深圳市南山前海中学2020年秋九年级数学上学期期中试题卷附答案解析

合集下载

2019-2020学年广东省深圳中学九年级(上)期中数学试卷含解析

2019-2020学年广东省深圳中学九年级(上)期中数学试卷含解析

2019-2020学年广东省深圳中学九年级(上)期中数学试卷一、选择题(本部分共12分,每小题3分,共36分)1.(3分)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形2.(3分)下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.3.(3分)一元二次方程x(x﹣3)=0的根是()A.0B.3C.0和3D.1和34.(3分)一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为()A.B.C.D.5.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.56.(3分)如图所示的工件的主视图是()A.B.C.D.7.(3分)如图,在矩形ABCD中,对角线AC、BD交于O,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECO的面积是()A.B.C.D.8.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B.C.2D.+19.(3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(2,)B.(﹣2,﹣)C.(2,)或(﹣2,)D.(2,)或(﹣2,﹣)10.(3分)如图,小明晚上由路灯A下的点B处走到点C处,测得自身影子CD的长为1米,向前继续走3米,测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()米.A.8B.7.2C.6D.4.511.(3分)如图,A,B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=3,EF=,则k2﹣k1=()A.4B.C.D.612.(3分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2时,BE的长为,其中正确的编号组合是()A.①②③B.①②④C.①③④D.①②③④二、填空题(每小题3分,共12分)13.(3分)已知x1,x2是一元二次方程5x(x﹣3)=1的解,则x1+x2的值为.14.(3分)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(4,0)、(0,2),点C为线段AB上任意一点(不与点A、B重合).CD⊥OA于点D,点E在DC的延长线上,EF⊥y轴于点F,若点C为DE中点,则四边形ODEF的周长为.16.(3分)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6,则另一直角边BC的长为.三、解答题(本大题共7个小题)17.(6分)解方程:(x﹣3)(x﹣1)=15.18.(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为,中位数在第组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.组别成绩x分频数(人数)第1组50≤x<606第2组60≤x<708第3组70≤x<8014第4组80≤x<90a第5组90≤x<1001019.(8分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.20.(8分)某商店从厂家以每件18元购进一批商品出售,若每件售价为a元,则可售出(320﹣10a)件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?21.(8分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.22.(8分)如图,A、B在一直线上,小明从点A出发沿AB方向匀速前进,4秒后走到点D,此时他(CD)在某一灯光下的影长为AD,继续沿AB方向以同样的速度匀速前进4秒后到点F,此时他(EF)的影长为2米,然后他再沿AB方向以同样的速度匀速前进2秒后达点H,此时他(GH)处于灯光正下方.(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明沿AB方向匀速前进的速度.23.(8分)如图,反比例函数y=(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A、B,四边形OAMB的面积为6.(1)求k的值;(2)点P在(1)的反比例函数y=(x>0)的图象上,若点P的横坐标为3,在x轴上有一点D(4,0),若在直线y=x上有动点C,构成△PDC,其面积为3,请写出C点的坐标;(3)若∠EPF=90°,其两边分别为与x轴正半轴,直线y=x交于点E、F,问是否存在点E,使PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.2019-2020学年广东省深圳中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本部分共12分,每小题3分,共36分)1.【解答】解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.2.【解答】解:设小正方形的边长为1,那么已知三角形的三边长分别为,2,,所以三边之比为1:2:.A、三角形的三边分别为2,,3,三边之比为::3,故本选项错误;B、三角形的三边分别为2,4,2,三边之比为1:2:,故本选项正确;C、三角形的三边分别为2,3,,三边之比为2:3:,故本选项错误;D、三角形的三边分别为,,4,三边之比为::4,故本选项错误.故选:B.3.【解答】解:x=0或x﹣3=0,所以x1=0,x2=3.故选:C.4.【解答】解:因为一共有6个球,红球有2个,所以从布袋里任意摸出1个球,摸到红球的概率为:=.故选:D.5.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.6.【解答】解:从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选:B.7.【解答】解:如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°.∴△ABE≌△CDF,(AAS),∴AE=CF.∴CF=AE=AD=1,∴BE=AE=,AB=2BE=,∵BD=2AB=,∴OE=,∴S△ECO=OE•CF=××1=,故选:B.8.【解答】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当P′Q⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sin B=2×=.故选:B.9.【解答】解:∵矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,∴矩形OA′B′C′与矩形OABC的位似比为:1:3,∵点B的坐标为:(6,4),∴点B′的坐标是:(2,)或(﹣2,﹣).故选:D.10.【解答】解:∵MC∥AB,∴△DCM∽△DAB,∴=,即=①,∵NE∥AB,∴△FNE∽△F AB,∴=,即=②,∴=,解得:BC=3,∴=,解得AB=6,即路灯A的高度AB为6m.故选:C.11.【解答】解:解法一:设A(m,),B(n,)则C(m,),D(n,),由题意:解得k2﹣k1=4.解法二:连接OA、OC、OD、OB,如图:由反比例函数的性质可知S△AOE=S△BOF=|k1|=﹣k1,S△COE=S△DOF=k2,∵S△AOC=S△AOE+S△COE,∴AC•OE=×2OE=OE=(k2﹣k1)…①,∵S△BOD=S△DOF+S△BOF,∴BD•OF=×3(EF﹣OE)=×3(﹣OE)=5﹣OE=(k2﹣k1)…②,由①②两式解得OE=2,则k2﹣k1=4.故选:A.12.【解答】解:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.故①正确;∴DG=GE=DF=EF.∴四边形EFDG为菱形,故②正确;如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DF A,∴△DOF∽△ADF.∴=,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.故③正确;如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△F AD.∴=,即=,∴GH=,∴BE=AD﹣GH=4﹣=.故④正确.故选:D.二、填空题(每小题3分,共12分)13.【解答】解:原方程可整理得:5x2﹣15x﹣1=0.∵x1,x2是一元二次方程5x(x﹣3)=1的解,∴x1+x2=﹣=3.故答案为:3.14.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DEA﹣∠AEB=60°﹣15°=45°.故答案为:45°.15.【解答】解:设直线AB的解析式为y=kx+b,将点A(4,0)、点B(0,2)代入y=kx+b中,得:,解得:.∴直线AB的解析式为y=﹣x+2.设点C的坐标为(m,﹣m+2)(0<m<4),则点E的坐标为(m,﹣m+4),∴OD=EF=m,CD=2﹣m,DE=4﹣m,∵ED⊥OA,EF⊥y轴,BO⊥OA,∴∠O=∠F=∠ODE=90°,∴四边形ODEF为矩形.∴C矩形ODEF=2×(OD+DE)=2×(m+4﹣m)=8.故答案为:8.16.【解答】解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵∠ACB=90°,∴∠AMO=∠OFB=90°,∠ACB=∠CFM=∠AMF=90°,∴四边形ACFM是矩形,∴AM=CF,AC=MF=3,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∵∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△OBF中,∴△AOM≌△OBF(AAS),∴AM=OF,OM=FB,∴OF=CF,∵∠CFO=90°,∴△CFO是等腰直角三角形,∵OC=6,由勾股定理得:CF=OF=6,∴BF=OM=OF﹣FM=6﹣3=3,∴BC=6+3=9.故答案为:9.三、解答题(本大题共7个小题)17.【解答】解:(x﹣3)(x﹣1)=15,x2﹣4x﹣12=0,(x﹣6)(x+2)=0,∴x﹣6=0或x+2=0,∴x1=6,x2=﹣2.18.【解答】解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为:12,3;②(2)×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC)所以小明和小强分在一起的概率为:.19.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC==5,∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.20.【解答】解:设每件商品的售价定为a元,则(a﹣18)(320﹣10a)=400,整理得a2﹣50a+616=0,∴a1=22,a2=28∵18(1+25%)=22.5,而28>22.5∴a=22.卖出商品的件数为320﹣10×22=100.答:每件商品的售价应定为22元,需要卖出这种商品100件.21.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)如图,∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.22.【解答】解:(1)如图所示:FM即为所求;(2)设速度为x米/秒,根据题意得CG∥AH,∴△COG∽△OAH,∴=,即:==,又∵CG∥AH,∴△EOG∽△OMH,即:=,∴解得:x=答:小明沿AB方向匀速前进的速度为米/秒.23.【解答】解:(1)如图1,过点M作MC⊥x轴于点C,MD⊥y轴于点D,则∠MCA=∠MDB=90°,∠AMC=∠BMD,MC=MD,∴△AMC≌△BMD,∴S四边形OCMD=S四边形OAMB=6,∴k=6;(2)如图1﹣1中,延长DP交OC于点E,作DH⊥OC于H,作PJ⊥OC于J,∵D(4,0),P(3,2),∴直线PD的解析式为y=﹣2x+8,由,解得.∴E(,),在Rt△ODH中,∵∠DOH=45°,OD=4,∴DH=2,同法可得PJ=∵•EC•DH﹣•EC•PJ=3,∴EC=2,∴满足条件的点C坐标为(,)或(,).(3)存在点E,使得PE=PF.由题意,得点P的坐标为(3,2).①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3﹣2=1,GE=HP=2﹣1=1,∴OE=OG+GE=3+1=4,∴E(4,0);②如图3,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3+2=5,GE=HP=5﹣2=3,∴OE=OG+GE=3+3=6,∴E(6,0),故答案为(4,0)和(6,0).。

2020-2021学年深圳中学九年级上学期期中数学试卷(含解析)

2020-2021学年深圳中学九年级上学期期中数学试卷(含解析)

2020-2021学年深圳中学九年级上学期期中数学试卷一、选择题(本大题共12小题,共36.0分)1. 如图所示的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体从三个方向看到的形状图,正确的是( )A. 仅从正面看到的形状图不同B. 仅从左面看到的形状图不同C. 仅从上面看到的形状图不同D. 从三个方向看到的形状图都相同 2. 如果两个相似的三角形面积之比为4:9,那么它们对应的角平分线之比为( )A. 2:3B. 4:9C. 16:81D. 9:13 3. 如图,Rt △ABO 中,∠OAB =90°,点A 在x 轴的正半轴,点B 在第一象限,C ,D 分别是BO ,BA 的中点,点E 在CD 的延长线上.若函数y 1=k 1x (x >0)的图象经过B ,E ,函数y 2=k 2x (x >0)的图象过点C ,且△BCE 的面积为1,则k 2的值为( )A. 13B. 23C. 3D. 324. 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE =BF.将△AEH ,△CFG 分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为( )A. 53B. 2 C. 52D. 45.在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小明在袋子中随机摸取一个小球,则摸到黄色小球的概率为()A. 15B. 25C. 27D. 5216.如图,在△ABC中,点D、E分别是AB、AC的中点,若DE=1.5,则BC的长是()A. 3B. 4C. 2D. 17.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品李阿姨用10000元本金购买了一款理财产品,到后期自动续期,两期结束后共收回本息10926元.设此款理财产品每期的平均收益率为x,根据题意可得方程()A. 10000(1+2x)=10926B. 10000(1+x)2=10926C. 10000(1+2x)2=10926D. 10000(1+x)(1+2x)=109268.下列所给方程中,没有实数根的是()A. x2+x=0B. 3x2−4x+1=0C. 4x2+5x+3=0D. 2x2−5x−1=09.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x,朝下一面的数为y,得到平面直角坐标系中的一个点(x,y).已知小华前二次掷得的两个点所确定的直线经过点P(4,7),则他第三次掷得的点也在这条直线上的概率为()A. 23B. 12C. 13D. 1610.如图,在平面直角坐标系中,四边形AOBD的边OB与x轴的正半轴重合,AD//OB,DB⊥x轴,对角线AB,OD交于点M.已知AD:OB=2:3,△AMD的面积为4.若反比例函数y=kx的图象恰好经过点M,则k的值为()A. 275B. 545C. 585D. 1211.如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连结EF,DE,DF,M是FE中点,连结MC,设FE与DC相交于点N.则4个结论:①∠EDF=90°;②△BFG∽△EDG∽△BDE;③AD2+AF2=DG⋅DB;④若MC=√2,则BF=2;正确的结论有()A. ①②B. ①②③C. ③④D. ①②③④12.如图△ABC中,∠BAC=90°,AB=AC,BM是AC边的中线,有AD⊥BM,垂足为点E,交BC于点D,且AH平分∠BAC交BM于N,交BC于H,连接DM,则下列结论:①∠AMB=∠CMD②HN= HD③BN=AD④∠BNH=∠MDC⑤MC=DC中,错误的有()个.A. 0个B. 1个C. 2个D. 4个二、填空题(本大题共4小题,共12.0分)13.若我们把十位上的数字比个位数字和百位数字都大的三位数称为“凸数”,如:786,465等,那么由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是14.已知直线AB和CD相交于点O,射线OE将∠AOC分成两部分,射线OF使得∠EOF=∠BOF.若|∠BOF−∠AOE|=36°,则锐角∠BOF=______.15.如图,⊙O半径为5,△ABC的顶点在⊙O上,AB=AC,AD⊥BC,垂足是D,cotB=2,那么AD的长为______.(x>0)经过四边形OABC的顶点A、C(点A的纵坐标是点C的纵坐标的2倍),16.如图,双曲线y=3x∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB//x轴,将△ABC沿AC翻折后得到△AB′C,B′点落在OA上,则四边形OABC的面积是.三、计算题(本大题共1小题,共6.0分)17.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),求这束光从点A到点B所经过路径的长.四、解答题(本大题共6小题,共48.0分)18.用因式分解法解下列方程:(1)x2=3x;(2)4(3x−1)2=3(3x−1);(3)p(p−8)−3p+24=0;(4)m2+7m+6=0;(5)5p2−12p−9=0.19.某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查______ 人,请在答题卡上补全条形统计图并标出相应数据;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列数状图或列表说明).20.已知一次函数y=kx+3的图象经过点(1,−3).(1)求一次函数的表达式;(2)已知点(a,4)在该函数的图象上,求a的值.21.某剧场共有1161个座位,已知每行的座位数都相同,且每行的座位数比总行数少16,求每行的座位数.22.如图,在一次数学兴趣小组活动中,一位同学用直尺和圆规对矩形ABCD进行了如下操作:。

广东省深圳市九年级(上)期中数学试卷(含解析)

广东省深圳市九年级(上)期中数学试卷(含解析)

广东省深圳市九年级(上)期中数学试卷一、选择题(本题有12小题,每小题3分,共36分)1.下列说法不正确的是()A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形C.有一个角是直角的平行四边形是正方形D.一组邻边相等的矩形是正方形2.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形3.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC丄BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形4.平行四边形的四个内角平分线相交所构成的四边形一定是()A.一般平行四边形B.一般四边形C.对角线垂直的四边形D.矩形5.关于x的方程x2+mx﹣1=0的两根互为相反数,则m的值为()A.0 B.2 C.1 D.﹣26.三角形两边的长分别是8和6,第三边的长是方程x2﹣12x+20=0的一个实数根,则此三角形的周长是()A.24 B.24或16 C.16 D.227.若a是方程2x2﹣x﹣3=0的一个解,则6a2﹣3a的值为()A.3 B.﹣3 C.9 D.﹣98.已知x=1是二次方程(m2﹣1)x2﹣mx+m2=0的一个根,那么m的值是()A.0.5或﹣1 B.﹣0.5 C.0.5或1 D.0.59.下列事件中,是必然事件的是()A.打开电视机,正在播放新闻B.父亲年龄比儿子年龄大C.通过长期努力学习,你会成为数学家D.下雨天,每个人都打着雨伞10.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A.B.C.D.11.为了监测PM2.5的值对人民的危害,我市准备成立监测小组,决定从包含甲的5位技术人员中抽调3人组成监测小组,则甲一定抽调到监测小组的概率是()A.B.C.D.12.已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22的值为()A.﹣3 B.3 C.﹣6 D.6二、填空题(本题有4小题,每小题3分,共12分)13.菱形ABCD的边长为6,∠ABC=60°,则较长对角线BD的长是.14.矩形的两条对角线的一个交角为60°,两条对角线的和为8cm,则这个矩形的一条较短边为cm.15.从﹣1、﹣2、3三个数字中任取两个不同的数作为点的坐标,该点在第三象限的概率是.16.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=.三、解答题(本题有7小题,共52分)17.(6分)如图,四边形ABCD的对角线AC⊥BD,垂足为O,点E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.18.(6分)解下列方程:(1)(y+2)2=(3y﹣1)2(2)4x2﹣3=12x(用公式法解)19.(6分)九年级某班同学在毕业晚会中进行抽奖活动,在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一样),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.20.(8分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.21.(8分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?22.(8分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.23.(10分)泰兴鑫都小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副,鑫都小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(1)填表:月份九月十月清仓销售单价(元)100 50销售量(件)200(2)如果鑫都小商品市场希望通过销售这批羽毛球拍获利9200元,那么十月份的销售单价应是多少元?参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分)1.下列说法不正确的是()A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形C.有一个角是直角的平行四边形是正方形D.一组邻边相等的矩形是正方形【分析】分别根据矩形的判定以及正方形的判定判定各选项进而得出答案.【解答】解:A、对角线互相垂直的矩形是正方形,此选项正确不合题意;B、对角线相等的菱形是正方形,此选项正确不合题意;C、有一个角是直角的平行四边形是矩形形,此选项不正确符合题意;D、一组邻边相等的矩形是正方形,此选项正确不合题意.故选:C.【点评】此题主要考查了正方形的判定,熟练根据①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2,进行判定是解题关键.2.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形【分析】根据特殊四边形的对角线的性质进行分析A、B、C;根据矩形的判定分析D,即可解答.【解答】解:A、对角线互相垂直平分的四边形是菱形,正确;B、平行四边形的对角线互相平分,正确;C、矩形的对角线相等,正确;D、对角线相等的平行四边形是矩形,故错误;故选:D.【点评】本题考查了命题与定理,解决本题的关键是熟记菱形的性质、矩形、平行四边形的性质与判定定理.3.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC丄BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形【分析】直接利用菱形与矩形的判定定理求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,故正确;B、∵四边形ABCD是平行四边形,AC丄BD,∴四边形ABCD是菱形,故正确;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故正确;D、∵四边形ABCD是平行四边形,AC=BD,四边形ABCD是矩形,故错误.故选:D.【点评】此题考查了菱形与矩形的判定.此题比较简单,注意熟记定理是解此题的关键.4.平行四边形的四个内角平分线相交所构成的四边形一定是()A.一般平行四边形B.一般四边形C.对角线垂直的四边形D.矩形【分析】由于平行四边形的邻角互补,那么每两条相邻的内角平分线都互相垂直,则围成四边形就有4个直角,因此这个四边形一定是矩形.【解答】解:如图;∵四边形ABCD是平行四边形,∴∠DAB+∠ADC=180°;∵AH、DH平分∠DAB、∠ADC,∴∠HAD+∠HDA=90°,即∠EHG=90°;同理可证得:∠HEF=∠EFG=∠FGH=90°;故四边形EFGH是矩形.故选:D.【点评】本题考查的是平行四边形的性质以及矩形的判定:四个角都是直角的四边形是矩形.5.关于x的方程x2+mx﹣1=0的两根互为相反数,则m的值为()A.0 B.2 C.1 D.﹣2【分析】由题意“两实数根互为相反数”,得方程的两根之和就为0.利用根与系数的关系列方程,解方程即可求出m的结果.【解答】解:设方程x2+mx﹣1=0的两根分别为α、β.根据两根之和公式可得:α+β=﹣m.又∵方程x2+mx﹣1=0的两实数根互为相反数,∴α+β=﹣m=0解得m=0.故选:A.【点评】解决此类题目时要认真审题,确定好各系数的数值与符号,然后确定选择哪一个根与系数的关系式.6.三角形两边的长分别是8和6,第三边的长是方程x2﹣12x+20=0的一个实数根,则此三角形的周长是()A.24 B.24或16 C.16 D.22【分析】把方程左边因式分解得到(x﹣10)(x﹣2)=0,再把方程化为两个一元一次方程x﹣10=0或x﹣2=0,解得x1=10,x2=2,根据三角形三边的关系得到三角形第三边的长为10,然后计算三角形的周长.【解答】解:x2﹣12x+20=0,∴(x﹣10)(x﹣2)=0,∴x﹣10=0或x﹣2=0,∴x1=10,x2=2,而三角形两边的长分别是8和6,∵2+6=8,不符合三角形三边关系,x=2舍去,∴x=10,即三角形第三边的长为10,∴三角形的周长=10+6+8=24.故选:A.【点评】本题考查了利用因式分解法解一元二次方程的方法:先把方程化为一般形式,然后把方程左边因式分解,这样就把方程化为两个一元一次方程,再解一元一次方程即可.也考查了三角形三边的关系.7.若a是方程2x2﹣x﹣3=0的一个解,则6a2﹣3a的值为()A.3 B.﹣3 C.9 D.﹣9【分析】将a代入方程2x2﹣x﹣3=0中,再将其变形可得所要求代数式的值.【解答】解:若a是方程2x2﹣x﹣3=0的一个根,则有2a2﹣a﹣3=0,变形得,2a2﹣a=3,故6a2﹣3a=3×3=9.故选:C.【点评】此题主要考查了方程解的定义及运算,此类题型的特点是,直接将方程的解代入方程中,再将其变形即可求出代数式的值.8.已知x=1是二次方程(m2﹣1)x2﹣mx+m2=0的一个根,那么m的值是()A.0.5或﹣1 B.﹣0.5 C.0.5或1 D.0.5【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,再用这个数代替未知数所得式子仍然成立.【解答】解:把x=1代入方程可得m2﹣1﹣m+m2=0,解得:m=﹣0.5或m=1,∵m2﹣1≠0∴m=﹣0.5.故选:B.【点评】本题考查的是一元二次方程的根即方程的解的定义,是一道比较基础的题.9.下列事件中,是必然事件的是()A.打开电视机,正在播放新闻B.父亲年龄比儿子年龄大C.通过长期努力学习,你会成为数学家D.下雨天,每个人都打着雨伞【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:A、C、D选项都是不确定事件;B、是必然事件.故选:B.【点评】关键是理解必然事件是一定发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.10.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A.B.C.D.【分析】先画树状图展示所有12种等可能的结果数,再找出其中两次摸出的小球的标号的和为奇数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的小球的标号的和为奇数的结果数为8,所以两次摸出的小球的标号的和为奇数的概率为=,故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.11.为了监测PM2.5的值对人民的危害,我市准备成立监测小组,决定从包含甲的5位技术人员中抽调3人组成监测小组,则甲一定抽调到监测小组的概率是()A.B.C.D.【分析】由从包含甲的5位技术人员中抽调3人组成监测小组,直接利用概率公式求解即可求得答案.【解答】解:∵从包含甲的5位技术人员中抽调3人组成监测小组,∴甲一定抽调到监测小组的概率是:.故选:C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.12.已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22的值为()A.﹣3 B.3 C.﹣6 D.6【分析】由一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,根据根与系数的关系求得x1+x2=3,x1•x2=﹣1,又由x12x2+x1x22=x1x2•(x1+x2),即可求得答案.【解答】解:∵一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,∴x1+x2=3,x1•x2=﹣1,∴x12x2+x1x22=x1x2•(x1+x2)=﹣1×3=﹣3.故选:A.【点评】此题考查了一元二次方程根与系数的关系.此题比较简单,注意掌握若二次项系数为1,x1,x2是方程x2+px+q=0的两根时,则x1+x2=﹣p,x1x2=q.二、填空题(本题有4小题,每小题3分,共12分)13.菱形ABCD的边长为6,∠ABC=60°,则较长对角线BD的长是6.【分析】首先证明△ABC,△ADC是等边三角形,在Rt△AOB中,求出OB,利用菱形的性质可得DB,根据菱形的面积公式计算即可.【解答】解:解:∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD=6,∠ABC=∠ADC=60°,AC⊥BD,OA=OC,OB=OD,∴△ABC,△ADC是等边三角形,∴AC=6,OD=OC=3,在Rt△AOB中,BO==3,∴BD=2OB=6,故答案为6.【点评】本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.矩形的两条对角线的一个交角为60°,两条对角线的和为8cm,则这个矩形的一条较短边为2cm.【分析】根据矩形的性质(对角线相等且互相平分),求解即可.【解答】解:矩形的两条对角线交角为60°的三角形为等边三角形,又因为两条对角线的和为8cm,故一条对角线为4cm,又因为矩形的对角线相等且相互平分,故矩形的一条较短边为2cm.故答案为:2.【点评】本题考查的是矩形的性质(矩形的对角线相等且相互平分),本题难度一般.15.从﹣1、﹣2、3三个数字中任取两个不同的数作为点的坐标,该点在第三象限的概率是.【分析】列举出所有情况,看在第三象限的情况数占总情况数的多少即可.【解答】解:画树形图得:∵共有6种等可能的结果,该点在第三象限的有2种情况,∴该点在第二象限的概率是:=.故答案为:.【点评】本题考查概率的求法:概率=所求情况数与总情况数之比.解题时注意,第三象限内点的横坐标与纵坐标都是负数,得到在第三象限的情况数是解决本题的关键.16.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=3或﹣3.【分析】首先解方程x2﹣5x+6=0,再根据a﹡b=,求出x1﹡x2的值即可.【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0,解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.故答案为:3或﹣3.【点评】此题主要考查了因式分解法解一元二次方程以及利用材料分析解决新问题,根据已知进行分类讨论是解题关键.三、解答题(本题有7小题,共52分)17.(6分)如图,四边形ABCD的对角线AC⊥BD,垂足为O,点E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.【分析】先由三角形的中位线定理推知四边形EFGH是平行四边形,然后由AC⊥BD可以证得平行四边形EFGH是矩形.【解答】证明:如图,∵E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EF∥AC,GH∥AC且EF=AC,GH=AC∴四边形EFGH是平行四边形又∵AC⊥BD,∴EF⊥FG∴四边形EFGH是矩形.【点评】本题主要考查中点四边形,解题时,利用三角形中位线定理判定四边形EFGH是平行四边形是解题的关键.18.(6分)解下列方程:(1)(y+2)2=(3y﹣1)2(2)4x2﹣3=12x(用公式法解)【分析】(1)移项后将右边化为0,再提取公因式将左边因式分解,继而可得方程的解;(2)先将方程化为一般形式,利用公式法计算可得.【解答】解:(1)(y+2)2=(3y﹣1)2(y+2)2﹣(3y﹣1)2=0,(y+2+3y﹣1)(y+2﹣3y+1)=0,∴4y+1=0或﹣2y+3=0,解得:y1=﹣,y2=;(2)原方程可化为:4x2﹣12x﹣3=0,∵a=4,b=﹣12,c=﹣3,b2﹣4ac=144﹣4×4×(﹣3)=192,∴x==,∴x1=+,x2=﹣.【点评】本题考查了因式分解法和公式法解一元二次方程.熟练掌握解一元二次方程的方法是解题的关键.19.(6分)九年级某班同学在毕业晚会中进行抽奖活动,在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一样),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.【分析】(1)列表得出所有等可能的情况数即可;(2)找出两次摸出小球标号相同的情况数,即可求出中奖的概率.【解答】解:(1)列表得:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)所有等可能的情况数有9种;(2)可能出现的结果共9种,它们出现的可能性相同,两次摸出小球标号相同的情况共3种,分别为(1,1);(2,2);(3,3),则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.【分析】(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.【解答】(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠EC A.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.【点评】本题主要考查了平行四边形的判定以及菱形的判定方法,正确掌握判定定理是解题的关键.21.(8分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?【分析】(1)根据概率公式,求摸到黄球的概率,即用黄球的个数除以小球总个数即可得出得到黄球的概率;(2)假设取走了x个黑球,则放入x个黄球,进而利用概率公式得出不等式,求出即可.【解答】解:(1)∵一个不透明的袋中装有5个黄球,13个黑球和22个红球,∴摸出一个球摸是黄球的概率为:=;(2)设取走x个黑球,则放入x个黄球,由题意,得≥,解得:x≥,∵x为整数,∴x的最小正整数解是x=9.答:至少取走了9个黑球.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.(8分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.【分析】(1)利用△AEB≌△CFB来求证AE=CF.(2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.【点评】本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB≌△CFB,找出相等的线段.23.(10分)泰兴鑫都小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副,鑫都小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(1)填表:月份九月十月清仓销售单价(元)100 50销售量(件)200(2)如果鑫都小商品市场希望通过销售这批羽毛球拍获利9200元,那么十月份的销售单价应是多少元?【分析】(1)根据题意直接用含x的代数式表示即可;(2)利用“获利9200元”,即销售额﹣进价=利润,作为相等关系列方程,解方程求解后要代入实际问题中检验是否符合题意,进行值的取舍.【解答】解:(1)填表如下:时间九月十月清仓时销售单价(元)100 100﹣x50销售量(件)200 200+2x800﹣200﹣(200+2x)(2)根据题意,得100×200+(100﹣x)(200+2x)+50[800﹣200﹣(200+2x)]﹣60×800=9200解这个方程,得x1=20 x2=﹣70当x=20时,100﹣x=80>50.答:第十个月的单价应是80元.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.有关销售问题中的等量关系一般为:利润=售价﹣进价.。

