联华众科CPLD开发板CA328

合集下载

基于CPLD与单片机的激光脉冲控制卡设计

基于CPLD与单片机的激光脉冲控制卡设计

vr h eua o tu o ig ae us a el e yao sco t — i h dtcn l y h e.T erg l up t fs l l rp l w sra zd b cut —pi Q s t e h oo .T e r ne s e i i c wc e g
基于 C L P D与单 片机 的 光 脉 冲控制 卡设 计 激
符 永宏 潘 国平 盛 占石 黄赛帅 华希俊 符 昊 , , , , ,
(. 1江苏大学 机 械工程学 院,江苏 镇江 2 2 1 ; . 10 3 2 江苏大学 电气信息工程学 院,江苏 镇江 2 2 1 ) 10 3
Absr c t a t:I r e o r aie a c r t upu fsn l a e u s tg v n p sto n ls rmi r — n n o d rt e lz c u a e o t to i g e l s rp le a ie o iin i a e c o ma u・ fc u i g fe d,a l s r p le c n r l a d wa e eo d b s d o o l x p o r mma l o i e ie a t rn l i a e u s o to c r s d v lpe a e n c mp e r g a b c r ame t fe u n y te t n . Th o n i g a d fe u n y d vdi f t e  ̄e b e in l r te td b CP e c u tn n q e c i i ng o h r d a k sg a s p er ae y LD
( P D) a d MC CL n U.T e hg — ed p r llcm nct n b te n MC n P a el e y h ihs e aa e o mu i i e e U a d IC w sra zd b p l ao w i

FTMCTRL 32位(P)ROM EDAC校验和编程应用说明书

FTMCTRL 32位(P)ROM EDAC校验和编程应用说明书

FTMCTRL: 32-bit (P)ROM EDAC Checksum ProgrammingApplication note2018-04-17Doc. No GRLIB-AN-0011Issue 1.0M S -T P L T -1-1-0Date:2018-04-17Page: 2 of 9CHANGE RECORDIssue Date Section / Page Description1.02018-04-17All First issue.TABLE OF CONTENTS1INTRODUCTION (3)1.1Scope of the document (3)1.2Reference documents (3)2ABBREVIATIONS (3)3OVERVIEW (4)3.1Overview (4)3.2FTMCTRL PROM EDAC (5)3.3Sources of memory accesses (5)3.4Programming parallel checkbits (6)3.5Alternatives (6)4CONTROLLING THE PARALLEL CHECKBIT BUS (7)4.1UT699, UT699E and UT700 (7)4.2GR712RC (7)4.3GR740 (8)4.4LEON3FT-RTAX (8)4.5Other designs with FTMCTRL (8)5GRMON (8)Date:2018-04-17Page: 3 of 91INTRODUCTION1.1Scope of the documentThis document describes programming of parallel EDAC checksum (also referred to as checkbits in this document) in systems that make use of the FTMCTRL memory controller. The focus is on programming checksums for non-volatile memories, specifically parallel NOR Flash, that require special address and data sequences to issue commands to the memory devices.Parallel EDAC checksum is only used when EDAC protection is enabled with 32-bit data width. 1.2Reference documents[RD1]GRLIB IP Core User's Manual, Cobham Gaisler AB, http s:///grip.pdf [RD2]GRLIB-AN-0011-flash32 software package, available viahttps:///notes2ABBREVIATIONSBCH Bose–Chaudhuri–Hocquenghem, class of cyclic error-correcting codes EDAC Error Correction And DetectionFTMCTRL Fault-Tolerant Memory controllerMCFG Memory Configuration Register, control register for memory controllerTCB Test Check Bits, field in FTMCTRL MCFG2 register3OVERVIEW3.1OverviewThe FTMCTRL memory controller is commonly used in LEON3FT and LEON4FT processor devices and also in custom designs based on the GRLIB IP library [RD1].The memory controller is a combined 8/16/32-bit memory controller that provides a bridge between external memory and the on-chip bus and is configured through memory-mapped registers referred to as the Memory Configuration (MCFG) registers. The memory controller can handle four types of devices: PROM, asynchronous static ram (SRAM), synchronous dynamic ram (SDRAM) and memory mapped I/O devices (IO). The PROM, SRAM and SDRAM areas can be EDAC-protected using a (39,7) BCH code. The BCH code provides single-error correction and double-error detection for each 32-bit memory word.The PROM device type above typically means that parallel NOR Flash, MRAM or EEPROM is connected to the memory controller. A block diagram of how FTMCTRL can be connected toexternal devices and the on-chip system is shown in the figure below.Figure 1: FTMCTRL generic block diagramThe types of devices supported and the signals available on external pins of a device depends on the specific device implementation.Date:2018-04-17Page: 5 of 93.2FTMCTRL PROM EDACThe FTMCTRL is provided with an BCH EDAC that can correct one error and detect two errors in a 32-bit word. For each word, a 7-bit checksum is generated. A correctable error will be handled transparently by the memory controller. If an un-correctable error (double-error) is detected, the current AHB cycle will end with an AMBA ERROR response. The EDAC is enabled for the PROM area by setting the corresponding EDAC enable bit in the MCFG3 register. When working in 32-bit mode, the checksum is present on the CB bus (see figure 1) and will be stored in a memory device present in parallel with the device(s) providing the 32-bit data bus.For 8-bit mode, the EDAC checkbit bus (CB[7:0]) is not used but it is still possible to use EDAC protection. Data is always accessed as words (4 bytes at a time) and the corresponding checkbits are located at the address acquired by inverting the word address (bits 2 to 27) and using it as a byte address. Please refer to the relevant device user's manual or the FTMCTRL IP core documentation for further documentation on the 8-bit mode and EDAC.When using a parallel device to hold the checkbits, the only way to set the data bus of that device to an arbitrary value is to use the write bypass and read bypass functionality provided by FTMCTRL. If the MCFG3.WB (Memory Configuration register 3, WB field - write bypass) bit is set, then the value in the MCFG3.TCB field will replace the normal checkbits during memory write cycles. If the RB (read bypass) is set, the memory checkbits of the loaded data will be stored in the TCB field during memory read cycles. This bypass functionality has some limitations:•When read bypass is activated, then any memory read access will cause MCFG3.TCB to be updated.•The read bypass functionality requires that EDAC is enabled.•When write bypass is activated, then any memory write access will make use of the MCFG3.TCB field for the checksum valueThis means that accesses to the memory controller must be limited in order for the read bypass and write bypass functionality to be reliable. The next section describes sources of memory accesses. 3.3Sources of memory accessesThis document covers parallel checkbits for the PROM area. Since the same memory controller often provides provides access also to RAM memory used as the primary memory for a processor system, unwanted accessed may be caused by:•Processor instruction fetches due to misses in the instruction cache•Processor data fetches due to misses in the data cache•Peripherals that perform direct-memory access (DMA)Date:2018-04-17Page: 6 of 93.4Programming parallel checkbitsProgramming of parallel checkbits is straightforward for memory types that accept write operations performed in the same way as a read operation, with the difference that a write signal is asserted. Other devices, such as NOR Flash devices using the Common Flash Interface (CFI), require that both the address bus and the data bus are controlled when issuing commands to the memory devices and reading the responses to these commands. Controlling the data bus means that the write bypass functionality must be used in FTMCTRL and reading responses from a memory device means that the read bypass functionality needs to be enabled.The read bypass and write bypass functionality of FTMCTRL can be used safely from a debugger such as GRMON by stopping the processor(s) and all on-chip peripherals capable of DMA in the system. If the bypass functionality shall be used from software running on the processor then it is possible to design a program, taking into account the cache structure and replacement policy of the processor implementation, that runs completely from cache. It is not possible to guarantee that the sequence will run from cache in an environment where radiation effects can case single-event upsets in the processor's cache or if interrupts are enabled which can lead to a changed flow of execution and changes in the cache state (and also to unintended write accesses from interrupt handling).It should also be noted that a complicating, but not blocking, factor is that since read-bypass requires EDAC to be enabled, it is necessary to handle the corresponding AMBA ERROR, leading to a processor trap when reading CFI command responses via read-bypass.Because of the limitations described above it is considered infeasible to perform CFI Flash programming with parallel checkbits from a processor that is executing from memory mapped to the same FTMCTRL, when using an operating system or when operating in an environment where L1 cache parity errors may be encountered.3.5AlternativesConfigurations with memory devices with 32-bit data and parallel checkbits may be wanted due to attainable memory size and memory access latency. In case the non-volatile memory devices need to be reprogrammed during operation then use of NOR Flash devices needs to be considered in combination with the limitations described in section 3.4. It can also be noted that if the non-volatile memory needs to be updated at random addresses then Flash devices usually only support erase operations on a page granularity. Alternatives to NOR Flash include MRAM devices and EEPROM devices.A hybrid solution, usable unless the boot software needs to be updated, is to boot from FTMCTRL with EDAC enabled and make use of parallel checkbits. Once the system is up and running from RAM memory then the EDAC functionality for the PROM area can be disabled. EDAC for other parts of the PROM can then be implemented in software by creating a checksum for EDAC pages and storing it as part of the data that is memory-mapped. This way software will calculate andDate:2018-04-17Page:7 of 9validate checksums for the memory blocks that it reads and writes from non-volatile memory. The memory controller will not cause traps due to EDAC errors from the PROM after the EDAC is disabled.4CONTROLLING THE PARALLEL CHECKBIT BUSThe subsections below contain device specific observations and recommendations for CFI Flash programming.4.1UT699, UT699E and UT700To safely read and control the parallel checkbit bus on a UT699 device from the LEON3FT processor, all accesses to the shared FTMCTRL memory controller must be controlled. This means that:•All DMA units must be stopped•Interrupts must be disabled•Flash programming routines and their corresponding data must reside in L1 cache (cannot be guaranteed if L1 cache encounters parity-errors due to single-event upsets)For the UT699 processor, L1 cache coherency through bus snooping cannot be used and this functionality will be disabled by software. For the UT699E and UT700 the cache snooping functionality can optionally be enabled by software. If bus snooping is enabled then snooping will invalidate cache lines due to DMA traffic and this could have effects for software implementations that rely on data being present in cache for PROM programming.4.2GR712RCFor software running out of external memory, the same limitations apply as described for theUT699E and UT700 in section 4.1.Many of the limitations come from the need to execute software from the same memory controller as the one that provides access to the external non-volatile memory. The GR712RC also has an on-chip RAM. If this RAM is utilized to hold the programming application then it is sufficient if the following rules are met:•All DMA units using external memory must be stopped•The full program, including trap table, must reside in the on-chip RAM•An adapted trap handler for handling AMBA ERROR responses caused by reading memory device command responses with read-bypass must be installed.A software example for programming NOR Flashes with parallel checkbits is available [RD2].Date:2018-04-17Page:8 of 94.3GR740The FTMCTRL in GR740 supports 8- and 16-bit interfaces. EDAC check bits are programmed in the memory-mapped area and the special precautions described in this document do not need to be considered for the GR740.4.4LEON3FT-RTAXThe same restrictions as the ones listed in section 4.1 apply.4.5Other designs with FTMCTRLThe same restrictions as the ones listed in section 4.1 apply for devices that has one FTMCTRL that provides access to both RAM and non-volatile memory. For devices that have other RAM or ROM that software can use, the restrictions described in 4.2 apply.5GRMONGRMON versions 1.x.y and 2.x.y do not support programming parallel check bits. Support will be added for GRMON3 and this document will be updated with version information once the feature is available in GRMON3.Date:2018-04-17Page:9 of 9Copyright © 2018 Cobham Gaisler.Information furnished by Cobham Gaisler is believed to be accurate and reliable. However, no responsibility is assumed by Cobham Gaisler for its use, or for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cobham Gaisler.All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither implicit nor explicit.。

