算法与数据结构-实验-排序
数据结构实验报告五,查找与排序-
数据结构实验报告五,查找与排序-查找与排序一、实验目的:1.理解掌握查找与排序在计算机中的各种实现方法。
2.学会针对所给问题选用最适合的算法。
3.熟练掌握常用排序算法在顺序表上的实现。
二、实验要求:掌握利用常用的查找排序算法的思想来解决一般问题的方法和技巧,进行算法分析并写出实习报告。
三、实验内容及分析:设计一个学生信息管理系统,学生对象至少要包含:学号、性别、成绩1、成绩总成绩等信息。
要求实现以下功能:1.平均成绩要求自动计算;2.查找:分别给定学生学号、性别,能够查找到学生的基本信息(要求至少用两种查找算法实现);3.? 排序:分别按学生的学号、成绩1、成绩2、平均成绩进行排序(要求至少用两种排序算法实现)。
四、程序的调试及运行结果五、程序代码#includestdio.h#includestring.hstruct student//定义结构体{char name;int a1,a2,a3,num;double pow;}zl;int count=0;void jiemian1(); //主界面//函数声明int jiemian2(); //选择界面void luru(); //录入函数void xianshi(); //显示void paixv(); //排序void diaoyong(int); //循环调用选择界面void tianjia(); //添加信息void chaxun1(); //按学号查询详细信息void chaxun2(); //按姓名查询详细信息void xiugai(); //修改信息void shanchu(); //删除信息void main() //main函数{jiemian1();//函数点用}void jiemian1() //主界面定义{char a;printf(“\n\n\n\n\t\t\t学员信息管理器\n\n\n\t\t\t 数据结构课程设计练习六\n\n\n\t\t\t 09信计2:于学彬\n\n“);printf("\n\t\t\t 按回车键继续:");scanf("%c",system("cls");jiemian2();}int jiemian2() //选择界面{int a,b;printf("*******************************主要功能********************************");printf("\n\n\n\n\t\t\t\t1.录入信息\n\n\t\t\t\t2.添加信息\n\n\t\t\t\t3.查看信息\n\n\t\t\t\t4.查询信息\n\n\t\t\t\t5.修改信息\n\n\t\t\t\t6.删除信息\n\n\t\t\t\t7.退出\n\n\t\t\t\t请选择:");scanf("%d",switch(a){case 1:system("cls");luru();break;case 2:system("cls");tianjia();break;case 3:system("cls");paixv();break;case 4:system("cls");printf("1.按学号查询详细信息\n2.按姓名查询详细信息\n请选择:");scanf("%d",switch(b){case 1:system("cls");chaxun1();break;case 2:system("cls");chaxun2();break;} break;case 5:system("cls");xiugai();break;case 6:system("cls");shanchu();break;case 7:system("cls");return a;break;}}void diaoyong(int b) //循环调用选择界面{char a='y';printf("是否返回选择页(y/n):");fflush(stdin);//清空输入缓冲区,通常是为了确保不影响后面的数据读取(例如在读完一个字符串后紧接着又要读取一个字符,此时应该先执行fflush(stdin);)a=getchar();system("cls");while(a=='y'||a=='Y'){b=jiemian2();if(b==7){break;}}}void luru() //录入函数{char a;//='y';do{printf("请输入学员信息:\n");printf("学号:");scanf("%d",zl[count].num);//调用结构体printf("姓名:");fflush(stdin);gets(zl[count].name);printf("三门成绩:\n");printf("成绩1:");scanf("%d",zl[count].a1);printf("成绩2:");scanf("%d",zl[count].a2);printf("成绩3:");scanf("%d",zl[count].a3);zl[count].pow=(zl[count].a1+zl[count].a2+zl[count].a3)/3;//求平均数printf("是否继续(y/n):");fflush(stdin);a=getchar();count++;system("cls");}while(a=='y'count100);//paixv();diaoyong(count);}void