2019-2020学年广东省深圳中学九年级(上)期中数学试卷 (含答案解析)

2019-2020学年广东省深圳中学九年级(上)期中数学试卷 (含答案解析)

2019-2020学年广东省深圳中学九年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.如图,空心圆柱的左视图是()A. B. C. D.2.若△ABC∽△AˈBˈCˈ,且△ABC与△AˈBˈCˈ的相似比为1︰2,则△ABC与△AˈBˈCˈ的周长比是()A. 1︰1B. 1︰2C. 1︰3D. 1︰43.已知反比例函数y=2k−3的图象经过(1,1),则k的值为()xA. −1B. 0C. 1D. 24.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A. 6B. 5C. 2√3D. 3√35.在一个不透明的布袋中,共有30个小球,除颜色外其他完全相同.若每次将球搅匀后摸一个球记下颜色再放回布袋.通过大量重复摸球试验后发现,摸到红色球的频率稳定在0.2左右,则口袋中红色球的个数应该是()A. 6个B. 15个C. 24个D. 12个6.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形:④当AC=BD时,它是正方形.A. 3个B. 4个C. 1个D. 2个7.某城市2013年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2015年底增加到363公顷。

设绿化面积平均每年的增长率为,由题意,所列方程正确的是()A. B.C. D.8.一元二次方程x2−2x+2=0的根的情况是()A. 有两个不相等的正根B. 有两个不相等的负根C. 没有实数根D. 有两个相等的实数根9.甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A. 12B. 13C. 14D. 1610.如图,在边长为18cm的等边三角形ABC中,D为BC上一点,且BD=6cm,E在AC上,∠ADE=60°,则AE的长为()A. 4cmB. 10cmC. 12cmD. 14cm11.如图,平面直角坐标系中,O为坐标原点,正方形OABC的定点A,B都在反比例函数y=kx(k>0,x>0)的图象上,边BC与x轴交于点D,则BDCD的值为()A. 23B. 35C. √33D. √5−1212.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=23MF,④ME+MF=√2MB.其中正确结论的有()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共4小题,共12.0分)13.一个不透明的塑料袋中有3个小球,其中2个红球和1个白球,它们除颜色外其余都相同,摸出一个球记下颜色后放回,再摸出一个小球,则两次摸出的小球恰好颜色不同的概率是______ .14.如图所示,D,E分别在△ABC的边AB、AC上,DE与BC不平行,当满足______条件时,有△ABC∽△AED.15.如图,菱形ABCD的周长为20,对角线AC、BD交于点O,BD=6,点E在CD上,DE:EC=2:3,BE交AC于点F,则FC的长为______.16.如图,△ABO为等边三角形,点B的坐标为(−4,0),过点C(4,0)作直线l交AO于点D,交AB(x<0)的图象上,且△ADE的面积和△DOC的面积相等,则k 于点E,点E在反比例函数y=kx的值是______ .三、计算题(本大题共1小题,共6.0分)17.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.四、解答题(本大题共6小题,共48.0分)18.解方程:(1)4x2−6x−3=0(2)(2x−3)2=5(2x−3)19.如图,有5张形状、大小和质地都相同的卡片,正面分别写有字母:A,B,C,D,E和一个等式,背面完全一致。

2020年初三数学上期中试卷(含答案)

2020年初三数学上期中试卷(含答案)
B.是轴对称图形,也是中心对称图形; C.是轴对称图形,不是中心对称图形; D.是轴对称图形,不是中心对称图形. 故选 B.
点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对 称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图 形是要寻找对称中心,图形旋转 180°后与原图重合.
()
A.DE=3
B.AE=4
C.∠ACB 是旋转角 D.∠CAE 是旋转角
11.如图,已知二次函数 y ax2 bx c ( a 0 )的图象与 x 轴交于点 A(﹣1,0),
对称轴为直线 x=1,与 y 轴的交点 B 在(0,2)和(0,3)之间(包括这两点),下列结
论:
①当 x>3 时,y<0;
各路口遇到信号灯是相互独立的.
(1)如果有 2 个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用
“画树状图”或“列表”等方法写出分析过程)
(2)如果有 n 个路口,则小明在每个路口都没有遇到红灯的概率是

【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】 根据一元二次方程根的判别式可得:当△=0 时,方程有两个相等的实数根;当△>0 时,方 程有两个不相等的实数根;当△<0 时,方程没有实数根. 【详解】 解:根据题意可得:
△= (4)2 -4×4c=0,解得:c=1
故选:B. 【点睛】 本题考查一元二次方程根的判别式.
2.D
解析:D 【解析】 【分析】 连接 CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余 求解即可, 【详解】 解:连接 CD,如图,

深圳市XX中学2020届九年级上期中数学试卷含答案解析(样卷全套)

深圳市XX中学2020届九年级上期中数学试卷含答案解析(样卷全套)

2020-2021学年广东省深圳市XX中学九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确答案)1.已知2x=3y(x≠0),则下列比例式成立的是()A.B.C.D.2.下列主视图正确的是()A.B.C.D.3.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=94.某地区为估计该地区黄羊的只数,先捕捉2020羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.2020 B.400只C.800只D.1000只5.如图,A为反比例函数y=的图象上一点,AB垂直x轴于B,若S△AOB=2,则k的值为()A.4 B.2 C.﹣2 D.16.如图,在直角三角形ABC中,∠C=90°,在底边AB上防置边长分别为3,4,x的三个相邻的正方形,则x的值为()A.5 B.6 C.7 D.127.某纪念品原价为168元,连续两次降价a%后售价为128元,下列所列方程正确的是()A.160(1+a%)2=128 B.160(1﹣a%)2=128 C.160(1﹣2a%)=128 D.160(1﹣a%)=1288.如图,CD为Rt△ABC斜边上的高,如果AD=6,BD=2,那么CD等于()A.2 B.4 C.D.9.如图是一个几何体的三视图,根据图示,该几何体的体积为()A.12πB.24πC.36πD.10π10.下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:9.A.1个 B.2个 C.3个 D.4个11.反比例函数图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y112.四边形ABCD、AEFG都是正方形,当正方形AEFG绕点A逆时针旋转45°时,如图,连接DG、BE,并延长BE交DG于点H,且BH⊥DG与H,若AB=4,AE=时,则线段BH的长是()A.B.16 C.D.二、填空题(本大题共4小题,每小题3分,共12分,每小题只有一个正确答案) 13.如图,同一时刻在阳光照射下,树AB的影子BC=3m,小明的影子B'C'=1.5m,已知小明的身高A'B'=1.7m,则树高AB=.14.电视节目主持人在主持节目时,站在舞台的黄金分割点0.6 处最自然得体,若舞台AB长为2020试计算主持人应走到离A点至少m处.15.如图,矩形ABCD的对角线AC与BD相交于O,∠AOD=12020AB=3,则BC 的长是.16.如图,在反比例函数的图象(x>0)上,有点P1,P2,P3,P4,…,点P1横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1,P2,P3,P4,…分别作x轴,y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…则S1+S2+S3+…+Sn=.三、解答题本题共7小题,共52分17.解方程:(1)(x+1)2﹣144=0(2)2x2﹣7x+3=0.18.如图,晚上,小亮在广场上乘凉.图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯(P)照射下的影子;(2)如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.19.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌,(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.2020服装店有一批童装,每天可卖30件,每件盈利50元,经调查知道,若每件降价5元,则每天可多销售10件.现要想平均每天获利2020元,且让顾客得到实惠,则每件童装应降价多少元?21.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=CN•MN.22.如图,已知一次函数与反比例函数y=的图象相交于点A(﹣3,1)和点B(a,﹣3)(1)求反比例函数的表达式;(2)求点B的坐标及一次函数的表达式;(3)观察图象,直接写出反比例函数数值大于一次函数数值时对应x的取值范围.23.如图所示,已知直线l的表达式为y=﹣x+8,且l与x轴、y轴分别交于A、B两点,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向A移动,同时动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,其中一点停止运动,另一点也随之停止运动,设点Q、P移动时间为t秒.(1)求点A、B的坐标(2)当t为何值时,△APQ与△AOB相似;(3)当t为何值时,△APQ的面积最大,最大面积是多少?2020-2021学年广东省深圳市XX中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确答案)1.已知2x=3y(x≠0),则下列比例式成立的是()A.B.C.D.【考点】等式的性质.【分析】根据等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决.【解答】解:根据等式性质2,可判断出只有B选项正确,故选B.2.下列主视图正确的是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.3.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.4.某地区为估计该地区黄羊的只数,先捕捉2020羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.2020 B.400只C.800只D.1000只【考点】用样本估计总体.【分析】根据先捕捉40只黄羊,发现其中2只有标志.说明有标记的占到,而有标记的共有2020根据所占比例解得.【解答】解:20÷=400(只).故选B.5.如图,A为反比例函数y=的图象上一点,AB垂直x轴于B,若S△AOB=2,则k的值为()A.4 B.2 C.﹣2 D.1【考点】反比例函数系数k的几何意义.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.=|k|=2;【解答】解:由于点A是反比例函数图象上一点,则S△AOB又由于函数图象位于一、三象限,则k=4.故选A.6.如图,在直角三角形ABC中,∠C=90°,在底边AB上防置边长分别为3,4,x的三个相邻的正方形,则x的值为()A.5 B.6 C.7 D.12【考点】相似三角形的判定与性质;正方形的性质.【分析】根据已知条件可以推出△CEF∽△OME∽△PFN,然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【解答】解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,∴x=0(不符合题意,舍去),x=7.故选C.7.某纪念品原价为168元,连续两次降价a%后售价为128元,下列所列方程正确的是()A.160(1+a%)2=128 B.160(1﹣a%)2=128 C.160(1﹣2a%)=128 D.160(1﹣a%)=128【考点】由实际问题抽象出一元二次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,160(1﹣a%)2=128,故选B.8.如图,CD为Rt△ABC斜边上的高,如果AD=6,BD=2,那么CD等于()A.2 B.4 C.D.【考点】相似三角形的判定与性质.【分析】根据同角的余角相等证明∠DCB=∠CAD,利用两角对应相等证明△ADC ∽△CDB,列比例式可得结论.【解答】解:∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵CD是高,∴∠ADC=∠CDB=90°,∴∠ACD+∠CAD=90°,∴∠DCB=∠CAD,∴△ADC∽△CDB,∴,∴CD2=AD•BD,∵AD=6,BD=2,∴CD==2,故选C.9.如图是一个几何体的三视图,根据图示,该几何体的体积为()A.12πB.24πC.36πD.10π【考点】由三视图判断几何体.【分析】分析可知图为圆柱的三视图,从而根据三视图的特点得知高和底面直径,代入侧体积公式求解.【解答】解:该几何体是一个底面直径为4,高为6的圆柱体,其侧面积为:22π×6=24π.故选B.10.下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:9.A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【分析】利用相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质分别判断后即可确定正确的选项.【解答】解:①两边成比例且夹角对应相等的两个三角形相似,故错误;②对角线相等的平行四边形是矩形,故错误;③任意四边形的中点四边形是平行四边形,正确;④两个相似多边形的面积比为2:3,则周长比为4:9,正确,正确的有2个,故选B.11.反比例函数图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出其函数图象所在的象限,再根据x1<x2<0<x3,判断出各点横坐标的大小即可.【解答】解:∵反比例函数中,k=﹣6<0,∴函数图象的两个分支分别位于二四象限,且在每一象限内y随x的增大而增大.∵x1<x2<0<x3,∴(x1,y1),(x2,y2)两点位于第二象限,点(x3,y3)位于第四象限,∴y3<y1<y2.故选C.12.四边形ABCD、AEFG都是正方形,当正方形AEFG绕点A逆时针旋转45°时,如图,连接DG、BE,并延长BE交DG于点H,且BH⊥DG与H,若AB=4,AE=时,则线段BH的长是()A.B.16 C.D.【考点】旋转的性质;正方形的性质.【分析】连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG互相垂直平分,且AF在AD上,由AE=可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出DG=,则BE=,解着利用S△DEG= GE•ND=DG•HE可计算出HE,所以BH=BE+HE.【解答】解:连结GE交AD于点N,连结DE,如图,∵正方形AEFG绕点A逆时针旋转45°,∴AF与EG互相垂直平分,且AF在AD上,∵AE=,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,DG==;由题意可得:△ABE相当于逆时针旋转90°得到△AGD,∴DG=BE=,=GE•ND=DG•HE,∵S△DEG∴HE==,∴BH=BE+HE=+=.故选:C.二、填空题(本大题共4小题,每小题3分,共12分,每小题只有一个正确答案) 13.如图,同一时刻在阳光照射下,树AB的影子BC=3m,小明的影子B'C'=1.5m,已知小明的身高A'B'=1.7m,则树高AB= 3.4m.【考点】平行投影.【分析】利用同一时刻物体的高度与其影长成正比得到=,然后利用比例性质求出AB即可.【解答】解:根据题意得=,即=,所以AB=3.4(m).故答案为3.4m.14.电视节目主持人在主持节目时,站在舞台的黄金分割点0.6 处最自然得体,若舞台AB长为2020试计算主持人应走到离A点至少8m处.【考点】黄金分割.【分析】从点A走到线段AB的黄金分割点此时AP<BP,求出BP后,再求AP 即可得出答案.【解答】解:如图所示:,∵BP=0.6AB=0.6×20202m,∴AP=AB﹣BP=20202=8m.即主持人应走到离A点至少8m处.故答案为:8.15.如图,矩形ABCD的对角线AC与BD相交于O,∠AOD=12020AB=3,则BC 的长是.【考点】矩形的性质.【分析】根据矩形的性质可得∠ACB的度数,从而利用三角函数的和关系可求出BC的长度.【解答】解:由题意得:∠ACB=30°,tan∠ACB==,又∵AB=3,∴BC=3.故答案为:3.16.如图,在反比例函数的图象(x>0)上,有点P1,P2,P3,P4,…,点P1横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1,P2,P3,P4,…分别作x轴,y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…则S1+S2+S3+…+Sn=4﹣.【考点】反比例函数系数k的几何意义.【分析】易求得P1的坐标得到矩形P1AOB的面积;而把所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ACB的面积,即可得到答案.【解答】解:如图,过点P1、点P n作y轴的垂线段,垂足分别是点B、点C,过点P1作x轴的垂线段,垂足是点E,P1E交CP n于点A,则点A的纵坐标等于点P n的纵坐标等于,AC=2,AE=,故S1+S2+S3+…+S n=S矩形P1EOB﹣S矩形AEOC=2×﹣2×=4﹣.故答案为4﹣.三、解答题本题共7小题,共52分17.解方程:(1)(x+1)2﹣144=0(2)2x2﹣7x+3=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)移项后开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)(x+1)2﹣144=0,移项得:(x+1)2=144,开方得:x+1=±12,解得:x1=11,x2=﹣13;(2)2x2﹣7x+3=0,(2x﹣1)(x﹣3)=0,2x﹣1=0,x﹣3=0,x1=,x2=3.18.如图,晚上,小亮在广场上乘凉.图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯(P)照射下的影子;(2)如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.【考点】中心投影.【分析】(1)直接连接点光源和物体顶端形成的直线与地面的交点即是影子的顶端;(2)根据中心投影的特点可知△CAB∽△CPO,利用相似比即可求解.【解答】解:(1)连接PA并延长交地面于点C,线段BC就是小亮在照明灯(P)照射下的影子.(2)在△CAB和△CPO中,∵∠C=∠C,∠ABC=∠POC=90°∴△CAB∽△CPO∴∴∴BC=2m,∴小亮影子的长度为2m19.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌,(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)先列表展示所有可能的结果数为16,再找出两次摸取纸牌上数字之和为5的结果数,然后根据概率的概念计算即可;(2)从表中找出两次摸出纸牌上数字之和为奇数的结果数和两次摸出纸牌上数字之和为偶数的结果数,分别计算这两个事件的概率,然后判断游戏的公平性.【解答】解:根据题意,列表如下:甲乙12341234523456.3456745678由上表可以看出,摸取一张纸牌然后放回,再随机摸取出纸牌,可能结果有16种,它们出现的可能性相等.(1)两次摸取纸牌上数字之和为5(记为事件A)有4个,P(A)==;(2)这个游戏公平,理由如下:∵两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)==,两次摸出纸牌上数字之和为偶数(记为事件C)有8个,P(C)==,∴两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平.2020服装店有一批童装,每天可卖30件,每件盈利50元,经调查知道,若每件降价5元,则每天可多销售10件.现要想平均每天获利2020元,且让顾客得到实惠,则每件童装应降价多少元?【考点】一元二次方程的应用.【分析】根据等量关系为:每件商品的盈利×可卖出商品的件数=2020,把相关数值代入计算得到合适的解即可.【解答】解:设应降价x元.由题意得:(50﹣x)(30+x)=2020,解之得:x1=25,x2=10,∵要让顾客得到实惠,∴x=10 应舍去,答:应降价25元.21.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=CN•MN.【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】(1)要证明AE=CG,只要证得三角形ADE和三角形CDG全等即可,根据题中的已知条件我们不难得出,AD=CD,GC=AE,∠ADE和∠GDC,又同为90°+∠ADC,那么就构成了全等三角形的判定中SAS的条件.(2)本题可通过证明三角形AMN和三角形CDN相似来证得.【解答】证明:(1)∵四边形ABCD和四边形DEFG都是正方形,∴AD=CD,DE=DG,∠ADC=∠EDG=90°,∵∠ADE=90°+∠ADG,∠CDG=90°+∠ADG,∴∠ADE=∠CDG,在△ADE和△CDG中∵,∴△ADE≌△CDG(SAS),∴AE=CG.(2)由(1)得△ADE≌△CDG,则∠DAE=∠DCG,又∵∠ANM=∠CND,∴△AMN∽△CDN,∴,即AN•DN=CN•MN.22.如图,已知一次函数与反比例函数y=的图象相交于点A(﹣3,1)和点B(a,﹣3)(1)求反比例函数的表达式;(2)求点B的坐标及一次函数的表达式;(3)观察图象,直接写出反比例函数数值大于一次函数数值时对应x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)直接把点A(﹣3,1)代入反比例函数y=,求出k的值即可;(2)把点B(a,﹣3)代入反比例函数的解析式即可得出a的值,进而得出B点坐标,再用待定系数法求出直线AB的解析式即可;(3)直接根据一次函数与反比例函数的交点坐标即可得出结论.【解答】解:(1)∵点A(﹣3,1)在反比例函数y=的图象上,∴k=1×(﹣3)=﹣3,∴反比例函数的解析式为:y=﹣;(2)∵点B(a,﹣3)在反比例函数y=﹣的图象上,∴﹣=﹣3,解得a=1,∴B(1,﹣3).设直线AB的解析式为y=ax+b(a≠0),∵A(﹣3,1),B(1,﹣3),∴,解得,∴一次函数的表达式为:y=﹣x﹣2;(3)由函数图象可知,当﹣3<x<1时,反比例函数数值大于一次函数数值.23.如图所示,已知直线l的表达式为y=﹣x+8,且l与x轴、y轴分别交于A、B两点,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向A移动,同时动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,其中一点停止运动,另一点也随之停止运动,设点Q、P移动时间为t秒.(1)求点A、B的坐标(2)当t为何值时,△APQ与△AOB相似;(3)当t为何值时,△APQ的面积最大,最大面积是多少?【考点】相似形综合题;一次函数图象上点的坐标特征;二次函数的性质;相似三角形的判定与性质.【分析】(1)根据一次函数图象上点的坐标特征,即与x轴的交点y=0,与y轴的交点x=0,求出A,B两点的坐标;(2)由AO与BO的长,利用勾股定理求出AB的长,根据移动时间为t,表示出AP 与AQ,分两种情况考虑:①由∠QAP=∠BAO,得到△APQ∽△AOB;②由∠QAP=∠BAO,得到△AQP∽△AOB,分别求出t的值即可;(3)过Q点向x轴引垂线,垂足是M,求得QM,再根据APQ的面积=×QM×AP,可以得到△APQ的面积关于t的函数解析式,根据二次函数的性质即可解决问题.【解答】解:(1)∵y=﹣x+8,令x=0,得y=8;令y=0,得x=6,∴A,B的坐标分别是(6,0),(0,8);(2)如图所示,由BO=8,AO=6,根据勾股定理得AB==10.当移动的时间为t时,AP=t,BQ=2t,AQ=10﹣2t.∵∠QAP=∠BAO,∴①当=时,△APQ∽△AOB,此时,=,∴t=(秒);∵∠QAP=∠BAO,②当=时,△APQ∽△AOB,此时,=,∴t=(秒),综上所述,当t=或秒时,△APQ与△AOB相似;(3)如图所示,过点Q作QM⊥AO于M,则QM∥BO,∴△AMQ∽△AOB,∴=,即=,解得QM=(10﹣2t),∴设△APQ的面积为S,则S=×AP×QM=×t×(10﹣2t)=﹣t2+4t,∴当t=时,S有最大值,且最大值为5,即当t为时,△APQ的面积最大,最大面积是5.第21页(共23页)第22页(共23页)2020年2月13日第23页(共23页)。