C328R-2820中文资料

C328R-2820中文资料

C328RJPEG Camera ModuleW/ UART InterfaceGeneral DescriptionThe C328R is VGA camera module performs as a JPEG compressed still camera and can be attached to a wireless or PDA host. Users can send out a snapshot command from the host in order to capture a full resolution single-frame still picture. The picture is then compressed by the JPEG engine and transferred to the host thru serial port.Block DiagramFeaturesz Small in size, 20x28mmz VGA resolution, down sample to QVGA or CIF z 3.3V operationz Low power consumption 60mAz User friendly commands to control the modulez UART interface of up to 115.2Kbpsz Auto detect baud rate and make connection to the host z Power saving mode z Various lens optionsPin DescriptionPin Description VCC Power 3.3VDC TxD Data Transmit (3.3V) RxD Data Receive (3.3V) GND Power GroundConnector specification: 2mm pitch, 4pin single row Reference part no: Suyin 190600 Mating connector: Suyin 140600Command SummaryDetail Command control, please refer to the user’s manual1. Initial To configure the image size, color type2. Get Picture Get Picture type3. Snapshot Set snap shot image type4. Set Package Size Set the package size to transmit data from module to Host5. Set Baudrate Change the baud rate6. Reset Reset the whole system or reset the state machine7. Power Off To enter sleep mode8. Data Set the data type and length for transmitting data to host9. SYNC Sync signal to connect between host and module 10. ACK Command to indicate the communication success 11. NAK Command to indicate the communication fail with error codeVCC GND TxD RxDGND RxD TxD VCCBottom ViewElectrical SpecificationV DD = 3.3V+10%, TA = 0 to 25o CSymbol Parameter Condition Min Typ Max Unit V DD DC supply voltage 3.0 3.3 3.6 V Io Normal Operation Current Operating 60 mA Is Suspend Current Suspend 100 uA V IH High level input voltage TTL 2.0 V V IL Low level input voltageTTL0.8VLens SpecificationDescriptionC 328RC 328R S C 328R -2225C 328R -2820C 328R -3620I RC 328R -362C 328R -6016 C 328R -6016I R F/#2.8 2.8 2.5 2.0 2.0 2.0 1.6 1.6Focal length (mm) 4.63 4.63 2.2 2.8 3.6 3.6 6.0 6.0 Field of View Diagonal (deg) 414110981505043 43 Filter Option IR-cut filter Yes Yes NA NA Yes NA NA Yes Total height from PCB H (mm) 10 10 18 22 22 22 20 20 Diameter of lens cap D (mm) 99151414141414Board MeasurementNote: except C328RS of small lens holder, all other lens holder are with 14x14 as shown below.Dimension of C328RS lens holder is 10x10mmNote: In order to facilitate people for better understanding the communication with the module, we have developed an EV kit, C328-EV232, for user to run under PC Windows environment. However, this module is not designed for PC application. Such PC evaluation is only for better understanding of command control.。