tianjia() //添加信息{char a='y';do{printf("请输入学员信息:\n");printf("学号:");scanf("%d",zl[count].num);printf("姓名:");//fflush(stdin);gets(zl[count].name);printf("三门成绩:\n");printf("成绩1:");scanf("%d",zl[count].a1);printf("成绩2:");scanf("%d",zl[count].a2);printf("成绩3:");scanf("%d",zl[count].a3);zl[count].pow=(zl[count].a1+zl[count].a2+zl[count].a3)/3; printf("是否继续(y/n):");//fflush(stdin);a=getchar();count++;system("cls");}while(a=='y'count100);paixv(count);diaoyong(count);}void xianshi() //显示{int i;printf("学号\t \t姓名\t\t\t平均成绩\n");for(i=0;icount;i++){printf("%d\t \t%s\t\t\t%f\n",zl[i].num,zl[i].name,zl[i].pow); }}void paixv() //排序{int i,j;struct student zl1;printf("排序前:\n");xianshi();for(i=0;icount;i++){for(j=1;jcount-i;j++){if(zl[j-1].powzl[j].pow){zl1=zl[j-1];zl[j-1]=zl[j];zl[j]=zl1;}}}printf("排序后:\n");xianshi();diaoyong(count);}void chaxun1() //按学号查询详细信息{int i,num;printf("请输入要查询学员的学号:");scanf("%d",num);printf("学号\t姓名\t成绩1\t成绩2\t成绩3\t平均成绩\n"); for(i=0;icount;i++){if(zl[i].num==num){printf("%d\t%s\t%d\t%d\t%d\t%.2f\n",zl[i].num,zl[i].name,zl[i].a1,zl[i].a2,zl [i].a3,zl[i].pow);}}diaoyong(count);}void chaxun2() //按姓名查询详细信息{int i;struct student zl1;printf("请输入要查询学员的姓名:");fflush(stdin);gets();printf("学号\t姓名\t成绩1\t成绩2\t成绩3\t平均成绩\n");for(i=0;icount;i++){if((strcmp(zl[i].name,))==0)//比较两个字符串的大小{printf("%d\t%s\t%d\t%d\t%d\t%.2f\n",zl[i].num,zl[i].name,zl[i].a1,zl[i].a2,zl [i].a3,zl[i].pow);}}diaoyong(count);}void xiugai() //修改信息{int i,num;printf("请输入要查询学员的学号:");scanf("%d",num);printf("学号\t姓名\t成绩1\t成绩2\t成绩3\t平均成绩\n");for(i=0;icount;i++){if(zl[i].num==num){break;}}printf("%d\t%s\t%d\t%d\t%d\t%.2f\n",zl[i].num,zl[i].name,zl[i].a1,zl[i].a2,zl [i].a3,zl[i].pow);printf("请输入学员信息:\n");printf("学号:");scanf("%d",zl[i].num);printf("姓名:");fflush(stdin);gets(zl[i].name);printf("三门成绩:\n");printf("成绩1:");scanf("%d",zl[i].a1);printf("成绩2:");scanf("%d",zl[i].a2);printf("成绩3:");scanf("%d",zl[i].a3);zl[i].pow=(zl[i].a1+zl[i].a2+zl[i].a3)/3;printf("学号\t姓名\t成绩1\t成绩2\t成绩3\t平均成绩\n"); printf("%d\t%s\t%d\t%d\t%d\t%.2f\n",zl[i].num,zl[i].name,zl[i].a1,zl[i].a2,zl[i].a3,zl[i].pow);diaoyong(count);}void shanchu() //删除信息{int num,i,j;printf("请输入要删除的学员学号:");scanf("%d",num);for(i=0;icount;i++){if(zl[i].num==num){for(j=i;jcount;j++){zl[j]=zl[j+1];}}}count--;xianshi();diaoyong(count);}。
