 32ααα++=---------------------------------------------------------------------------2010年高考重庆数学(文)解析一、选择题1. B 解析:本题考查了二项式的展开式,属送分题.∵()41+x 的展开式的第1+k 项为k k k x C T 41=+,∴2x 的系数为624=C .2.A 解析:本题考查了等差数列项的基本性质,即等差中项的性质.∵ 由等差数列性质得102591==+a a a ,∴ 55=a .3.D解析:本题考查了平面向量数量积的坐标运算.∵a=(3,m),b =(2,-1),∴a ·b=3⨯2+ m⨯(-1)=0,即m =6. 4.C 解析:本题考查了函数的定义域和值域.∵ ()+∞∈,04x,∴()16,416∞-∈-x,由函数的定义域知0416≥-x,∴[)16,0416∈-x,即[)4,0416∈-=x y .5.B 解析:本题考查了统计中的分层抽样.设样本容量为N,由题意得7503507N=,∴N =15. 6.A解析:本题考查了三角函数的诱导公式与性质.满足周期为π的只有A,B,在A 中 x x y 2cos 22sin =⎪⎭⎫⎝⎛+=π, 又∵⎥⎦⎤⎢⎣⎡∈2,4ππx ,∴⎥⎦⎤⎢⎣⎡∈ππ,22x ,由余弦函数的图象与性质知x y 2cos =在⎥⎦⎤⎢⎣⎡2,4ππ上递减. 7.C解析:本题考查了线性规划中的目标函数的最值.作出可行域如下图:由y x z 23-=变式223z x y -=,令0=z ,将23xy =向下平移过直线0=x 和022=--y x 的交点()2,0-时z 最大,所以z 最大=()42203=-⨯-⨯.8.D解析:本题考查了圆的参数方程及直线与圆的位置关系.∵ 曲线[)πθθθ2,0,sin ,cos 2∈⎩⎨⎧=+=y x 可化为()1222=+-y x ,又∵ 直线b x y -=与圆()1222=+-y x 有两个不同的公共点,∴12|2|<-b ,即2222+<<-b .9.D解析:本题考查了异面直线间的距离.1例如上图中,B1C1为两互相垂直的异面直线A 1B 1、C C1的公垂线段,在面BC 1内到两异面直线的距离相等的点可转化为到点B1与直线CC1距离相等的点,而以B1为焦点,CC 1为准线的抛物线上的点符合题意,所以到两互相垂直的异面直线的距离相等的点有无穷多个.10.C 解析:本题考查了排列组合计数公式.当乙值14日的排法有2414C C ⨯=24种,乙不值14日的排法有182324=⨯C C 种,∴ 满足条件的不同排法有24+18=42种.二、填空题11. (-1,0)解析:本题考查了不等式的解法与集合的运算.∵A ={}1|->x x ,{}0|<=x x B ,借助于数轴得{}01|<<-=x x B A . 12.-2解析:本题考查了均值不等式.∵,0>t ,∴24124114,02-=-⨯≥-+=+-=>tt t t t t t y t . 13.2解析:本题考查了抛物线焦点弦的性质.设A()11,y x ,B()22,y x ,由抛物线焦点弦的性质得|AF|=211=+x , ∴11=x ,又∵焦点坐标为()0,1,∴直线AF ⊥x 轴,即12=x ,∴|BF|=1+1=2. 14.703解析:本题考查了独立事件的概率. ∵“加工出来的零件为次品”是“加工出来的零件为正品”的对立事件, ∴加工出来的零件为次品的概率P=1703686769687069=⨯⨯-. 15.21-解析:本题考查了圆的性质与三角函数的化简求值.如图连接三个圆心与弧的交点,得到一个六边形,∵三个圆的半径相等,∴六边形为正六边形,则O=++360321ααα,∴21120cos 3cos3sin3sin3cos3cos 321321321-==++=+-+O ααααααααα.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. (16)解:(I)因为}{n a 是首项为,191=a 公差2-=d 的等差数列,所以,212)1(219+-=--=n n a n2)1(19++=∆n n n S (II )由题意,31+=-n n n a b 所以,1+=n n b b.21320)331(21-++-=++++=-n n n n n n S T(17)解:考虑甲、乙两个单位的排列,甲、乙两单位可能排列在6个位置中的任两个,有3026=A 种等可能的结果。
重庆市2020年高考文科数学模拟试题及答案(一)
重庆市2020年高考文科数学模拟试题及答案(一)(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},则A ∩∁U B = A .{4,5} B .{1,4,5} C .{6,7} D .{1,6,7}2. 设复数z 满足z =-3+2ii (i 是虚数单位),则复数z 对应的点位于复平面内A .第一象限B .第二象限C .第三象限D .第四象限 3.已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与ka -b 互相垂直,则k 的值为 A .-32 B.32 C .±32 D .14.若cos ⎝⎛⎭⎪⎫π12-θ=13,则sin ⎝ ⎛⎭⎪⎫5π12+θ=A.13B.223 C .-13 D .-2235. 下列说法中,正确的是A .命题“若b a >,则122->ba”的否命题为“若b a >,则122-≤ba”B .命题“存在R x ∈,使得012<++x x ”的否定是:“任意R x ∈,都有012>++x x ” C .若命题“非p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题 D .命题“若022=+b a ,则0=ab ”的逆命题是真命题6. 三个数6log ,7.0,67.067.0的大小顺序是A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<7.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为 A.56B.45C.34D.238.下图虚线网格的最小正方形边长为1,实线是某几何体的三视图,这个几何体的体积为( )A. 4πB. 2πC.43π D. π9. 函数y =2x sin2x 的图象可能是A. B. C. D.10.已知双曲线2222:1x y C a b -=(0,0a b >>)的焦距为4,其与抛物线2:E y x =交于,A B 两点,O 为坐标原点,若OAB ∆为正三角形,则C 的离心率为A.2B.211. 函数()f x =的定义域为M,()g x =N ,则M N ⋂=A .[)1,-+∞B .11,2⎡⎫-⎪⎢⎣⎭ C .11,2⎛⎫- ⎪⎝⎭ D .1,2⎛⎫-∞ ⎪⎝⎭12.已知,则A .B .C .D .二、填空题(本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考复习试卷习题资料之重庆市高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5 B.8 C.10 D.142.