Microchip Explorer 16 开发板介绍(含 MPLAB ICD 3)说明书

Microchip Explorer 16 开发板介绍(含 MPLAB ICD 3)说明书

Microchip - DV164037 - DV164037 Development Board Kit Product Overview:Explorer 16 (with MPLAB ICD 3) Development Board Kit. Thedevelopment board provides a low-cost, modular developmentsystem for Microchip’s new line of 16-bit microcontroller families,including the PIC24, PIC24H and the 16-bit digital signal controllerfamily, dsPIC33F.As provided, the development board works as a demo board rightfrom the box, and also has the ability to extend its functionalitythrough modular expansion interfaces. The Explorer 16 boardsupports MPLAB ICD 2 for full emulation and debug capabilities,and also allows 3V controllers to interface with 5V peripheraldevices.Kit Content:The Explorer 16 Development Board Kit contains the following:∙The Explorer 16 Development Board.∙ A preprogrammed PIC24FJ128GA010 Processor Installation Module (PIM), already installed to the board∙ A preprogrammed dsPIC33FJ256GP710 PIM∙An RS-232 cable∙The Explorer 16 Development CD ROM, containing:▪ This User’s Guide▪Data Sheets for the PIC24FJ128GA family and dsPIC33FJ256GP family▪Schematics and PCB drawing files for the PIM modules▪Example programs for use with the PIC24 and dsPIC33F devices▪Files detailing general purpose expansion boards that can be used with the Explorer16 board (provided in Gerber format).Key Features:∙100-pin PIM riser, compatible with the PIM versions of all Microchip PIC24F/24H/dsPIC33F devices ∙Direct 9 VDC power input that provides +3.3V and +5V (regulated) to the entire board∙ Power indicator LED∙ RS-232 serial port and associated hardware ∙ On-board analog thermal sensor∙ USB connectivity for communications and device programming/debugging∙ Standard 6-wire In-Circuit Debugger (ICD) connector for connections to an MPLAB ICD 2 programmer/debugger module∙ Hardware selection of PIM or soldered on-board microcontroller (in future versions) ∙ 2-line by 16-character LCD∙ Provisioning on PCB for add on graphic LCD∙ Push button switches for device Reset and user-defined inputs ∙ Potentiometer for analog input ∙ Eight indicator LEDs∙ 74HCT4053 multiplexers for selectable crossover configuration on serial communication lines ∙ Serial EEPROM∙ Independent crystals for precision microcontroller clocking (8 MHz) and RTCC operation (32.768 kHz) ∙ Prototype area for developing custom applications∙ Socket and edge connector for PICtail™ Plus card compatibility ∙Six-pin interface for PICkit 2 Programmer∙ JTAG connector pad for optional boundary scan functionalityOrdering Information: Products:Part NumberManufacturerFarnell P/NNewark P/NDV164037 Microchip 1771308 25R7377Associated Products:Part NumberManufacturerDescriptionFarnell P/NNewark P/NPIC24FJ128GA010-I/PT Microchip16BIT MCU 128K FLASH 8K RAM, SMD 1146523 56K7341 PIC18F4550-I/PTMicrochip8-Bit Microcontroller IC932136508J963325LC256-I/P MicrochipEEPROM SERIAL 256KB,PDIP81331398 92C7459Similar Products:Part NumberManufacturerDescriptionSupport DeviceFarnell P/N Newark P/N DM240002 Microchip Explorer 16kit(44-PIN) PIC24F1754668 54M4471 DM240001 Microchip Explorer 16kit(100-PIN) dsPIC33F1146554 04M6008 MA320001 MicrochipPIC32MX360F512LPLUG-IN MODULEPIC32M152331673M8723AC164137-1 Microchip MRF49XAPICtail/PICtail PlusDaughter Board(433.92 MHz) MRF491736502 14R8658AC164137-2 Microchip MRF49XAPICtail/PICtail PlusDaughter Board(868/915 MHz)MRF491736503 14R8659MA240012 Microchip PIC24H 100P to 100P TQFP Plug-InModule use w/Explorer 16(DM240001 or DM240002)PIC24HNA 88K5499MA240015 Microchip PIC24F Plug-In Module use w/Explorer 16 (DM240001 or DM240002)PIC24FNA 98M1509MA330011 Microchip dsPIC33 GP 100P to 100P TQFP Plug-InModule use w/ Explorer 16 (DM240001)dsPIC33NA 56K6941Document List: Datasheets:Part NumberDescriptionSizeDM240002dsPIC® Digital Signal Controllers 2.84MBMBPIC24FJ128GA010 PIC24FJ128GA Family 3.51PIC24F16KA102 Module PIC24F16KA102 Plug-in Module Information Sheet 93KBMA240013 PIC24FJ64GA004 PIM (MA240013) Manual 132KBApplication Notes:File Name SizeAN100 How to build a Linux Wireless Sniffer 56KB100-pin Plug-In Module (PIM) Dimensions 14KBAN1247 - Communication Device Class (CDC) Host 351KBAN1192 - MRF24J40 Radio Utility Driver Program 839KB Hardware & Software:File Name SizedsPIC33F Demo Files for Explorer 16 25KB MiWi(TM) P2P for PIC18, PIC24, dsPIC, PIC32 7.81MBMiWi(TM) Protocol Stack for PIC18, PIC24, dsPIC, PIC32 4.95MBPIC24F Demo Files for Explorer 16 46KB PIC24F16KA102 Demo Files for Explorer 16 278KBPIC24H Demo Files for Explorer 16 24KBOthers Resources:File Name SizeDM240001 BOM and Schematics 866KBdsPIC33FJ128GP804 PIM Information Sheet 289KbdsPIC33FJ12GP202 PIM Information Sheet 393KBdsPIC33FJ256GP710 100-pin to 100-pin TQFP Plug-In Module (PIM) Information Sheet 672KB。

CPLD开发套件说明书

CPLD开发套件说明书

Xilinx-CPLD开发板使用说明书武汉保华数控工作室1Xilinx-CPLD开发板介绍CPLD(复杂可编程逻辑电路)是一种具有丰富的可编程I/O引脚的可编程逻辑器件,具有使用方便灵活、在系统可编程的特点,既可实现常规的逻辑器件功能,还可实现复杂的时序逻辑功能。

同单片机配合,把CPLD应用于嵌入式应用系统,更能够体现其在系统可编程、使用方便灵活的特点。

在有些应用中甚至可以完全取代单片机独立完成系统的控制功能。

CPLD同单片机接口,可以作为单片机的一个外设,实现单片机所要求的功能。

例如,实现常用的地址译码、锁存器、8255等功能;也可实现加密、解密及扩展串行口等单片机所要求的特殊功能。

实现嵌入式应用系统的灵活性,也提高了嵌入式应用系统的性能。

Xilinx-CPLD开发板的功能与特点2开发板布局图SL2SL2 SL13 板上资源介绍为了使开发工作灵活而方便,Xilinx-CPLD 采取小板积木式结构,开发板尺寸只有110×95mm 。