2020-2021学年深圳市学校九上数学期中考试(含答案)

2020-2021学年深圳市学校九上数学期中考试(含答案)

2020-2021学年深圳市期中考试九年级(上) 数学试卷(考试时间:90分钟,满分:100分)一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程=x 162的解为( )A .=x 4B .=−x 4C .=x 4或−4D .=x 0或4 2.(3分)如图,转盘中四个扇形的面积都相等.小明随意转动转盘1次,指针指向的数字为偶数的概率为( )A .41 B .21 C .43 D .65 3.(3分)已知===b d f a c e 34,若++=b d f 9,则++=a c e ( ) A .12 B .15 C .16 D .18 4.(3分)如图,以点O 为位似中心,画一个四边形''''A B C D ,使它与四边形ABCD 位似,且相似比为23,则下列说法错误的是( )A .四边形∽ABCD 四边形''''ABC DB .点C ,O ,'C 三点在同一直线上C .''=A B AB 32 D .='OB OB 535.(3分)ABCD 添加下列条件后,仍不能使它成为矩形的是( )A .⊥AB BC B .=AC BD C .∠=∠A B D .=BC CD 6.(3分)将一元二次方程++=x x 4202配方后可得到方程( )A .−=x (2)22B .+=x (2)22C .−=x (2)62D .+=x (2)62 7.(3分)下列说法正确的是( )A.已知线段=AB 2,点C 是AB 的黄金分割点>AC BC (),则AC 1B .相似三角形的面积之比等于它们的相似比C .对角线相等且垂直的四边形是正方形D .方程++=x x 3402有两个实数解8.(3分)如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F .分别以点F ,B 为圆心,大于BF 21长为半径作弧,两弧交于点G ,作射线AG 交BC 于点E ,若=BF 6,=AB 5,则AE 的长为( )A .4B .6C .8D .109.(3分)已知m 是一元二次方程−−=x x 302的根,则代数式−+m m 2272的值是( ) A .11 B .12 C .13 D .1410.(3分)如图,矩形ABCD 绕点A 逆时针旋转︒90得矩形AEFG ,连接CF ,交AD 于点P ,M 是CF 的中点,连接AM ,交EF 于点Q .则下列结论:①⊥AM CF ;②∆≅∆CDP AEQ ;③连接PQ ,则=PQ ;④若=AB 2,=BC 6,则=MQ其中,正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)因式分解:−+=x x 692 .12.(3分)一个不透明的袋子中有红球和黑球共25个,这些球除颜色外都相同.将袋子中的球搅拌均匀,从中随机摸出一个球,记下它的颜色再放回袋子中.不断重复这一过程,共摸了400次球,发现有240次摸到黑球,由此估计袋中的黑球大约有 个. 13.(3分)如图,已知直线l l l ////123,直线m 、n 与直线l 1、l 2、l 3分别交于点A 、D 、F ,直线n 与直线l 1、l 2、l 3分别交于B ,C ,E .若=DF AD 54,则=BCCE .14.(3分)对于实数a ,b 定义运算“⊕”:⊕=−+a b a a b 522,例如:⊕=−⨯+⨯=434542322.根据此定义,则方程⊕=x 30的根为 .15.(3分)如图,AD 是∆ABC 的角平分线,CE 是∆ABC 的中线,AD ,CE 交于点F ,若∠=∠B 1,则=AFAD .三、解答题(本大题共7小题,其中第16题5分,第17题6分,第18题8分,第19题8分,第20题8分,第21题10分,第22题10分,共55分)16.(5分)计算:−+−−π5(2020)|1()101.17.(6分)解下列方程:(1)=x x 32;(2)−−=x x 24102.18.(8分)自深圳经济特区建立至今40年以来,深圳本土诞生了许多优秀的科技企业.华为、腾讯、中兴、大疆就是其中的四个杰出代表.某数学兴趣小组在校内对这四个企业进行“你最认可的特区科技企业”调查活动.兴趣小组随机调查了m人(每人必选一个且只能选一个),并将调查结果绘制成了如下尚不完整的统计图,请根据图中信息回答以下问题:(1)请将以上两个统计图补充完整;m,“腾讯”所在扇形的圆心角的度数为;(2)=(3)该校共有2000名同学,估计最认可“华为”的同学大约有名;(4)已知A,B两名同学都最认可“华为”,C同学最认可“腾讯”,D同学最认可“中兴”,从这四名同学中随机抽取两名同学,请你利用画树状图或列表的方法,求出这两名同学最认可的特区科技企业不一样概率.19.(8分)如图,在ABCD 中,AD 的垂直平分线经过点B ,与CD 的延长线交于点E ,AD 与BE 相交于点O ,连接AE ,BD .(1)求证:四边形ABDE 为菱形;(2)若=AD 8,问在BC 上是否存在点P ,使得+PE PD 最小?若存在,求线段BP 的长;若不存在,请说明理由.20.(8分)某超市销售一种进价为40元/件的衬衫.若以50元/件销售,一个月能售出500件.据市场分析,这种衬衫的售价每上涨1元,月销量就会减少10件.现在超市要求月销售利润为8000元,且售价不超过70元,这种衬衫的售价应定为多少?21.(10分)如图,在∆ABC 中,==AB AC 6,=BC 2,过点A 作AM BC //,点P 是AB 上一点,作∠=∠CPD B ,PD 交AM 于点D .(1)如图1,在BA 的延长线上取点G ,使得=DG DA ,则AGAD 的值为 ; (2)如图1,在(1)的条件下,求证:∽∆∆DGP PBC ;(3)如图2,当点P 是AB 的中点时,求AD 的长.22.(10分)如图,矩形AOBC 的顶点B ,A 分别在x 轴,y 轴上,点C 坐标是(5,4),D 为BC 边上一点,将矩形沿AD 折叠,点C 落在x 轴上的点E 处,AD 的延长线与x 轴相交于点F .(1)如图1,求点D 的坐标;(2)如图2,若P 是AF 上一动点,⊥PM AC 交AC 于M ,⊥PN CF 交CF 于N ,设=AP t ,=FN s ,求s 与t 之间的函数关系式;(3)在(2)的条件下,是否存在点P ,使∆PMN 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.深圳市2021年新中考适应性考试数学参考与评分标准一、选择题(每题3分)二、填空题(每空3分)三、解答题16. 解:原式=115−+ …………………………4分=5 …………………………5分17.(1) 23=x x ;(2) 22410−−=x x .解:(1) 23=x x ; (2) 22410−−=x x. 230−=x x ∵()()2442124∆=−−⨯⨯−= ……4分 ()30−=x x ……1分 ∴4242±==x ……5分 ∴10=x ,23=x ……3分 ∴122+=x ,222=x ……6分 18.解:(1)如图: ……………………2分(2)200,108. ……………………4分 (3)800. ……………………5分 (4)如下表:……………………7分总共有12种结果,其中最认可的企业不一样的结果有10种, ∴这两名同学最认可的企业不一样的概率:()105126不一样==P . ……8分 或如下图:………7分总共有12种结果,其中最认可的企业不一样的结果有10种, ∴这两名同学最认可的企业不一样的概率:()105126不一样==P . ……8分19.(1)证明:BE 垂直平分AD ,∴DO AO =,BE AD ⊥. ……………………1分 四边形ABCD 是平行四边形, ∴CD AB //.BED ABE ∠=∠∴. DOE AOB ∠=∠ , 又 DO AO =,∴△AOB ≌△DOE . ……………………2分 ∴EO BO =. 又DO AO =,∴四边形ABDE 是平行四边形. ……………………3分 BE AD ⊥,四边形ABDE 是菱形. ……………………4分(2)作点D 关于BC 的对称点'D ,'DD 交BC 于点G ,延长EB , 过'D 作BE M D ⊥'于点M ,连接'ED 交BC 于点P ,此时PE PD +最小. ……………………5分 BGD OBC BOD ∠=∠=∠ , ∴四边形ODGB 是矩形. ∴DG BO =.同理,'GD BM =.421'===AD DO MD . ……………………6分 又EO BO =,∴BM EO BO ==. 90=∠=∠M EBP ,'MED BEP ∠=∠,∴△BEP ∽△'MED……………………7分∴32'==EM BE MD BP . ∴324=BP . 即38=BP . ……………………8分20.解法一:设售价在50元/件的基础上上涨x 元,由题可得:()()5040500108000+−−=x x . ……………………3分 整理得:2403000−+=x x . ……………………4分解得:110=x ,230=x . ……………………5分 当10=x 时,售价:501060+=元. ……………………6分 当30=x 时,售价:503080+=元(不合题意,舍去).…………………7分 答:这种衬衫的售价应定为60元/件. ……………………8分 解法二:设售价定为x 元,由题可得:()()4050010508000−−−=⎡⎤⎣⎦x x . ……………………3分 整理得:214048000−+=x x . ……………………4分 解得:160=x , ……………………5分280=x (不合题意,舍去). ……………………7分 答:这种衬衫的售价应定为60元/件. ……………………8分 (其它解法酌情给分)21. (1) 3 ; ……………………3分(2)证明:DPC GPD APC ∠+∠=∠, BCP B APC ∠+∠=∠, 又B CPD ∠=∠,∴BCP GPD ∠=∠. ……………………4分 又DG AD =,∴GAD G ∠=∠. 又BC AM // , ∴B GAD ∠=∠,∴B G ∠=∠. ……………………5分 又 BCP GPD ∠=∠,∴△DGP ∽△PBC .6分 (其它解法酌情给分)(3) 解法一: 在BA 的延长线上取点G ,使得DG DA =. AC AB =,DG DA =,∴B ACB ∠=∠,GAD G ∠=∠. BC AM // , ∴B GAD ∠=∠.ACB G ∠=∠.∴△DGA ∽△ABC . ∴326===BC AC AG AD . 又点P 为AB 的中点, ∴3==BP AP .设,x AD =则,x DG =,31x AG =x PG 313+=, 由(2)得△DGP ∽△PBC , ……………………8分 ∴BCPGBP DG =. ∴23133x x +=. ……………………9分 解得9=x . ……………………10分解法二:过P 作BC PE ⊥于点E ,延长DP 交BC 于点Q ,AC AB = ,BC AF ⊥,∴122121=⨯==BC BF .∴35162222=−=−=BF AB AF . BC PE ⊥,BC AF ⊥,∴ 90=∠=∠BFA BEP .又 ABF PBE ∠=∠,∴△BPE ∽△BAF .∴21===AB BP BF BE AF PE . ∴235=PE ,2121==BF BE . 又BC AM // ,∴PBQ PAD ∠=∠. ∴△APD ≌△BPQ . ∴BQ AD =.Q设x AD =,则x BQ =,21+=x FQ , CPD APD APC ∠+∠=∠, BCP ABC APC ∠+∠=∠, ∴BCP APD ∠=∠. APD QPB ∠=∠, ∴BCP QPB ∠=∠. Q Q ∠=∠,∴△QBP ∽△QPC . ……………………7分 CQ PQPQ BQ =∴.∴CQ BQ PQ ⋅=2.即)2(2+=x x PQ , 在Rt △QPE 中,222EQ PE PQ +=,222)21()235(++=∴x PQ , ……………………8分 22)21()235()2(++=+∴x x x , ……………………9分解之得9=x . ……………………10分 (其它解法酌情给分)22.(1)方法一:设),5(a D ,则,4,a ED CD a BD −=== 又,5==AE AC∴235,3,4=−=−===OE OB BE OE OA . …………………………1分 在Rt △BDE 中,由勾股定理,222DE BD BE =+,得222)4(2a a −=+, …………………………2分,0>a 23=∴a . )23,5(D ∴. …………………………3分方法二:90=∠=∠=∠AED EBD AOE ,90=∠+∠=∠+∠AEO BED AEO OAE ,BED OAE ∠=∠∴.∴△AOE ∽△EBD . …………………………1分 OABE OE BD =∴. 又2,3,4===BE OE OA ,23432=⨯=⋅=∴OA OE BE BD . …………………………2分 )23,5(D ∴. …………………………3分(2)方法一:,//BF AC ∴,DFB PAM ∠=∠ 90=∠=∠FBD AMP ,∴△ADC ∽△FDB .又23,25,5===BD CD AC ,得54,8,3===AF OF BF . …………………………4分 在Rt △BCF 中,由勾股定理,5==AC CF .延长MP 交OF 于点'N ,AFC EFA CAF EF AC ∠=∠=∠∴,// , FA ∴平分',PN PN CFO =∠..(或连接CP ,用等面积法求得4=+∴PN PM ) FC AC =, ∴CFA CAF ∠=∠90=∠=∠PNF AMP∴△APM ∽△FPN , …………………………6分 ∴21525====AC CD AM PM PF PN . PAPFPM PN =. 又t PF s PM s PN −=−==54,214,21,t PA =,∴t t s s−=−5421421.第22题图14''==+=+∴MN PN PM PN PM∴8552+−=t s . …………………………7分(2)方法二,//BF AC BFD CAD ∠=∠∴, 90=∠=∠FBD ACD∴△ADC ∽△FDB .23,25,5===BD CD AC ,∴54,8,3===AF OF BF , …………………………4分∴△ADP ∽△ADC∴5:2:1::::==AD AC CD PA AM PM∴52,5t AM t PM ==…………………………5分 在Rt △BCF 中,由勾股定理,5==AC CF △APM ∽△FPN , ∴FP APNF AM =. …………………………6分 t PF s PM s PN −=−==54,214,21.tt s t−=5452.8552+−=t s . …………………………7分 其它解法可酌情给分(3))2,4(1P ,)1124,1140(2P,)1120,1148(3P 写对一个坐标给一分分三种情况进行讨论(i )当PN PM =时, △PAM ∽△PFN , PF PA =∴即t t −=54.解得52=t .4,2==∴AM PM . )2,4(1P ∴.(ii )当MN PM =时, 法一:作PN MH ⊥于H ,有s PN NH PH 4121===. s PM 214−=. CF PN AC PM ⊥⊥, 180=∠+∠∴MCN MPN . 又 180=∠+∠∴MCN BFC . 180=∠+∠∴MCN MPN . BFC MPN ∠=∠∴. 又 90=∠=∠CBF MHP ∴△PMH ∽△FCB .∴FBFCPH PM =. ∴3541214=−s s. 1148=∴s . 代入8552+−=t s 得,51120=t . )1124,1140(2P ∴.(ii )法二:作PN MH ⊥于H ,PN 与CM 的延长线交于点G ,有s PN NH PH 4121===4=+PN PMs PM 214−=∴BFC MPN GCN ∠=∠=∠ 即BFC MPN ∠=∠90=∠=∠CBF MHP ∴△PMH ∽△FCB35==FB FC PH PM ∴3541214=−s s1148=∴s代入8552+−=t s 得,51120=t )1124,1140(2P ∴(ii )法三:作PN MH ⊥于H ,PN 与CM 的延长线交于点G ,有s PN NH PH 4121===5t PM =, BFC MPN GCN ∠=∠=∠ 即BFC MPN ∠=∠90=∠=∠CBF MHP ∴△PMH ∽△FCB35==FB FC PH PM ∴35415=s tt s 25512=代入16552+−=t s 得11520=t )1124,1140(2P ∴(iii )当NP NM =时 过N 作PM NQ ⊥于点Q , BFC NPQ ∠=∠ 90=∠=∠CBF NQP∴△NQP ∽△CBF 35==CB CF PQ PN 又s PN 21=s s PM PQ 412)214(2121−=−==,5=CF 3541221=−∴s s1140=s 代入8552+−=t s ,11524=t )1120,1148(3P ∴。

2020-2021深圳市深圳中学初中部初三数学上期中试卷(及答案)

2020-2021深圳市深圳中学初中部初三数学上期中试卷(及答案)

2020-2021深圳市深圳中学初中部初三数学上期中试卷(及答案)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个2.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)4.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.45.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④6.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m2,道路的宽为xm,则可列方程为()A .32×20﹣2x 2=570 B .32×20﹣3x 2=570 C .(32﹣x )(20﹣2x )=570D .(32﹣2x )(20﹣x )=5708.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .99.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h10.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( ) A .13B .14C .15D .1611.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .212.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ). A .摸出的4个球中至少有一个球是白球 B .摸出的4个球中至少有一个球是黑球 C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球二、填空题13.已知、是方程的两个根,则代数式的值为______.14.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多______步.15.要为一幅矩形照片配一个镜框,如图,要求镜框的四条边宽度都相等,且镜框所占面积是照片本身面积的四分之一,已知照片的长为21cm ,宽为10cm ,求镜框的宽度.设镜框的宽度为xcm ,依题意列方程,化成一般式为_____.16.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.17.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,3A CD ︒∠==,则⊙O 的半径是_______.18.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_____°.19.已知圆锥的母线长为5cm,高为4cm,则该圆锥的侧面积为_____ cm²(结果保留π).20.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D,若OA=2,则阴影部分的面积为 .三、解答题21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据:抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率mn0.630.600.630.600.620.610.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.23.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).24.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ; (2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)25.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形; B 选项中该图形是轴对称图形不是中心对称图形; C 选项中既是中心对称图形又是轴对称图形; D 选项中是中心对称图形又是轴对称图形. 故选B .考点: 1.轴对称图形;2.中心对称图形.2.B解析:B 【解析】分析:根据轴对称图形与中心对称图形的概念求解即可. 详解:A .是轴对称图形,不是中心对称图形; B .是轴对称图形,也是中心对称图形; C .是轴对称图形,不是中心对称图形; D .是轴对称图形,不是中心对称图形. 故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.4.B解析:B【解析】【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【详解】如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选B.【点睛】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.5.D解析:D 【解析】 【分析】 【详解】试题分析:①∵二次函数图象的开口向下, ∴a <0,∵二次函数图象的对称轴在y 轴右侧,∴﹣2ba >0, ∴b >0,∵二次函数的图象与y 轴的交点在y 轴的正半轴上, ∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0), ∴a ﹣b+c=0,故②正确; ③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0, ∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确; ④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0, ∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确. 故选D .考点:二次函数图象与系数的关系.6.B解析:B 【解析】 【分析】根据轴对称图形与中心对称图形的概念逐一判断即可得答案. 【详解】A.不是中心对称图形,是轴对称图形,不符合题意,B.是中心对称图形,不是轴对称图形,符合题意,C.不是中心对称图形,是轴对称图形,不符合题意,D.是中心对称图形,也是轴对称图形,不符合题意.故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.D解析:D【解析】【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【详解】解:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,故选D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.8.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=1lr2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB=11lr=22×6×3=9.故选D.【点睛】本题考查扇形面积的计算.9.D解析:D【解析】【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案. 【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D. 【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.10.A解析:A 【解析】 【分析】 【详解】解:用1,2,3三个数字组成一个三位数的所有组合是:123,132,213,231,312,321,是偶数只有2个,所以组成的三位数是偶数的概率是13; 故选A .11.C解析:C 【解析】 【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12bx a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12bx a =-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12bx a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0, 所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12bx a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-, 根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.12.B解析:B 【解析】 【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.【点睛】本题考查随机事件.二、填空题13.【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0b2-b-3=0即a2=a+3b2=b+3则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5整理解析:【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5,整理得2a2-2a+17,然后再把a2=a+3代入后合并即可.【详解】∵a,b是方程x2-x-3=0的两个根,∴a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5=2a2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.14.12【解析】【分析】设长为x步宽为(60-x)步根据长方形的面积公式列出方程进行求解即可得【详解】设长为x步宽为(60-x)步x(60-x)=864解得x1=36x2=24(舍去)∴当x=36时60解析:12【解析】【分析】设长为x步,宽为 (60-x) 步,根据长方形的面积公式列出方程进行求解即可得.【详解】设长为x步,宽为(60-x) 步,x(60-x)=864 ,解得,x1=36,x2=24(舍去),∴当x=36 时,60-x=24 ,∴长比宽多:36-24=12 (步),故答案为:12.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 15.8x2+124x﹣105=0【解析】【分析】镜框所占的面积为照片面积的四分之一为了不出差错最好表示出照片的面积=4(镜框面积-照片面积)【详解】解:设镜框的宽度为xcm依题意得:21×10=4(21解析:8x2+124x﹣105=0【解析】【分析】镜框所占的面积为照片面积的四分之一,为了不出差错,最好表示出照片的面积=4(镜框面积-照片面积).【详解】解:设镜框的宽度为xcm,依题意,得:21×10=4[(21+2x)(10+2x)﹣21×10],整理,得:8x2+124x﹣105=0.故答案为:8x2+124x﹣105=0.【点睛】本题考查了一元二次方程的应用,解题的难点在于把给出的关键描述语进行整理,解决本题的关键是要正确分析题目中等量关系.16.(60532)【解析】【分析】根据前四次的坐标变化总结规律从而得解【详解】第一次P1(52)第二次P2(81)第三次P3(101)第四次P4(131)第五次P5(172)…发现点P的位置4次一个循环解析:(6053,2).【解析】【分析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,∴P2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.17.2【解析】【分析】连接BC由圆周角定理和垂径定理得出由直角三角形的性质得出得出求出即可【详解】解:连接BC如图所示:∵AB是⊙O的直径弦于H在中即⊙O的半径是2;故答案为:2【点睛】考查的是垂径定理解析:2 【解析】 【分析】连接BC ,由圆周角定理和垂径定理得出190,32ACB CH DH CD ︒∠====,由直角三角形的性质得出223,323,2AC CH AC BC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H ,19032ACB CH DH CD ∴∠︒=,===30A ∠︒=,223AC CH ∴==,在Rt ABC ∆中,30A ∠︒=,3232AC BC AB BC ∴==,=,24BC AB ∴=,=, 2OA ∴=,即⊙O 的半径是2; 故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.18.【解析】试题分析:连结BC 因为AB 是⊙O 的直径所以∠ACB=90°∠A+∠ABC=90°又因为BDCD 分别是过⊙O 上点BC 的切线∠BDC=110°所以CD=BD 所以∠BCD=∠DBC=35°又∠AB解析:【解析】试题分析:连结BC ,因为AB 是⊙O 的直径,所以∠ACB =90°,∠A+∠ABC =90°,又因为BD ,CD 分别是过⊙O 上点B ,C 的切线,∠BDC =110°,所以CD=BD,所以∠BCD =∠DBC =35°,又∠ABD =90°,所以∠A=∠DBC =35°.考点:1.圆周角定理;2.切线的性质;3.切线长定理.19.15π【解析】【分析】【详解】解:由图可知圆锥的高是4cm 母线长5cm根据勾股定理得圆锥的底面半径为3cm所以圆锥的侧面积=π×3×5=15πcm²故答案为:15π【点睛】本题考查圆锥的计算解析:15π.【解析】【分析】【详解】解:由图可知,圆锥的高是4cm,母线长5cm,根据勾股定理得圆锥的底面半径为3cm,所以圆锥的侧面积=π×3×5=15πcm².故答案为:15π.【点睛】本题考查圆锥的计算.20.【解析】试题解析:连接OEAE∵点C为OA的中点∴∠CEO=30°∠EOC=60°∴△AEO为等边三角形∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===解析:3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=323 432ππ-+=3 122π+三、解答题21.(1)40;画图见解析;(2)108°,15%;(3)23. 【解析】 【分析】(1)用A 组人数除以A 组所占百分比得到参加初赛的选手总人数,用总人数乘以B 组所占百分比得到B 组人数,从而补全频数分布直方图;(2)用360度乘以C 组所占百分比得到C 组对应的圆心角度数,用E 组人数除以总人数得到E 组人数占参赛选手的百分比;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案. 【详解】解:(1)参加初赛的选手共有:8÷20%=40(人),B 组有:40×25%=10(人). 频数分布直方图补充如下:故答案为40;(2)C 组对应的圆心角度数是:360°×1240=108°,E 组人数占参赛选手的百分比是:640×100%=15%; (3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为812=23. 22.(1)见表格解析;(2)见解析;(3)0.39. 【解析】 【分析】(1)先由频率=频数÷试验次数算出频率; (2)根据表格作出折线统计图即可;(3)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率. 【详解】解:(1) 抛掷次数n100200 300 400 500 600 700 800 900 1000 针尖不着地的频数m 63120186 252 310360434488549 610 针尖不着地的频率 0.63 0.60 0.620.630.62 0.60 0.62 0.610.610.61(2)(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39. 【点睛】考核知识点:用频率表示概率.求出频率是关键.23.(1)()04A ,、()31C ,(2)见解析(3)322【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:2,则903232180n r l ππ⨯===. 考点:图形的旋转、扇形的弧长计算公式.24.(1)经过第一次传球后,篮球落在丙的手中的概率为12;(2)篮球传到乙的手中的概率为38.【解析】 【分析】(1)根据概率公式即可得出答案;(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案. 【详解】(1)经过第一次传球后,篮球落在丙的手中的概率为12; 故答案为:12; (2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种, ∴篮球传到乙的手中的概率为38.【点睛】本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 25.(1)k <2(2)120,2x x ==- 【解析】 【分析】(1)根据一元二次方程根的判别式与根的关系列出不等式即可求出k 的取值范围; (2)根据(1)中的k 的取值范围和k 为正整数得出k 的值,再解方程即可, 【详解】(1)∵关于x 的一元二次方程有两个不相等的实数根, ∴()22410k ∆=-->,=8-4k >0., ∴2k <;(2)∵k 为正整数, ∴k =1,解方程220x x +=得,120,2x x ==-.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程.利用一元二次方程根的判别式与根的关系列出不等式是解题的关键.。

