山东省高中数学《3.3.2简单的线性规划》导学案3 新人

合集下载

高中数学 第三章 3.3.2简单的线性规划问题(二)导学案新人教A版必修5(2)

高中数学 第三章 3.3.2简单的线性规划问题(二)导学案新人教A版必修5(2)

3.3.2 简单的线性规划问题(二)课时目标1.准确利用线性规划知识求解目标函数的最值. 2.掌握线性规划实际问题中的两种常见类型.1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域;(5)利用线性目标函数(直线)求出最优解;根据实际问题的需要,适当调整最优解(如整数解等).2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.一、选择题1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( )A.⎩⎪⎨⎪⎧ a 1x +a 2y ≥c 1,b 1x +b 2y ≥c 2,x ≥0,y ≥0B.⎩⎪⎨⎪⎧ a 1x +b 1y ≤c 1,a 2x +b 2y ≤c 2,x ≥0,y ≥0C.⎩⎪⎨⎪⎧a 1x +a 2y ≤c 1,b 1x +b 2y ≤c 2,x ≥0,y ≥0D.⎩⎪⎨⎪⎧a 1x +a 2y =c 1,b 1x +b 2y =c 2,x ≥0,y ≥0答案 C解析 比较选项可知C 正确.2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为()A.14B.35 C .4 D.53答案 B解析 由y =-ax +z 知当-a =k AC 时,最优解有无穷多个.∵k AC =-35,∴a =35.3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元 答案 B解析 设投资甲项目x 万元,投资乙项目y 万元,可获得利润为z 万元,则⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5,z =0.4x +0.6y .由图象知,目标函数z =0.4x +0.6y 在A 点取得最大值. ∴y max =0.4×24+0.6×36=31.2(万元).4.某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( )A .甲车间加工原料10箱,乙车间加工原料60箱B .甲车间加工原料15箱,乙车间加工原料55箱C .甲车间加工原料18箱,乙车间加工原料50箱D .甲车间加工原料40箱,乙车间加工原料30箱 答案B解析 设甲车间加工原料x 箱,乙车间加工原料y 箱,由题意可知⎩⎪⎨⎪⎧x +y ≤70,10x +6y ≤480,x ≥0,y ≥0.甲、乙两车间每天总获利为z =280x +200y . 画出可行域如图所示.点M (15,55)为直线x +y =70和直线10x +6y =480的交点,由图象知在点M (15,55)处z 取得最大值.5.如图所示,目标函数z =kx -y 的可行域为四边形OABC ,点B (3,2)是目标函数的最优解,则k 的取值范围为()A.⎝ ⎛⎭⎪⎫23,2B.⎝ ⎛⎭⎪⎫1,53 C.⎝ ⎛⎭⎪⎫-2,-23 D.⎝⎛⎭⎪⎫-3,-43 答案 C解析 y =kx -z .若k >0,则目标函数的最优解是点A (4,0)或点C (0,4),不符合题意. ∴k <0,∵点(3,2)是目标函数的最优解.∴k AB ≤k ≤k BC ,即-2≤k ≤-23.二、填空题6.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为________元.答案 2 300解析 设需租赁甲种设备x 台,乙种设备y 台,则⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ∈N *,y ∈N *.目标函数为z =200x +300y .作出其可行域,易知当x =4,y =5时,z =200x +300y 有最小值2 300元. 7.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,则z =10x +10y 的最大值是________.答案 90解析该不等式组表示平面区域如图阴影所示,由于x ,y ∈N *,计算区域内与点⎝⎛⎭⎪⎫112,92最近的整点为(5,4),当x =5,y =4时,z 取得最大值为90.8.某工厂有甲、乙两种产品,按计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个(按工作日计算);生产乙产品1吨需煤4吨,电力5千瓦,劳动力10个;甲产品每吨价7万元,乙产品每吨价12万元;但每天用煤量不得超过300吨,电力不得超过200千瓦,劳动力只有300个,当每天生产甲产品________吨,乙产品______吨时,既能保证完成生产任务,又能使工厂每天的利润最大.答案 20 24 解析设每天生产甲产品x 吨,乙产品y 吨,总利润为S 万元, 依题意约束条件为:⎩⎪⎨⎪⎧9x +4y ≤300,4x +5y ≤200,3x +10y ≤300,x ≥15,y ≥15,目标函数为S =7x +12y .从图中可以看出,当直线S =7x +12y 经过点A 时,直线的纵截距最大,所以S 也取最大值.解方程组⎩⎪⎨⎪⎧4x +5y -200=0,3x +10y -300=0,得A (20,24),故当x =20,y =24时, S max =7×20+12×24=428(万元). 三、解答题9.医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10 g 含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g 含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?解设甲、乙两种原料分别用10x g 和10y g ,总费用为z ,那么⎩⎪⎨⎪⎧5x +7y ≥35,10x +4y ≥40,x ≥0,y ≥0,目标函数为z =3x +2y ,作出可行域如图所示:把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线.由图可知,当直线y =-32x +z 2经过可行域上的点A 时,截距z2最小,即z 最小.由⎩⎪⎨⎪⎧10x +4y =40,5x +7y =35,得A (145,3),∴z min =3×145+2×3=14.4.∴甲种原料145×10=28(g),乙种原料3×10=30(g),费用最省.10.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大? 解(1)则⎩⎪⎨⎪⎧0.1x ≤902x ≤600z =80x⇒⎩⎪⎨⎪⎧x ≤900x ≤300⇒x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获利润z 元, 则⎩⎪⎨⎪⎧0.2y ≤901·y ≤600z =120y⇒⎩⎪⎨⎪⎧y ≤450y ≤600⇒y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤902x +y ≤600x ≥0y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域.作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600解得点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元). 因此,生产书桌100张、书橱400个, 可使所得利润最大. 能力提升11.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值为( )A .-3B .3C .-1D .1 答案 A解析 当a =0时,z =x .仅在直线x =z 过点A (1,1)时, z 有最小值1,与题意不符.当a >0时,y =-1a x +za.斜率k =-1a<0,仅在直线z =x +ay 过点A (1,1)时,直线在y 轴的截距最小,此时z 也最小,与目标函数取得最小值的最优解有无数个矛盾.当a <0时,y =-1a x +z a ,斜率k =-1a>0,为使目标函数z 取得最小值的最优解有无数个,当且仅当斜率-1a =k AC .即-1a =13,∴a=-3.12.要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的今需要A 、B 、C 三种规格的成品分别至少为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?解 设需截第一种钢板x 张,第二种钢板y 张.⎩⎪⎨⎪⎧2x +y ≥15x +2y ≥18x +3y ≥27x ≥0,y ≥0.作出可行域(如图):(阴影部分) 目标函数为z =x +y .作出一组平行直线x +y =t ,其中经过可行域内的点且和原点距离最近的直线,经过直线x +3y =27和直线2x +y =15的交点A⎝ ⎛⎭⎪⎫185,395,直线方程为x +y =575.由于185和395都不是整数,而最优解(x ,y )中,x ,y 必须都是整数,所以可行域内点⎝ ⎛⎭⎪⎫185,395不是最优解. 经过可行域内的整点且与原点距离最近的直线是x +y =12,经过的整点是B (3,9)和C (4,8),它们都是最优解.答 要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种:第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.1.画图对解决线性规划问题至关重要,关键步骤基本上是在图上完成的,所以作图应尽可能准确,图上操作尽可能规范.2.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等)而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,应具体情况具体分析.。