其上装有实验必须的CPLD (XC9572)和学习需要的基本电路和设备。

能够帮助用户学习如何利用CPLD 设计电子电路,掌握从设计输入到芯片下载的全部过程。

搭接上层扩展板还可以做更多的实验。

通过J1、J2插座将CPLD 的全部管脚(JTAG 脚除外)引到上层扩展板。

上层扩展板可根据需要由用户选择购买或者是自制。

从而减低用户的不必要费用。

Xilinx-CPLD 开发板布局图如下,下面将详细讲解各部分资源的结构和功能。

了解开发板硬件知识是后面学习系统电路实验所必须具备的条件。

3.1 CPLD 芯片及其特性 Xilinx-CPLD 开发板以Xilinx 公司的XC9572作为目标CPLD 。

由于采用PLCC84脚插座安装,当芯片的密度不能满足设计要求时,方便用户更换相同封装更高密度的XC95108。

3.2 J1、J2 CPLD 引出脚插座当需要扩展开发板的功能或者希望将CPLD 引脚直接与用户的实验板相连接时,可以通过J1、J2插座将CPLD 的管脚(JTAG 脚除外)引出。

Microchip Explorer 16 32 开发板概述说明书

Microchip Explorer 16 32 开发板概述说明书

DM240001-2OverviewThe Explorer 16/32 Development Board is a flexible and convenient development, demonstration and testing platform for 16-bit PIC24 MCUs, dsPIC® DSCs and 32-bit PIC32 MCUs from Microchip Technology. It features all the necessary hardware to begin developing and debugging a complete embedded application. The board accepts Processor Plug-In Modules (PIMs) designed for the Explorer 16 or Explorer 16/32 development board for easy device swapping. In addition to the hardware features provided by the board, hardware expansion is possible through the use of PICtail™ Plus daughter cards and mikroBUS™ accessory boards. Coupled with the integrated PICkit™-On-Board (PKOB), MPLAB ICD 3 In-Circuit Debugger or MPLAB REAL ICE™ real-time emulation and debug facilities enable faster evaluation and prototyping of application. Explorer 16/32 Development Board offers only the main board, giving the option to customize the other necessary components. Choose PIM of your choice based on MCUs and DSCs under consideration from wide range of Processor Plug-In Modules. This board is optimal for customers migrating from Classic Explorer 16 to new Explorer 16/32 platform, while all the necessary additional components like Processor Plug-In Modules and PICtail™ Plus Daughter Boards are already available.Backwards CompatibilityExplorer 16/32 Development Board is completely backwards compatible with the Classic Explorer 16 Development Board(DM240001 and DM240002) and its associated ecosystem that include:∙Processor Plug-In Modules (PIMs)∙PICTail™ Plus Daughter Boards∙Code Examples, Ptototypes and Software Libraries developed on Classic Explorer 16 development BoardUse all of existing codes, libraries, prototypes, PIMs and the PICtail Plus daughter cards interfaced via side PICtail Plusconnector directly. Re-use the PICtail Plus daughter cards interfaced via vertical PICtail Plus connector usingadditional PICtail Plus Expansion Board (AC240100).Getting Started∙Read the Explorer 16/32 User's Manual (available at Documentation and Software section of this page)∙Download the free MPLAB X IDE∙Download the suitable MPLAB XC Compiler∙Download and unzip the appropriate firm ware demo code (available at Documentation & Software section of this page)Features∙100 pin Plug-In Module (PIM) socket, supporting a wide variety of 16-bit and 32-bit PIC® MCUs and dsPIC®DSCs∙Power supplyo USB Power through PICkit™-On-Board (PKOB), USB Type-C™ or USB-Serial Convertero9-15V DC Power Supply∙On board USB to UART/I2C™ adapter for data exchange with PC/Mac/Linux based host∙USB Type-C™ (host/device) and Type-A (host) support for applications using USB microcontroller∙Hardware functionality extension by attaching accessory boards viao PICtail™ Plus interfaceo2x MikroElektronika mikroBUS™ interfaceo2x Digilent Pmod™ footprint∙Alpha-numeric 16 x 2 LCD display, 8x User LEDs, 4x Push Buttons, 10k potentiometer∙Microchip's TC1047A high accuracy, analog output temperature sensor∙Programmer/Debuggero Integrated USB programmer/debugger - PICkit™-On-Board (PKOB)o Interfaces to MPLAB ICD 3, MPLAB REAL ICE™, PICkit™ 3∙Support for all t he existing and new PICtail™ Plus Daughter Cardso Interface PICtail™ Plus Daughter Cards connected via side PICtail™ Plus connector directlyo Interface PICtail™ Plus Daughter Cards connected via vertical PICtail™ Plus connector throughadditional accessory - PICtail™ Plus Expansion BoardPackage ContentsExplorer 16/32 main development boardDM240001-2。

R328硬件设计指南V1.0-20190418

R328硬件设计指南V1.0-20190418

1.6. Flash 电路设计............................................................................................................................................ 14
市研读慧科者技有对限 象
市研慧科技有限
深圳 本文档主要适用于: 深圳
硬件开发工程师
软件开发工程师
技术支持工程师
公司Yanhui 市研慧科技有限 深圳
公司Yanhui 市研慧科技有限 深圳
公 市研慧科技有限 深圳
公司Yanhui 市研慧科技有限 深圳
公司Yanhui 市研慧科技有限 深圳
公司Yanhui 市研慧科技有限 深圳
目录.................................................................................................................................................................................3
1.3.3. 上电时序设计................................................................................................................................ 13
1.4. 复位电路设计............................................................................................................................................ 14

关于单片机脉冲信号源的CPLD实现方法

关于单片机脉冲信号源的CPLD实现方法

关于单片机脉冲信号源的CPLD实现方法单片机产生的脉冲信号源由于是靠软件实现的,所以输出频率及步进受单片机时钟频率、指令数和指令执行周期的限制。

文中介绍了一种以CPLD为核心的脉冲信号源,脉冲信号源的参数(频率、占空比)由工控机通过I/O 板卡设置,设定的参数由数码管显示,这种脉冲信号源与其它脉冲信号发生电路相比具有输出频率高、步进小(通过选用高速CPLD 可提高频率及缩小步进)、精度高、参数调节方便、易于修改等优点。

1 系统组成及工作原理脉冲信号源电路核心采用一片可编程逻辑器件EPM7128SLC84—10,它属于Ahera 公司MAX7000 系列产品,MAX7000 系列产品是高密度、高性能的CMOS EPLD,是工业界速度最快的可编程逻辑器件系列,它是在Ahera 公司的第二代MAX 结构基础上采用先进的CMOS EEPROM 技术制造的。

MAX7000 系列产品包括MAX7000E、MAX7000S、MAX7000A,集成度为600~5 000 可用门,有32~256 个宏单元和36—155 个用户I/0 引脚。

这些基于EEPROM 的器件能够组合传输延迟快至5.0 ns,16 位频率为178 MHz。

此外,它们的输入寄存器的建立时间非常短,能够提供多个系统时钟且有可编程的速度/功率控制。

MAX7000S 是MAX7000 系列的增强型,具有高密度,是通过工业标准4 引脚JTAG 接口实现在线可编程的,在线编程电压为5V。

EPM7128SLC84—10 有128 个逻辑宏单元,2 500 个门电路,8 个逻辑阵列块,68 个L/O 管脚,速度等级为一6(传输延迟6 ns),最高时钟频率为147.1 MHz。

整个信号产生及数码显示控制电路(不包括驱动)集成在一片中。

脉冲信号源电路由时钟源、锁存器、计数器、控制电路、驱动电路以及数码管动态扫描显示电路组成,电路框图,如图l 所示。

时钟电路采用80 MHz 有源晶振,它为系统提供时钟信号;锁存器1 及锁存器2 用于保存频率及占空比数据,为16 位计数器提供预置值,锁存器位数为8 位,设定的数据通过工控机输入,由于计数器位数为16 位,故需分两次打人数据;计数器1 及计数器2 作为定时器,按锁存器1、2 设定的值计时,两个计数器交替工作,即一个计数器工作而另一个计数器不工作。