2019-2020学年广东省深圳中学九年级(上)期中数学试卷

2019-2020学年广东省深圳中学九年级(上)期中数学试卷

2019-2020学年广东省深圳中学九年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.如图是一个空心圆柱体,它的左视图是()A.B.C.D.2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:163.若反比例函数y=(k≠0)的图象经过点(2,﹣3),则k的值为()A.5B.﹣5C.6D.﹣64.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B.C.3D.55.某口袋里装有红色、蓝色玻璃球共60个,它们除颜色外都相同,小明通过多次摸球试验发现摸到红球的频率稳定在15%左右,则可估计口袋中红色玻璃球的个数为()A.5B.9C.10D.126.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4B.3C.2D.17.随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8B.28.8(1+x)2=20C.20(1+x)2=28.8D.20+20(1+x)+20(1+x)2=28.88.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定9.一个口袋中装有3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出两个球都是绿球的概率是()A.B.C.D.10.如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为()A.B.C.D.111.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是4的正方形OABC的两边AB,BC分别相交于M,N两点,△OMN的面积为6.则k的值是()A.4B.6C.8D.1012.如图,正方形ABCD的边长为6,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=③AD=AH;④GH=,其中正确结论的个数是()A.1B.2C.3D.4二、填空题(共4小题)13.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.14.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于.15.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,AH交OB于点E,若OB=4,S=24,则OE的长为.菱形ABCD16.如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A在第一象限,点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE,若AC=3DC,△ADE的面积为6,则k的值为.三、解答题(共7小题)17.解方程(1)x2+x﹣3=0(2)(2x+1)2=3(2x+1)18.如图,EF是平行四边形ABCD的对角线BD的垂直平分线,EF与边AD、BC分别交于点E、F.(1)求证:四边形BFDE是菱形;(2)若ED=5,BD=8,求菱形BFDE的面积.19.为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.20.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)根据图象直接写出使不等式kx+b>成立的x的取值范围.21.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.22.如图,矩形ABCD中,AD=3,AB=4,点P是对角线AC上一动点(不与A,C重合),连结BP,作PE⊥PB,交射线DC于点E,以线段PE,PB为邻边作矩形BPEF.过点P作GH⊥CD,分别交AB、CD于点G、H.(1)求证:△PGB∽△EHP;(2)求的值;(3)求矩形BPEF的面积的最小值.23.如图①,已知点A(﹣1,0),B(0,﹣2),▱ABCD的边AD与y轴交于点E,且E为AD的中点,双曲线y =经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,直接写出满足要求的所有点Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图③),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当点T在AF上运动时,的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.2019-2020学年广东省深圳中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.2.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.3.【解答】解:∵反比例函数y=(k≠0)的图象经过点(2,﹣3),∴﹣3=,解得k=﹣6.故选:D.4.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD=4,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4;故选:A.5.【解答】解:∵摸到红色球的频率稳定在15%左右,∴口袋中红色球的频率为15%,故红球的个数为60×15%=9个.故选:B.6.【解答】解:∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个.故选:C.7.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选:C.8.【解答】解:在方程x2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选:B.9.【解答】解:列表得:绿绿黄绿黄黄黄﹣黄绿黄绿黄绿黄﹣黄黄绿绿绿绿﹣黄绿黄绿绿绿﹣绿绿黄绿黄绿﹣绿绿绿绿黄绿黄绿∵共有20种等可能的结果,从中摸出两个球都是绿球的有6种情况,∴从中摸出两个球都是绿球的概率是:=.故选:B.10.【解答】解:∵∠APC=∠ABP+∠BAP=60+∠BAP=∠APD+∠CPD=60+∠CPD,∴∠BAP=∠CPD.又∵∠ABP=∠PCD=60°,∴△ABP∽△PCD.∴=,即=.∴CD=.故选:B.11.【解答】解:∵正方形OABC的边长是4,∴点M的横坐标和点N的纵坐标为4,∴M(4,),N(,4),∴BN=4﹣,BM=4﹣,∵△OMN的面积为6,∴4×4﹣×4×﹣×4×﹣×(4﹣)2=6,∴k=8,故选:C.12.【解答】解:∵四边形ABCD是边长为6的正方形,点E是BC的中点,∴AB=AD=BC=CD=6,BE=CE=3,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS)∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴∠BAE=∠BCF,∴∠BCF=∠CDE,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵DC=6,CE=3,∴DE===3,∵S△DCE=×CD×CE=×DE×CH,∴CH=,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴,∴CF==3,∴HF=CF﹣CH=,∴=,故②正确;如图,过点A作AM⊥DE,∵DC=6,CH=,∴DH===,∵∠CDH+∠ADM=90°,∠ADM+∠DAM=90°,∴∠CDH=∠DAM,且AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS)∴CH=DM=,AM=DH=,∴MH=DM=,且AM⊥DH,∴AD=AH,故③正确;∵DE=3,DH=,∴HE=,ME=HE+MH=,∵AM⊥DE,CF⊥DE,∴AM∥CF,∴,∴=∴HG=,故④正确,故选:D.二、填空题(共4小题)13.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.14.【解答】解:∵∠AEC=∠BED,∴当=时,△BDE∽△ACE,即=,∴CE=.故答案为.15.【解答】解:∵菱形ABCD的对角线AC,BD相交于点O,OB=4,∴BD=8,又∵S菱形ABCD=24,∴BD×AC=24,∴AC=6,CO=3,∴Rt△BCO中,BC=5,又∵AH⊥BC,∴BC×AH=24,∴AH=4.8,∴Rt△ABH中,BH===1.4,∵∠EBH=∠CBO,∠BHE=∠BOC=90°,∴△BEH∽△BCO,∴BE=1.75,∴EO=BO﹣BE=4﹣1.75=2.25,故答案为:2.25.16.【解答】解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE=S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE=S△AOC=12,设点A(m,),∵AC=3DC,DH∥AF,∴3DH=AF,∴D(3m,),∵CH∥GD,AG∥DH,∴△DHC∽△AGD,∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+(DH+AF)×FH+S△HDC=k+××2m+×××2m=k++=9,∴2k=9,∴k=;故答案为.三、解答题(共7小题)17.【解答】解:(1)∵x2+x﹣3=0∴a=1,b=1,c=﹣3∴△=b2﹣4ac=1﹣4×1×(﹣3)=1+12=13>0∴x==∴x1=,x2=.(2)∵(2x+1)2=3(2x+1)∴(2x+1)2﹣3(2x+1)=0∴(2x+1)(2x+1﹣3)=0∴(2x+1)(2x﹣2)=0∴2x+1=0或2x﹣2=0∴x1=﹣,x2=1.∴AD∥BC,OB=OD∵∠EDO=∠FBO,∠OED=∠OFB∴△OED≌△OFB∴DE=BF又∵ED∥BF∴四边形BEDF是平行四边形∵EF⊥BD∴四边形BFDE是菱形;(2)∵四边形BFDE是菱形,BD=8∴OD=BD=4∵ED=5∴OE=3∴EF=6∴菱形BFDE的面积为:×8×6=24答:菱形BFDE的面积为24.19.【解答】解:(1)小明从中随机抽取一张卡片是足球社团B的概率=;(2)列表如下:A B C DA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,所以小明两次抽取的卡片中有一张是科技社团D的概率为=.20.【解答】解:(1)把(﹣4,2)代入y=得2=,则m=﹣8.把(n,﹣4)代入y=﹣得n=2,则B的坐标是(2,﹣4).根据题意得:,解得,则一次函数的解析式是y=﹣x﹣2;(2)设AB与x轴的交点是C,则C的坐标是(﹣2,0).则OC=2,S△AOC=2,S△BOC=4,则S△AOB=6;(3)由函数图象可知,当一次函数图象在反比例函数图象上方时,x的取值范围时x<﹣4或0<x<2.故答案为:x<﹣4或0<x<2.21.【解答】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元,故答案为:(20+2x),(40﹣x);(2)根据题意,得:(20+2x)(40﹣x)=1200解得:x1=20,x2=10(舍去)答:每件童装降价20元,平均每天赢利1200元;(3)不能,22.【解答】(1)证明:∵∠PGB=∠EHP=∠BPE=90°,∴∠PBG=∠EPH(同角的余角相等),∴△PGB∽△EHP;(2)解:连接BE,∵PE⊥PB,∴∠BPE=90°,∵∠BCE=90°,∴∠BCE+∠BPE=180°,∴P,B,E,C四点共圆,∴∠PBE=∠PCE,在Rt△BPE与Rt△ADC中,∠D=∠BPE=90°,∠ACD=∠PBE,∴Rt△BPE∽Rt△ADC,∴=,即==;(3)设AP的长为x.∵AD=3,AB=4,∴由勾股定理得到:AC===5∵cos∠GAP===,∴AG=AP=x.同理,sin∠GAP===.则GP=x.在Rt△PBG中,PB2=BG2+PG2=(4﹣x)2+(x)2=x2﹣x+16,∵==.∴S矩形BPEF=PB•PE=PB2=(x2﹣x+16)=(x﹣)2+,∵0<x<5,∴x=时,S有最小值.23.【解答】解:(1)∵A(﹣1,0),B(0,﹣2),E为AD中点,∴x D=1,设D(1,t),又∵DC∥AB,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1,若ABPQ为平行四边形,则=0,解得x=1,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3,当AB为对角线时,AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)结论:的值不发生改变,理由:如图4,连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN(SAS),∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.。

2020-2021深圳市九年级数学上期中模拟试题(及答案)

2020-2021深圳市九年级数学上期中模拟试题(及答案)

2020-2021深圳市九年级数学上期中模拟试题(及答案)一、选择题1.下列事件中,属于必然事件的是( )A .随时打开电视机,正在播新闻B .优秀射击运动员射击一次,命中靶心C .抛掷一枚质地均匀的骰子,出现4点朝上D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C .D .3.用配方法解方程210x x +-=,配方后所得方程是( )A .213()24x -=B .213()24x +=C .215()24x += D .215()24x -= 4.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m 2,道路的宽为xm ,则可列方程为( )A .32×20﹣2x 2=570 B .32×20﹣3x 2=570 C .(32﹣x )(20﹣2x )=570D .(32﹣2x )(20﹣x )=570 5.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +< 6.如图所示的暗礁区,两灯塔A ,B 之间的距离恰好等于圆的半径,为了使航船(S )不进入暗礁区,那么S 对两灯塔A ,B 的视角∠ASB 必须( )A .大于60°B .小于60°C .大于30°D .小于30° 7.若2245a a x -+-=,则不论取何值,一定有( ) A .5x > B .5x <-C .3x ≥-D .3x ≤- 8.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1B .-1C .±1D .2 9.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 10.在Rt ABC ∆中,90ABC ∠=︒,:BC 2:3=AB , 5AC =,则AB =( ). A .52 B .10 C .5D .15 11.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .12.下列事件中,属于必然事件的是( )A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上二、填空题13.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .15.如图,在扇形CAB 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为__.16.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.17.如图,AD 为ABC V 的外接圆O e 的直径,如果50BAD ∠=︒,那么ACB =∠__________.18.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.19.Rt △ABC 中,∠C =90°,若直角边AC =5,BC =12,则此三角形的内切圆半径为________.20.如图,将ABC V 绕点A 逆时针旋转150︒,得到ADE V ,这时点B C D 、、恰好在同一直线上,则B Ð的度数为______.三、解答题21.如图,在Rt△ABC 中,∠C =90°,点D 在AB 上,以AD 为直径的⊙O 与BC 相 交于点E ,且AE 平分∠BAC .(1)求证:BC 是⊙O 的切线;(2)若∠EAB =30°,OD =3,求图中阴影部分的面积.22.已知△ABC是⊙O的内接三角形,∠BAC的平分线交⊙O于点D.(I)如图①,若BC是⊙O的直径,BC=4,求BD的长;(Ⅱ)如图②,若∠ABC的平分线交AD于点E,求证:DE=DB.23.如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O 上,BD平分∠ABC交AC 于点E,DF⊥BC交BC的延长线于点F.(1)求证:FD是⊙O的切线;(2)若BD=8,sin∠DBF=35,求DE的长.24.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣2x+80(20≤x≤40),设这种健身球每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?25.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可.详解:A.是随机事件,故A不符合题意;B.是随机事件,故B不符合题意;C.是随机事件,故C不符合题意;D.是必然事件,故D符合题意.故选D.点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.2.B解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.3.C解析:C【解析】【分析】本题根据配方的基本方法进行就可以得到答案.配方首先将常数项移到方程的右边,将二次项系数化为1,然后左右两边同时加上一次项系数一半的平方.【详解】解:2x+x=12x+x+14=1+14 215()24x+=.故选C【点睛】考点:配方的方法. 4.D解析:D【解析】【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm ,根据草坪的面积是570m 2,即可列出方程.【详解】解:设道路的宽为xm ,根据题意得:(32-2x )(20-x )=570,故选D .【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.5.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.D解析:D【解析】试题解析:连接OA ,OB ,AB ,BC ,如图:∵AB=OA=OB ,即△AOB 为等边三角形,∴∠AOB=60°,∵∠ACB 与∠AOB 所对的弧都为»AB ,∴∠ACB=12∠AOB=30°, 又∠ACB 为△SCB 的外角, ∴∠ACB >∠ASB ,即∠ASB <30°.故选D7.D解析:D【解析】【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.8.B解析:B【解析】【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可.【详解】∵关于x 的方程()211230mm x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0,解得:m=-1,故选:B .【点睛】本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0. 9.D解析:D【解析】【分析】根据移项,配方,即可得出选项.【详解】解:x 2-4x-1=0,x 2-4x=1,x 2-4x+4=1+4,(x-2)2=5,【点睛】本题考查了解一元二次方程的应用,能正确配方是解题的关键.10.B解析:B【解析】【分析】 依题意可设2=AB x ,3BC x =,根据勾股定理列出关于x 的方程,解方程求出x 的值,进而可得答案.【详解】解:如图,设2=AB x ,3BC x =,根据勾股定理,得:222325+=x x ,解得5x =,∴10AB =.故选B.【点睛】本题考查了勾股定理和简单的一元二次方程的解法,属于基础题型,熟练掌握勾股定理是解题的关键.11.C解析:C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称图形,故本选项不符合题意;C 、既是轴对称图形,也是中心对称图形,故本选项符合题意;D 、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.C解析:C【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 任意数的绝对值都是正数是随机事件,错误;B. 两直线被第三条直线所截,内错角相等是随机事件,错误;C. 如果a、b都是实数,那么a+b=b+a是必然事件,正确;D. 抛掷1个均匀的骰子,出现6点朝上是随机事件,错误;故选D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题13.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.14.【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°得到△BDE∴△ABC≌△BDE∠CBD=60°∴BD=BC=12cm∴△BCD为等边三角形∴CD=BC=BD=12cm在Rt△ACB中AB解析:【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt △ACB 中,AB=22AC BC +=22512+=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.15.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC≌△EAB 即可解决问题详解:如图连接EC∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°.【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△EAB ,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.16.【解析】【分析】先根据∠AOC 的度数和∠BOC 的度数可得∠AOB 的度数再根据△AOD 中AO=DO 可得∠A 的度数进而得出△ABO 中∠B 的度数可得∠C 的度数【详解】解:∵∠AOC 的度数为105°由旋转可解析:45︒【解析】【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=12(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.17.40°【解析】【分析】连接BD如图根据圆周角定理得到∠ABD=90°则利用互余计算出∠D=40°然后再利用圆周角定理得到∠ACB的度数【详解】连接BD 如图∵AD为△ABC的外接圆⊙O的直径∴∠ABD解析:40°.【解析】【分析】连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=40°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-50°=40°,∴∠ACB=∠D=40°.故答案为40°.【点睛】本题考查了圆周角定理.熟练掌握并运用圆周角定理是解决本题的关键. 18.(60532)【解析】【分析】根据前四次的坐标变化总结规律从而得解【详解】第一次P1(52)第二次P2(81)第三次P3(101)第四次P4(131)第五次P5(172)…发现点P的位置4次一个循环解析:(6053,2).【解析】【分析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,∴P2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.19.2【解析】【分析】设ABBCAC与⊙O的切点分别为DFE;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB)由此可求出r的长【详解】解:如图;在Rt△ABC∠解析:2【解析】【分析】设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长.【详解】解:如图;在Rt△ABC,∠C=90°,AC=5,BC=12;根据勾股定理AB=四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AE,BD=BF,CE=CF;∴CE=CF=(AC+BC-AB);即:r=(5+12-13)=2.故答案为2.20.15【解析】分析:先判断出∠BAD=150°AD=AB再判断出△BAD是等腰三角形最后用三角形的内角和定理即可得出结论详解:∵将△ABC绕点A逆时针旋转150°得到△ADE∴∠BAD=150°AD=解析:15【解析】分析:先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.详解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°-∠BAD)=15°,故答案为15°.点睛:此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.三、解答题21.(1)证明见解析;(2)933 22π-.【解析】试题分析:()1连接OE.证明OE ACP,从而得出∠OEB=∠C=90°,从而得证. ()2阴影部分的面积等于三角形的面积减去扇形的面积.试题解析:()1连接OE.∵AE平分∠BAC,∴∠CAE=∠EAD,∵OA=OE,∴∠EAD=∠OEA,∴∠OEA=∠CAE,OE AC ∴P ,∴∠OEB =∠C =90°,∴OE ⊥BC ,且点E 在⊙O 上,∴BC 是⊙O 的切线.(2)解: ∵∠EAB =30°,∴∠EOD =60°,∵∠OEB =90°,∴∠B =30°,∴OB =2OE =2OD =6, ∴223 3.BE OB OE =-=93,OEB S =V 扇形OED 的面积3π.2= 阴影部分的面积为:933π.2- 22.(I )BD =22;(II )见解析.【解析】【分析】(I )连接OD ,易证△DOB 是等腰直角三角形,由勾股定理即可求出BD 的长;(II )由角平分线的定义结合(1)的结论即可得出∠CBD +∠CBE =∠BAE +∠ABE ,再根据三角形外角的性质即可得出∠EBD =∠DEB ,由此即可证出BD =DE .【详解】解:(I )连接OD ,∵BC 是⊙O 的直径,∴∠BAC =90°,∵∠BAC 的平分线交⊙O 于点D ,∴∠BAD =∠CAD =45°,∴∠BOD =90°,∵BC =4,∴BO =OD =2,∴222222BD =+=;(II )证明:∵BE 平分∠ABC ,∴∠ABE =∠CBE .∴∠CBD+∠CBE=∠BAE+∠ABE.又∵∠DEB=BAE+∠ABE,∴∠EBD=∠DEB,∴BD=DE.【点睛】本题考查了三角形外接圆与外心、垂径定理、圆周角定理以及角平分线的定义,熟练掌握和圆有关的性质是解题的关键.23.(1)详见解析;(2)9 2【解析】【分析】(1)连接OD,根据角平分线的定义得到∠ABD=∠DBF,由等腰三角形的性质得到∠ABD=∠ODB,等量代换得到∠DBF=∠ODB,推出∠ODF=90°,根据切线的判定定理得到结论;(2)连接AD,根据圆周角定理得到∠ADE=90°,根据角平分线的定义得到∠DBF=∠ABD,解直角三角形得到AD=6,在Rt△ADE中,解直角三角形得到DE=92.【详解】(1)连接OD,∵BD平分∠ABC交AC于点E,∴∠ABD=∠DBF,∵OB=OD,∴∠ABD=∠ODB,∴∠DBF=∠ODB,∵∠DBF+∠BDF=90°,∴∠ODB+∠BDF=90°,∴∠ODF=90°,∴FD是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADE=90°,∵BD平分∠ABC交AC于点E,在Rt △ABD 中,BD=8,∵sin ∠ABD=sin ∠DBF=35, ∴AB=10,AD=6,∵∠DAC=∠DBC ,∴sin ∠DAE=sin ∠DBC=35, 在Rt △ADE 中,sin ∠DAC=35, 设DE=3x ,则AE=5x ,∴AD=4x ,∴tan ∠DAE=34DE x AD x= ∴DE=92. 【点睛】 本题考查了切线的判定和性质,角平分线的性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.24.(1)w 与x 的函数关系式为w=-2x 2+120x-1600.(2)销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.【解析】试题分析:(1)用每件的利润()20x -乘以销售量即可得到每天的销售利润,即()()()2020280w x y x x =-=--+,然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()2230200y x =--+,然后根据二次函数的最值问题求解;(3)求函数值为150所对应的自变量的值,即解方程()2230200150x --+=,然后利用销售价不高于每件28元确定x 的值.试题解析:(1)根据题意可得:()20w x y =-⋅, ()()20280x x =--+,221201600x x =-+-,w 与x 之间的函数关系为:221201600w x x =-+-;(2)根据题意可得:()2221201*********w x x x =-+-=--+,∵20-<,∴当30x =时,w 有最大值,w 最大值为200.答:销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)当150w =时,可得方程()2230200150x --+=.解得1225,35x x ==,∵3528>,∴235x =不符合题意,应舍去.答:该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.25.(1)证明见解析;(2)6πcm 2.【解析】【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线,∴OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD .由垂径定理可知,MD=MB=12. 在Rt △OBM 中, ∠COB=60°,OB=cos30MB ︒==6.在△CDM 与△OBM 中3090CDM OBM MD MBCMD OMB ︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩, ∴△CDM ≌△OBM (ASA ),∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC =2606360π⋅=6π(cm 2).考点:1.切线的判定;2.扇形面积的计算.。