高中数学 第三章 3.3.2简单的线性规划问题(一)导学案新人教A版必修5(2)

高中数学 第三章 3.3.2简单的线性规划问题(一)导学案新人教A版必修5(2)

3.3.2 简单的线性规划问题(一)课时目标1.了解线性规划的意义.2.会求一些简单的线性规划问题.名称 意义 约束条件 由变量x ,y 组成的不等式或方程 线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式组 目标函数 欲求最大值或最小值所涉及的变量x ,y 的函数解析式 线性目标函数 关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合 最优解 使目标函数取得最大值或最小值的可行解线性规划问题 在线性约束条件下求线性目标函数的最大值或最小值问题一、选择题1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1 D.715答案 A解析 画出可行域如图:当直线y =-x +z 过点A 时,z 最大. 由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0得A (4,5),∴z max =4+5=9. 2.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,则x 2+y 2的最大值为( )A.10 B .8 C .16 D .10答案 D解析 画出不等式组对应的可行域如下图所示: 易得A (1,1),|OA |=2,B (2,2), |OB |=22,C (1,3),|OC |=10.∴(x 2+y 2)max =|OC |2=(10)2=10.3.在坐标平面上有两个区域M 和N ,其中区域M =⎩⎨⎧⎭⎬⎫x ,y⎩⎪⎨⎪⎧y ≥0y ≤x y ≤2-x,区域N ={(x ,y )|t ≤x ≤t +1,0≤t ≤1},区域M 和N 公共部分的面积用函数f (t )表示,则f (t )的表达式为( )A .-t 2+t +12B .-2t 2+2tC .1-12t 2 D.12(t -2)2答案 A 解析作出不等式组⎩⎪⎨⎪⎧y ≥0y ≤xy ≤2-x所表示的平面区域.由t ≤x ≤t +1,0≤t ≤1,得f (t )=S △OEF -S △AOD -S △BFC=1-12t 2-12(1-t )2=-t 2+t +12.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A .3,-11B .-3,-11C .11,-3D .11,3 答案 A解析 作出可行域如图阴影部分所示,由图可知z =3x -4y 经过点A 时z 有最小值,经过点B 时z 有最大值.易求A (3,5),B (5,3).∴z 最大=3×5-4×3=3,z 最小=3×3-4×5=-11.5设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0y ≥x,所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,则|AB |的最小值为( )A.285 B .4 C.125 D .2 答案 B解析 如图所示.由约束条件作出可行域,得D (1,1),E (1,2),C (3,3).要求|AB |min ,可通过求D 、E 、C 三点到直线3x -4y -9=0距离最小值的2倍来求.经分析,D (1,1)到直线3x -4y -9=0的距离d =|3×1-4×1-9|5=2最小,∴|AB |min=4.二、填空题6.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3.则目标函数z =2x +3y 的最小值为________.答案 7解析 作出可行域如图所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.(答案用区间表示)答案 (3,8)解析 由⎩⎪⎨⎪⎧-1<x +y <4,2<x -y <3得平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧x+y=-1,x-y=3得⎩⎪⎨⎪⎧x=1,y=-2.由⎩⎪⎨⎪⎧x+y=4,x-y=2得⎩⎪⎨⎪⎧x=3,y=1.∴2×3-3×1<z=2x-3y<2×1-3×(-2),即3<z<8,故z=2x-3y的取值范围是(3,8).8.已知实数x,y满足⎩⎪⎨⎪⎧x+2y-5≤0,x≥1,y≥0,x+2y-3≥0,则yx的最大值为________.答案 2解析画出不等式组⎩⎪⎨⎪⎧x+2y-5≤0,x≥1,y≥0,x+2y-3≥0对应的平面区域Ω,yx=y-0x-0表示平面区域Ω上的点P(x,y)与原点的连线的斜率.A(1,2),B(3,0),∴0≤yx≤2.三、解答题9.线性约束条件⎩⎪⎨⎪⎧x+3y≥12x+y≤103x+y≥12下,求z=2x-y的最大值和最小值.解如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12x +y ≤103x +y ≥12下的可行域,包含边界:其中三条直线中x +3y =12与3x +y =12交于点A (3,3),x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一组与直线2x -y =0平行的直线l :2x -y =z ,即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点B 时,-z 取最小值,此时z 最大,即z max =2×9-1=17;当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.∴z max =17,z min =-7.10.已知⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0,求x 2+y 2的最小值和最大值.解 作出不等式组 ⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0的可行域如图所示,由⎩⎪⎨⎪⎧x -2y +5=02x +y -5=0,得A (1,3), 由⎩⎪⎨⎪⎧ x -2y +5=03x -y -5=0,得B (3,4), 由⎩⎪⎨⎪⎧3x -y -5=02x +y -5=0,得C (2,1),设z =x 2+y 2,则它表示可行域内的点到原点的距离的平方,结合图形知,原点到点B 的距离最大,注意到OC ⊥AC ,∴原点到点C 的距离最小.故z max =|OB |2=25,z min =|OC |2=5. 能力提升11.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +x +y -1≤x ≤4,求x 2+y 2-2的取值范围.解 作出可行域如图,由x 2+y 2=(x -0)2+(y -0)2,可以看作区域内的点与原点的距离的平方,最小值为原点到直线x +y -6=0的距离的平方,即|OP |2,最大值为|OA |2,其中A (4,10),|OP |=|0+0-6|12+12=62=32, |OA |=42+102=116,∴(x 2+y 2-2)min =(32)2-2=18-2=16, (x 2+y 2-2)max =(116)2-2=116-2=114,∴16≤x 2+y 2-2≤114.即x 2+y 2-2的取值范围为16≤x 2+y 2-2≤114. 12.已知实数x 、y 满足⎩⎪⎨⎪⎧2x +y -2≥0x -2y +4≥03x -y -3≤0,试求z =y +1x +1的最大值和最小值. 解 由于z =y +1x +1=y --x --, 所以z 的几何意义是点(x ,y )与点M (-1,-1)连线的斜率,因此y +1x +1的最值就是点(x ,y )与点M (-1,-1)连线的斜率的最值,结合图可知,直线MB 的斜率最大,直线MC 的斜率最小,即 z max =k MB =3,此时x =0,y =2; z min =k MC =12,此时x =1,y =0.∴z 的最大值为3,最小值为12.1.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.2.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.。