算法与数据结构实验报告
2015-2016学年第二学期《算法与数据结构》课程实验报告专业软件工程学生姓名成晓伟班级软件141学号1410075094实验学时16实验教师徐秀芳信息工程学院实验一单链表的基本操作一、实验目的1.熟悉C语言上机环境,进一步掌握C语言的基本结构及特点。
2.掌握线性表的各种物理存储表示和C语言实现。
3.掌握单链表的各种主要操作的C语言实现。
4.通过实验理解线性表中的单链表存储表示与实现。
二、主要仪器及耗材普通计算机三、实验内容与要求1、用C语言编写一个单链表基本操作测试程序。
(1)初始化单链表(2)创建单链表(3)求单链表长度(4)输出单链表中每一个结点元素(5)指定位置插入某个元素(6)查找第i个结点元素的值(7)查找值为e 的结点,并返回该结点指针(8)删除第i个结点(9)销毁单链表2、实验要求(1)程序中用户可以选择上述基本操作。
程序启动后,在屏幕上可以菜单形式显示不同功能,当按下不同数字后完成指定的功能,按其他键,则显示错误后重新选择。
(2)要求用线性表的顺序存储结构,带头结点的单链表存储结构分别实现。
(3)主函数实现对基本操作功能的调用。
3、主要代码(1)初始化单链表LinkList *InitList(){ //创建一个空链表,初始化线性表LinkList *L;L=(LinkList *)malloc(sizeof(LinkList));L->next=NULL;return L;}(2)创建单链表//头插法void CreateListF(LinkList *L){LinkList *s;int i=1,a=0;while(1){printf("输入第%d个元素(0表示终止)",i++);scanf("%d",&a);if(a==0)break;s=(LinkList *)malloc(sizeof(LinkList));s->data=a;s->next=L->next;L->next=s;}}(3)求链表长度int ListLength(LinkList *L){ //求链表长度int n=0;LinkList *p=L;while(p->next!=NULL){p=p->next;n++;}return(n);}(4)在指定位置插入元素int InsertList(LinkList *L,int i,ElemType e){LinkList *p=L,*s;int j=0;while(p!=NULL&&j<i-1){p=p->next;j++;} //找出要插入的位置的前一个位置if(p==NULL){return 0;}else{s=(LinkList *)malloc(sizeof(LinkList));s->data=e;s->next=p->next;p->next=s;return 1;}}(5)输出链表void DispList(LinkList *L){ //输出链表LinkList *p=L->next;while(p!=NULL){printf("%d",p->data);p=p->next;}printf("\n");}(6)查找链表中指定元素int GetElem(LinkList *L,int i){ //查找链表中指定元素LinkList *p=L;int j=0;while(j<i&&p!=NULL){j++;p=p->next;}if(p==NULL){return 0;}else{return p->data;}}(7)查找值是e的结点并返回该指针LinkList *LocateElem(LinkList *L,ElemType e){ //查找值是e的结点并返回该指针int i=1;LinkList *p=L;while(p!=NULL)if(p->data==e) return p;}if(p==NULL){return NULL;}}(8)删除元素int ListDelete(LinkList *L,int i,ElemType *e){ //删除元素LinkList *p=L,*q;int j=0;while(p!=NULL&&j<i-1){p=p->next;j++;} //找到要删除元素地址的前一个地址if(p==NULL){ return 0;} //不能删除else{q=p->next;*e=q->data;p->next=q->next;free(q); //删除成功return 1;}}(9)销毁链表void DestroyList(LinkList *L){//销毁链表LinkList *pre=L,*p=L->next;while(p!=NULL){free(pre);pre=p;p=pre->next;}free(pre);}main函数:int main(){LinkList *L;ElemType e;int i;L=InitList();CreateListF(L);DispList(L);printf("输入要查找的元素位置:\n");scanf("%d",&i);e=GetElem(L,i);printf("%d\n",e);printf("单链表长度为:%d\n",ListLength(L));printf("输入要删除元素的位置:");scanf("%d",&i);if (i>ListLength(L)){printf("超出范围重新输入");scanf("%d",&i);}if(ListDelete(L,i,&e)==0){printf("未找到元素\n");}else DispList(L);printf("输入插入元素的位置和值:");scanf("%d%d",&i,&e);InsertList(L,i,e);DispList(L);return 0;}4、测试数据及测试结果输入:23 56 12 28 45输出:四、注意事项1、存储结构定义和基本操作尽可能用头文件实现。