Altera下载线USB Blaster用户手册

Altera下载线USB Blaster用户手册

Altera下载线USB Blaster使用手册
北京联华众科科技有限公司
Revision record 修订记录
Date 日期
Revisi CR Section Change Description on ID / Number 修改描述 Versi Defect 修 改
产品名称Product name Altera下载线USB Blaster使用手册 产品版本Product version 1.0
密级Confidentiality level 普通
Total 26pages 共26页
Altera 下载线 USB Blaster使用手册
Prepared by 拟制
Reviewed by 评审人
on ID 章节 修 订 CR号
版本
Author 作者
北京联华众科科技有限公司 All rights reserved 版权所有,侵权必究
Page 2 , Total 26 第2页,共26页
Altera下载线USB Blaster使用手册
北京联华众科科技有限公司
Content 目 录
1 概述 ........................................................................................................................................6 2 硬件连接 .................................................................................................................................7 3 安装驱动 .................................................................................................................................9 4 下载线设置 ...........................................................................................................................14 5 下载 ......................................................................................................................................19 5.1 JTAG方式-下载程序到FPGA内 .......................................................................................19 5.2 AS方式-下载程序到配置芯片内.......................................................................................22

32 位微控制器 HC32F460 系列的 MCU 开发工具 用户手册说明书

32 位微控制器 HC32F460 系列的 MCU 开发工具 用户手册说明书

32位微控制器HC32F460系列的MCU开发工具用户手册Rev2.0 2023年08月本手册以HC32F460PETB为例进行说明。

★小华半导体有限公司(以下简称:“XHSC”)保留随时更改、更正、增强、修改小华半导体产品和/或本文档的权利,恕不另行通知。

用户可在下单前获取最新相关信息。

XHSC产品依据购销基本合同中载明的销售条款和条件进行销售。

★客户应针对您的应用选择合适的XHSC产品,并设计、验证和测试您的应用,以确保您的应用满足相应标准以及任何安全、安保或其它要求。

客户应对此独自承担全部责任。

★XHSC在此确认未以明示或暗示方式授予任何知识产权许可。

★XHSC产品的转售,若其条款与此处规定不同,XHSC对此类产品的任何保修承诺无效。

★任何带有“®”或“™”标识的图形或字样是XHSC的商标。

所有其他在XHSC产品上显示的产品或服务名称均为其各自所有者的财产。

★本通知中的信息取代并替换先前版本中的信息。

©2023 小华半导体有限公司保留所有权利适用对象 (2)声明 (3)目录 (4)1概述 (6)1.1 开发工具简介 (6)1.2 电路板部件简介 (6)2硬件电路 (8)2.1 电路规格 (8)2.2 硬件说明 (8)2.2.1 系统总览 (9)2.2.2 电源 (9)2.2.3 调试接口 (9)2.2.4 独立按键 (10)2.2.5 指示灯 (10)2.2.6 测试针 (10)2.2.7 时钟 (10)2.2.8 矩阵键盘 (10)2.2.9 UART (11)2.2.10 I2C (11)2.2.11 SPI (12)2.2.12 QSPI (12)2.2.13 TF CARD (12)2.2.14 SMART CARD (13)2.2.15 USB (13)2.2.16 CAN (13)2.2.17 AUDIO (13)2.2.18 OLED (13)2.2.19 模拟功能 (13)2.2.20 跳针与拨动开关设置 (14)2.2.21 引脚复用 (14)3驱动库 (15)3.1 hc32f460_ddl_SHA512 (15)3.2 hc32f460_ddl (16)3.3 hc32f460_template (17)3.4 IDE支持包 (17)4工具使用 (18)4.1 调试说明 (18)4.2 程序烧写 (23)版本修订记录 (24)1 概述1.1 开发工具简介本系列Evaluation Board (以下简称EVB )是基于HC32F460PETB-LQFP100芯片设计的开发工具,包含了板载CMSIS DAP ;EVB 为评估HC32F460提供了必要的外设配置。

3.2 x 2.8 mm PLCC2 SMD LED 商品说明书

3.2 x 2.8 mm PLCC2 SMD LED 商品说明书

Part Number Emitting Color Emitting MaterialLens-colorWavelength CIE127-2007*nm λPViewing Angle 2θ 1/2Luminous Intensity CIE127-2007* (I F =20mA) mcd *Luminous intensity value and wavelength are in accordance with CIE127-2007 standards.A Relative Humidity between 40% and 60% is recommended inESD-protected work areas to reduce static build up during assembly process (Reference JEDEC/JESD625-A and JEDEC/J-STD-033)Features● Ideal for indication light on hand held products ● Long life and robust package ● Standard Package: 2000pcs/ Reel ● MSL (Moisture Sensitivity Level): 3 ● Halogen-free ● RoHS compliantATTENTIONOBSERVE PRECAUTIONSFOR HANDLING ELECTROSTATIC DISCHARGE SENSITIVE DEVICESLED is recommended for reflow soldering and soldering profile is shown below.Forward Current Derating CurveThe device has a single mounting surface. The device must be mounted according to the specifications.Reel Dimension (Units : mm)Recommended Soldering Pattern (Units : mm; Tolerance: ± 0.1)Tape Specification (Units : mm)Remarks:If special sorting is required (e.g. binning based on forward voltage, Luminous intensity / luminous flux, or wavelength), the typical accuracy of the sorting process is as follows: 1. Wavelength: +/-1nm2. Luminous intensity / luminous flux: +/-15%3. Forward Voltage: +/-0.1VNote: Accuracy may depend on the sorting parameters.TERMS OF USE1. Data presented in this document reflect statistical figures and should be treated as technical reference only.2. Contents within this document are subject to improvement and enhancement changes without notice.3. The product(s) in this document are designed to be operated within the electrical and environmental specifications indicated on the datasheet. User accepts full risk and responsibility when operating the product(s) beyond their intended specifications.4. The product(s) described in this document are intended for electronic applications in which a person’s life is not reliant upon the LED. Please consult with a SunLED representative for special applications where the LED may have a direct impact on a person’s life.5. The contents within this document may not be altered without prior consent by SunLED.6. Additional technical notes are available at https:///TechnicalNotes.aspPACKING & LABEL SPECIFICATIONS。

mega328的例子程序

mega328的例子程序

mega328的例子程序标题:Mega328微控制器的例子程序1. 介绍Mega328微控制器Mega328微控制器是一款功能强大的单片机芯片,广泛应用于各种电子设备中。