【初三数学】深圳市九年级数学上期中考试单元测试卷及答案

【初三数学】深圳市九年级数学上期中考试单元测试卷及答案

新九年级(上)数学期中考试试题及答案一、填空题(每小题3分,共30分).1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列方程中,关于x的一元一次方程是()A.x2+2x=x2﹣1 B.+﹣2=0C.ax2+bx+c=0 D.(x+1)2=2(x+1)3.平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2﹣2 D.y=(x+3)2+2 6.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=6 7.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°8.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(3,y3),则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y29.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.10.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②二、填空题(每小题4分,共24分)11.把方程3x2=5x+2化为一元二次方程的一般形式是.12.(a+2)x2﹣2x+3=0是关于x的一元二次方程,则a所满足的条件是.13.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.14.已知实数x,y满足x2﹣6x++9=0,则(x+y)2017的值是.15.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x 的方程为.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解方程:3(x﹣2)2=2(2﹣x).18.(6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.19.(6分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2015年底的绿地面积为公顷,比2014年底增加了公顷;在2013年,2014年,2015年这三年中,绿地面积增加最多的是年;(2)为满足城市发展的需要,计划到2017年底使城区绿地面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.21.(7分)已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标;(3)设抛物线的顶点为C,试求△CAO的面积.22.(7分)已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC 的周长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.25.(9分)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.参考答案一、填空题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列方程中,关于x的一元一次方程是()A.x2+2x=x2﹣1 B.+﹣2=0C.ax2+bx+c=0 D.(x+1)2=2(x+1)【分析】根据一元一次方程的定义,一元二次方程的定义对各选项分析判断即可得解.解:A、化简可得2x=﹣1,是一元一次方程,故本选项正确;B、未知数在分母上,不是整式方程,故本选项错误;C、没有对常数a、b不等于0的限制,所以不是一元一次方程,也不是一元二次方程,故本选项错误;D、整理得x2+2x+1=2x+2,是一元二次方程,故本选项错误.故选:A.【点评】本题利用了一元二次方程的概念,一元一次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).3.平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣2,3)D.(2,3)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).解:点(2,﹣3)关于原点中心对称的点的坐标是(﹣2,3).故选:C.【点评】本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),比较简单.4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.对称轴是x=﹣1 D.与x轴有两个交点【分析】根据二次函数的性质对各开口方向、顶点坐标、对称轴以及与x轴交点的坐标进行判断即可.解:A、y=(x﹣1)2+2,∵a=1>0,∴图象的开口向上,此选项错误;B、y=(x﹣1)2+2顶点坐标是(1,2),此选项正确;C、对称轴是直线x=1,此选项错误;D、(x﹣1)2+2=0,(x﹣1)2=﹣2,此方程无解,与x轴没有交点,故本选项错误.【点评】本题考查了二次函数的性质,掌握利用顶点式求抛物线的开口方向、顶点坐标、对称轴与x轴交点的判定方法是解决问题的关键.5.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是()A.y=(x﹣3)2﹣2 B.y=(x﹣3)2+2 C.y=(x+3)2﹣2 D.y=(x+3)2+2 【分析】根据函数图象的平移规律:左加右减,上加下减,可得答案.解:y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表式是y=(x+3)2﹣2,故选:C.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=6 【分析】根据根与系数的关系得到2+(﹣3)=﹣b,2×(﹣3)=c,然后可分别计算出b、c的值.解:根据题意得2+(﹣3)=﹣b,2×(﹣3)=c,解得b=1,c=﹣6.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.7.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°【分析】先求的分针旋转的速度为=6(度/分钟),继而可得答案.解:∵分针旋转的速度为=6(度/分钟),∴从5点15分到5点20分,分针旋转的度数为6×5=30(度),故选:C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应线段相等,对应角相等,对应点与旋转中心的连线段的夹角等于旋转角.8.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(3,y3),则y1、y2、y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用对称轴左侧y随x 的增大而减小,可判断y1>y2,根据C(3,y3)在对称轴上可判断y3<y2;于是y1>y2>y.3解:由二次函数y=x2﹣6x+c可知对称轴为x=﹣=﹣=3,∴C(3,y3)在对称轴上,∵A(﹣1,y1),B(2,y2)在对称轴的左侧,y随x的增大而减小,∴y1>y2>y3.故选:A.【点评】此题主要考查二次函数图象上点的坐标特征,关键是根据函数关系式,找出对称轴.9.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx 来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.10.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(﹣3,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④C.①③④D.①②【分析】①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④根据﹣3<﹣2<,结合抛物线的性质即可判断y1和y2的大小.解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵抛物线开口向下,对称轴为x=,∴在对称轴的左边y随x的增大而增大,∵﹣3<﹣2<,∴y1>y2.故④错误;综上所述,正确的结论是①②.故选:D.【点评】本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.二、填空题(本大题共6小题,每小题4分,共24分)11.把方程3x2=5x+2化为一元二次方程的一般形式是3x2﹣5x﹣2=0 .【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),据此即可求解.解:一元二次方程3x2=5x+2的一般形式是3x2﹣5x﹣2=0.故答案为:3x2﹣5x﹣2=0.【点评】在移项的过程中容易出现的错误是忘记变号.12.(a+2)x2﹣2x+3=0是关于x的一元二次方程,则a所满足的条件是a≠﹣2 .【分析】根据一元二次方程的定义得出a+2≠0,求出即可.解:∵(a+2)x2﹣2x+3=0是关于x的一元二次方程,∴a+2≠0,∴a≠﹣2.故答案为:a≠﹣2.【点评】本题考查了一元二次方程的定义,注意:一元二次方程的一般形式是ax2+bx+c=0(abc都是常数,且a≠0).13.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为 4 .【分析】已知抛物线的对称轴,利用对称轴公式可求b的值.解:∵y=2x2﹣bx+3,对称轴是直线x=1,∴=1,即﹣=1,解得b=4.【点评】主要考查了求抛物线的顶点坐标的方法:公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=.14.已知实数x,y满足x2﹣6x++9=0,则(x+y)2017的值是﹣1 .【分析】直接利用非负数的性质以及二次根式的性质求出x,y的值进而得出答案.解:∵x2﹣6x++9=0,∴(x﹣3)2+=0,解得:x=3,y=﹣4,故(x+y)2017=(3﹣4)2017=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x的值是解题关键.15.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x 的方程为(9﹣2x)•(5﹣2x)=12 .【分析】由于剪去的正方形边长为xcm,那么长方体纸盒的底面的长为(9﹣2x),宽为(5﹣2x),然后根据底面积是12cm2即可列出方程.解:设剪去的正方形边长为xcm,依题意得(9﹣2x)•(5﹣2x)=12,故填空答案:(9﹣2x)•(5﹣2x)=12.【点评】此题首先要注意读懂题意,正确理解题意,然后才能利用题目的数量关系列出方程.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S =++×2×2=π+2,故答案为:π+2.【点评】本题考查了扇形的面积计算,勾股定理,含30度角的直角三角形的性质的应用,本题的关键是弄清顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的图形的形状.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解方程:3(x﹣2)2=2(2﹣x).【分析】移项,利用因式分解法求得方程的解即可.解:3(x﹣2)2=2(2﹣x)3(x﹣2)2﹣2(2﹣x)=0(x﹣2)[3(x﹣2)+2]=0x﹣2=0,3x﹣4=0解得:x1=2,x2=.【点评】此题考查用因式分解法解一元二次方程,掌握提取公因式法是解决问题的关键.18.(6分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1点的坐标,然后描点即可;(2)由(1)可得)△A1B1C1中各个顶点的坐标.解:(1)如图,(2)A1(1,﹣3),B1(6,﹣1),C1(3,﹣1).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了等腰三角形的性质.19.(6分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?【分析】(1)根据二次函数过点P和二次函数的对称轴为x=﹣1,可得出关于m、n的二元一次方程组,解方程组即可得出m、n的值;(2)由二次函数的a的值大于0,结合函数的单调性,即可得出结论.解:(1)∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1,∴有,解得.∴二次函数的解析式为y=x2+2x﹣2.(2)∵a=1>0,∴抛物线的开口向上,当x≤﹣1时,函数递减;当x>﹣1时,函数递增.故当x≤﹣1时,y随x的增大而减小.【点评】本题考查了二次函数的性质,解题的关键是:(1)由点的坐标以及对称轴的解析式得出二元一次方程组;(2)由a=1>0及对称轴为x=﹣1,结合二次函数的性质即可得知当x≤﹣1时,函数递减.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2015年底的绿地面积为60 公顷,比2014年底增加了 4 公顷;在2013年,2014年,2015年这三年中,绿地面积增加最多的是2014 年;(2)为满足城市发展的需要,计划到2017年底使城区绿地面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.【分析】(1)根据统计图能看出2003年的绿化面积和2002年的绿化面积.(2)设04,05两年绿地面积的年平均增长率为x,根据计划到2005年底使城区绿地面积达到72.6公顷,可列方程求解.解:(1)2015年的绿化面积为60公顷,2014年绿化的面积为56公顷.60﹣56=4,比2014年底增加了4公顷,这三年中增长最多的是2014年.故答案是:60;4;2014;(2)设2016,2017两年绿地面积的年平均增长率为x,60(1+x)2=72.6.x=10%或x=﹣210%(舍去).答:2016,2017两年绿地面积的年平均增长率10%.【点评】本题考查折线统计图及一元二次方程的应用的知识,从上面可看出每年对应的公顷数,以及2015年和2017年的公顷数,求出增长率.21.(7分)已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标;(3)设抛物线的顶点为C,试求△CAO的面积.【分析】(1)利用待定系数法把A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c中,可以解得b,c的值,从而求得函数关系式即可;(2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C的坐标,再根据三角形的面积公式即可求出△CAO的面积.解:(1)把A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,得:,解得:,所以此抛物线的解析式为y=﹣2x2﹣4x+4;(2)∵y=﹣2x2﹣4x+4=﹣2(x2+2x)+4=﹣2[(x+1)2﹣1]+4=﹣2(x+1)2+6,∴此抛物线的对称轴为直线x=﹣1,顶点坐标为(﹣1,6);(3)由(2)知:顶点C(﹣1,6),∵点A(0,4),∴OA=4,∴S△CAO=OA•|x c|=×4×1=2,即△CAO的面积为2.【点评】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键.22.(7分)已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC 的周长.【分析】(1)先计算出△=(k+2)2﹣4•2k=(k﹣2)2,然后根据非负数的性质和根的判别式的意义判断方程根的情况;(2)分类讨论:当b=c时,△=0,则k=2,再把k代入方程,求出方程的解,然后计算三角形周长;当b=a=1或c=a=1时,把x=1代入方程解出k=1,再解此时的一元二次方程,然后根据三角形三边的关系进行判断.(1)证明:△=(k+2)2﹣4•2k=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)解:当b=c时,△=(k﹣2)2=0,则k=2,方程化为x2﹣4x+4=0,解得x1=x2=2,∴△ABC的周长=2+2+1=5;当b=a=1或c=a=1时,把x=1代入方程得1﹣(k+2)+2k=0,解得k=1,方程化为x2﹣3x+2=0,解得x1=1,x2=2,不符合三角形三边的关系,此情况舍去,∴△ABC的周长为5.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:①当△>0,方程有两个不相等的实数根;②当△=0,方程有两个相等的实数根;③当△<0,方程没有实数根.也考查了三角形三边的关系.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【分析】(1)根据销售额=销售量×销售单价,列出函数关系式;(2)用配方法将(1)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【点评】本题考查了二次函数的运用.关键是根据题意列出函数关系式,运用二次函数的性质解决问题.24.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.【分析】(1)根据旋转的性质得AE=AF=AB=AC=2,∠EAF=∠BAC=45°,然后根据“SAS”证明△ABE≌△ACF,于是根据全等三角形的性质即可得到结论;(2)根据菱形的性质得DF=AF=2,DF∥AB,再利用平行线的性质得∠1=∠BAC=45°,则可判断△ACF为等腰直角三角形,所以CF=AF=2,然后计算CF﹣DF即可.(1)证明:∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,∴AE=AF=AB=AC=2,∠EAF=∠BAC=45°,∴∠BAC+∠3=∠EAF+∠3,即∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴BE=CF;(2)解:∵四边形ABDF为菱形,∴DF=AF=2,DF∥AB,∴∠1=∠BAC=45°,∴△ACF为等腰直角三角形,∴CF=AF=2,∴CD=CF﹣DF=2﹣2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.25.(9分)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式y=a(x﹣2)2+3,将A的坐标代入求出a的值,即可确定出抛物线解析式;(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC 解析式,与抛物线解析式联立即可求出D的坐标;(3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,将y=﹣代入得:﹣=﹣x2+3x,求出x的值,确定出OP的长,由OP+PN′求出ON′的长即可确定出N′坐标.解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),设抛物线解析式为y=a(x﹣2)2+3,将A(4,0)坐标代入得:0=4a+3,即a=﹣,则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;(2)设直线AC解析式为y=kx+b(k≠0),将A(4,0)与C(0,3)代入得:,解得:,故直线AC解析式为y=﹣x+3,与抛物线解析式联立得:,解得:或,则点D坐标为(1,);(3)存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=,NP=AQ=3,将y M=﹣代入抛物线解析式得:﹣=﹣x2+3x,解得:x M=2﹣或x M=2+,∴x N=x M﹣3=﹣﹣1或﹣1,∴N 3(﹣﹣1,0),N4(﹣1,0).综上所述,满足条件的点N有四个:N 1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).【点评】此题考查了二次函数综合题,涉及的知识有:待定系数法确定抛物线解析式,一次函数与二次函数的交点,平行四边形的性质,以及坐标与图形性质,是一道多知识点的探究型试题.新人教版数学九年级上册期中考试试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.128.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.710.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2二、填空题(本大题6小题,每小题4分,共24分)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程,化成一般形式为.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是.15.函数y=x2﹣2x+2的图象顶点坐标是.16.点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;三、解答题(本大题2小题,共18分)17.解方程:x2﹣6x+5=0(配方法)18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;。

【初三数学】深圳市九年级数学上期中考试单元测试卷(含答案解析)

【初三数学】深圳市九年级数学上期中考试单元测试卷(含答案解析)

新人教版九年级数学上册期中考试试题(含答案)一.选择题(每小题3分,总分36分)1.下列方程中,关于x 的一元二次方程是( )A .(x +1)2=2(x +1)B .C .ax 2+bx +c =0D .x 2+2x =x 2﹣12.若关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实根,则m 的取值范围是( )A .m <3B .m ≤3C .m <3且m ≠2D .m ≤3且m ≠23.方程x (x ﹣1)=x 的根是( )A .x =2B .x =﹣2C .x 1=﹣2,x 2=0D .x 1=2,x 2=04.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D .5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+16.函数y =﹣x 2﹣4x +3图象顶点坐标是( )A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)7.抛物线y =(x +2)2+1的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)8.y =(x ﹣1)2+2的对称轴是直线( )A .x =﹣1B .x =1C .y =﹣1D .y =19.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .10.当a >0,b <0,c >0时,下列图象有可能是抛物线y =ax 2+bx +c 的是( )A.B.C.D.11.不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A.a>0,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△>0 12.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=1035二.填空题(每小题3分,总分18分)13.若关于x的一元二次方程x2﹣3x+m=0有实数根,则m的取值范围是.14.方程x2﹣3x+1=0的解是.15.如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).16.抛物线y=﹣x2+15有最点,其坐标是.17.水稻今年一季度增产a吨,以后每季度比上一季度增产的百分率为x,则第三季度化肥增产的吨数为.18.已知二次函数y=+5x﹣10,设自变量的值分别为x1,x2,x3,且﹣3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系为三.解答题(本大题共8个小题,)19.(6分)解方程x 2﹣4x +1=0x (x ﹣2)=4﹣2x ;20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.22.(8分)已知:抛物线y =﹣x 2+x ﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x 为何值时,y 随x 的增大而增大?23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B 、C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)26.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?参考答案一.选择题1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【分析】利用一元二次方程的定义判断即可.解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选:A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠2 【分析】由于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.解:∵关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,∴m﹣2≠0,并且△=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3且m≠2.故选:D.【点评】本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.3.方程x(x﹣1)=x的根是()A.x=2 B.x=﹣2 C.x1=﹣2,x2=0 D.x1=2,x2=0【分析】先将原方程整理为一般形式,然后利用因式分解法解方程.解:由原方程,得x 2﹣2x =0,∴x (x ﹣2)=0,∴x ﹣2=0或x =0,解得,x 1=2,x 2=0;故选:D .【点评】本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.下列方程中以1,﹣2为根的一元二次方程是( )A .(x +1)(x ﹣2)=0B .(x ﹣1)(x +2)=1C .(x +2)2=1D . 【分析】根据因式分解法解方程对A 进行判断;根据方程解的定义对B 进行判断;根据直接开平方法对C 、D 进行判断.解:A 、x +1=0或x ﹣2=0,则x 1=﹣1,x 2=2,所以A 选项错误;B 、x =1或x =﹣2不满足(x ﹣1)(x +2)=1,所以B 选项错误;C 、x +2=±1,则x 1=﹣1,x 2=﹣3,所以C 选项错误;D 、x +=±,则x 1=1,x 2=﹣2,所以D 选项正确.故选:D .【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了直接开平方法解一元二次方程,5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( )A .y =3(x ﹣2)2+1B .y =3(x +2)2﹣1C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+1【分析】变化规律:左加右减,上加下减.解:按照“左加右减,上加下减”的规律,y =3x 2的图象向左平移2个单位,再向上平移1个单位得到y =3(x +2)2+1.故选D .【点评】考查了抛物线的平移以及抛物线解析式的性质.6.函数y =﹣x 2﹣4x +3图象顶点坐标是( )A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)【分析】先把二次函数化为顶点式的形式,再得出其顶点坐标即可.解:∵原函数解析式可化为:y =﹣(x +2)2+7,∴函数图象的顶点坐标是(﹣2,7).故选:D .【点评】本题考查的是二次函数的性质,根据题意把二次函数的解析式化为顶点式的形式是解答此题的关键.7.抛物线y =(x +2)2+1的顶点坐标是( )A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标. 解:因为y =(x +2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选:B .【点评】考查顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),对称轴是x =h .要掌握顶点式的性质.8.y =(x ﹣1)2+2的对称轴是直线( )A .x =﹣1B .x =1C .y =﹣1D .y =1【分析】二次函数的一般形式中的顶点式是:y =a (x ﹣h )2+k (a ≠0,且a ,h ,k 是常数),它的对称轴是x =h ,顶点坐标是(h ,k ).解:y =(x ﹣1)2+2的对称轴是直线x =1.故选:B .【点评】本题主要考查二次函数顶点式中对称轴的求法.9.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( )A .﹣1B .2C .D .【分析】可以直接利用两根之和得到所求的代数式的值.解:如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2=2.故选:B.【点评】本题考查一元二次方程ax2+bx+c=0的根与系数的关系即韦达定理,两根之和是,两根之积是.10.当a>0,b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是()A.B.C.D.【分析】根据二次函数的图象与系数的关系可知.解:∵a>0,∴抛物线开口向上;∵b<0,∴对称轴为x=>0,∴抛物线的对称轴位于y轴右侧;∵c>0,∴与y轴的交点为在y轴的正半轴上.故选:A.【点评】本题考查二次函数的图象与系数的关系.11.不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A.a>0,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△>0【分析】根据二次函数的性质可知,只要抛物线开口向上,且与x轴无交点即可.解:欲保证x取一切实数时,函数值y恒为正,则必须保证抛物线开口向上,且与x轴无交点;则a>0且△<0.故选:B.【点评】当x取一切实数时,函数值y恒为正的条件:抛物线开口向上,且与x轴无交点;当x取一切实数时,函数值y恒为负的条件:抛物线开口向下,且与x轴无交点.12.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:C.【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.二.填空题(每小题3分,总分18分)13.若关于x的一元二次方程x2﹣3x+m=0有实数根,则m的取值范围是m≤.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:在有实数根下必须满足△=b2﹣4ac≥0.解:一元二次方程x2﹣3x+m=0有实数根,△=b2﹣4ac=9﹣4m≥0,解得m.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.方程x2﹣3x+1=0的解是x1=,x2=.【分析】观察原方程,可用公式法求解;首先确定a、b、c的值,在b2﹣4ac≥0的前提条件下,代入求根公式进行计算.解:a=1,b=﹣3,c=1,b2﹣4ac=9﹣4=5>0,x=;∴x1=,x2=.故答案为:x1=,x2=.【点评】在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,用直接开平方法简便.因此,在遇到一道题时,应选择适当的方法去解.15.如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号)①③②.【分析】抛物线的形状与|a|有关,根据|a|的大小即可确定抛物线的开口的宽窄.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.【点评】抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.16.抛物线y=﹣x2+15有最高点,其坐标是(0,15).【分析】根据抛物线的开口方向判断该抛物线的最值情况;根据顶点坐标公式求得顶点坐标.解:∵抛物线y=﹣x2+15的二次项系数a=﹣1<0,∴抛物线y=﹣x2+15的图象的开口方向是向下,∴该抛物线有最大值;当x=0时,y取最大值,即y最大值=15;∴顶点坐标是(0,15).故答案是:高、(0,15).【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.17.水稻今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为 a (1+x )2 .【分析】第二季度的吨数为:a (1+x ),第三季度是在第二季度的基础上增加的,为a (1+x )(1+x )=a (1+x )2.关键描述语是:以后每季度比上一季度增产的百分率为x .解:依题意可知:第二季度的吨数为:a (1+x ),第三季度是在第二季度的基础上增加的,为a (1+x )(1+x )=a (1+x )2.故答案为a (1+x )2.【点评】本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系,需注意第三季度是在第二季度的基础上增加的.18.已知二次函数y =+5x ﹣10,设自变量的值分别为x 1,x 2,x 3,且﹣3<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系为 y 1<y 2<y 3【分析】先利用抛物线的对称轴方程得到抛物线的对称轴为直线x =﹣5,而﹣3<x 1<x 2<x 3,然后根据二次函数的性质得到y 1,y 2,y 3的大小关系.解:抛物线的对称轴为直线x =﹣=﹣5,抛物线开口向上,所以当x >﹣5时,y 随x 的增大而增大,而﹣3<x 1<x 2<x 3,所以y 1<y 2<y 3.故答案为y 1<y 2<y 3.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.三.解答题(本大题共8个小题,)19.(6分)解方程x 2﹣4x +1=0x (x ﹣2)=4﹣2x ;【分析】先移项得x 2﹣4x =﹣1,再把方程两边加上4得到x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,然后利用直接开平方法求解;先移项,然后分解因式得出两个一元一次方程,解一元一次方程即可.解:x 2﹣4x +1=0x 2﹣4x =﹣1,x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,∴x ﹣2=±, ∴x 1=2+,x 2=2﹣;x (x ﹣2)=4﹣2xx (x ﹣2)+2(x ﹣2)=0,(x ﹣2)(x +2)=0,∴x ﹣2=0或x +2=0,∴x 1=2,x 2=﹣2.【点评】本题考查了解一元二次方程﹣配方法:先把方程二次项系数化为1,再把常数项移到方程右边,然后把方程两边加上一次项系数的一半得平方,这样方程左边可写成完全平方式,再利用直接开平方法解方程.也考查了因式分解法解一元二次方程.20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式.【分析】先设为顶点式,再把顶点坐标和经过的点(1,2)代入即可解决,解:由抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,可设抛物线为:y =a (x ﹣2)2+4,把(1,2)代入得:2=a +4,解得:a =﹣2,所以抛物线为:y =﹣2(x ﹣2)2+4,即y =﹣2x 2+8x ﹣4,【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.【分析】(1)根据题意可得根的判别式△>0,再代入可得9﹣4m >0,再解即可;(2)根据根与系数的关系可得x 1+x 2=﹣,再代入可得答案.解:(1)由题意得:△=(﹣3)2﹣4×1×m =9﹣4m >0,解得:m <;(2)∵x1+x2=﹣=3,x1=1,∴x2=2.【点评】此题主要考查了根与系数的关系,以及根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.22.(8分)已知:抛物线y=﹣x2+x﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x为何值时,y随x的增大而增大?【分析】(1)把二次函数的一般式配成顶点式,然后根据二次函数的性质解决问题;(2)计算自变量为0对应的函数值得到抛物线与y轴的交点坐标,通过判断方程﹣x2+x ﹣=0没有实数得到抛物线与x轴没有交点;(3)利用二次函数的性质确定x的范围.解:(1)y=﹣x2+x﹣=﹣(x﹣1)2﹣2,所以抛物线的开口向下,对称轴为直线x=1,顶点坐标为(1,﹣2);(2)当x=0时,y=﹣x2+x﹣=﹣,则抛物线与y轴的交点坐标为(0,﹣);当y=0时,﹣x2+x﹣=0,△<0,方程没有实数解,则抛物线与x轴没有交点;即抛物线与坐标轴的交点坐标为(0,﹣);(3)当x<1时,y随x的增大而增大.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【分析】利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可;解:设每件童装应降价x 元,根据题意列方程得,(40﹣x )(20+2x )=1200,解得x 1=20,x 2=10(因为尽快减少库存,不合题意,舍去),答:每件童装降价20元;【点评】本题是一道运用一元二次方程解答的运用题,考查了一元二次方程的解法和基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润的运用.24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?【分析】设矩形一边长为xm ,面积为Sm 2,则另一边长为m ,列出面积与x 的二次函数关系式,求最值.解:设矩形一边长为xm ,面积为Sm 2,则另一边长为m ,则其面积S =x •=x (6﹣x )=﹣x 2+6x . ∵0<2x <12,∴0<x <6.∵S =﹣x 2+6x =﹣(x ﹣3)2+9,∴a =﹣1<0,S 有最大值,当x =3时,S 最大值=9.∴设计费最多为9×1000=9000(元).【点评】本题主要考查二次函数的应用,由矩形面积等于长乘以宽列出函数关系式,利用函数关系式求最值,运用二次函数解决实际问题,比较简单.25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B 、C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)【分析】(1)利用待定系数法求抛物线的解析式;(2)由对称性可直接得出B(5,0),当x=0时,代入抛物线的解析式可得与y轴交点C 的坐标;(3)根据90°所对的弦是直径可知:过O,B,C三点的圆的直径是线段BC,利用勾股定理求BC的长,代入圆的面积公式可以求得面积.解:(1)由题意得:,解得:,∴抛物线的解析式为:y=x2﹣4x﹣5;(2)∵对称轴为直线x=2,A(﹣1,0),∴B(5,0),当x=0时,y=﹣5,∴C(0,﹣5),(3)∵∠BOC=90°,∴BC是过O,B,C三点的圆的直径,由题意得:OB=5,OC=5,由勾股定理得;BC==5,S=π•=π,答:过O,B,C三点的圆的面积为π.【点评】本题考查了利用待定系数法求抛物线的解析式和抛物线与两坐标轴的交点,明确令x=0时,求抛物线与y轴的交点;令y=0时,求抛物线与x轴的交点;同时要想求过O,B,C三点的圆的面积就要先求圆的半径可直径,根据圆周角定理可以解决这个问题,从而使问题得以解决.26.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【分析】(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.(2)列出方程解方程组,再根据实际意义确定x的值.(3)构建二次函数,利用二次函数性质解决问题.解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.【点评】本题考查二次函数的应用、一次函数的应用、一元二次方程等知识,解题的关键是熟练掌握待定系数法,学会构建二次函数解决实际问题中的最值问题,属于中考常考题型.新人教版数学九年级上册期中考试试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.128.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.710.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2二、填空题(本大题6小题,每小题4分,共24分)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程,化成一般形式为.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是.15.函数y=x2﹣2x+2的图象顶点坐标是.16.点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;三、解答题(本大题2小题,共18分)17.解方程:x2﹣6x+5=0(配方法)18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利元,平均每月可售出个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.参考答案与试题解析一.选择题(共10小题)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】根据根的判别式,可得答案.【解答】解:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x2﹣2x﹣1=0有两个不相等的实数根,故选:C.3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程变形得:x2﹣2x=7,配方得:x2﹣2x+1=8,即(x﹣1)2=8,故选:C.4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:化简方程,得x2﹣6x+4=0,二次项系数;一次项系数;常数项分别为1,﹣6,4,故选:B.5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:∵二次函数y=2x2﹣12x+19=2(x﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x>3时,y随x的增大而增大,当x<3时,y随x的增大而减小;故C选项正确.故选:C.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:C.。