(新课程)高中数学《3.3.2简单的线性规划》导学案3 新人教A版必修5

(新课程)高中数学《3.3.2简单的线性规划》导学案3 新人教A版必修5

课题: 3.3.2简单的线性规划(3)一.:自主学习,明确目标1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;教学重点:利用图解法求得线性规划问题的最优解;教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。

教学方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力二.研讨互动,问题生成1、二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:3、用图解法解决简单的线性规划问题的基本步骤:三.合作探究,问题解决1.线性规划在实际中的应用:例5 在上一节例4中,若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?2.若实数x ,y 满足 1311x y x y ≤+≤⎧⎨-≤-≤⎩ 求4x +2y 的取值范围.错解:由①、②同向相加可求得:0≤2x ≤4 即 0≤4x ≤8 ③由②得 —1≤y —x ≤1将上式与①同向相加得0≤2y ≤4 ④③十④得 0≤4x 十2y ≤12以上解法正确吗?为什么?(1)[质疑]引导学生阅读、讨论、分析.(2)[辨析]通过讨论,上述解法中,确定的0≤4x ≤8及0≤2y ≤4是对的,但用x 的最大(小)值及y 的最大(小)值来确定4x 十2y 的最大(小)值却是不合理的.X 取得最大(小)值时,y 并不能同时取得最大(小)值。

由于忽略了x 和 y 的相互制约关系,故这种解法不正确.(3)[激励]产生上述解法错误的原因是什么?此例有没有更好的解法?怎样求解?正解:练习11、求y x z -=的最大值、最小值,使x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤+002y x y x2、设y x z +=2,式中变量x 、y 满足 ⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x自我评价 同伴评价 小组长评价。

山东省乐陵市高中数学第三章不等式3.3.2简单的线性规划(2)学案(无答案)新人教A版必修5

山东省乐陵市高中数学第三章不等式3.3.2简单的线性规划(2)学案(无答案)新人教A版必修5

3.3.2 简单的线性规划(2)【学习目标】:了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的最值问题【自我检测】1.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为A .2B .3C .4D .9 2.设x 、y 满足约束条件5,3212,03,0 4.x y x y x y +≤⎧⎪+≤⎪⎨≤≤⎪⎪≤≤⎩则使得目标函数65z x y =+的最大的点(,)x y是 。

3.求2100z x y =--+的最大值和最小值,其中,x y 满足约束条件⎪⎩⎪⎨⎧≤≤≥-+2202y x y x【合作探究、交流展示】例1.课本96页6题解:设:列:画:解:例2.设x 、y 满足约束条件⎪⎩⎪⎨⎧=--=+-=-+033042022y x y x y x ()()的最大值和最小值的最大值和最小值112122++=+=x y z y x z【反思与总结】1、知识方面: ;2、数学思想及方法: 。

六、达标检测:1.设R 为平面上以A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界),则z=4x -3y 的最大值与最小值分别为( )A 、最大值14,最小值-18B 、最大值-14,最小值-18C 、最大值18,最小值14D 、最大值18,最小值-142.已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩则2x y +的最大值是 。

4.已知点),(y x P 的坐标满足条件⎪⎩⎪⎨⎧≥≥≤+14x x y y x ,则22y x +的最大值为( ) 10.A 8.B 16.C 10.D5.若y x ,满足⎪⎩⎪⎨⎧≤≤≥+446y x y x 则11--=x y z 的最大值是 。