算法与及数据结构实验报告
算法与及数据结构实验报告算法与数据结构实验报告一、实验目的本次算法与数据结构实验的主要目的是通过实际操作和编程实现,深入理解和掌握常见算法和数据结构的基本原理、特性和应用,提高我们解决实际问题的能力和编程技巧。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
同时,为了进行算法性能的分析和比较,使用了 Python 的 time 模块来计算程序的运行时间。
三、实验内容1、线性表的实现与操作顺序表的实现:使用数组来实现顺序表,并实现了插入、删除、查找等基本操作。
链表的实现:通过创建节点类来实现链表,包括单向链表和双向链表,并完成了相应的操作。
2、栈和队列的应用栈的实现与应用:用数组或链表实现栈结构,解决了表达式求值、括号匹配等问题。
队列的实现与应用:实现了顺序队列和循环队列,用于模拟排队系统等场景。
3、树结构的探索二叉树的创建与遍历:实现了二叉树的先序、中序和后序遍历算法,并对其时间复杂度进行了分析。
二叉搜索树的操作:构建二叉搜索树,实现了插入、删除、查找等操作。
4、图的表示与遍历邻接矩阵和邻接表表示图:分别用邻接矩阵和邻接表来存储图的结构,并对两种表示方法的优缺点进行了比较。
图的深度优先遍历和广度优先遍历:实现了两种遍历算法,并应用于解决路径查找等问题。
5、排序算法的比较插入排序、冒泡排序、选择排序:实现了这三种简单排序算法,并对不同规模的数据进行排序,比较它们的性能。
快速排序、归并排序:深入理解并实现了这两种高效的排序算法,通过实验分析其在不同情况下的表现。
6、查找算法的实践顺序查找、二分查找:实现了这两种基本的查找算法,并比较它们在有序和无序数据中的查找效率。
四、实验步骤及结果分析1、线性表的实现与操作顺序表:在实现顺序表的插入操作时,如果插入位置在表的末尾或中间,需要移动后续元素以腾出空间。
删除操作同理,需要移动被删除元素后面的元素。
在查找操作中,通过遍历数组即可完成。
排序实验报告
2014-2015学年第一学期实验报告
课程名称:算法与数据结构
实验名称:排序
日期:2015 年 1 月 5 日
目录
一、实验目的 (3)
二、实验内容 (3)
三、实验环境 (3)
四、实验结果 (3)
五、附录 (6)
5.1附录 (6)
5.1 问题分析 (6)
5.2 设计方案 (6)
5.3 算法 (6)
5.4仿真结果 (6)
5.5 调试心得 (6)
一、实验目的
练习排序的使用,进而对排序有个更深的理解。
二、实验内容
对8 种常用的内部排序算法进行比较:直接插入排序;折半插入排序;希尔排序;起泡排序;快速排序;简单选择排序;堆排序;归并排序。
三、实验环境
VS2010 、win8.1
四、实验结果
重新生成排序:
五、附录
5.1附录
5.1 问题分析
该实验的主要工作是设法在程序中适当的地方插入计数操作。
比较的指标为有关键字参加的比较次数和关键字移动次数。
5.2 设计方案
该程序大致分为以下几个模块:
5.3 算法
无重要算法。
5.4仿真结果
见四、实验结果。
5.5 调试心得
通过这次试验,对直接插入排序,折半排序,希尔排序,简单选择排序,堆排序,归并排序,冒泡排序等八种排序算法的思想有了进一步的认识,同时对八种算法有了更进一步的掌握。
快速排序算法实验报告
快速排序算法实验报告快速排序一、问题描述在操作系统中,我们总是希望以最短的时间处理完所有的任务。
但事情总是要一件件地做,任务也要操作系统一件件地处理。
当操作系统处理一件任务时,其他待处理的任务就需要等待。
虽然所有任务的处理时间不能降低,但我们可以安排它们的处理顺序,将耗时少的任务先处理,耗时多的任务后处理,这样就可以使所有任务等待的时间和最小。
只需要将n 件任务按用时去从小到大排序,就可以得到任务依次的处理顺序。
当有 n 件任务同时来临时,每件任务需要用时ni,求让所有任务等待的时间和最小的任务处理顺序。
二、需求分析1. 输入事件件数n,分别随机产生做完n件事所需要的时间;2. 对n件事所需的时间使用快速排序法,进行排序输出。
排序时,要求轴值随机产生。
3. 输入输出格式:输入:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
输出:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
按此顺序进行,则使得所有任务等待时间最小。
4. 测试数据:输入 95 3 4 26 1 57 3 输出1 2 3 3 4 5 5 6 7三、概要设计抽象数据类型因为此题不需要存储复杂的信息,故只需一个整型数组就可以了。