2020-2021深圳南山区前海中学九年级数学上期中第一次模拟试卷带答案

2020-2021深圳南山区前海中学九年级数学上期中第一次模拟试卷带答案

2020-2021深圳南山区前海中学九年级数学上期中第一次模拟试卷带答案一、选择题1.方程x2+x-12=0的两个根为()A.x1=-2,x2=6B.x1=-6,x2=2C.x1=-3,x2=4D.x1=-4,x2=3 2.如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于()A.43B.45C.35D.343.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④4.将函数y=kx2与y=kx+k的图象画在同一个直角坐标系中,可能的是()A.B.C.D.5.如图所示,⊙O是正方形ABCD的外接圆,P是⊙O上不与A、B重合的任意一点,则∠APB等于()A.45°B.60°C.45°或135°D.60°或120°6.解一元二次方程x2﹣8x﹣5=0,用配方法可变形为()A.(x+4)2=11B.(x﹣4)2=11C.(x+4)2=21D.(x﹣4)2=21 7.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .8.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( ) A .13 B .14 C .15 D .169.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个10.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =11.如果反比例函数2a y x -=(a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a<0B .a>0C .a<2D .a>212.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,AC CD DB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.15.已知方程x 2﹣3x+k=0有两个相等的实数根,则k=_____.16.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.17.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.18.a 、b 、c 是实数,点A (a+1、b )、B (a+2,c )在二次函数y=x 2﹣2ax+3的图象上,则b 、c 的大小关系是b ____c (用“>”或“<”号填空)19.Rt △ABC 中,∠C =90°,若直角边AC =5,BC =12,则此三角形的内切圆半径为________.20.如图所示过原点的抛物线是二次函数2231y ax ax a =-+-的图象,那么a 的值是_____.三、解答题21.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数. 购买件数销售价格 不超过30件单价40元 超过30件 每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元22.为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.23.如图,在等腰ABC ∆中,AB AC =,以AC 为直径作O 交BC 于点D ,过点D 作DE AB ⊥,垂足为E .(1)求证:DE 是O 的切线. (2)若3DE =30C ∠=︒,求AD 的长.24.某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件.(1)求出销售量y 件)与销售单价x (元)之间的函数关系式;(2)求出销售该品牌童装获得的利润W (元)与销售单价x 元)之间的函数关系式; (3)若装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?25.为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:将x 2+x ﹣12分解因式成(x+4)(x ﹣3),解x+4=0或x ﹣3=0即可得出结论. x 2+x ﹣12=(x+4)(x ﹣3)=0, 则x+4=0,或x ﹣3=0, 解得:x 1=﹣4,x 2=3.考点:解一元二次方程-因式分解法2.D解析:D【解析】过B 作⊙O 的直径BM ,连接AM ,则有:∠MAB=∠CDB=90°,∠M=∠C ,∴∠MBA=∠CBD ,过O 作OE ⊥AB 于E ,Rt △OEB 中,BE=12AB=4,OB=5, 由勾股定理,得:OE=3,∴tan ∠MBA=OE BE =34, 因此tan ∠CBD=tan ∠MBA=34, 故选D .3.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧,∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.考点:二次函数图象与系数的关系.4.C解析:C【解析】【分析】根据题意,利用分类讨论的方法,讨论k>0和k<0,函数y=kx2与y=kx+k的图象,从而可以解答本题.【详解】当k>0时,函数y=kx2的图象是开口向上,顶点在原点的抛物线,y=kx+k的图象经过第一、二、三象限,是一条直线,故选项A、B均错误,当k<0时,函数y=kx2的图象是开口向下,顶点在原点的抛物线,y=kx+k的图象经过第二、三、四象限,是一条直线,故选项C正确,选项D错误,故选C.【点睛】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.5.C解析:C【分析】首先连接OA,OB,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由圆周角定理,即可求得∠APB的度数.【详解】连接OA,OB,∵⊙O是正方形ABCD的外接圆,∴∠AOB=90°,若点P在优弧ADB上,则∠APB=12∠AOB=45°;若点P在劣弧AB上,则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C.6.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x2-8x=5,∴x2-8x+16=5+16,即(x-4)2=21,故选D.【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.7.C解析:C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.A解析:A【解析】【分析】【详解】解:用1,2,3三个数字组成一个三位数的所有组合是:123,132,213,231,312,321,是偶数只有2个,所以组成的三位数是偶数的概率是13;故选A.9.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.10.D解析:D【解析】【分析】分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.【详解】解:A、∵方程M有两个不相等的实数根,∴△=b2−4ac>0,∵方程N的△=b2−4ac>0,∴方程N也有两个不相等的实数根,故不符合题意;B、把x=4代入ax2+bx+c=0得:16a+4b+c=0,∴110 164c b a++=,∴即14是方程N的一个根,故不符合题意;C、∵方程M有两根符号相同,∴两根之积ca>0,∴ac>0,即方程N的两根之积>0,∴方程N的两根符号也相同,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么这个根也可以是x=-1,故本选项符合题意;故选:D.【点睛】本题考查了根的判别式、根与系数的关系以及一元二次方程的解,逐一分析四个选项的正误是解题的关键.11.D解析:D【解析】【分析】反比例函数kyx=图象在一、三象限,可得>0k.【详解】解:反比例函数2ayx-=(a是常数)的图象在第一、三象限,20 a∴->,2a∴>.故选:D.【点睛】本题运用了反比例函数kyx=图象的性质,解题关键要知道k的决定性作用.12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM⊥CE故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数据此用绿灯亮的时间除以三种灯亮的总时间求出抬头看信号灯时是绿灯的概率为多少即可【详解】抬头看信号灯时是绿灯的概率解析:5 12【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】抬头看信号灯时,是绿灯的概率为255 3025512=++.故答案为:5 12.【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.14.15π【解析】【分析】设圆锥母线长为l 根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l ,∵r=3,h=4,∴母线l=225r h +=,∴S 侧=12×2πr×5=12×2π×3×5=15π, 故答案为15π. 【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.15.【解析】∵x2﹣3x+k=0有两个相等的实数根∴△=∴9﹣4k=0∴k=故答案为解析:94【解析】 ∵x 2﹣3x +k=0有两个相等的实数根,∴△=2(3)410k --⨯⨯=,∴9﹣4k=0,∴k=94. 故答案为94. 16.【解析】试题分析:解:连接OD ∵CD 是⊙O 切线∴OD ⊥CD ∵四边形ABCD 是平行四边形∴AB ∥CD ∴AB ⊥OD ∴∠AOD=90°∵OA=OD ∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD .∵CD 是⊙O 切线,∴OD ⊥CD ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD=90°,∵OA=OD ,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.17.【解析】【分析】先根据∠AOC 的度数和∠BOC 的度数可得∠AOB 的度数再根据△AOD中AO=DO可得∠A的度数进而得出△ABO中∠B的度数可得∠C 的度数【详解】解:∵∠AOC的度数为105°由旋转可解析:45【解析】【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=12(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.18.<【解析】试题分析:将二次函数y=x2-2ax+3转换成y=(x-a)2-a2+3则它的对称轴是x=a抛物线开口向上所以在对称轴右边y随着x的增大而增大点A点B均在对称轴右边且a+1<a+2所以b<解析:<【解析】试题分析:将二次函数y=x2-2ax+3转换成y=(x-a)2-a2+3,则它的对称轴是x=a,抛物线开口向上,所以在对称轴右边y随着x的增大而增大,点A点B均在对称轴右边且a+1<a+2,所以b<c.19.2【解析】【分析】设ABBCAC与⊙O的切点分别为DFE;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB)由此可求出r的长【详解】解:如图;在Rt△ABC∠解析:2【解析】【分析】设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长.【详解】解:如图;在Rt △ABC ,∠C=90°,AC=5,BC=12;根据勾股定理AB=四边形OECF 中,OE=OF ,∠OEC=∠OFC=∠C=90°;∴四边形OECF 是正方形;由切线长定理,得:AD=AE ,BD=BF ,CE=CF ;∴CE=CF=(AC+BC-AB );即:r=(5+12-13)=2.故答案为2. 20.-1【解析】∵抛物线过原点∴解得又∵抛物线开口向下∴解析:-1【解析】∵抛物线2231y ax ax a =-+-过原点,∴210a -=,解得1a =±,又∵抛物线开口向下,∴1a =-. 三、解答题21.王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x 件,则每件商品的价格为:[40﹣(x ﹣30)×0.5]元,根据题意可得: x[40﹣(x ﹣30)×0.5]=1400,解得:x 1=40,x 2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.22.(1)本次调查的学生总人数为40人,∠α=108°;(2)补图见解析;(3)书法与乐器组合在一起的概率为16. 【解析】 【分析】(1)用A 科目人数除以其对应的百分比可得总人数,用360°乘以C 对应的百分比可得∠α的度数;(2)用总人数乘以C 科目的百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能的结果数,再找出恰好是“书法”“乐器”的结果数,然后根据概率公式求解.【详解】(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C 科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2, 所以书法与乐器组合在一起的概率为21126=. 【点睛】本题考查了条形统计图、扇形统计图、列表法与树状图法求概率,读懂统计图、熟练掌握列表法或树状图法求概率是解题的关键.23.(1)见解析;(2)AD 23π=【解析】【分析】(1)连结OD ,根据等腰三角形性质和等量代换得1B ∠=∠,由垂直定义和三角形内角和定理得290B ∠+∠=︒,等量代换得2190∠+∠=︒,由平角定义得90DOE ∠=︒,从而可得证.(2)连结AD ,由圆周角定理得90ADC ∠=︒,根据等腰三角形性质和三角形外角性质可得60AOD ∠=︒,在Rt DEB ∆中,由直角三角形性质得3BD CD ==Rt ADC ∆中,由直角三角形性质得2OA OC ==,再由弧长公式计算即可求得答案.【详解】(1)证明:如图,连结OD .∵OC OD =,AB AC =,∴1C ∠=∠,C B ∠=∠,∴1B ∠=∠,∴DE AB ⊥,∴290B ∠+∠=︒,∴2190∠+∠=︒,∴90ODE ∠=︒,∴DE 为O 的切线.(2)解:连结AD ,∵AC 为O 的直径. ∴90ADC ∠=︒.∵AB AC =,∴30B C ∠=∠=︒,BD CD =,∴60AOD ∠=︒. ∵3DE = ∴3BD CD ==∴2OC =, ∴60221803AD ππ=⨯= 【点睛】 本题考查切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.(1)y =﹣20x +1400(40≤x ≤60);(2)W =﹣20x 2+2200x ﹣56000;(3)商场销售该品牌童装获得的最大利润是4480元.【解析】【分析】(1)销售量y 件为200件加增加的件数(60-x )×20; (2)利润w 等于单件利润×销售量y 件,即W=(x-40)(-20x+1400),整理即可; (3)先利用二次函数的性质得到w=-20x 2+2200x-56000=-20(x-55)2+4500,而56≤x≤60,根据二次函数的性质得到当56≤x≤60时,W 随x 的增大而减小,把x=56代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y =200+(60﹣x )×20=﹣20x+1400, ∴销售量y 件与销售单价x 元之间的函数关系式为: y =﹣20x+1400,(2)设该品牌童装获得的利润为W(元)根据题意得,W=(x﹣40)y=(x﹣40)(﹣20x+1400)=﹣20x2+2200x﹣56000,∴销售该品牌童装获得的利润W元与销售单价x元之间的函数关系式为:W=﹣20x2+2200x﹣56000;(3)根据题意得56≤x≤60,W=﹣20x2+2200x﹣56000=﹣20(x﹣55)2+4500∵a=﹣20<0,∴抛物线开口向下,当56≤x≤60时,W随x的増大而减小,∴当x=56时,W有最大值,W max=﹣20(56﹣55)2+4500=4480(元),∴商场销售该品牌童装获得的最大利润是4480元.【点睛】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.25.(1)1440人;(2)20%【解析】【分析】(1)5月份借阅了名著类书籍的人数是1000(1+10%),则6月份借阅了名著类书籍的人数为:5月份借阅了名著类书籍的人数+340人;(2)根据增长后的量=增长前的量×(1+增长率).设平均每年的增长率是x,列出方程求解即可.【详解】解:(1)由题意,得5月份借阅了名著类书籍的人数是:1000×(1+10%)=1100(人),则6月份借阅了名著类书籍的人数为:1100+340=1440(人);(2)设平均增长率为x.1000(1+x)2=1440,解得:x=0.2.答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.【点睛】本题是一道数学应用题中的增长率问题的实际问题,考查了列一元二次方程解实际问题的运用及一元二次方程的解法的运用,解答中对结果验根是否符合题意是解答的关键.。

2020-2021深圳市深南中学初三数学上期中模拟试题(带答案)

2020-2021深圳市深南中学初三数学上期中模拟试题(带答案)

2020-2021深圳市深南中学初三数学上期中模拟试题(带答案)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.用配方法解方程2410x x -+=,配方后的方程是 ( )A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x += 3.抛物线y=﹣(x +2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是( )A .(﹣5,﹣3)B .(﹣2,0)C .(﹣1,﹣3)D .(1,﹣3)4.下列交通标志是中心对称图形的为( )A .B .C .D . 5.用配方法解方程210x x +-=,配方后所得方程是( )A .213()24x -=B .213()24x +=C .215()24x +=D .215()24x -= 6.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .87.如图所示的暗礁区,两灯塔A ,B 之间的距离恰好等于圆的半径,为了使航船(S )不进入暗礁区,那么S 对两灯塔A ,B 的视角∠ASB 必须( )A .大于60°B .小于60°C .大于30°D .小于30°8.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )A .252元/间B .256元/间C .258元/间D .260元/间9.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3D .k≤4且k≠3 10.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤ 11.下列事件中,属于必然事件的是( ) A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上 12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( )A .-41B .-35C .39D .45 二、填空题13.如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =1,将菱形OABC 绕原点顺时针旋转105°至OA 'B ′C '的位置,则点B '的坐标为_____.14.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.15.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于D .若AC =6,BD =52,则BC 的长为_____.16.如图,在扇形CAB 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为__.17.如图,将正六边形ABCDEF 放置在直角坐标系内,A(﹣2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C 的坐标是_____.18.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.19.现有甲、乙两个盒子,甲盒子中有编号为4,5,6的3个球,乙盒子中有编号为7,8,9的3个球.小宇分别从这两个盒子中随机地拿出1个球,则拿出的2个球的编号之和大于12的概率为_____.20.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是_______.三、解答题21.小明和小亮进行摸牌游戏,如图,他们有四张除牌面数字不同外、其他地方完全相同的纸牌,牌面数字分别为4,5,6,7,他们把纸牌背面朝上,充分洗匀后,从这四张纸牌中摸出一张,记下数字放回后,再次重新洗匀,然后再摸出一张,再次记下数字,将两次数字之和做为对比结果.若两次数字之和大于11,则小明胜;若两次数字之和小于11,则小亮胜.(1)请你用列表法或树状图列出这个摸牌游戏中所有可能出现的结果.(2)这个游戏公平吗?请说明理由.22.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)24.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求阴影部分的面积.25.三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.B解析:B【解析】【分析】根据配方法可以解答本题.【详解】x2−4x+1=0,(x−2)2−4+1=0,(x−2)2=3,故选:B.【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.3.D解析:D【解析】试题分析:原抛物线的顶点坐标为(-2,-3),向右平移三个单位后顶点纵坐标不变,横坐标加3,所以平移后抛物线的顶点坐标是(1,-3)。

2020年九年级数学上期中试卷(附答案)

2020年九年级数学上期中试卷(附答案)

2020年九年级数学上期中试卷(附答案)一、选择题1.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°2.﹣3的绝对值是()A.﹣3B.3C.-13D.133.如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于()A.43B.45C.35D.344.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为()A.6B.7C.8D.95.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a (x﹣1)2+b(x﹣1)=1必有一根为()A.12019B.2020C.2019D.20186.如图所示,⊙O是正方形ABCD的外接圆,P是⊙O上不与A、B重合的任意一点,则∠APB等于()A .45°B .60°C .45° 或135°D .60° 或120°7.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .88.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④ 9.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .210.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A.1 B.2 C.3 D.411.如果反比例函数2ayx-=(a是常数)的图象在第一、三象限,那么a的取值范围是()A.a<0B.a>0C.a<2D.a>212.如图,在⊙O中,AB是⊙O的直径,AB=10,»»»AC CD DB==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=12∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1B.2C.3D.4二、填空题13.用半径为30,圆周角为120°的扇形纸片围成一个圆锥的侧面,那么这个圆锥的底面圆半径是__.14.如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有_____.15.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.16.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.17.一元二次方程()22x x x -=-的根是_____.18.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是____________.19.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________. 20.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .三、解答题21.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).22.“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∴(x +2)2+1≥1,∴x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ;(2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值;(3)比较代数式:x 2﹣1与2x ﹣3的大小.23.甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由.24.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?25.我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市.设每件童装降价x元场调查发现,如果每件童装降价1元,那么平均可多售出2件x>时,平均每天可盈利y元.(0)()1写出y与x的函数关系式;()2当该专卖店每件童装降价多少元时,平均每天盈利400元?()3该专卖店要想平均每天盈利600元,可能吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.D解析:D【解析】过B作⊙O的直径BM,连接AM,则有:∠MAB=∠CDB=90°,∠M=∠C,∴∠MBA=∠CBD,过O作OE⊥AB于E,Rt△OEB中,BE=12AB=4,OB=5,由勾股定理,得:OE=3,∴tan∠MBA=OEBE=34,因此tan∠CBD=tan∠MBA=34,故选D.4.D解析:D 【解析】【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=1lr2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB=11lr=22×6×3=9.故选D.【点睛】本题考查扇形面积的计算.5.B解析:B【解析】【分析】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1得到at2+bt-1=0,利用at2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a(x-1)2+b(x-1)=1必有一根为x=2020.【详解】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1,所以at2+bt-1=0,而关于x的一元二次方程ax2+bx-1=0(a≠0)有一根为x=2019,所以at2+bt-1=0有一个根为t=2019,则x-1=2019,解得x=2020,所以一元二次方程a(x-1)2+b(x-1)=1必有一根为x=2020.故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.C解析:C【解析】【分析】首先连接OA,OB,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由圆周角定理,即可求得∠APB的度数.【详解】连接OA,OB,∵⊙O是正方形ABCD的外接圆,∴∠AOB=90°,若点P在优弧ADB上,则∠APB=12∠AOB=45°;若点P在劣弧AB上,则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C.7.B解析:B【解析】【分析】根据旋转的性质和图形的特点解答.【详解】∵图案绕点O旋转120°后可以和自身重合,∠AOB为120°∴图形中阴影部分的面积是图形的面积的13,∵图形的面积是12cm2,∴图中阴影部分的面积之和为4cm2;故答案为B.【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.8.D解析:D【解析】【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.故选:D.【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.C解析:C【解析】【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12b x a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12b x a=-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12b x a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0,所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++, ∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12b x a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C .【点睛】 本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.10.B解析:B【解析】分析:∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4c <0;故①错误。