山东省德州市乐陵一中高中数学 3.3.2简单的线性规划(第2课时)学案 新人教A版必修5

山东省德州市乐陵一中高中数学 3.3.2简单的线性规划(第2课时)学案 新人教A版必修5

山东省德州市乐陵一中高二数学 3.3.2简单的线性规划(第2课时)学案新人教A版必修5注:这一讲例、习题个数减少一点,是根据实际情况定点3.3.2 简单的线性规划(第3课时)30**学习目标**1.能应用线性规划的方法解决一些简单的实际问题特别注意求最优解是整数解的问题2.培养观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高“建模”和解决实际问题的能力**要点精讲**线性规划的两类重要实际问题:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小**范例分析**1.产品安排问题例1 某工厂生产甲、乙两种产品.已知生产甲种产品1 t,需耗A种矿石10 t、B种矿石5 t、煤4 t;生产乙种产品需耗A种矿石4 t、B种矿石4 t、煤9 t.每1 t甲种产品的利润是600元,每1 t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过360 t、B种矿石不超过200 t、煤不超过300 t,甲、乙两种产品应各生产多少(精确到0.1 t),能使利润总额达到最大?2.物资调运问题例2 已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?3.下料问题例3 要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格今需要、、三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?规律总结简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解(4)根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解 **基础训练** 一、选择题1.在不等式⎩⎨⎧≤+-≥-+0153042y x y x 表示的区域内,满足目标函数y x t +=取得最小值的整数点),(y x 是 ( )A.)2,3(B.)3,2(C.)2,1(D.)1,2(2.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A 、B 两种规格的金属板,每张面积分别为2m 2、3 m 2,用A 种金属板可造甲产品3个,乙产品5个,用B 种金属板可造甲、乙产品各6个,则A 、B 两种金属板各取多少张时,能完成计划并能使总用料面积最省?( )A .A 用3张,B 用6张 B .A 用4张,B 用5张C .A 用2张,B 用6张D .A 用3张,B 用5张3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提财投资后,在两个项目上共可获得的最大利润为( )A.36万元B.31.2万元C.30.4万元D.24万元 二、填空题4.若y x ,都是非负整数,则满足5≤+y x 的点共有________个;5.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元. 三、解答题6.某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大?7.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?**能力提高**8.(08年山东理12)设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩,,≥≥≤所表示的平面区域为M ,使函数(01)xy a a a =>≠,的图象过区域M 的a 的取值范围是( )A .[13], B. C .[29], D.9.A 市、B 市和C 市分别有某种机器10台、10台和8台.现在决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机到D 市、E 市的运费分别为200元和800元;从B 市调运一台机器到D 市、E 市的运费分别为300元和700元;从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器全部调运完毕后,用x 、y 表示总运费W (元),并求W 的最小值和最大值.3.3.2 简单的线性规划(第3课时)30 例1.分析:将已知数据列成下表:解:设生产甲、乙两种产品分别为 t 、 t ,利润总额为元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为:z =600x +1000y .作出以上不等式组所表示的平面区域,即可行域.作直线l :600x +1000y =0, 即直线l :3x +5y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =600x +1000y 取最大值.解方程组⎩⎨⎧=+=+,36094,20045y x y x得M 的坐标为x =29360≈12.4,y =291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大例2.解:设甲煤矿向东车站运l 万吨煤,乙煤矿向东车站运y 万吨煤,那么总运费z =x +1.5(200-x )+0.8y +1.6(300-y )(万元)即z =780-0.5x -0.8y .x 、y 应满足:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤-+-≤+≥-≥-≥≥360)300(2002800300020000y x y x y x y x 作出上面的不等式组所表示的平面区域设直线x+y =280与y 轴的交点为M ,则M (0,280)把直线l :0.5x +0.8y =0向上平移至经过平面区域上的点M 时,z 的值最小 ∵点M 的坐标为(0,280),∴甲煤矿生产的煤全部运往西车站、乙煤矿向东车站运280万吨向西车站运20万吨时,总运费最少例3.解:设需截第一种钢板x 张,第二种钢板y 张,根据题意可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,273,182,152y x y x y x y x 作出以上不等式组所表示的平面区域,即可行域:目标函数为z =x +y ,作出在一组平行直线x +y =t (t 为参数)中经过可行域内的点且和原点距离最近的直线,此直线经过直线x +3y =37和直线2x +y =15的交点A(539,518),直线方程为x +y =557 由于539518和都不是整数,而最优解(x ,y )中,x 、y 必须满足x ,y ∈Z ,所以,可行域内点(539,518)不是最优解经过可行域内的整点(横坐标和纵坐标都是整数的点)且与原点距离最近的直线是x +y =12,经过的整点是B (3,9)和C (4,8),它们是最优解答:要截得所需规格的三种钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张,两种方法都最少要截得两种钢板共12张**参考答案** 1.D ;2.A ;提示:设A 、B 两种金属板各取,x y 张,则36455650,23x y x y x y N z x y+≥⎧⎪+≥⎪⎨∈⎪⎪=+⎩;3.B ;提示:设投资甲、乙两个项目各,x y 万元,则60325,50.40.6x y x y x y z x y+≤⎧⎪≥⎪⎨≥≥⎪⎪=+⎩; 4.21; 5.500;6.解:将已知数据列成下表:设生产甲、乙两种棉纱分别为x 吨、y 吨,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0025023002y x y x y x z =600x +900y .作出以上不等式组所表示的平面区域(如图),即可行域作直线l :600x +900y =0,即直线l :2x +3y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =600x +900y 取最大值.解方程组⎩⎨⎧=+=+25023002y x y x ,得M 的坐标为x =3350≈117,y =3200≈67 答:应生产甲种棉纱117吨,乙种棉纱67吨,能使利润总额达到最大7.解:设每天生产A 型桌子x 张,B 型桌子y 张则⎪⎩⎪⎨⎧≥≥≤+≤+0,09382y x y x y x , 目标函数为:z =2x +3y 作出可行域:把直线l :2x +3y =0向右上方平移至l '的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =2x +3y 取最大值解方程⎩⎨⎧=+=+9382y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润7.解:区域M 是三条直线相交构成的三角形(如图)显然1a >,只需研究过(1,9)、(3,8)两种情形, 19a ≤且38a ≥即29.a ≤≤9.解:由题意可得,A 市、B 市、C 市调往D 市的机器台数分别为x 、y 、(18- x - y ),调往E 市的机器台数分别为(10- x )、(10- y )、[8-(18- x - y )].于是得W=200 x +800(10- x )+300 y +700(10- y )+400(18- x - y )+500[8-(18- x - y )] =-500 x -300 y +17200设W=17200-100T ,其中T=5 x +3 y , 又由题意可知其约束条件是 ⎪⎩⎪⎨⎧≤+≤≤≤≤≤⇒⎪⎩⎪⎨⎧≤--≤≤≤≤≤18101001008180100100y x y x y x y x 作出其可行域如图:作直线l 0:5 x +3 y =0,再作直线l 0的平行直线l : 5 x +3 y =T当直线l 经过点(0,10)时,T取得最小值, 当直线l 经过点(10,8)时,T取得最大值, 所以,当x =10,y =8时,W min =9800(元) 当x =0,y =10时,W max =14200(元). 答:W的最大值为14200元,最小值为9800元.。

高中数学人教版必修5导学案:3.3.2简单的线性规划

高中数学人教版必修5导学案:3.3.2简单的线性规划

§3.3.2简单的线性规划班级姓名组别代码评价【使用说明与学法指导】1.在自习或自主时间通过阅读课本的例5、例6、例7用20分钟把预习探究案中的所有知识完成。

训练案在自习或自主时间完成。

2.重点预习:从实际情境中抽象出一些简单的二元线性规划问题,并加以解决。

3.把有疑问的题做好标记或写到后面“我的疑问处”。

【学习目标】1.巩固线性规划问题的图解法,并能应用它解决一些简单的实际问题。

2.经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力。

3. 结合教学内容体会线性规划的化归、数形结合的数学思想,增强观察、联想以及作图的能力,提升数学建模能力和解决实际问题的能力.【学习重点】从实际情境中抽象出一些简单的二元线性规划问题,并加以解决。

【学习难点】从实际情境中抽象出一些简单的二元线性规划问题,并加以解决。

【知识链接】用图解法解决简单的线性规划问题的基本步骤?【预习案】预习一:巩固用图解法解决线性规划问题例1.求的最大值,使、满足约束条件预习自测:设x 、y 满足约束条件2438x y x y ≤≤⎧⎪≥⎨⎪+≤⎩,求y x z 23-=的最大值、最小值。

【探究案】探究: 应用线性规划问题的图解法解决一些简单的实际问题例2.营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食物A 含有0.105kg 碳水化合物,0.07kg 蛋白质,0.14kg 脂肪,花费28元;而1kg 食物B 含有0.105kgy x z -=x y ⎪⎩⎪⎨⎧≥≥≤+002y x y x碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。