算法的基本思想对一个给定的进行快速排序,首先需要选择一个轴值,假设输入的数组中有k个小于轴值的数,于是这些数被放在数组最左边的k个位置上,而大于周知的结点被放在数组右边的n-k个位置上。
k也是轴值的下标。
这样k把数组分成了两个子数组。
分别对两个子数组,进行类似的操作,便能得到正确的排序结果。
程序的流程输入事件件数n-->随机产生做完没个事件所需时间-->对n个时间进行排序-->输出结果快速排序方法:初始状态 72 6 57 88 85 42 l r第一趟循环 72 6 57 88 85 42 l r 第一次交换 6 72 57 88 85 42 l r 第二趟循环 6 72 57 88 85 42 r l 第二次交换 72 6 57 88 85 42 r l反转交换 6 72 57 88 85 42 r l这就是依靠轴值,将数组分成两部分的实例。
数据结构实验八快速排序实验报告
数据结构实验八快速排序实验报告一、实验目的1.掌握快速排序算法的原理。
2. 掌握在不同情况下快速排序的时间复杂度。
二、实验原理快速排序是一种基于交换的排序方式。
它是由图灵奖得主 Tony Hoare 发明的。
快速排序的原理是:对一个未排序的数组,先找一个轴点,将比轴点小的数放到它的左边,比轴点大的数放到它的右边,再对左右两部分递归地进行快速排序,完成整个数组的排序。
优缺点:快速排序是一种分治思想的算法,因此,在分治思想比较适合的场景中,它具有较高的效率。
它是一个“不稳定”的排序算法,它的工作原理是在大数组中选取一个基准值,然后将数组分成两部分。
具体过程如下:首先,选择一个基准值(pivot),一般是选取数组的中间位置。
然后把数组的所有值,按照大小关系,分成两部分,小于基准值的放左边,大于等于基准值的放右边。
继续对左右两个数组递归进行上述步骤,直到数组只剩一个元素为止。
三、实验步骤1.编写快速排序代码:void quicksort(int *a,int left,int right) {int i,j,t,temp;if(left>right)return;temp=a[left];i=left;j=right;while(i!=j) {// 顺序要先从右往左移while(a[j]>=temp&&i<j)j--;while(a[i]<=temp&&i<j)i++;if(i<j) {t=a[i];a[i]=a[j];a[j]=t;}}a[left]=a[i];a[i]=temp;quicksort(a,left,i-1);quicksort(a,i+1,right);}2.使用 rand() 函数产生整型随机数并量化生成的随机数序列,运用快速排序算法对序列进行排序。
四、实验结果实验结果显示,快速排序能够有效地快速地排序整型序列。
在随机产生的数值序列中,快速排序迅速地将数值排序,明显快于冒泡排序等其他排序算法。
C语言算法与数据结构常用算法和数据结构
C语言算法与数据结构常用算法和数据结构C语言作为一门广泛应用于软件开发领域的编程语言,对于掌握算法和数据结构的知识非常重要。
掌握常用的算法和数据结构,不仅可以帮助我们解决实际问题,还能提高代码的效率和质量。
本文将介绍C语言中常见的算法和数据结构。
一、算法1. 排序算法(1)冒泡排序:通过不断比较相邻元素并交换位置,将最大(或最小)元素逐步冒泡到最后的位置。
(2)插入排序:将一个元素插入到已排序部分的正确位置,逐步构建有序序列。
(3)快速排序:通过选择一个基准元素,将数据分为两部分,一部分小于基准,一部分大于基准,然后递归地对两部分进行排序。
(4)归并排序:将待排序序列递归地分成两个子序列,然后将两个有序子序列合并成一个有序序列。
2. 查找算法(1)线性查找:逐个比较每个元素,直到找到目标元素或搜索结束。
(2)二分查找:在有序序列中,通过比较目标值与中间元素的大小关系,将查找范围缩小一半,直到找到目标元素或搜索结束。
(3)哈希查找:通过哈希函数计算目标元素在数组中的位置,快速定位目标元素。
二、数据结构1. 数组数组是一种线性数据结构,可以存储多个相同类型的元素。
通过索引可以快速访问数组中的元素,但插入和删除元素的操作较为复杂。
2. 链表链表是一种动态数据结构,可以在运行时分配内存。
每个节点存储数据和指向下一个节点的指针,可以方便地进行插入和删除节点的操作,但访问节点需要遍历链表。
3. 栈栈是一种先进后出(LIFO)的数据结构,只能在栈顶进行插入和删除操作。
常用于表达式求值、递归函数调用等场景。
4. 队列队列是一种先进先出(FIFO)的数据结构,可以在队尾插入元素,在队头删除元素。
常用于任务调度、缓冲区管理等场景。
5. 树树是一种非线性数据结构,由节点和边组成。
常见的树结构包括二叉树、二叉搜索树、平衡二叉树等。
6. 图图是一种包含节点和边的非线性数据结构,用于表示多对多的关系。
常见的图结构包括有向图、无向图、加权图等。
实验报告
二、实验内容
编写实现单链表的基本算法(初始化、查找、插入、删除等)的函数,并在此基础上设计一个主程序完成如下功能:
⑴初始化单链表H;
⑵采用尾插法建立单链表H,如(a,b,c,d,c);
⑶输出单链表H的长度;
⑷输出单链表H的第i个元素,如输出单链表H的第3个元素;