它具有高性能、低功耗和丰富的接口资源,适用于各种应用场景。

2. 简要介绍Mega328的基本特性Mega328微控制器具有32KB的闪存、2KB的SRAM和1KB的EEPROM。

它支持多种通信接口,包括UART、SPI和I2C,并且拥有23个可编程IO引脚。

3. 使用Mega328实现LED闪烁通过编写简单的程序,可以利用Mega328的GPIO功能实现LED的闪烁。

我们可以通过设置引脚的输入输出状态和延时来控制LED的亮灭,从而实现闪烁效果。

4. 使用Mega328实现按键控制LED开关除了控制LED的闪烁,Mega328还可以通过外部按键来控制LED 的开关。

通过读取按键的状态,我们可以判断用户是否按下按键,然后根据按键状态来控制LED的亮灭。

5. 使用Mega328实现ADC功能Mega328还具有模数转换器(ADC)功能,可以将模拟信号转换为数字信号。

通过编写程序,我们可以设置ADC的输入引脚和分辨率,并读取模拟信号的数值。

6. 使用Mega328实现PWM输出Mega328支持脉冲宽度调制(PWM)输出,可以用来控制电机的转速、LED的亮度等。

通过设置PWM的频率和占空比,我们可以实现精确的输出控制。

7. 使用Mega328实现定时器功能Mega328内置了多个定时器,可以用来实现精确的定时功能。

通过编写程序,我们可以设置定时器的计数值和工作模式,从而实现各种定时任务。

8. 使用Mega328实现串口通信Mega328支持串口通信,可以与其他设备进行数据交换。

通过编写程序,我们可以设置串口的波特率、数据位数、停止位数等参数,实现可靠的数据传输。

9. 使用Mega328实现温度传感器的读取Mega328可以与温度传感器进行连接,通过读取传感器的输出信号来获取当前温度。

PADAUK Technology Co. Ltd PMC232 PMS232系列 12位ADC双核

PADAUK Technology Co. Ltd PMC232 PMS232系列 12位ADC双核

PMC232/PMS232系列带12位ADC、采用FPPA TM技术双核心8位单片机数据手册第0.03版2017年3月27日Copyright 2017 by PADAUK Technology Co., Ltd., all rights reserved10F-2, No. 1, Sec. 2, Dong-Da Road, Hsin-Chu 300, Taiwan, R.O.C.重要声明应广科技保留权利在任何时候变更或终止产品,建议客户在使用或下单前与应广科技或代理商联系以取得最新、最正确的产品信息。

应广科技不担保本产品适用于保障生命安全或紧急安全的应用,应广科技不为此类应用产品承担任何责任。

关键应用产品包括,但不仅限于,可能涉及的潜在风险的死亡,人身伤害,火灾或严重财产损失。

应广科技不承担任何责任来自于因客户的产品设计所造成的任何损失。

在应广科技所保障的规格范围内,客户应设计和验证他们的产品。

为了尽量减少风险,客户设计产品时,应保留适当的产品工作范围安全保障。

提供本文档的中文简体版是为了便于了解,请勿忽视文中英文的部份,因为其中提供有关产品性能以及产品使用的有用信息,应广科技暨代理商对于文中可能存在的差错不承担任何责任,建议参考本文件英文版。

目录1. 单片机特点 (8)1.1. 系列特点 (8)1.2. 高性能RISC CPU架构 (8)1.3. 系统功能 (8)1.4. 封装信息 (9)2. 系统概述和方框图 (10)3. PMC232系列引脚功能描述 (11)4. PMS232系列引脚功能描述 (12)5. 器件电气特性 (15)5.1. 直流/交流特性 (15)5.2. 最大范围 (17)5.3. ILRC频率与VDD、温度关系的曲线图 (18)5.4. IHRC频率与VDD、温度关系的曲线图 (19)5.5. 工作电流量测值@系统时钟=ILRC÷N (20)5.6. 工作电流量测值@系统时钟=IHRC÷N (20)5.7. 工作电流量测值@系统时钟=4MH Z晶振EOSC÷N (21)5.8. 工作电流量测值@系统时钟=32K H Z晶振EOSC÷N (21)5.9. IO引脚输出驱动电流(I OH)和灌电流(I OL)曲线图 (22)5.10. 测量的IO输入阈值电压(V IH/V IL) (22)5.11. IO引脚拉高阻抗曲线图 (22)5.12. 输出(VDD/2)偏置电压与VDD关系的曲线图 (23)5.13. 开机时序图 (23)6. 功能概述 (24)6.1. 处理单元 (24)6.1.1程序计数器 (25)6.1.2 堆栈指针 (25)6.1.3 一个处理单元工作模式 (26)6.2. OTP程序存储器 (27)6.2.1 程序存储器分配 (27)6.2.2 两个处理单元工作模式下程序存储器分配例子 (27)6.2.3 一个处理单元工作模式下程序存储器分配例子 (28)6.3 程序结构 (29)6.3.1 两个处理单元工作模式下程序结构 (29)6.3.2 一个处理单元工作模式下程序结构 (29)6.4 启动程序 (30)6.5 数据存储器 (31)6.6 算术和逻辑单元 (31)6.7 振荡器和时钟 (32)6.7.1 内部高频振荡器(IHRC)和低频振荡器(ILRC) (32)6.7.2 单片机校准 (32)6.7.3 IHRC频率校准和系统时钟 (32)6.7.4 晶体振荡器 (34)6.7.5 系统时钟和LVR水平 (35)6.7.6 系统时钟切换 (36)6.8 16位定时器(T IMER16) (37)6.9 8位PWM定时器(T IMER2) (39)6.9.1 使用Timer2产生定期波形 (40)6.9.2 使用Timer2产生8位PWM波形 (41)6.9.3 使用Timer2产生6位PWM波形 (43)6.10 看门狗定时器 (44)6.11 中断 (45)6.12 掉电模式 (47)6.12.1 省电模式(stopexe) (47)6.12.2 掉电模式(stopsys) (48)6.12.3 唤醒 (49)6.13 IO端口 (50)6.14 复位和LVR (51)6.14.1 复位 (51)6.14.2 LVR (51)6.15 VDD/2偏置电压 (51)6.16 数字转换(ADC)模块 (52)6.16.1 AD转换的输入要求 (53)6.16.2 ADC分辨率选择 (54)6.16.3 ADC 时钟选择 (54)6.16.4 AD转换 (54)6.16.5 模拟引脚的配置 (54)6.16.6 使用ADC (54)7. IO寄存器 (55)7.1 算术逻辑状态寄存器(FLAG),IO地址=0X00 (55)7.2 FPP单元允许寄存器(FPPEN),IO地址=0X01 (55)7.3 堆栈指针寄存器(SP),IO地址=0X02 (55)7.4 时钟控制寄存器(CLKMD),IO地址=0X03 (56)7.5 中断允许寄存器(INTEN),IO地址=0X04 (56)7.6 中断请求寄存器(INTRQ),IO地址=0X05 (56)7.7 T IMER16控制寄存器(T16M),IO地址=0X06 (57)7.8 通用数据输入/输出寄存器(GDIO),IO地址=0X07 (57)7.9 外部晶体振荡器控制寄存器(EOSCR),IO地址=0X0A (57)7.10 内部高频RC振荡器控制寄存器(IHRCR,只写),IO地址=0X0B (58)7.11 中断边沿选择寄存器(INTEGS,只写),IO地址=0X0C (58)7.12 端口A数字输入禁止寄存器(PADIER,只写),IO地址=0X0D (58)7.13 端口B数字输入禁止寄存器(PBDIER,只写),IO地址=0X0E (59)7.14 端口A数据寄存器(PA),IO地址=0X10 (59)7.15 端口A控制寄存器(PAC),IO地址=0X11 (59)7.16 端口A上拉控制寄存器(PAPH),IO地址=0X12 (59)7.17端口B数据寄存器(PB),IO地址=0X14 (59)7.18端口B控制寄存器(PBC),IO地址=0X15 (59)7.19 端口B上拉控制寄存器(PBPH),IO地址=0X16 (60)7.20 端口C数据寄存器(PC),IO地址=0X17 (60)7.21 端口C控制寄存器(PCC),IO地址=0X18 (60)7.22 端口C上拉控制寄存器(PCPH),IO地址=0X19 (60)7.23 ADC控制寄存器(ADCC),IO地址=0X20 (60)7.24 ADC模式控制寄存器(ADCM,只写),IO地址=0X21 (61)7.25 ADC数据高位寄存器(ADCRH,只读),IO地址=0X22 (61)7.26 ADC数据低位寄存器(ADCRL,只读),IO地址=0X23 (61)7.27 杂项寄存器(MISC),IO地址=0X3B (62)7.28 T IMER2控制寄存器(TM2C),IO地址=0X3C (63)7.29 T IMER2计数寄存器(TM2CT),IO地址=0X3D (63)7.30 T IMER2分频器寄存器(TM2S),IO地址=0X37 (63)7.31 T IMER2上限寄存器(TM2B),IO地址=0X09 (64)8. 指令 (65)8.1 数据传输类指令 (65)8.2 算术运算类指令 (69)8.3 移位运算类指令 (71)8.4 逻辑运算类指令 (72)8.5 位运算类指令 (74)8.6 条件运算类指令 (75)8.7 系统控制类指令 (77)8.8 指令执行周期综述 (79)8.9 指令影响标志的综述 (80)9. 特别注意事项 (81)9.1 警告 (81)9.2 使用IC时 (81)9.2.1 IO使用与设定 (81)9.2.2 中断 (82)9.2.3 切换系统时钟 (82)9.2.4 掉电模式、唤醒以及看门狗 (83)9.2.5 TIMER溢出时间 (84)9.2.6 ADC使用注意事项 (84)9.2.7 LVR (84)9.2.8 IHRC (84)9.2.9 单/双核模式下指令周期差异 (85)9.3 使用ICE时 (85)9.3.1 PMC232/PMS232系列于仿真器PDK3S-I-001/002/003上仿真时 (85)9.3.2 使用PDK3S-I-001/002/003仿真PMC232/PMS232系列功能時注意事項 (86)修订历史:修订日期描述0.01 2015/8/1 初版。