(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.2504.(5分)下列函数为偶函数的是()A.f(x)=x﹣1 B.f(x)=x2+x C.f(x)=2x﹣2﹣x D.f(x)=2x+2﹣x5.(5分)执行如图所示的程序框图,则输出s的值为()A.10 B.17 C.19 D.366.(5分)已知命题:p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根;则下列命题为真命题的是()A.p∧¬q B.¬p∧q C.¬p∧¬q D.p∧q7.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.308.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|﹣|PF2|)2=b2﹣3ab,则该双曲线的离心率为()A.B.C.4 D.9.(5分)若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+410.(5分)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,] B.(﹣,﹣2]∪(0,] C.(﹣,﹣2]∪(0,] D.(﹣,﹣2]∪(0,]二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上.11.(5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=.12.(5分)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•=.13.(5分)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f ()=.14.(5分)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B两点,且AC⊥BC,则实数a的值为.15.(5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答).三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(13分)已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.(Ⅰ)求an及Sn;(Ⅱ)设{bn}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0.求{bn}的通项公式及其前n项和Tn.17.(13分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.18.(13分)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.19.(12分)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f (1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.20.(12分)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.21.(12分)如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.重庆市高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5 B.8 C.10 D.14【分析】由题意可得a4=5,进而可得公差d=1,可得a7=a1+6d,代值计算即可.【解答】解:∵在等差数列{an}中a1=2,a3+a5=10,∴2a4=a3+a5=10,解得a4=5,∴公差d==1,∴a7=a1+6d=2+6=8故选:B.【点评】本题考查等差数列的通项公式,属基础题.2.(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数的几何意义,即可得到结论.【解答】解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.【点评】本题主要考查复数的几何意义,比较基础.3.(5分)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.250【分析】计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n 值.【解答】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.【点评】本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是关键.4.(5分)下列函数为偶函数的是()A.f(x)=x﹣1 B.f(x)=x2+x C.f(x)=2x﹣2﹣x D.f(x)=2x+2﹣x【分析】根据偶函数的定义,依次分析选项,先分析函数的定义域,再分析f(﹣x)=f (x)是否成立,即可得答案.【解答】解:根据题意,依次分析选项:A、f(x)=x﹣1,其定义域为R,f(﹣x)=﹣x﹣1,f(﹣x)≠f(x),不是偶函数,不符合题意;B、f(x)=x2+x,其定义域为R,f(﹣x)=x2﹣x,f(﹣x)≠f(x),不是偶函数,不符合题意;C、f(x)=2x﹣2﹣x,其定义域为R,f(﹣x)=2﹣x﹣2x,f(﹣x)=﹣f(x),是奇函数不是偶函数,不符合题意;D、f(x)=2x+2﹣x,其定义域为R,f(﹣x)=2﹣x+2x,f(﹣x)=f(x),是偶函数,符合题意;故选:D.【点评】本题考查函数奇偶性的判断,注意要先分析函数的定义域.5.(5分)执行如图所示的程序框图,则输出s的值为()A.10 B.17 C.19 D.36【分析】根据框图的流程模拟运行程序,直到不满足条件k<10,跳出循环体,计算输出S 的值.【解答】解:由程序框图知:第一次循环S=2,k=2×2﹣1=3;第二次循环S=2+3=5,k=2×3﹣1=5;第三次循环S=5+5=10,k=2×5﹣1=9;第四次循环S=10+9=19,k=2×9﹣1=17,不满足条件k<10,跳出循环体,输出S=19.故选:C.【点评】本题考查了当型循环结构程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.6.(5分)已知命题:p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根;则下列命题为真命题的是()A.p∧¬q B.¬p∧q C.¬p∧¬q D.p∧q【分析】判定命题p,q的真假,利用复合命题的真假关系即可得到结论.【解答】解:根据绝对值的性质可知,对任意x∈R,总有|x|≥0成立,即p为真命题,当x=1时,x+2=3≠0,即x=1不是方程x+2=0的根,即q为假命题,则p∧¬q,为真命题,故选:A.【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础.7.