2020年深圳市初三数学上期中试卷及答案

2020年深圳市初三数学上期中试卷及答案

2020年深圳市初三数学上期中试卷及答案一、选择题1.方程x 2+x-12=0的两个根为( )A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=32.﹣3的绝对值是( )A .﹣3B .3C .-13D .133.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A .16B .29C .13D .234.下列图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .5.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.如图所示的暗礁区,两灯塔A ,B 之间的距离恰好等于圆的半径,为了使航船(S )不进入暗礁区,那么S 对两灯塔A ,B 的视角∠ASB 必须( )A .大于60°B .小于60°C .大于30°D .小于30°7.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )A .55°B .110°C .120°D .125°8.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3 D .k≤4且k≠39.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -=10.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=2111.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,0) 12.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=- C .()2425x +=D .()247x += 二、填空题13.已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若1211+x x =﹣1,则k 的值为_____. 14.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.15.如图,将正六边形ABCDEF 放置在直角坐标系内,A(﹣2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C 的坐标是_____.16.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.17.关于x 的方程的260x x m -+=有两个相等的实数根,则m 的值为________. 18.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .19.如图,O e 是ABC V 的外接圆,30C ∠=o ,2AB cm =,则O e 的半径为________cm .20.如图,将ABC V 绕点A 逆时针旋转150︒,得到ADE V ,这时点B C D 、、恰好在同一直线上,则B Ð的度数为______.三、解答题21.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE ,连接BD ,CE 交于点F .(1)求证:△AEC ≌△ADB ;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.22.如图,AB 是⊙O 的直径,△ABC 内接于⊙O .点D 在⊙O 上,BD 平分∠ABC 交AC 于点E ,DF ⊥BC 交BC 的延长线于点F .(1)求证:FD 是⊙O 的切线;(2)若BD =8,sin ∠DBF =35,求DE 的长.23.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少? (3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)24.三辆汽车经过某收费站下高速时,在2个收费通道A ,B 中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A 通道通过的概率是 ;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B 通道通过的概率.25.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ?(2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:将x 2+x ﹣12分解因式成(x+4)(x ﹣3),解x+4=0或x ﹣3=0即可得出结论. x 2+x ﹣12=(x+4)(x ﹣3)=0, 则x+4=0,或x ﹣3=0, 解得:x 1=﹣4,x 2=3.考点:解一元二次方程-因式分解法2.B解析:B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.C解析:C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C.4.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念逐一判断即可得答案.【详解】A.不是中心对称图形,是轴对称图形,不符合题意,B.是中心对称图形,不是轴对称图形,符合题意,C.不是中心对称图形,是轴对称图形,不符合题意,D.是中心对称图形,也是轴对称图形,不符合题意.故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.D解析:D【解析】试题解析:连接OA,OB,AB,BC,如图:∵AB=OA=OB,即△AOB为等边三角形,∴∠AOB=60°,∵∠ACB与∠AOB所对的弧都为»AB,∴∠ACB=12∠AOB=30°,又∠ACB为△SCB的外角,∴∠ACB>∠ASB,即∠ASB<30°.故选D7.D解析:D【解析】分析:根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.详解:根据圆周角定理,得∠ACB=12(360°-∠AOB)=12×250°=125°.故选D.点睛:此题考查了圆周角定理.注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.8.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点.9.D解析:D【解析】【分析】根据移项,配方,即可得出选项.【详解】解:x 2-4x-1=0,x 2-4x=1,x 2-4x+4=1+4,(x-2)2=5,故选:D .【点睛】本题考查了解一元二次方程的应用,能正确配方是解题的关键.10.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x 2-8x=5,∴x 2-8x+16=5+16,即(x-4)2=21,故选D .【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.11.B解析:B【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.解:如图,连接AD 、BE ,作线段AD 、BE 的垂直平分线,两线的交点即为旋转中心O ′.其坐标是(0,1).故选B..12.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 二、填空题13.【解析】【分析】利用根与系数的关系结合=﹣1可得出关于k 的方程解之可得出k 的值由方程的系数结合根的判别式△>0可得出关于k 的不等式解之即可得出k 的取值范围进而可确定k 的值此题得解【详解】∵关于x 的一解析:【解析】【分析】 利用根与系数的关系结合1211+x x =﹣1可得出关于k 的方程,解之可得出k 的值,由方程的系数结合根的判别式△>0可得出关于k 的不等式,解之即可得出k 的取值范围,进而可确定k 的值,此题得解.【详解】∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0的两根为x 1,x 2,∴x 1+x 2=﹣(2k +3),x 1x 2=k 2, ∴1211+x x =1212x x x x +=﹣223k k+=﹣1, 解得:k 1=﹣1,k 2=3.∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根,∴△=(2k +3)2﹣4k 2>0,解得:k >﹣34, ∴k 1=﹣1舍去.∴k =3.故答案为:3.【点睛】 本题考查了一元二次方程根与系数的关系及根的判别式,熟练运用根与系数的关系及根的判别式是解决问题的关键.14.3【解析】【分析】设横向的甬路宽为3x 米则纵向的甬路宽为2x 米由剩余部分的面积为144米2即可得出关于x 的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x 米则纵向的甬路宽为2x 米根解析:3【解析】【分析】设横向的甬路宽为3x 米,则纵向的甬路宽为2x 米,由剩余部分的面积为144米2,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】设横向的甬路宽为3x 米,则纵向的甬路宽为2x 米,根据题意得:(20﹣2×2x )(12﹣3x )=144整理得:x 2﹣9x +8=0,解得:x 1=1,x 2=8.∵当x =8时,12﹣3x =﹣12,∴x =8不合题意,舍去,∴x =1,∴3x =3.故答案为3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.(40382)【解析】【分析】先求出开始时点C 的横坐标为OC =1根据正六边形的特点每6次翻转为一个循环组循环用2020除以6根据商和余数的情况确定出点C 的位置然后求出翻转B 前进的距离连接CE 过点D 作解析:(4038,【解析】【分析】先求出开始时点C 的横坐标为12OC =1,根据正六边形的特点,每6次翻转为一个循环组循环,用2020除以6,根据商和余数的情况确定出点C 的位置,然后求出翻转B 前进的距离,连接CE ,过点D 作DH ⊥CE 于H ,则CE ⊥EF ,∠CDH =∠EDH =60°,CH =EH ,求出CE =2CH =2×CDsin60°=23,即可得出点C 的坐标.【详解】∵六边形ABCDEF 为正六边形,∴∠AOC =120°,∴∠DOC =120°﹣90°=30°,∴开始时点C 的横坐标为:12OC =12×2=1, ∵正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2020÷6=336…4, ∴为第336循环组的第4次翻转,点C 在开始时点E 的位置,如图所示:∵A (﹣2,0),∴AB =2,∴翻转B 前进的距离=2×2020=4040, ∴翻转后点C 的横坐标为:4040﹣2=4038,连接CE ,过点D 作DH ⊥CE 于H ,则CE ⊥EF ,∠CDH =∠EDH =60°,CH =EH ,∴CE =2CH =2×CDsin60°=2×2×33, ∴点C 的坐标为(4038,3),故答案为:(4038,3【点睛】本题考查了正六边形的性质、坐标与图形、翻转的性质、含30°角直角三角形的性质、三角函数等知识;根据每6次翻转为一个循环组,确定出翻转最后点C 所在的位置是解题的关键.16.-1【解析】试题解析:把代入得解得:故答案为解析:-1【解析】试题解析:把1x =代入2230ax x -+=,a-+=得,230.a=-解得: 1.-故答案为 1.17.9【解析】【分析】因为一元二次方程有两个相等的实数根所以△=b2-4ac=0根据判别式列出方程求解即可【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根∴△=b2-4ac=0即(-6)2-4解析:9【解析】【分析】因为一元二次方程有两个相等的实数根,所以△=b2-4ac=0,根据判别式列出方程求解即可.【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根,∴△=b2-4ac=0,即(-6)2-4×1×m=0,解得m=9故答案为:9【点睛】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.45【解析】【分析】【详解】试题分析:根据概率的意义用符合条件的数量除以总数即可即10-210=45考点:概率解析:【解析】【分析】【详解】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即.考点:概率19.2【解析】【分析】作直径AD连接BD得∠ABD=90°∠D=∠C=30°则AD=4即圆的半径是2(或连接OAOB发现等边△AOB)【详解】作直径AD连接BD 得:∠ABD=90°∠D=∠C=30°∴A解析:2【解析】【分析】作直径AD,连接BD,得∠ABD=90°,∠D=∠C=30°,则AD=4.即圆的半径是2.(或连接OA,OB,发现等边△AOB.)【详解】作直径AD,连接BD,得:∠ABD=90°,∠D=∠C=30°,∴AD=4,即圆的半径是2.【点睛】本题考查了圆周角定理.能够根据圆周角定理发现等边三角形或直角三角形是解题的关键.20.15【解析】分析:先判断出∠BAD=150°AD=AB再判断出△BAD是等腰三角形最后用三角形的内角和定理即可得出结论详解:∵将△ABC绕点A逆时针旋转150°得到△ADE∴∠BAD=150°AD=解析:15【解析】分析:先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.详解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°-∠BAD)=15°,故答案为15°.点睛:此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.三、解答题21.(1)见解析;(2)BF=222.【解析】【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC与三角形ADB全等即可;(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD ,得到三角形ABD 为等腰直角三角形,求出BD 的长,由BD ﹣DF 求出BF 的长即可.【详解】解:(1)由旋转的性质得:△ABC ≌△ADE ,且AB =AC ,∴AE =AD ,AC =AB ,∠BAC =∠DAE ,∴∠BAC+∠BAE =∠DAE+∠BAE ,即∠CAE =∠DAB ,在△AEC 和△ADB 中,AE AD CAE DAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△ADB (SAS );(2)∵四边形ADFC 是菱形,且∠BAC =45°,∴∠DBA =∠BAC =45°,由(1)得:AB =AD ,∴∠DBA =∠BDA =45°,∴△ABD 为直角边为2的等腰直角三角形,∴BD 2=2AB 2,即BD =,∴AD =DF =FC =AC =AB =2,∴BF =BD ﹣DF =﹣2.【点睛】此题考查了旋转的性质,全等三角形的判定与性质,以及菱形的性质,熟练掌握旋转的性质是解本题的关键.22.(1)详见解析;(2)92 【解析】【分析】(1)连接OD ,根据角平分线的定义得到∠ABD=∠DBF ,由等腰三角形的性质得到∠ABD=∠ODB ,等量代换得到∠DBF=∠ODB ,推出∠ODF=90°,根据切线的判定定理得到结论;(2)连接AD ,根据圆周角定理得到∠ADE=90°,根据角平分线的定义得到∠DBF=∠ABD ,解直角三角形得到AD=6,在Rt △ADE 中,解直角三角形得到DE=92. 【详解】(1)连接OD ,∵BD 平分∠ABC 交AC 于点E ,∴∠ABD=∠DBF ,∵OB=OD ,∴∠ABD=∠ODB ,∴∠DBF=∠ODB ,∵∠DBF+∠BDF=90°,∴∠ODB+∠BDF=90°,∴∠ODF=90°,∴FD 是⊙O 的切线;(2)连接AD ,∵AB 是⊙O 的直径,∴∠ADE=90°,∵BD 平分∠ABC 交AC 于点E ,∴∠DBF=∠ABD ,在Rt △ABD 中,BD=8,∵sin ∠ABD=sin ∠DBF=35, ∴AB=10,AD=6,∵∠DAC=∠DBC ,∴sin ∠DAE=sin ∠DBC=35, 在Rt △ADE 中,sin ∠DAC=35, 设DE=3x ,则AE=5x ,∴AD=4x ,∴tan ∠DAE=34DE x AD x= ∴DE=92. 【点睛】 本题考查了切线的判定和性质,角平分线的性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.23.(1)21070010000w x x =-+-(20≤x≤32);(2)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元;(3)3600.【解析】【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;(3)根据抛物线的性质和图象,求出每月的成本.【详解】解:(1)由题意,得:w=(x ﹣20)•y=(x ﹣20)•(﹣10x+500)=21070010000x x -+-,即21070010000w x x =-+-(20≤x≤32);(2)对于函数21070010000w x x =-+-的图象的对称轴是直线x=7002(10)-⨯-=35. 又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W 随着X 的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,210700100002000x x -+-=解这个方程得:1x =30,2x =40.∵a=﹣10<0,抛物线开口向下,∴当30≤x≤40时,w≥2000.∵20≤x≤32,∴当30≤x≤32时,w≥2000.设每月的成本为P (元),由题意,得:P=20(﹣10x+500)=﹣200x+10000∵k=﹣200<0,∴P 随x 的增大而减小,∴当x=32时,P 的值最小,P 最小值=3600.答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.考点:1.二次函数的应用;2.最值问题;3.二次函数的最值.24.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A 通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B 通道通过的情况数占总情况数的多少即可.解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A 通道通过的情况数有1种,所以都选择A 通道通过的概率为18, 故答案为:18; (2)∵共有8种等可能的情况,其中至少有两辆汽车选择B 通道通过的有4种情况, ∴至少有两辆汽车选择B 通道通过的概率为4182=. 【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.25.(1)3秒后,PQ 的长度等于10;(2)PQB ∆的面积不能等于27cm .【解析】【分析】(1)由题意根据PQ=10,利用勾股定理BP 2+BQ 2=PQ 2,求出即可;(2)由(1)得,当△PQB 的面积等于7cm 2,然后利用根的判别式判断方程根的情况即可;【详解】解:(1)设x 秒后,10PQ =,5BP x =-,2BQ x =,∵222BP BQ PQ +=∴()()(2225210x x -+= 解得:13x =,21x =-(舍去)∴3秒后,PQ 的长度等于10(2)设t 秒后,5PB t =-,2QB t =, 又∵172PQB S BP QB ∆=⨯⨯=,()15272t t ⨯-⨯=, ∴2570t t -+=,25417252830∆=-⨯⨯=-=-<,∴方程没有实数根,∴PQB ∆的面积不能等于27cm .7cm”,得出本题主要考查一元二次方程的应用,找到关键描述语“△PBQ的面积等于2等量关系是解决问题的关键.。

2020-2021学年广东省深圳市南山区前海中学九年级(上)期中数学试卷(附答案详解)

2020-2021学年广东省深圳市南山区前海中学九年级(上)期中数学试卷(附答案详解)

2020-2021学年广东省深圳市南山区前海中学九年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.若x=3是关于x的一元二次方程x2−mx−3=0的一个解,则m的值是()A. 2B. 1C. 0D. −22.如图,直线l1//l2//l3,分别交直线m、n于点A、B、C、D、E、F.若AB:BC=5:3,DE=15,则EF的长为()A. 6B. 9C. 10D. 253.已知5x=6y(y≠0),那么下列比例式中正确的是()A. x5=y6B. x6=y5C. xy=56D. x5=6y4.用配方法解方程x2+6x+4=0时,原方程变形为()A. (x+3)2=9B. (x+3)2=13C. (x+3)2=5D. (x+3)2=45.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A. ∠D=∠BB. ADAB =DEBCC. ADAB =AEACD. ∠E=∠C6.设方程x2+x−2=0的两个根为α,β,那么α+β−αβ的值等于()A. −3B. −1C. 1D. 37.如图,在Rt△ABC中,∠ACB=90°,∠A=65°,CD⊥AB,垂足为D,E是BC的中点,连接ED,则∠EDC的度数是()8.下列性质中,矩形具有、正方形也具有、但是菱形却不具有的性质是()A. 对角线互相垂直B. 对角线互相平分C. 对角线长度相等D. 一组对角线平分一组对角9.某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的产值为175亿元,若设平均每月的增长率为x,根据题意可列方程()A. 50(1+x)2=175B. 50+50(1+x)2=175C. 50(1+x)+50(1+x)2=175D. 50+50(1+x)+50(1+x)2=17510.如图,在△ABC中,AD平分∠BAC,DE//AC交AB于点E,DF//AB交AC于点F,若AF=8,则四边形AEDF的周长是()A. 24B. 28C. 32D. 3611.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为()A. 115°B. 120°C. 125°D. 130°12.如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连接BD,DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH·PC.其中正确的是()A. ①②③④B. ②③C. ①②④D. ①③④二、填空题(本大题共4小题,共12.0分)13.将方程(3−2x)(x+2)=5化为一般形式为______.14.如图,从一块矩形铁片中间截去一个小矩形,使剩下部分四周的宽度都等于x,且小矩形的面积是原来矩形面积的一半,则x的值为______.15.如图,菱形ABCD对角线AC,BD交于点O,∠BAD=60°,点E是AD的中点,OE=4,则菱形ABCD的面积为___.16.如图,在平行四边形ABCD中,点E为CD边的中点,连接BE,若∠ABE=∠ACB,AB=√2,则AC的长为______.三、解答题(本大题共7小题,共52.0分)17.用适当的方法解一元二次方程(1)(x−1)2=4;(2)(x−3)2=2x(3−x);(3)2x2+5x−1=0(4)(x−1)(x−3)=818.已知a:b:c=2:3:5,如果3a−b+c=24,求a,b,c的值.19.若关于x的一元二次方程(m−2)x2−2x+1=0有两个实数根,求m的取值范围.20.如图,AD、A′D′分别是△ABC和△A′B′C′的中线,且ABA′B′=BDB′D′=ADA′D′.判断△ABC和△A′B′C′是否相似,并说明理由.21.某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?22.如图,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连结CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求AB的长.23.如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于=λ(λ>0).点G,与BC的延长线交于点F.设CEEB(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.答案和解析1.【答案】A【解析】解:将x=3代入方程得:9−3m−3=0,解得:m=2.故选:A.根据x=3是已知方程的解,将x=3代入方程即可求出m的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.【答案】B【解析】解:∵l1//l2//l3,DE=15,∴DEEF =ABBC=53,即15EF=53,解得,EF=9,故选:B.根据平行线分线段成比例定理列出比例式,代入计算得到答案.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.3.【答案】B【解析】解:A、x5=y6,则5y=6x,故此选项错误;B、x6=y5,则5x=6y,故此选项正确;C、xy =56,则5y=6x,故此选项错误;D、x5=6y,则xy=30,故此选项错误;故选:B.比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.【解析】解:由x2+6x+4=0可得:x2+6x=−4,则x2+6x+9=−4+9,即:(x+3)2=5,故选:C.把常数项4移项后,应该在左右两边同时加上一次项系数−2的一半的平方.本题主要考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.【答案】B【解析】【分析】根据∠1=∠2,可知∠DAE=∠BAC,因此只要再找一组角相等或夹这组角的一组对应边成比例即可.此题考查了相似三角形的判定,判定两个三角形相似的方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.【解答】解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC.A和D符合有两组角对应相等的两个三角形相似;B、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似;C、符合两组对应边的比相等且夹角相等的两个三角形相似.【解析】解:∵α,β是方程x2+x−2=0的两个根,∴α+β=−1,αβ=−2,∴原式=−1−(−2)=1.故选:C.根据根与系数的关系,可得出α+β和αβ的值,再代入α+β−αβ求值即可.本题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.7.【答案】D【解析】解:∵∠ACB=90°,∠A=65°,∴∠B=25°,∵CD⊥AB,E是BC的中点,BC=EB,∴ED=12∴∠EDB=∠B=25°,∴∠EDC=90°−25°=65°,故选:D.根据三角形内角和定理求出∠B,根据直角三角形的性质得到ED=EB,得到∠EDB=∠B,计划图形计算,得到答案.本题考查的是直角三角形的性质、三角形内角和定理,在直角三角形中,斜边上的中线等于斜边的一半.8.【答案】C【解析】解:∵菱形具有的性质是:两组对边分别平行,对角线互相平分,对角线互相垂直;矩形具有的性质是:两组对边分别平行,对角线互相平分,对角线相等;正方形具有菱形和矩形的性质,∴菱形不具有的性质为:对角线相等,利用正方形的性质,矩形的性质,菱形的性质依次判断可求解.本题考查了正方形的性质,菱形的性质,矩形的性质,注意熟记定理是解此题的关键.9.【答案】D【解析】解:二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故第一季度总产值为:50+50(1+x)+50(1+x)2=175.故选:D.增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.本题主要考查了一元二次方程的运用,解此类题目时常常要按顺序列出接下来几月的产值,再根据题意列出方程即可.10.【答案】C【解析】解:∵DE//AC,DF//AB,∴四边形AEDF为平行四边形,∠EAD=∠FDA,∵AD平分∠BAC,∴∠EAD=∠FAD=∠FDA,∴FA=FD,∴平行四边形AEDF为菱形.∵AF=8,=4AF=4×8=32.∴C菱形AEDF故选:C.根据DE//AC、DF//AB即可得出四边形AEDF为平行四边形,再根据AD平分∠BAC即可得出∠FAD=∠FDA,即FA=FD,从而得出平行四边形AEDF为菱形,根据菱形的性质结合AF=8即可求出四边形AEDF的周长.本题考查了菱形的判定与性质,解题的关键是证出四边形AEDF是菱形.本题属于基础题,难度不大,解决该题型题目时,熟记菱形的判定与性质是关键.11.【答案】C【解析】解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°;由折叠的性质知:∠BEF=∠DEF;而∠BED=180°−∠AEB=110°,∴∠BEF=55°;易知∠EBC′=∠D=∠BC′F=∠C=90°,∴BE//C′F,∴∠EFC′=180°−∠BEF=125°.故选:C.由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE//C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB 的度数可在Rt△ABE中求得,由此可求出∠BEF的度数即可得解.本题考查了平行线的性质以及图形的翻折变换,根据折叠前后图形的形状和大小不变求解即可.12.【答案】C【解析】【分析】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.①正确.利用直角三角形30度角的性质即可解决问题;②正确,根据两角相等两个三角形相似即可判断;③错误.通过计算证明∠FDP=∠PBD,而∠PDB=30°≠∠DFP=60°,∠BPD与∠DPF均为钝角,即可判断;④正确.利用相似三角形的性质即可证明.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD=AD,∠A=∠ADC=∠BCD=∠ABC=90°,∴BE=2AE,故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠PCB=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,而∠BPD与∠DPF均为钝角,∴△PFD与△PDB不会相似,故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DPPC =PHDP,∴DP2=PH⋅PC,故④正确.故正确的有①②④,故选C.13.【答案】2x2+x−1=0【解析】解:(3−2x)(x+2)=5,3x+6−2x2−4x−5=0,−2x2−x+1=0,2x2+x−1=0,故答案为:2x2+x−1=0.利用多项式乘以多项式计算法则把左边展开,然后再合并同类项即可.此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.14.【答案】10【解析】解:因为小长方形的长为(80−2x)cm,宽为(60−2x)cm,则其面积为(80−2x)(60−2x)cm2根据题意得:(80−2x)(60−2x)=12×80×60整理得:x2−70x+600=0解之得:x1=10,x2=60因x=60不合题意,应舍去所以x=10.故答案是:10.本题中小长方形的长为(80−2x)cm,宽为(60−2x)cm,根据“小长方形的面积是原来长方形面积的一半”可列出方程(80−2x)(60−2x)=12×80×60,解方程从而求解.考查了一元二次方程的应用,此题解答时应结合草图,分析出小长方形的长与宽,利用一元二次方程求解,另外应判断解出的解是否符合题意,进而确定取舍.15.【答案】32√3【解析】【分析】本题考查菱形的性质、等边三角形的判定和性质、三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.首先证明△ABD是等边三角形,继而求得AB长,最后即可求得面积.【解答】解:∵四边形ABCD是菱形,∴AB=AD,OB=OD,∵∠BAD=60°,∴△ABD是等边三角形,∵AE=DE,OB=OD,∴AB=2OE=8,∴S菱形ABCD =2⋅S△ABD=2×√34×82=32√3.故答案为32√3.16.【答案】√3【解析】解:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∴△AOB∽△COE,∴ABCE =AOCO,∵点E为CD边的中点,∴CE=12CD=12AB,∴AO=2CO,∴AOAC =23,∵∠BAC=∠OAB,∠ABE=∠ACB,∴△AOB∽△ABC,∴AB:AC=OA:AB,∴AB2=AC⋅OA=23AC2,∵AB=√2,∴AC=√3.故答案为:√3.由四边形ABCD是平行四边形,易得△AOB∽△COE,又由点E为CD边的中点,即可证得OA=23AC,又由∠BAC=∠OAB,∠ABE=∠ACB,可得△AOB∽△ABC,然后由相似三角形的对应边成比例,即可求得答案.此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.17.【答案】解:(1)开方得:x−1=±2,即x−1=2或x−1=−2,∴x1=3,x2=−1;(2))(x−3)2+2x(x−3)=0,(x−3)(x−3+2x)=0,∴x−3=0或3x−3=0,∴x1=3,x2=1;(3)这里a=2,b=5,c=−1,∵b2−4ac=25−4×2×(−1)=33>0,∴x =−5±√332×2=−5±√334, ∴x 1=−5+√334,x 2=−5−√334;(4)整理为x 2−4x −5=0,(x −5)(x +1)=0,∴x −5=0或x +1=0,∴x 1=5,x 2=−1.【解析】(1)利用直接开平方法求解即可;(2)方程移项后,左边分解因式化为积的形式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.(3)找出a ,b ,c 的值,代入求根公式即可求出解;(4)整理后,方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.此题考查了解一元二次方程−因式分解法,公式法,以及直接开方法,熟练掌握各自解法是解本题的关键.18.【答案】解:∵a :b :c =2:3:5,∴设a =2t ,b =3t ,c =5t ,∵3a −b +c =24,∴6t −3t +5t =24,解得t =3,∴a =6,b =9,c =15.【解析】设a =2t ,b =3t ,c =5t ,则可得到6t −3t +5t =24,然后解关于t 的方程,从而得到a 、b 、c 的值.本题考查了比例的性质:熟练掌握内项之积等于外项之积、合比性质、分比性质、合分比性质和等比性质.19.【答案】解:∵(m −2)x 2−2x +1=0有两个实数根,∴△=b 2−4ac ≥0,∴4−4(m −2)≥0,∴m ≤3,又知(m−2)x2−2x+1=0是一元二次方程,即m−2≠0,解得m≠2,故m≤3且m≠2.【解析】首先根据题意可知△=b2−4ac≥0,然后,即可推出4−4(m−2)≥0,通过解不等式即可推出结果,注意m≠2.本题主要考查根的判别式,关键在于推出△≥0,注意一元二次方程二次系数不能为0,此题基础题,比较简单.20.【答案】解:△ABC∽△A′B′C′,理由:∵ABA′B′=BDB′D′=ADA′D′∴△ABD∽△A′B′D′,∴∠B=∠B′,∵AD、A′D′分别是△ABC和△A′B′C′的中线∴BD=12BC,B′D′=12B′C′,∴ABA′B′=12BC12B′C′=BCB′C′,在△ABC和△A′B′C′中∵ABA′B′=BCB′C′,且∠B=∠B′∴△ABC∽△A′B′C′.【解析】根据相似三角形的判定解答即可.此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答.21.【答案】解:设每件服装售价提高x元,则每天可售出(200−10x)件,依题意,得:(60+x−50)(200−10x)=2240,整理,得:x2−10x+24=0,解得:x1=4,x2=6,∴60+x=64或66.答:该服装每件售价是64元或66元时,商店销售这批服装获利能达到2240元.【解析】设每件服装售价提高x元,则每天可售出(200−10x)件,根据总利润=每件服装的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】(1)证明:∵D,E分别是AB,AC的中点,∴DE//BC,2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC=BE,∵EF//BC,EF=BC,∴四边形BCFE是平行四边形,∵BC=BE,∴四边形BCFE是菱形;(2)解:∵四边形BCFE是菱形,∠BCF=120°,∴∠ACB=60°,∵BC=BE,∴△BEC是等边三角形,∴∠BEC=60°,∵E是AC的中点,CE=4,∴AE=EC=BE=4,∴∠A=30°,∴∠ABC=180°−∠ACB−∠A=90°.在Rt△ABC中,AB=√AC2−BC2=√82−42=4√3.【解析】本题考查了三角形的中位线定理、菱形的性质和判定及勾股定理.通过中位线定理把EF与BC连接起来是解决本题的关键.(1)由中位线定理,说明EF、BC平行,由边关系2DE=BC、BE=2DE,说明EF、BC相等,得出四边形BCFE是平行四边形,再证明四边形BCFE是菱形;(2)由四边形BCFE是菱形,∠BCF=120°,说明∠ACB=60°,由AE=EC=BC=BE,得到∠A=30°,求出∠ABC的度数,在Rt△ABC中,求出AB的长.23.【答案】解:(1)∵在正方形ABCD中,AD//BC,∴∠DAG=∠F,又∵AG平分∠DAE,∴∠DAG=∠EAG,∴∠EAG=∠F,∴EA=EF,∵AB=2,∠B=90°,点E为BC的中点,∴BE=EC=1,∴AE=√AB2+BE2=√5,∴EF=√5,∴CF=EF−EC=√5−1;(2)①证明:∵EA=EF,EG⊥AF,∴AG=FG,在△ADG和△FCG中{∠D=∠GCF∠AGD=∠FGC AG=FG,∴△ADG≌△FCG(AAS),∴DG=CG,即点G为CD的中点;②设CD=2a,则CG=a,由①知,CF=DA=2a,∵EG⊥AF,∠GCF=90°,∴∠EGC+∠CGF=90°,∠F+∠CGF=90°,∠ECG=∠GCF=90°,∴∠EGC=∠F,∴△EGC∽△GFC,∴ECGC =GCFC,∵GC=a,FC=2a,∴GCFC =12,∴ECGC =12,∴EC=12a,BE=BC−EC=2a−12a=32a,∴λ=CEEB =12a32a=13.【解析】本题考查正方形的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据AB=2,λ=1,可以得到BE、CE的长,然后根据正方形的性质,可以得到AE的长,再根据平行线的性质和角平分线的性质,可以得到EF的长,从而可以得到线段CF的长;(2)①要证明点G为CD边的中点,只要证明△ADG≌△FGC即可,然后根据题目中的条件,可以得到△ADG≌△FGC的条件,从而可以证明结论成立;②根据题意和三角形相似,可以得到CE和EB的比值,从而可以得到λ的值.。