联华众科cpldca127——晶振

联华众科cpldca127——晶振

联华众科cpldca127——晶振⾸先从⽹上找到⼀些有源晶振和⽆源晶振的⽂章,基本上明⽩了,开发板上CPLD⽤的是有源的晶振,⽽单⽚机⽤的是⽆源的晶振。

其中还提供了⼀个插座,也是放有源晶振的。

但是⼀般晶振的1脚都是要不接的,可是开发板上接了,很奇怪?我们做的dsp板⼦⽤的有源晶振如果1脚接了,就不能起震。

查了⼀下,1脚是NC,实际是因为晶振内部1,4是短接的,⽤万⽤表测测就⾏了。

所以1和4 接⼀个就⾏了⽆源晶振:就是⼀个晶振,依靠配合其他IC内部振荡电路⼯作。

有源晶振:晶振+振荡电路,封装在⼀起。

给他供上电源,就有波形输出。

1、⽆源晶体——⽆源晶体需要⽤DSP⽚内的振荡器,在datasheet上有建议的连接⽅法。

⽆源晶体没有电压的问题,信号电平是可变的,也就是说是根据起振电路来决定的,同样的晶体可以适⽤于多种电压,可⽤于多种不同时钟信号电压要求的DSP,⽽且价格通常也较低,因此对于⼀般的应⽤如果条件许可建议⽤晶体,这尤其适合于产品线丰富批量⼤的⽣产者。

⽆源晶体相对于晶振⽽⾔其缺陷是信号质量较差,通常需要精确匹配外围电路(⽤于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。

建议采⽤精度较⾼的⽯英晶体,尽可能不要采⽤精度低的陶瓷警惕。

2、有源晶振——有源晶振不需要DSP的内部振荡器,信号质量好,⽐较稳定,⽽且连接⽅式相对简单(主要是做好电源滤波,通常使⽤⼀个电容和电感构成的PI型滤波⽹络,输出端⽤⼀个⼩阻值的电阻过滤信号即可),不需要复杂的配置电路。

有源晶振通常的⽤法:⼀脚悬空,⼆脚接地,三脚接输出,四脚接电压。

相对于⽆源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,⽽且价格⾼。

对于时序要求敏感的应⽤,个⼈认为还是有源的晶振好,因为可以选⽤⽐较精密的晶振,甚⾄是⾼档的温度补偿晶振。

有些DSP内部没有起振电路,只能使⽤有源的晶振,如TI的6000系列等。

联华众科CPLD开发板CA328

联华众科CPLD开发板CA328

联华众科CPLD开发板CA328Abstract 摘要:联华众科CPLD开发板CA328核心器件为 Altera MAX3000A系列的EPM3128A,CA328具有丰富的板载资源,开发实例和制作开发实例的详细步骤说明,以及Quartus II环境下的设计输入,综合,仿真等内容。

开发实例全部有VHDL和Verilog两个版本,同时CA328还包括详细的使用手册和丰富的配套资料,非常适合CPLD,VHDL,Verilog HDL开发学习者使用。

另外CA328随板CDROM中还包括 2005的开发实例,在学习EDA时还可以学习到 2005开发环境中C#程序的开发, 2005和C#也是系统上主要的开发环境和编程语言。

1 概述联华众科CPLD开发板CA328核心器件为 Altera MAX3000A系列的EPM3128A,CA328外观如下图所示。

联华众科CPLD开发板CA328具有丰富的板载资源。

¾核心器件为包括Altera EPM3128A和有源晶振,有源晶振频率为24MHz。

另外,开板上还具有外接有源晶振插座,外接有源晶振插座可直接安装用户自己希望的任何频率有源晶振。

EPM3128A可用I/O具有引出接线插座,可供外部使用。

¾显示资源包括6位共阳七段数码管,8位LED(绿色),1片8*8 LED点阵。

¾键盘资源包括4*4按键阵列,4个独立按键,和1个复位按键。

¾接口资源包括串口,IIC总线接口,PWM信号输入输出接口,USB Deivce接口(可作为供电电源使用),9V直流电源接口和JTAG下载接口,以及EPM3128A可用I/O接口。

其中JTAG下载接口为5*2插座方式,需经ByteBlaster MV或ByteBlaster II下载线转接到PC并口。

开发板随板带有一根ByteBlaster MV或ByteBlaster II下载线,用以连接开发板下载接口到PC并口,完成编程下载工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

联华众科CPLD开发板CA328Abstract 摘要:联华众科CPLD开发板CA328核心器件为 Altera MAX3000A系列的EPM3128A,CA328具有丰富的板载资源,开发实例和制作开发实例的详细步骤说明,以及Quartus II环境下的设计输入,综合,仿真等内容。

开发实例全部有VHDL和Verilog两个版本,同时CA328还包括详细的使用手册和丰富的配套资料,非常适合CPLD,VHDL,Verilog HDL开发学习者使用。

另外CA328随板CDROM中还包括 2005的开发实例,在学习EDA时还可以学习到 2005开发环境中C#程序的开发, 2005和C#也是系统上主要的开发环境和编程语言。

1 概述联华众科CPLD开发板CA328核心器件为 Altera MAX3000A系列的EPM3128A,CA328外观如下图所示。

联华众科CPLD开发板CA328具有丰富的板载资源。

¾核心器件为包括Altera EPM3128A和有源晶振,有源晶振频率为24MHz。

另外,开板上还具有外接有源晶振插座,外接有源晶振插座可直接安装用户自己希望的任何频率有源晶振。

EPM3128A可用I/O具有引出接线插座,可供外部使用。

¾显示资源包括6位共阳七段数码管,8位LED(绿色),1片8*8 LED点阵。

¾键盘资源包括4*4按键阵列,4个独立按键,和1个复位按键。

¾接口资源包括串口,IIC总线接口,PWM信号输入输出接口,USB Deivce接口(可作为供电电源使用),9V直流电源接口和JTAG下载接口,以及EPM3128A可用I/O接口。