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.30【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断三棱柱的高及消去的三棱锥的高,判断三棱锥与三棱柱的底面三角形的形状及相关几何量的数据,把数据代入棱柱与棱锥的体积公式计算.【解答】解:由三视图知:几何体是三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∴几何体的体积V=×3×4×5﹣××3×4×3=30﹣6=24.故选:C.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|﹣|PF2|)2=b2﹣3ab,则该双曲线的离心率为()A.B.C.4 D.【分析】根据(|PF1|﹣|PF2|)2=b2﹣3ab,由双曲线的定义可得(2a)2=b2﹣3ab,求得a=,c==b,即可求出双曲线的离心率.【解答】解:∵(|PF1|﹣|PF2|)2=b2﹣3ab,∴由双曲线的定义可得(2a)2=b2﹣3ab,∴4a2+3ab﹣b2=0,∴a=,∴c==b,∴e==.故选:D.【点评】本题主要考查了双曲线的简单性质,考查学生的计算能力,属于基础题.9.(5分)若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+4【分析】利用对数的运算法则可得>0,a>4,再利用基本不等式即可得出【解答】解:∵3a+4b>0,ab>0,∴a>0.b>0∵log4(3a+4b)=log2,∴log4(3a+4b)=log4(ab)∴3a+4b=ab,a≠4,a>0.b>0∴>0,∴a>4,则a+b=a+=a+=a+3+=(a﹣4)++7+7=4+7,当且仅当a=4+2取等号.故选:D.【点评】本题考查了对数的运算法则、基本不等式的性质,属于中档题.10.(5分)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,] B.(﹣,﹣2]∪(0,] C.(﹣,﹣2]∪(0,] D.(﹣,﹣2]∪(0,]【分析】由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),作出两个函数的图象,利用数形结合即可得到结论.【解答】解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)和y=h(x)=m(x+1)的图象如图:由图象可知f(1)=1,h(x)表示过定点A(﹣1,0)的直线,当h(x)过(1,1)时,m=此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤,当h(x)过(0,﹣2)时,h(0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当h(x)与f(x)相切时,两个函数只有一个交点,此时,即m(x+1)2+3(x+1)﹣1=0,当m=0时,x=,只有1解,当m≠0,由△=9+4m=0得m=﹣,此时直线和f(x)相切,∴要使函数有两个零点,则﹣<m≤﹣2或0<m≤,故选:A.【点评】本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法.二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上.11.(5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B={3,5,13}.【分析】根据题意,分析集合A、B的公共元素,由交集的意义即可得答案.【解答】解:根据题意,集合A={3,4,5,12,13},B={2,3,5,8,13},A、B公共元素为3、5、13,则A∩B={3,5,13},故答案为:{3,5,13}.【点评】本题考查集合交集的运算,注意写出集合的形式.12.(5分)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•= 10.【分析】利用向量的模、夹角形式的数量积公式,求出即可【解答】解:∵=(﹣2,﹣6),∴,∴=2=10.故答案为:10.【点评】本题考查了向量的数量积公式,属于基础题.13.(5分)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f ()=.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得sin(2ωx+φ﹣ω)=sinx,可得2ω=1,且φ﹣ω=2kπ,k∈z,由此求得ω、φ的值,可得f(x)的解析式,从而求得f()的值.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象.再把所得图象再向右平移个单位长度得到函数y=sin[2ω(x﹣)+φ)]=sin(2ωx+φ﹣ω)=sinx的图象,∴2ω=1,且φ﹣ω=2kπ,k∈Z,∴ω=,φ=+2kπ,∴f(x)=sin(x+),∴f()=sin(+)=sin=.故答案为:.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.14.(5分)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B两点,且AC⊥BC,则实数a的值为0或6.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.【解答】解:圆的标准方程为(x+1)2+(y﹣2)2=9,圆心C(﹣1,2),半径r=3,∵AC⊥BC,∴圆心C到直线AB的距离d=,即d==,即|a﹣3|=3,解得a=0或a=6,故答案为:0或6.【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.15.(5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答).【分析】设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,则小张比小王至少早5分钟到校事件A={(x,y)|y﹣x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.【解答】解:设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,对应的面积S=20×20=400,则小张比小王至少早5分钟到校事件A={x|y﹣x≥5}作出符合题意的图象,则符合题意的区域为△ABC,联立得C(45,50),联立得B(30,35),则S△ABC=×15×15,由几何概率模型可知小张比小王至少早5分钟到校的概率为=,故答案为:.【点评】本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(13分)已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.