为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B 多少kg?归纳:应用线性规划问题的图解法解决一些简单的实际问题的基本步骤:练习:某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元。

人民教育A版编号32第三章 3.3.2简单的线性规划(三)导学案

人民教育A版编号32第三章 3.3.2简单的线性规划(三)导学案

第三章 3.3.2二元一次不等式(组)与平面区域制作人:胡效尊审核人:高二数学组使用时间:2018-02-08学习目标:1.会从实际情境中列举出一些简单的二元线性规划问题,并能加以解决.2.培养学生应用线性规划的有关知识解决实际问题的能力.常见的线性规划类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务最多,得到的效益最大;(目标函数的最大值问题)(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源最少.此类问题常见的有:①物资调运;②产品安排问题;③用料问题.(目标函数的最小值问题)探究问题(一)收益最大问题(利润、收入、产量等等)例1.某工厂计划生产甲、乙两种产品,这两种产品都需要两种原料.生产甲产品1工时需要A种原料3kg,B种原料1kg;生产乙产品1工时需要A种原料2kg,B种原料2kg.现有A种原料1 200kg,B种原料800kg.如果生产甲产品每工时的平均利润是30元,生产乙产品每工时的平均利润是40元,问甲、乙两种产品各生产多少工时能使利润的总额最大?最大利润是多少?[方法规律总结] 利用线性规划解决实际问题的步骤是:①设出未知数(当数据较多时,可以列表格来分析数据);②列出约束条件,确立目标函数;③作出可行域;④利用图解法求出最优解;⑤得出结论.变式训练1:某厂计划生产甲、乙两种产品,甲产品售价50千元/件,乙产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4t/件,B种原料2t/件,生产乙产品需要A种原料3t/件,B种原料1t/件,该厂能获得A 种原料120t,B种原料50t.问生产甲、乙两种产品各多少件时,能使销售总收入最大?最大总收入为多少?探究问题(二)耗费资源(人力、物力、财力等)最少问题例2:某公司租赁甲、乙两种设备生产A、B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件与B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元.现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为________元.变式训练某公司的仓库A存有货物12t,仓库B存有货物8t.现按7t、8t和5t把货物分别调运给甲、乙、丙三个商店,从仓库A运货物到商店甲、乙、丙,每吨货物的运费分别为8元、6元、9元、从仓库B运货物到商店甲、乙、丙,每吨货物的运费分别为3元、4元、5元.则应如何安排调运方案,才能使得从两个仓库运货物到三个商店的总运费最少?探究问题(三)整数最优解不是边界点问题某人有楼房一幢,室内面积共计180 m2,拟分割成两类房间作为旅游客房.大房间每间面积为18 m2,可住游客5名,每名旅客每天住宿费40 元;小房间每间面积为15 m2,可以住游客3名,每名游客每天住宿费为50元;装修大房间每间需要1 000元,装修小房间每间需600元.如果他只能筹款8 000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?[方法规律总结] 整数最优解不是边界点时,要取可行域内距离最优解最近的点检验找出整数最优解,或者利用格点法(即过x轴与y轴上的整点作与坐标轴平行的直线,从网格交点中找位于可行域内使z取最值的点.)变式训练:要将甲、乙两种长短不同的钢管截成A、B、C三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示:今需A、B、C三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少.练练手:课堂小结:1.这节课学到了什么2.各小组表现如何课后作业:。

新人教版高中数学3.3.2简单的线性规划问题(一)导学案

新人教版高中数学3.3.2简单的线性规划问题(一)导学案

§3.3.2简单的线性规划问题(一)导学案【学习目标】一、知识与技能1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题。

二、过程与方法1.经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;2.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识;3.在学习过程中通过相互讨论培养学生的团结协作精神。

三、情感、态度与价值观1.培养学生观察、联想以及作图的能力,2.渗透化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。

【教学过程】一、实例引入问题一:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,且甲乙两种产品不能同时生产,该厂所有可能的日生产安排是什么?12二、问题升华问题二:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,你作为厂家的老总,将采用哪种生产安排使利润最大?三、合作探究思考讨论:【问题一】把z看作参数,则z=2x+3y表示什么图形?【问题二】在约束条件下,如何找满足函数z=2x+3y最大值的点?【问题三】找到满足条件的点后,如何求函数z=2x+3y的最大值?解简单的线性规划问题的步骤为:四、学以致用1.求z=3x+5y 的最小值, 使x , y 满足约束条件2.变式:求z =x -2y 的最小值呢?注意:求线性目标函数的最优解,要注意分析 的关系5315,1,5 3.x y y x x y +⎧⎪+⎨⎪-⎩≤≤≤五、课后练习(一)选择题1.目标函数4z x y =+将其看成直线方程时,z 的几何意义是( )A .该直线的截距B .该直线的纵截距C .该直线的横截距D .该直线的纵截距的相反数2.z x y =-在2102101x y x y x y -+≥⎧⎪--≤⎨⎪+≤⎩的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(1,1)--C .(1,0) D.11(,)223.若实数x ,y 满足不等式组x 3y 302x y 30x y 10+-≥⎧⎪--≤⎨⎪-+≥⎩则x y +的最大值为( )A .9 B.157 C .1 D.7154.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是( )A .12万元B .20万元C .25万元D .27万元(二)填空题5.已知点(,)p x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩ (k 为常数),若3x y +的最大值为8,则k =________.6.铁矿石A和B的含铁率a,,冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c2(万吨),则2购买铁矿石的最少费用为________(百万元).。

高中数学 3.3.2简单的线性规划学案 新人教A版必修5

高中数学 3.3.2简单的线性规划学案 新人教A版必修5

3.3.2 简单的线性规划学习目标1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.了解线性规划问题的图解法,并能应用它解决一些简单的最值问题要点精讲1. 研究一个问题:设2t x y =+,式中变量,x y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x 。

求t 的最大值和最小值分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC.作一组与直线0l :2x +y =0平行的直线l :2x +y =t ,t ∈R (或平行移动直线0l ),从而观察t 值的变化:]12,3[2∈+=y x t从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,t =2x +y =0. 点(0,0)在直线0l :2x +y =0上.作一组与直线0l 平行的直线(或平行移动直线0l )l :2x +y =t ,t ∈R.可知,当l 在0l 的右上方时,直线l 上的点(x ,y )满足2x +y >0, 即t >0.而且,直线l 往右平移时,可以发现t 随之增大.在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线2l 所对应的t 最大,以经过点A (1,1)的直线1l 所对应的t 最小.所以: m ax t =2×5+2=12,min t =2×1+3=3。