ch=getchar();
}
//初始化链表
Lnode *establish_h(Lnode*p)
{
Lnode *q;int i;int t;
p=(Lnode*)malloc(sizeof(Lnode));
printf("请输入需要输入的元素个数\n");
scanf("%d",&t);
p->data=t;//头节点存储元素个数
⑴初始化顺序表L;
⑵建立顺序表L,如(a,b,c,d,c);
⑶输出顺序表L的长度;
⑷输出顺序表L的第i个元素,如第3个元素;
⑸输出给定元素的位置,如输出元素a的位置;
⑹在第i个元素前插入给定元素,如在第4个元素前插入元素f;
⑺删除顺序表L的第i个元素,如删除顺序表L的第3个元素。
注:最好编写输出顺序表L的函数供主程序调用,以检验⑵⑹⑺操作是否成功。
scanf("%d",&e);
insert_sq(&a,i,e);
out_list(a);
}break;
case 3:{
printf("\n请输入要删除元素位置(大于等于1,小于等于%d):",a.length);
scanf("%d",&i);
数据结构(C语言版)实验报告 (内部排序算法比较)
《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。
试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。
基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。
(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。
(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。
数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。
信息学竞赛中常见的算法与数据结构
信息学竞赛中常见的算法与数据结构信息学竞赛是一项专注于计算机科学和信息技术的竞技活动,常常涉及到各种算法和数据结构的应用与实现。
在这篇文章中,我们将讨论一些常见的算法和数据结构,这些内容在信息学竞赛中非常有用。
一、搜索算法搜索算法是信息学竞赛中常见的算法之一,它能够帮助解决各种搜索问题。
其中最常见的算法是深度优先搜索(DFS)和广度优先搜索(BFS)。
DFS通过不断探索当前节点的子节点,直到找到目标节点或者遍历完整个图。
BFS则通过遍历当前节点的所有邻居节点,再逐层遍历,最终找到目标节点。
这两种算法在解决图遍历、迷宫问题等方面非常有效。
二、排序算法排序算法是信息学竞赛中另一个重要的算法领域。
其中最常见的排序算法有冒泡排序、选择排序、插入排序、归并排序、快速排序等。
这些算法通过比较和交换数组中的元素,将它们按照一定的顺序排列。
不同的排序算法具有不同的时间复杂度和空间复杂度,在选择排序算法时需要根据实际需求进行权衡和选择。
三、贪心算法贪心算法是一种解决最优化问题的算法策略,它在每一步选择中都采取当前状态下的最优决策,从而希望最终得到全局最优解。
贪心算法通常用于解决那些具有最优子结构的问题,比如最小生成树、背包问题等。
尽管贪心算法可能不一定能够得到全局最优解,但在很多情况下它们能够得到接近最优解的结果,且具有高效的计算速度。
四、动态规划动态规划是一种通过将问题分解为子问题并记录子问题的解来解决复杂问题的算法。
动态规划的核心思想是,通过对子问题的解进行存储和复用,避免重复计算,从而提高计算效率。
动态规划通常用于解决那些具有重叠子问题和最优子结构的问题,如斐波那契数列、最长公共子序列等。
动态规划算法在信息学竞赛中被广泛应用,并且往往能够得到最优的解。
五、图论算法图论是信息学竞赛中一个重要的领域,涉及到图的建模、遍历和最短路径等问题。
在图论中,最常见的算法包括Dijkstra算法、Bellman-Ford算法和Floyd-Warshall算法。
北邮数据结构实验报告-排序
北邮数据结构实验报告-排序北邮数据结构实验报告-排序一、实验目的本实验旨在掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等,并通过实际编程实现对数字序列的排序。
二、实验内容1.冒泡排序冒泡排序是一种简单的排序算法,其基本思想是依次比较相邻的两个元素,并按照从小到大或从大到小的顺序交换。
具体步骤如下:- 从待排序序列的第一个元素开始,依次比较相邻的两个元素;- 如果前面的元素大于后面的元素,则交换这两个元素的位置;- 重复上述步骤,直到整个序列有序。
2.插入排序插入排序是一种简单且直观的排序算法,其基本思想是将待排序序列分为已排序和未排序两部分,每次从未排序部分中选择一个元素插入到已排序部分的合适位置。
具体步骤如下:- 从待排序序列中选择一个元素作为已排序部分的第一个元素;- 依次将未排序部分的元素插入到已排序部分的合适位置,使得已排序部分保持有序;- 重复上述步骤,直到整个序列有序。
3.选择排序选择排序是一种简单且直观的排序算法,其基本思想是每次选择未排序部分中的最小(或最大)元素,并将其放在已排序部分的末尾。