(Ⅰ)求an及Sn;(Ⅱ)设{bn}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0.求{bn}的通项公式及其前n项和Tn.【分析】(Ⅰ)直接由等差数列的通项公式及前n项和公式得答案;(Ⅱ)求出a4和S4,代入q2﹣(a4+1)q+S4=0求出等比数列的公比,然后直接由等比数列的通项公式及前n项和公式得答案.【解答】解:(Ⅰ)∵{an}是首项为1,公差为2的等差数列,∴an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.;(Ⅱ)由(Ⅰ)得,a4=7,S4=16.∵q2﹣(a4+1)q+S4=0,即q2﹣8q+16=0,∴(q﹣4)2=0,即q=4.又∵{bn}是首项为2的等比数列,∴..【点评】本题考查等差数列的性质,考查了等差数列和等比数列的通项公式、前n项和公式的求法,是基础题.17.(13分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.【分析】(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求.(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.【解答】解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005.(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=.【点评】本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题.18.(13分)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.【分析】(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值.【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.【点评】此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.19.(12分)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f (1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.【分析】(Ⅰ)由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x可得f′(1)=﹣2,可求出a的值;(Ⅱ)根据(I)可得函数的解析式和导函数的解析式,分析导函数的符号,进而可得函数f(x)的单调区间与极值.【解答】解:(Ⅰ)∵f(x)=+﹣lnx﹣,∴f′(x)=﹣﹣,∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.∴f′(1)=﹣a﹣1=﹣2,解得:a=.(Ⅱ)由(Ⅰ)知:f(x)=+﹣lnx﹣,f′(x)=﹣﹣=(x>0),令f′(x)=0,解得x=5,或x=﹣1(舍),∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,故函数f(x)的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值﹣ln5.【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数研究函数的极值,是导数的综合应用,难度中档.21.(12分)如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆心及半径,从而可得圆的方程.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C,设C(0,y0)由F1P1,F2P2是圆C的切线,知CP1⊥F1P1,得•=﹣1,而|y1|=|x1+1|=,故y0=,故圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.20.(12分)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.【分析】(Ⅰ)连接OB,根据底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=,结合菱形的性质,余弦定理,勾股定理,可得OM⊥BC及PO⊥BC,进而由线面垂直的判定定理得到BC⊥平面POM;(Ⅱ)设PO=a,利用勾股定理和余弦定理解三角形求出PO的值,及四棱锥P﹣ABMO的底面积S,代入棱锥体积公式,可得答案.【解答】证明:(Ⅰ)∵底面是以O为中心的菱形,PO⊥底面ABCD,故O为底面ABCD的中心,连接OB,则AO⊥OB,∵AB=2,∠BAD=,∴OB=AB•sin∠BAO=2sin()=1,又∵BM=,∠OBM=,∴在△OBM中,OM2=OB2+BM2﹣2OB•BM•cos∠OBM=,即OB2=OM2+BM2,即OM⊥BM,∴OM⊥BC,又∵PO⊥底面ABCD,BC⊂底面ABCD,∴PO⊥BC,又∵OM∩PO=O,OM,PO⊂平面POM,∴BC⊥平面POM;(Ⅱ)由(Ⅰ)可得:OA=AB•cos∠BAO=2cos()=,设PO=a,由PO⊥底面ABCD可得:△POA为直角三角形,故PA2=PO2+OA2=a2+3,由△POM也为直角三角形得:PM2=PO2+OM2=a2+,连接AM,在△ABM中,AM2=AB2+BM2﹣2AB•BM•cos∠ABM==,由MP⊥AP可知:△APM为直角三角形,则AM2=PA2+PM2,即a2+3+a2+=,解得a=,即PO=,此时四棱锥P﹣ABMO的底面积S=S△AOB+S△BOM=•AO•OB+•BM•OM=,∴四棱锥P﹣ABMO的体积V=S•PO=【点评】本题考查的知识点是棱锥的体积,直线与平面垂直的判定,难度中档.高考理科数学试卷普通高等学校招生全国统一考试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m=(A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18(C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为 (A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12(k ∈Z) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图, 若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34(9)若cos(π4–α)=35,则sin 2α= (A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn (11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。