深圳市南山区9年级数学上册期中试卷含详细答案选择填空有解析

深圳市南山区9年级数学上册期中试卷含详细答案选择填空有解析

2019-2020学年广东省深圳南山区九年级(上)期中数学试卷一.选择题1.下列四个几何体中,左视图为圆的是()A.B.C.D.2.若=,则的值为()A.1 B.C.D.3.圆形物体在阳光下的投影不可能是()A.圆形B.线段C.矩形D.椭圆形4.若反比例函数y=的图象经过点(﹣1,2),则这个函数的图象一定经过点()A.(﹣2,﹣1)B.(﹣,2)C.(2,﹣1)D.(,2)5.若x1,x2是方程x2﹣6x+8的两根,则x1+x2的值是()A.8 B.﹣8 C.﹣6 D.66.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.邻边互相垂直7.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个8.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=B.y=C.y=D.y=9.下列命题中正确的是()A.b是a、c的比例中项,且a:b=7:3,则b:c=7:3B .正三角形、菱形、矩形中,对称轴最多的是菱形C .如果点C 是线段的黄金分割点,那么AC=0.618ABD .相似图形一定是位似图形10.现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x ,则下列方程正确的是( )A .6.3(1+2x )=8B .6.3(1+x )=8C .6.3(1+x )2=8D .6.3+6.3(1+x )+6.3(1+x )2=811.(3分)如果点A (x 1,y 1)和点B (x 2,y 2)是直线y=kx ﹣b 上的两点,且当x 1<x 2时,y 1<y 2,那么函数y=的图象大致是( )A .B .C .D .12.(3分)如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .1二.填空题13.(3分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于.14.(3分)某中学平面比例尺是1:500,平面图上校园面积为2m2,则学校的实际面积是m2.15.(3分)某平行四边形的两边分别为6cm和8cm,如果该平行四边形的高为7cm,那么它的面积是.16.(3分)如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是.三.解答题17.解方程(1)(x+3)2=2x+6(2)x2﹣2x=8.18.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.以点C为位似中心,在网格中画出△A1B1C1,使△A1B1C1与△ABC位似,且△A1B1C1与△ABC 的位似比为2:1,并直接写出点A1和B1的坐标.19.小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)20.如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.21.某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标.如图,当该军舰行至A处时,电子侦察船正位于A处正南方向的B处,且AB=90海里,如果军船和侦察船仍按原速度沿原方向继续航行,那么航行途中侦察船能否侦察到这艘军舰?如果能,最早何时能侦察到?如果不能,请说明理由.22.已知:如图,一次函数y1=kx+3的图象与反比例函数y2=(x>0)的图象交于点P.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y 轴于点C、点D,且S=27,=△DBP(1)求点D的坐标;(2)求k与m的值;(3)根据图象写出当x取何值时,y1<y2?23.已知在平面直角坐标系中,正方形OBCD的边长是1,点P为正方形内一动点,若点M在OB上,且满足△PBC∽△POM,延长BP交OD于N,连接CM.(1)如图1,若点M在线段OB上,求证:OP⊥BN;(2)如图2,在点,P、M、N运动的过程中,满足△PBC∽△POM的点M在OB的延长线上时,求证:BM=DN;(3)是否存在满足条件的点P,使得PC=?若存在,请求出满足条件的P 点坐标;若不存在,请说明理由.2019-2020学年广东省深圳南山区九年级(上)期中数学试卷参考答案与试题解析一.选择题1.下列四个几何体中,左视图为圆的是()A.B.C.D.【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,由此可确定答案.【解答】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选D【点评】主要考查立体图形的左视图,关键是几何体的左视图.2.若=,则的值为()A.1 B.C.D.【考点】比例的性质.【分析】根据合分比性质求解.【解答】解:∵=,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.3.圆形物体在阳光下的投影不可能是()A.圆形B.线段C.矩形D.椭圆形【考点】平行投影.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:∵同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.∴圆形物体在阳光下的投影可能是圆形、线段和椭圆形,但不可能是矩形,故选C.【点评】此题考查了平行投影,太阳光线是平行的,那么对边平行的图形得到的投影依旧平行.4.若反比例函数y=的图象经过点(﹣1,2),则这个函数的图象一定经过点()A.(﹣2,﹣1)B.(﹣,2)C.(2,﹣1)D.(,2)【考点】反比例函数图象上点的坐标特征.【分析】将(﹣1,2)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:∵反比例函数y=的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,只需把所给点的横纵坐标相乘,结果是﹣2的,就在此函数图象上;四个选项中只有C:2×(﹣1)=﹣2符合.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.5.若x1,x2是方程x2﹣6x+8的两根,则x1+x2的值是()A.8 B.﹣8 C.﹣6 D.6【考点】根与系数的关系.【分析】直接利用根与系数的关系来求x1+x2的值.【解答】解:∵x1,x2是方程x2﹣6x+8的两根,∴x1+x2=6.故选D.【点评】此题主要考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=,x1x2=.6.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.邻边互相垂直【考点】菱形的性质;矩形的性质.【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.【点评】本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.7.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个【考点】利用频率估计概率.【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:设红球有x个,根据题意得,4:(4+x)=1:5,解得x=16.故选A.【点评】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.8.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=B.y=C.y=D.y=【考点】根据实际问题列反比例函数关系式.【分析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=,由200度近视镜的镜片焦距是0.5米先求得k的值.【解答】解:由题意设y=,由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=.故眼镜度数y与镜片焦距x之间的函数关系式为:y=.故选;A.【点评】本题考查了根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.9.下列命题中正确的是()A.b是a、c的比例中项,且a:b=7:3,则b:c=7:3B.正三角形、菱形、矩形中,对称轴最多的是菱形C.如果点C是线段的黄金分割点,那么AC=0.618ABD.相似图形一定是位似图形【考点】命题与定理.【分析】分别根据比例的性质、轴对称的性质、黄金分割点的定义及位似图形的定义对各选项进行逐一分析即可.【解答】解:A、∵b是a、c的比例中项,且a:b=7:3,∴=,∴b:c=7:3,故本选项正确;B、∵正三角形有三条对称轴、菱形是中心对称图形、矩形由两条对称轴,所以对称轴最多的是正三角形,故本选项错误;C、如果点C是线段的黄金分割点,只有当AC>BC时,AC≈0.618AB,故本选项错误;D、相似图形不一定是位似图形,故本选项错误.故选A.【点评】本题考查的是命题与定理,熟知比例的性质、轴对称的性质、黄金分割点的定义及位似图形的定义是解答此题的关键.10.现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.3(1+2x)=8 B.6.3(1+x)=8C.6.3(1+x)2=8 D.6.3+6.3(1+x)+6.3(1+x)2=8【考点】由实际问题抽象出一元二次方程.【分析】利用五月份完成投递的快递总件数=三月份完成投递的快递总件数×(1+x)2,进而得出等式求出答案.【解答】解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意,得:6.3(1+x)2=8,故选:C.【点评】此题主要考查了一元二次方程的应用,根据题意正确用未知数表示出五月份完成投递的快递总件数是解题关键.11.(3分)如果点A(x1,y1)和点B(x2,y2)是直线y=kx﹣b上的两点,且当x1<x2时,y1<y2,那么函数y=的图象大致是()A .B .C .D .【分析】根据一次函数的增减性判断出k 的符号,再根据反比例函数的性质解答即可.【解答】解:∵当x 1<x 2时,y 1<y 2,∴k >0,∴函数y=的图象在一、三象限,四个图象中只有A 符合.故选:A .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.12.(3分)如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .1【分析】首先证明△ABE ≌△BCF ,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE 的面积:△BCF 的面积=1:5,∴S 四边形ECFG =4S △BGE ,故④错误.故选:B .【点评】本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.二.填空题13.(3分)已知m 是方程x 2﹣x ﹣1=0的一个根,则代数式m 2﹣m 的值等于 1 .【分析】因为m 是方程的一个根,所以可以把m 代入方程,就能求出代数式的值.【解答】解:∵m 是方程的一个根,∴把m 代入方程有:m 2﹣m ﹣1=0,∴m 2﹣m=1.故答案是1.【点评】本题考查的是一元二次方程的解,把方程的解代入方程,求出代数式的值.14.(3分)某中学平面比例尺是1:500,平面图上校园面积为2m 2,则学校的实际面积是 500000 m 2.【分析】根据题意列出比例式,计算即可.【解答】解:设学校的实际面积是xm 2,由题意得,()2=,解得,x=500000,故答案为:500000.【点评】本题考查的是成比例线段的关系,对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,我们就说这四条线段是成比例线段.15.(3分)某平行四边形的两边分别为6cm和8cm,如果该平行四边形的高为7cm,那么它的面积是42cm2.【分析】依据在直角三角形中斜边最长,先判断出7厘米高的对应底边不可能是8厘米,进而利用平行四边形的面积公式即可求解.【解答】解:∵6cm<7cm,∴6cm的边上的高为7cm,∴6×7=42(cm2);即这个平行四边形的面积是42平方厘米.故答案为:42cm2.【点评】此题主要考查了平行四边形的面积求法,解答此题的关键是:先确定出已知高的对应底边,即可求其面积.16.(3分)如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是(﹣2,0)或(,).【分析】两个图形位似时,有两种情形①位似中心就是CF与x轴的交点;②OC 和BG的交点也是位似中心.【解答】解:两个图形位似时,①位似中心就是CF与x轴的交点,设直线CF解析式为y=kx+b,将C(4,2),F(1,1)代入,得,解得,即y=x+,令y=0得x=﹣2,∴O′坐标是(﹣2,0).②OC和BG的交点也是位似中心,直线BG的解析式为y=﹣x+1,直线OC的解析式为y=x,由解得,∴位似中心的坐标(,),故答案为(﹣2,0)或(,).【点评】本题主要考查位似图形的性质,每对位似对应点与位似中心共线.三.解答题17.解方程(1)(x+3)2=2x+6(2)x2﹣2x=8.【分析】(1)移项后,左边提取公因式x+3,因式分解法求解可得;(2)移项后,左边利用十字相乘法因式分解,进一步求解可得.【解答】解:(1)∵(x+3)2﹣2(x+3)=0,∴(x+3)(x+1)=0,则x+3=0或x+1=0,解得:x=﹣3或x=﹣1;(2)∵x2﹣2x﹣8=0,∴(x+2)(x﹣4)=0,则x+2=0或x﹣4=0,解得:x=﹣2或x=4【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.以点C为位似中心,在网格中画出△A1B1C1,使△A1B1C1与△ABC位似,且△A1B1C1与△ABC 的位似比为2:1,并直接写出点A1和B1的坐标.【分析】根据位似的性质画出图形即可.【解答】解:如图,△A1B1C1即为所求.由图知A1(﹣2,﹣2),B1(4,0).【点评】本题考查了位似的性质,能根据性质的特点进行画图是解此题的关键,考查了学生的动手操作能力.19.小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)【分析】此题属于实际应用问题,解题的关键是将实际问题转化为数学问题进行解答;解题时要注意构造相似三角形,利用相似三角形的性质解题.【解答】解:过点D作DG⊥AB,分别交AB、EF于点G、H,∵AB∥CD,DG⊥AB,AB⊥AC,∴四边形ACDG是矩形,∴EH=AG=CD=1.2,DH=CE=0.8,DG=CA=30,∵EF∥AB,∴,由题意,知FH=EF﹣EH=1.7﹣1.2=0.5,∴,解得,BG=18.75,∴AB=BG+AG=18.75+1.2=19.95≈20.0.∴楼高AB约为20.0米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.20.如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.【分析】(1)由平行四边形的性质得出AD=BC,由直角三角形斜边上的中线性质得出AE=BC=CE,AF=AD=CF,得出AE=CE=AF=CF,即可得出结论;(2)连接EF交AC于点O,解直角三角形求出AC、AB,由三角形中位线定理求出OE,得出EF,菱形AECF的面积=AC•EF,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=BC=CE,同理,AF=AD=CF,∴AE=CE=AF=CF,∴四边形AECF是菱形;(2)解:连接EF交AC于点O,如图所示:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=BC=5,AB=AC=5,∵四边形AECF是菱形,∴AC⊥EF,OA=OC,∴OE是△ABC的中位线,∴OE=AB=,∴EF=5,∴菱形AECF的面积=AC•EF=×5×5=.【点评】本题考查了平行四边形的性质、菱形的判定与性质、直角三角形斜边上的中线性质、三角形中位线定理、菱形的面积公式;熟练掌握菱形的判定与性质,并能进行推理论证与计算是解决问题的关键.21.某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标.如图,当该军舰行至A处时,电子侦察船正位于A处正南方向的B处,且AB=90海里,如果军船和侦察船仍按原速度沿原方向继续航行,那么航行途中侦察船能否侦察到这艘军舰?如果能,最早何时能侦察到?如果不能,请说明理由.【分析】设侦察船由B出发到侦察到这艘军舰经过的时间是x小时,由题中信息可以知道军船和侦察船的行使方向互相垂直,所以军船和侦察船的距离和时间的关系式是:s2=(90﹣30x)2+(20x)2,s≤50时侦察船可侦察到这艘军舰,所以可以将s=50代入关系式:s2=(90﹣30x)2+(20x)2求时间x.【解答】解:能.设侦察船最早由B出发经过x小时侦察到军舰,则≤50,两边平方得:(90﹣30x)2+(20x)2≤502,整理得13x2﹣54x+56≤0,即(13x﹣28)(x﹣2)≤0,∴2≤x≤,即当经过2小时至小时时,侦察船能侦察到这艘军舰.∴最早再过2小时能侦察到.【点评】本题解题的关键是能找出军船和侦察船的距离关系,利用勾股定理正确列出一元二次方程.22.已知:如图,一次函数y1=kx+3的图象与反比例函数y2=(x>0)的图象交于点P.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y=27,=轴于点C、点D,且S△DBP(1)求点D的坐标;(2)求k与m的值;(3)根据图象写出当x取何值时,y1<y2?【分析】(1)本题需先根据题意一次函数与y轴的交点,从而得出D点的坐标.(2)本题需先根据在Rt△COD和Rt△CAP中,=,OD=3,再根据S=27,△DBP 从而得出BP得长和P点的坐标,即可求出结果.(3)根据图形即可得出x的取值范围.【解答】解:(1)∵一次函数y=kx+3与y轴相交,∴令x=0,解得y=3,得D的坐标为(0,3);(2)∵OD⊥OA,AP⊥OA,∠DCO=∠ACP,∠DOC=∠CAP=90°,∴Rt△COD∽Rt△CAP,则=,OD=3,∴AP=OB=6,∴DB=OD+OB=9,在Rt△DBP中,=27,即=27,∴BP=6,故P(6,﹣6),把P坐标代入y=kx+3,得到k=﹣;把P坐标代入反比例函数解析式得m=﹣36;(3)根据图象可得:,解得:或.故直线与双曲线的两个交点为(﹣4,9),(6,﹣6),∵x>0,∴当x>6时,一次函数的值小于反比例函数的值.【点评】本题主要考查了反比例函数和一次函数的交点问题,在解题时要注意知识的综合运用与图形相结合是解题的关键.23.已知在平面直角坐标系中,正方形OBCD的边长是1,点P为正方形内一动点,若点M在OB上,且满足△PBC∽△POM,延长BP交OD于N,连接CM.(1)如图1,若点M在线段OB上,求证:OP⊥BN;(2)如图2,在点,P、M、N运动的过程中,满足△PBC∽△POM的点M在OB的延长线上时,求证:BM=DN;(3)是否存在满足条件的点P,使得PC=?若存在,请求出满足条件的P 点坐标;若不存在,请说明理由.【分析】(1)由△PBC∽△POM,推出∠POM=∠PBC,由∠PBC+∠PBO=90°,推出∠POM+∠PBO=90°,即可证明OP⊥BN;(2)先判断出∠OPB=90°,进而判断出△BAP∽△BNA,推出,由此即可证明.(3)先判断出点P在CH上,再判断出△CPG∽△CHB,即可求出PG,CG即可得出结论.【解答】(1)证明:∵四边形OBCD是正方形,∴∠OBC=90°,∵△PBC∽△POM,∴∠POM=∠PBC,∴∠PBC+∠PBO=90°,∴∠POM+∠PBO=90°,∴∠OPB=90°,∴OP⊥BN,(2)解:∵四边形OBCD是正方形,∴OB=OD=BC,∠OBC=90°,∵△PBC∽△POM,∴∠POM=∠PBC,=,∴∠PBC+∠PBO=90°,∴∠POM+∠PBO=90°,∴∠OPB=90°,∵∠OBP=∠OBN,∠OPB=∠BON=90°,∴△BOP∽△BNO,∴=,∴=,∵OB=BC,∴ON=OM,∴DN=BM;(3)解:这样的点P存在.理由:如图,取OB的中点H,连接PH,CH,在Rt△BCH中,BH=OB=,BC=1,根据勾股定理得,CH=,由(2)知,∠OPB=90°,∴PH=OB=,∴PC+PH=+==CH,∴点P在CH上,过点P作PG⊥BC于G,∴PG∥BH,∴△CPG∽△CHB,∴∵CP=,BC=1,∴=,∴CG==,PG=,∴BG=BC﹣CG=,1﹣PG=1﹣=,∴P(,)【点评】此题是相似三角形综合题,主要考查了正方形的性质,相似三角形的判定和性质,解题的关键是熟练应用相似三角形性质解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档