2. 目标函数, 线性目标函数线性规划问题,可行解,可行域, 最优解:诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件。

t =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解 范例分析例1.给出下列命题:①线性规划中最优解指的是使目标函数取得最大值或最小值的变量x 或y 的值;②线性规划中最优解指的是目标函数的最大值或最小值;③线性规划中最优解指的是使目标函数取得最大值或最小值的可行域;④线性规划中最优解指的是使目标函数取得最大值或最小值的可行解.其中正确的是( )A.①②B.②③C.②④D.④例2.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x 。

高中数学 3.3.2简单线性规划问题说课教案 新人教A版必

高中数学 3.3.2简单线性规划问题说课教案 新人教A版必

《简单的线性规划问题》(第一课时)说课一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。

简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.二、目标和目标解析(一)教学目标1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念.2. 会用图解法求线性目标函数的最大值、最小值.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识.(二)教学目标解析x y表示一个方案;约束条件是一次不1. 了解线性规划模型的特征:一组决策变量(,)等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2.使学生学会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为画、移、求、答.3.教学中不但要教教材,还要教教材中的蕴含的方法.在探究如何求目标函数的最值时,通过以下几方面让学生领悟数形结合思想、化归思想在数学中的应用.(1)不定方程的解与平面内点的坐标的结合,进而产生了直线的方程.(2)线性目标函数解析式与直线的斜截式方程的结合.(3)线性目标函数的函数值与直线的纵截距的结合.(4)二元一次不等式(组)的解集与可行域的结合.(5)线性目标函数在线性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合.这样就能使学生对数形结合思想的理解更透彻,为以后解析几何的学习和研究奠定基础, 使学生从更深层次理解“以形助数”的作用以及具体方法.4. 在线性规划问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,培养解决运用已有知识解决新问题的能力.三、教学问题诊断分析本节课学生在学习过程中可能遇到以下疑虑和困难:(1)将实际问题抽象成线性规划问题;(2)用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?(3)数形结合思想的深入理解.为此教学中教师要千方百计地为学生创设探究情境,并作合理适度的引导,通过学生的积极主动思考,运用由特殊到一般的研究方法,借助于讨论、动手画图等形式进行深入探究.教师的引导是至关重要的,要做到既能给学生启示又能发展学生思维,让学生通过自己的探究获取直接经验.教学难点:用图解法求最优解的探索过程;数形结合思想的理解.教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系四、教法分析新课程倡导学生积极主动、勇于探索的学习方式,课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.本节课以学生为中心,以问题为载体,采用启发、引导、探究相结合的教学方法.(1)设置“问题”情境,激发学生解决问题的欲望;(2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.(3)在教学中体现“重过程、重情感、重生活”的理念;(4)让学生经历“学数学、做数学、用数学”的过程.五、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,求出目标函数的最值.让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.六、教学过程(一) 创设情境,激发探究欲望组织学生做选盒子的游戏活动.在下图的方格中,每列(x )与每行(y )的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子?例如: 第一次:分值=x y + (即: 列数+行数)第二次:分值=2y x - (即: 行数-列数×2)师生活动:教师组织学生做选盒子得分的游戏,学生用“运算—比较”的方法容易解决老师提出的问题.之后,给出图3,让学生在图中找目标函数2b x y =+的最大值,学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”.引出课题,提出何为线性(即为一次的)?怎么规划(即求函数的最值)?是本节课的研究重点.x y 0 1 2 3 4 5 1 2 4 3 y 01 2 3 4 5 x 1 2 4 3 图1 图2【设计意图】数学是现实世界的反映.创设学生感兴趣的问题情境,从兴趣解决→稍有困难→有较大困难,使学生产生急于解决问题的内驱力,同时培养学生从实际问题抽象出数学模型的能力.(二)独思共议,引导探究方法引导学生由特殊到一般分析目标函数的函数值.问题1:当6b =时,求x ,y 的值.师生活动:学生通过计算找到三个点的坐标,并观察出三点共线,求出直线方程26y x =-+,教师引导学生观察6b =所对应的直线的纵截距.【设计意图】通过特殊问题,帮助学生理解问题的实质:求x ,y 的值即求不定方程的解.数形结合,将求变量x ,y 转化成求点的坐标(,)x y .观察6b =时三个盒子所在点的位置关系及直线的方程,使学生体会b 值就是直线的纵截距.问题2.在图3中,求2b x y =+的最大值.师生活动:学生在教师的引导下分组讨论,求b 的最大值.通过之前教师的引导及学生对上一节“二元一次不等式表示的平面区域”的学习,对学生的讨论结果有两种预案:预案1:学生通过由特殊到一般的分析,将目标函数2b x y =+转化成2y x b =-+,x ,y 在取得每个可行解时,b 的取值就是直线2y x b =-+过(,)x y 这个点时的纵截距,而所有x1 45 2 3 7 9 10 11 81234O y图3这些直线都是平行的,因此只需平移直线看纵截距的最大值即可.预案2:根据上一节“二元一次不等式(组)所表示的平面区域”的知识,学生认为b 取最大值时x 、y 的取值一定在直线26y x =-+的右上方的位置,为此就依次在这些位置上画平行于26y x =-+的直线,只要上面有点就不停的画,直至最后一点.师生活动:学生展示讨论结果,教师借助几何画板作演示、分析,渗透转化和数形结合的数学思想.并对学生的结论作出总结,先作直线2y x =-,再作平移,观察直线的纵截距.【设计意图】由特殊到一般,利用数形结合,寻求解题思路. (三)变式思考,深化探究思路1.将目标函数变成34b x y =+, 求b 的最大值.师生活动:通过学生将34b x y =+化成344b y x =-+的形式,做直线34y x =-并进行平移,观察纵截距的最大值的回答过程,教师强调解题步骤:画、作、移、求.【设计意图】规范方法并检验学生对方法的理解程度,使学生感受由直线斜率的变化引起使b 取最大值的过程中点的变化.2.将目标函数变成34b x y =-,求b 的最大值.师生活动:教师引导学生比较此题和上题的区别,学生发现平移直线时若按上题的方法找纵截距的最大值便会出现问题,通过思考、讨论,找到本题需取截距最小的原因.【设计意图】通过目标函数的不同变式,让学生熟悉求最值的方法,尤其是直线中纵截距的符号为负的情况.借助“几何画板”集中呈现目标函数的图形变化,提高课堂效率,建立精准的数形联系.(四)规范格式,应用探究成果1.例1:(习题3.3A 组第3题)电视台应某企业之约播放两套连续剧,其中,连续剧甲每次播放时间为80min ,其中广告时间为1min ,收视观众为60万;连续剧乙每次播放时间为40min ,广告时间为1min ,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6mi n 广告,而电视台每周只能为该企业提供不多于320min 的节目时间.如果你是电视台的制片人,电视台每周应播映两套连续剧各多少次,才能获得最高的收视率?播放时间(min) 广告时间(min) 观众人数(万) 甲 80 1 60乙 40 1 20 320≥ 6≤解:设甲播放x 次,乙播放y 次,收视观众z 万人次则6020z x y =+.8040320,6,0,0.x y x y x y +≥⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 用如下步骤求z 的最大值:(1)画出可行域;(2)作出直线0l :3y x =-(3)平移0l 至点A 处纵截距最大,即z 最大;(4)解方程组:80403206x y x y +=⎧⎨+=⎩ 得24x y =⎧⎨=⎩,因此max 200z =.答:甲播放2次,乙播放4次,收视观众最多为200万人次.师生活动:教师引领学生理解题意,让学生继续领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题.通过学生板演,教师规范写法,然后借助解题的过程介绍线性目标函数、线性约束条件、可行解、可行域、最优解及线性规划的数学概念.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2.反思例1解题过程,深入体会数形结合思想师生活动:教师引导学生纵观解题过程,体会在解题中“数”与“形”是怎样结合的,并加以总结.代数几何 线性目标函数6020z x y =+直线320z y x =-+ 线性目标函数的函数值 直线的纵截距线性约束条件(二元一次不等式(组)的解集)可行域 线性目标函数的最值 直线的纵截距的最值 转化 图4x y O【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.3.例2:(课本例2)营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪.1kg 食物A 含有0.105kg 的碳水化合物,0.07kg 的蛋白质,0.14kg 的脂肪,花费28元; 1kg 食物B 含有0.105kg 的碳水化合物,0.14kg 的蛋白质,0.07kg 的脂肪,花费21元.为了满足饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg?师生活动:学生独自完成此题,由一位同学生展示自己的解题过程和结果.规范解题步骤和格式.解:设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,那么0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩① 目标函数为2821z x y =+二元一次不等式组①等价于775,7146,1476,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ 二元一次不等式组所表示的平面区域(图5)考虑2821z x y =+,将它变形为4321z y x =-+. 这里4321z y x =-+是斜率为43-,随z 变化的一组平行直线,21z 是直线在y 轴上的截距,当21z 取最小值时,z 的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821z x y =+取得最小值.由图5可见,当直线2821z x y =+经过可行域上的点M 时,截距21z 最小,即z 最小. 解方程组775,147 6.x y x y +=⎧⎨+=⎩ 得M 的坐标为17x =,47y =.所以282116z x y =+=.答:每天食用食物A 为17kg ,食物B 为47kg ,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.4.反思例2的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.(五) 归纳梳理,体会探究价值由学生和教师共同总结本节课所学到的知识.师生活动:先由学生总结学习的内容,教师作补充说明,尤其是本节课是如何经历的知识探究过程,如何运用化归与数形结合思想得到方法,以及如何通过数学建模解决实际问题.再有教师介绍数学是有用的,通过本节课看到了时间如何合理分配收获最大的问题,如何使消费最少保证饮食健康的问题,还有很多实际应用由学生自己查资料作为拓展作业.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六) 目标检测题 1.在线性约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≤⎩下,求①目标函数35z x y =+的最大值和最小值;②目标函数310z x y =-的最大值和最小值;2.某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.。