具体步骤如下:- 在未排序部分中选择最小(或最大)的元素;- 将选择的最小(或最大)元素与未排序部分的第一个元素交换位置;- 重复上述步骤,直到整个序列有序。
4.快速排序快速排序是一种高效的排序算法,其基本思想是通过一趟排序将待排序序列分割成两部分,其中一部分的元素都比另一部分的元素小。
具体步骤如下:- 选择一个枢轴元素(一般选择第一个元素);- 将待排序序列中小于枢轴元素的元素放在枢轴元素的左侧,大于枢轴元素的元素放在枢轴元素的右侧;- 对枢轴元素左右两侧的子序列分别进行递归快速排序;- 重复上述步骤,直到整个序列有序。
5.归并排序归并排序是一种高效的排序算法,其基本思想是将待排序序列划分成足够小的子序列,然后对这些子序列进行两两合并,最终形成有序的序列。
具体步骤如下:- 将待排序序列递归地划分成足够小的子序列;- 对每个子序列进行归并排序;- 合并相邻的子序列,直到整个序列有序。
数据结构实验报告(C语言)顺序表__排序
int i,j,n,x,change; n=L->length; change=1; for(i=1;i<=n-1 && change;++i){
change=0; for(j=1;j<=n-i-1;++j)
if(L->r[j] > L->r[j+1]){ x=L->r[j]; L->r[j]=L->r[j+1]; L->r[j+1]=x; change=1;
void QuickSort(SqeList *L,int low,int high){ int mid; if(low<high){ mid=Partition(L,low,high); QuickSort(L,low,mid-1); QuickSort(L,mid+1,high); }
}
//直接选择排序
printf("\n7-直接选择排序结果为:\n"); SelectSort(&l); PrintList(&l); printf("\n"); printf("\n8-二路归并结果为:\n"); MergeSort(&l);
PrintList(&l); printf("\n"); } else printf("请输入大于 0 的值: "); return 0; }
} else{
MR->r[k]=R->r[j]; ++j; } ++k; } while(i<=mid) MR->r[k++]=R->r[i++]; while(j<=high) MR->r[k++]=R->r[j++]; }
数据结构与算法(12):排序
int[] data = new int[] {10,30,20,60,40,50};
mergesort(data);
for(int i:data) {
System.out.println(i);
}
}
public static void mergesort(int[] arr){
sort(arr, 0, arr.length-1);
例例如,假设有这样一一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步⻓长 为5开始进行行行排序,我们可以通过将这列列表放在有5列列的表中来更更好地描述算法,这样他们就应该 看起来是这样:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
坏的情况下,移动次数为n(n − 1)/2
冒泡排序的时间复杂度为O(n2)。冒泡排序不不需要辅助存储单元,其空间复杂度为O(1)。如果关
键字相等,则冒泡排序不不交换数据元素,他是一一种稳定的排序方方法。
时间复杂度:最好O(n);最坏O(n2);平均O(n2) 空间复杂度:O(1)
稳定性:稳定
二二、选择排序(Selection Sort)
排好序时,元素的移动次数为0。当每一一趟都需要移动数据元素时,总的移动次数为n − 1
选择排序的时间复杂度为O(n2)。选择排序不不需要辅助的存储单元,其空间复杂度为O(1)。选择
排序在排序过程中需要在不不相邻的数据元素之间进行行行交换,它是一一种不不稳定的排序方方法。
时间复杂度:O(n2) 空间复杂度:O(1)
地方方增量量和差值都是delta temp = arr[j-delta]; arr[j-delta] = arr[j]; arr[j] = temp;
数据结构实验报告—顺序表
《算法与数据结构》课程实验报告一、实验目的1、实现线性表的顺序存储结构。
2、熟悉C++程序的基本结构,掌握程序中的头文件、实现文件和主文件之间的相互关系及各自的作用。
3、熟悉顺序表的基本操作方式,掌握顺序表相关操作的具体实现。
二、实验内容及要求对顺序存储的线性表进行一些基本操作。
主要包括:(1)插入:操作方式为在指定元素前插入、在指定元素之后插入、在指定位置完成插入。
(2)删除:操作方式可分为删除指定元素、删除指定位置的元素等,尝试实现逻辑删除操作。
(3)显示数据。
(4)查找:查询指定的元素(可根据某个数据成员完成查询操作)。
(5)定位操作:定位指定元素的序号。
(6)更新:修改指定元素的数据。
(7)数据文件的读写操作等。
其它操作可根据具体需要自行补充。
要求线性表采用类的定义,数据对象的类型自行定义。
三、系统分析(1)数据方面:能够实现多种数据类型顺序表的创建,并进行操作,不同的数据类型数据使用不同的文本文件保存。