其中JTAG下载接口为5*2插座方式,需经ByteBlaster MV或ByteBlaster II下载线转接到PC并口。

开发板随板带有一根ByteBlaster MV或ByteBlaster II下载线,用以连接开发板下载接口到PC并口,完成编程下载工作。

¾音频资源包括1个蜂鸣器。

¾电源部分包括1片LM1117-5.0和1片LM1117-3.3,LM1117-5.0提供5V直流电源,LM1117-5.0最大可提供800mA的输出电流。

LM1117-3.3提供3.3V直流电源,最大可提供800mA的输出电流。

¾存储资源包括1片24C02连接在IIC总线上,24C02为256字节串行E2PROM,24C02地址也可以由板上的3位拨码开发关设置。

¾其他资源还包括2个模拟46*10面包板,1个8位拨码开关。

CA328包含的配件如下图所示。

CA328及配件清单如下表。

配件数量说明CA328 1 联华众科CPLD开发板9V直流电源0 最大输出电流1000mA(选购件)下载线 1 ByteBlaster MV串口线 1USB线 1CDROM 2 资料和软件各1张连接线若干开发板CA328电源的连接,下载线的连接,以及与PC的串口连接如下图所示。

开发板CA328数码管显示效果如下图所示。

开发板CA328 LED点阵显示效果如下图所示。

开发板CA328串口接收运行效果如下图所示。

开发板CA328 24C02读写运行效果如下图所示。

CA328开发板包括非常丰富的开发实例,不仅包括EDA开发实例,还包括 2005开发实例。

EDA开发实例全部提供VHDL,Verilog两个版本, 2005开发实例编程语言为C#, 2005和C#也是平台支持的开发工具和编程语言。

EDA开发实例如下:流水灯定时轮流点亮开发板上的8位LED,产生流动的显示效果,定时信号由开发板上有源晶振输出分频得到。

6位十进制计数器最低位为0.1s,低位与相邻高位间十进制进位,用开发板上的6位七段数码管显示当前计数值。

数字钟用开发板上的6位七段数码管显示小时,分钟,秒。

小时,分钟,秒各占用2位数码管。

LED点阵动态扫描显示开发板上包括一个8*8点阵的LED,本实例定时显示0~9数字在LED点阵上面,定时间隔可由拨码开关设置成0.1s或1s。

键盘阵列-数码管显示定时扫描键盘阵列,延时去抖动后读取按键状态,将当前按键值显示在6位七段数码管的最低位,当有新的按键按下时新按键值进入最低位数码管,原来最低位左移一位成为次低位。

可识别的按键值包括0~9。

键盘阵列-LED点阵显示定时扫描键盘阵列,延时去抖动后读取按键状态,将当前按键值显示在LED点阵上。

可识别的按键值包括0~9。

串口发送定时发送字符’0’~’9’,以及’A’~’F’到接收方,串口的波特率,数据位数,奇偶位,停止位等参数均可通过外部设置,本实例中这些参数的一部分通过拨码开关来设置。

串口的工作时钟为开发板上的24MHz有源晶振输出,可以实现常用串口波特率。

串口接收可接收字符’0’~’9’并显示在LED点阵屏幕上,串口的波特率,数据位数,奇偶位,停止位等参数均可通过外部设置,本实例中这些参数的一部分通过拨码开关来设置。

串口的工作时钟为开发板上的24MHz有源晶振输出,可以实现常用串口波特率。

蜂鸣器由拨码开关设置蜂鸣器输入信号的频率,使蜂鸣器发出不同的音调。

复位及独立按键将1个复位按键和4个独立按键通过两级反向器连接到5位LED上,当有按键按下时对应位LED会被点亮。

拨码开关拨码开关的8位开关通过两级反向器连接到8位LED上,当有开关位拨向“ON”时对应位LED会被点亮。

晶振测试开发板上包括1个24MHz有源晶振和1个可外接有源晶振的插座,在本实例中外接有源晶振为40MHz,分别通过24000000/4400000分频,产生2个独立的周期为1s时钟,连接到2位LED,以测试24MHz有源晶振及外接有源晶振工作是否正常。

PWM信号产生产生指定周期和占空比的PWM信号,周期和占空比由原理图中参数设置,同时将这些PWM信号参数通过串口发送到PC上显示。

PWM信号测量测量开发板上PWM插座输入的PWM信号的频率和占空比,并将测量结果显示在开发板的8位LED上。

IIC读写开发板上的IIC设备为1片24C02,实现了24C02的读出和写入时序,同时将读出或写入数据显示在数码管上。

2005开发实例如下:Hello World演示 2005环境中新建工程,制作界面,编译,调试运行等,本实例为基于对话框的windows应用程序,显示“Hello World”字样。

文本框TextBox控件示例演示TextBox控件文本的读取,修改等。

列表框ComboBox控件示例演示列表框ComboBox控件列表项的修改,列表选择项的读取等。

串口SerialPort控件示例演示为应用程序添加串口SerialPort控件,设置串口参数,使用串口SerialPort控件收发数据。

绘图GDI+示例演示 2005开发环境,C#编程语言,GDI+绘图包的使用方法,将会在PictureBox控件上绘制一个矩形框,以及一个填充了的圆形。

2 开发环境本节关于开发环境的内容包括两个方面,开发板硬件连接方法和PC上所需的软硬件环境。

CA328的供电可以选择9V直流电源外接供电,也可以选择用PC机USB口供电,使用外接电源供电方式的开发板硬件连接方法如下图所示。

使用USB供电方式的开发板硬件连接方法如下图所示。

PC硬件要求至少配备25针打印口(如果PC无打印口,可选购USB Blaster下载线,通过USB完成程序的下载),9针串口,在使用USB为开发板供电时PC硬件需配备USB口。

PC上软件环境包括:¾操作系统:Microsoft Windows 2000 Professional或其他版本的 Microsoft Windows。

¾EDA软件:Altera Quartus II 5.1,用于CPLD设计输入,综合,配置,仿真,编程等,Quartuss II界面如下图所示。

¾串口通信软件:联华众科通信通或其他串口通信软件。

串口发送,串口接收等开发实例会用到串口通信软件。

3 资料目录结构开发板所附2张CDROM,分别为:CDROM1:CDROM1名称:联华众科CA328CDROM1内容:开发板资料CDROM2:CDROM2名称:工具软件CDROM2内容:常用工具软件CDROM[联华众科CA328]目录结构如下图所示。

CDROM[联华众科CA328]目录说明如下表。

名称描述01-用户手册 CPLD开发板CA328用户使用手册02-工具软件包括联华众科通信通等的工具软件03-源码文件 CA328配套程序源码04-电原理图 CA328电原理图05-数据手册开发板上芯片的数据手册06-参考资料一些对学习和开发有帮助的技术资料4 购买及售后技术支持购买及售后技术支持方法请访问本公司主页:Keywords 关键词:开发板,CPLD开发板,FPGA开发板,Quartus II,51开发板,ARM开发板,ARM7开发板,ARM9开发板,嵌入式系统,嵌入式操作系统,RTOS,uCLinux,VxWorks,WINCE,,联华众科,北京联华众科科技有限公司。

相关文档
最新文档