山东省德州市乐陵一中高中数学 3.3.2简单的线性规划(第3课时)学案 新人教A版必修5

山东省德州市乐陵一中高中数学 3.3.2简单的线性规划(第3课时)学案 新人教A版必修5

**学习目标**1.进一步提高将实际问题转化为线性规划问题的能力; 2.能将代数问题转化为斜率或距离等几何问题。

**要点精讲**1、 两点()11,A x y ,()22,B x y 连线的斜率公式:2121AB y y k x x -=-。

2.两点()11,A x y ,()22,B x y 之间的距离:()()221212AB x x y y =-+-。

3.以点(),C a b 为圆心,r 为半径的圆方程:()()222x a y b r -+-=。

平面区域问题有以下几种常见类型:(1)根据题设条件画出平面区域,并求出区域面积、边界曲线方程;(2)计算平面区域中整点的个数;(3)运用平面区域求与之相关的最值、取值范围等问题。

**范例分析**1.根据题设条件画出平面区域 例1.A=(){},|1,1x y x y ≤≤,B=(){}22,|1x y xy +≤,C=(){},|1x y x y +≤,求A,B,C之间的包含关系?2.求平面区域内整点的个数例2.在直角坐标平面上,求满足不等式组313100y x y x x y ≤⎧⎪⎪≥⎨⎪+≤⎪⎩的整点个数。

3.根据平面区域求有关最值、取值范围例3.画出30502400,0x y x y x y x y -+≥⎧⎪+-≤⎪⎨--≤⎪⎪≥≥⎩所表示的平面区域:(1)求22(1)(1)z x y =++-的最值; (2)求11y z x -=+的取值范围。

3.利用平面区域求解代数问题例4.(1)设,)(2c ax x f -=且4(1)1,1(2)5f f -≤≤--≤≤,试用线性规划方法求)3(f的取值范围是 。

(2)实系数方程220x ax b ++=的两根,αβ满足01,12αβ<<<<,则21b a --的取值范围是( )A 、1,14⎛⎫⎪⎝⎭ B 、1,12⎛⎫ ⎪⎝⎭ C 、11,24⎛⎫- ⎪⎝⎭ D 、11,22⎛⎫- ⎪⎝⎭引申:求22z a b =+的取值范围。

高中数学 第三章 不等式 3.3.2 简单的线性规划(2)学案(无答案)新人教A版必修5(2021

高中数学 第三章 不等式 3.3.2 简单的线性规划(2)学案(无答案)新人教A版必修5(2021

山东省乐陵市高中数学第三章不等式3.3.2 简单的线性规划(2)学案(无答案)新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省乐陵市高中数学第三章不等式3.3.2 简单的线性规划(2)学案(无答案)新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省乐陵市高中数学第三章不等式3.3.2 简单的线性规划(2)学案(无答案)新人教A 版必修5的全部内容。

3.3.2 简单的线性规划(2)【学习目标】:了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的最值问题【自我检测】1.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为A .2B .3C .4D .9 2.设x 、y 满足约束条件5,3212,03,0 4.x y x y x y +≤⎧⎪+≤⎪⎨≤≤⎪⎪≤≤⎩则使得目标函数65z x y =+的最大的点(,)x y 是 。

3.求2100z x y =--+的最大值和最小值,其中,x y 满足约束条件⎪⎩⎪⎨⎧≤≤≥-+2202y x y x【合作探究、交流展示】例1.课本96页6题解:设:列:画:解:例2。

设x 、y 满足约束条件⎪⎩⎪⎨⎧=--=+-=-+033042022y x y x y x ()()的最大值和最小值的最大值和最小值112122++=+=x y z y x z【反思与总结】1、知识方面: ;2、数学思想及方法: 。

六、达标检测:1.设R 为平面上以A (4,1),B (-1,-6),C(-3,2)为顶点的三角形区域(包括边界),则z=4x -3y 的最大值与最小值分别为( )A 、最大值14,最小值-18B 、最大值-14,最小值-18C 、最大值18,最小值14D 、最大值18,最小值-142.已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩则2x y +的最大值是 。

2019-2020学年高二数学《3.3.2-简单的线性规划应用》教案

2019-2020学年高二数学《3.3.2-简单的线性规划应用》教案

2019-2020学年高二数学《3.3.2 简单的线性规划应用》教案一、学习目标1.体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题;2.掌握寻找整点最优解的方法;3.求解非线性目标函数的最值(结合目标函数的几何意义)二、学习重点掌握寻找整点最优解的方法。

三、学习难点求解非线性目标函数的最值(结合目标函数的几何意义)。

四、学习过程(一)复习:已知变量 x , y 满足约束条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩求2x+y 的最值目标函数:约束条件:可行解:可行域:最优解:(二)学习新知实例感知题型一:寻找整数点最优解的方法例 1 要将两种大小不同的钢板截成 A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如表所示:今需要三种规格的成品分别为12 块、1 5 块、2 7 块,各截这两种钢板多少张可得所需 A 、B 、C 、三种规格成品,且使所用钢板张数最少?知识小结:寻找整点最优解的方法1. 平移找解法:先打网格,描整点,平移直线,最先经过或最后经过的整点便是最优整点解,这种方法应用于充分利用非整点最优解的信息,结合精确的作图才行,当可行域是有限区域且整点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较求最优解.2. 调整优值法:先求非整点最优解及最优值,再借助不定方程的知识调整最优值,最后筛先出整点最优解.3. 由于作图有误差,有时仅由图形不一定就能准确而迅速地找到最优解,此时可将数个可能解逐一检验。

注意点:网格法要求做图精确,当不容易判别哪个解更接近最优解时可将各个可能逐一检查即可见分晓。

(三)实战演练北京某商厦计划同时出售新款空调和洗衣机,由于这两种产品的市场需求量大,供不应求,因此该商厦要根据实际情况(如成本、工资)确定产品的月供应量,以使得总利润最大,通过调查,得到这两种产品有关数据如下表试问:怎样确定两种产品的月供应量,才能使总利润最大,最大利润是多少?题型二:求解非线性目标函数的最值例2:已知:2040250x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩,求(1)yzx=的最大值和最小值(2)22z x y=+的最大值(1)画出可行域(2)思考yzx=,22z x y=+的几何意义知识小结:非线性目标函数求解需结合目标函数的几何意义变式训练:已知2040250x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩,求:(1)221025z x y y=+-+的最小值(2)211yzx+=+的范围巩固练习:已知x、y满足约束条件2510236210x yx yx y+≥⎧⎪-≤-⎨⎪+≤⎩,求11yx++的取值范围(四)自我回顾课堂小结:1.掌握寻找整点最优解的方法;(平移求解法、调整最优值、逐一检验法)2. 求解非线性目标函数的最值(结合目标函数的几何意义)(五)课后实践1. 完成一项装修工程,请木工需付工资每人 50 元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x 人,瓦工y 人,请工人的约束条件是().A.50x + 40y = 2000 B.50x + 40y ≤ 2000C.50x + 40y ≥ 2000 D.40x + 50y ≤20002. 变量x, y 满足约束条件232421229360,0x yx yx yx y+≥⎧⎪+≥⎪⎨+≥⎪⎪≥≥⎩则使得z = 3x + 2 y 的值的最小的(x, y ) 是().A.(4,5) B.(3,6) C.(9,2)D.(6,4)3.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件。

数学:3.3.2教案(3)(新人教A版必修5)

数学:3.3.2教案(3)(新人教A版必修5)

课题: §3.3.2简单的线性规划第3课时授课类型:新授课 【三维目标】1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。

【教学重点】用图解法解决简单的线性规划问题 【教学难点】准确求得线性规划问题的最优解 【教学过程】1.课题导入[复习提问]1、二元一次不等式0>++C By Ax 在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。

2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。

1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ ………….(1) (2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。

(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: 3.3.2简单的线性规划(3)
一.:自主学习,明确目标 1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;
2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;
教学重点:利用图解法求得线性规划问题的最优解;
教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。

教学方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力
二.研讨互动,问题生成
1、二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)
2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:
3、用图解法解决简单的线性规划问题的基本步骤:
三.合作探究,问题解决
1.线性规划在实际中的应用:
例5 在上一节例4中,若生产1车皮甲种肥料,产生的利润为10 000
元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?
2.若实数x ,y 满足
13
11x y x y ≤+≤⎧⎨-
≤-≤⎩ 求4x +2y 的取
值范围.
错解:由①、②同向相加可求得:
0≤2x ≤4 即 0≤4x ≤8 ③
由②得 —1≤y —x ≤1
将上式与①同向相加得0≤2y ≤4 ④
③十④得 0≤4x 十2y ≤12
以上解法正确吗?为什么?
(1)[质疑]引导学生阅读、讨论、分析.
(2)[辨析]通过讨论,上述解法中,确定的0≤4x ≤8及0≤2y ≤4是对的,但用x 的最大(小)值及y 的最大(小)值来确定4x 十2y 的最大(小)值却是不合理的.X 取得最大(小)值时,y 并不能同时取得最大(小)值。

由于忽略了x 和 y 的相互制约关系,故这种解法不正确.
(3)[激励]产生上述解法错误的原因是什么?此例有没有更好的解法?怎样求解?
正解:
练习1
1、求y x z -=的最大值、最小值,使x 、y 满足条件⎪⎩⎪⎨⎧
≥≥≤+0
02
y x y x
2、设y x z +=2,式中变量x 、y 满足 ⎪⎩⎪⎨⎧≥≤+-≤-1
25533
4
x y x y x
自我评价 同伴评价 小组长评价。

相关文档
最新文档