(2)功能方面:能够实现线性表的一些基本操作,主要包括:1.计算表最大可以容纳表项个数以及当前表的当前长度。
2.能够进行添加操作,在已有的数据文件中进行数据的添加。
3.能够进行搜索操作,返回搜索项在表中表项序号4.能够进行定位操作,定位到表中合理位置。
5.能够进行取值操作,根据用户需求取出表中某项的值。
6.能够进行修改操作,在用户选择修改项后将重新输入内容修改到对应位置。
7.能够进行插入操作,在用户选择合理位置并输入插入内容后即可。
8.能够进行删除操作,用户根据选择表中项数删除对应数据。
9.能够进行判断表空或表满。
四、系统设计(1)设计的主要思路根据实验要求,首先将顺序表模板类完成,并将需要实现的功能代码完善,在写实现各个功能的菜单并将模板类实例化为简单数据类型最后进行调试,由于还需使得顺序表能够存储自定义的学生类类型数据,故根据要求写出Student类,并将之前所写得模板类用学生类数据类型实例化,再进行调试。
排序技术综合应用
《算法与数据结构》实验报告(一)实验题目:排序技术综合应用1、实验目的:(1)熟练掌握常用的排序方法,并掌握用高级语言实现排序算法的方法;(2)深刻理解排序的定义和各种排序方法的特点,并能加以灵活应用;(3)了解各种方法的排序过程及其依据的原则,并掌握各种排序方法的时间复杂度的分析方法。
2、实验内容:对希尔排序、快速排序、归并排序任意选择两种排序方法进行比较。
任意选择希尔排序、快速排序、归并排序中两种排序方法,对任意给定一组数据:单增、单减、乱码等,对它们进行比较分析。
3、实验说明:希尔排序算法如下:快速排序算法如下:void ShellSort(int r[ ], int n){for (d=n/2; d>=1; d=d/2)//以增量为d进行直接插入排序{for (i=d+1; i<=n; i++){r[0]=r[i]; //暂存被插入记录for (j=i-d; j>0 && r[0]<r[j]; j=j-d)r[j+d]=r[j]; //记录后移d个位置r[j+d]=r[0];}}}void QuickSort(int r[ ], int first, int end){if (first<end) { //递归结束pivot=Partition(r, first, end); //一次划分QuickSort(r, first, pivot-1); //递归地对左侧子序列进行快速排序QuickSort(r, pivot+1, end); //递归地对右侧子序列进行快速排序}}int Partition(int r[ ], int first, int end){i=first; j=end; //初始化while (i<j){while (i<j && r[i]<= r[j]) j--;//右侧扫描if (i<j) {r[i]←→r[j]; //将较小记录交换到前面i++;}while (i<j && r[i]<= r[j]) i++;//左侧扫描if (i<j) {r[j]←→r[i]; //将较大记录交换到后面j--;}}retutn i; //i为轴值记录的最终位置}void QuickSort(int r[ ], int first, int end){if (first<end) { //递归结束pivot=Partition(r, first, end); //一次划分QuickSort(r, first, pivot-1); //递归地对左侧子序列进行快速排序QuickSort(r, pivot+1, end); //递归地对右侧子序列进行快速排序}}int Partition(int r[ ], int first, int end){i=first; j=end; //初始化while (i<j){while (i<j && r[i]<= r[j]) j--;//右侧扫描if (i<j) {r[i]←→r[j]; //将较小记录交换到前面i++;}while (i<j && r[i]<= r[j]) i++;//左侧扫描if (i<j) {r[j]←→r[i]; //将较大记录交换到后面j--;}}retutn i; //i为轴值记录的最终位置}设计分析:希尔排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,并对插入下一个数没有提供任何帮助。
数据结构与算法-排序
假定待排序文件由 n 条记录组成,记录依次存储在 r[1]~r[n]中。使用简单冒泡排
序算法对待排序文件中的记录进行排序,具体处理流程如下。
(1)遍历待排序文件 r[1]~r[n],每访问一条记录 r[j]时,比较所访问记录排序关
键字与所访问记录后一记录排序关键字的大小,核对所访问记录 r[j]与所访问记录后一
则,此排序算法是不稳定的。例如, 给定待排序文件 A={1,2,3,1,4}和B={1,3,1,2,4},假定某
一排序算法对文件 A 和B 的排序结果分别为{1,1,2,3,4}和{1,1,2,3,4},由于文件 B 中存在多
项同为 1 的记录,且排序后同为 1 的记录相对位置发生了改变,因此,此算法是不稳定
排序
目
CONTENTS
录
01
排序的概述
02
插入排序算法
03
交换排序算法
04
选择排序算法
05
归并排序算法
06
分配排序算法
07
各种排序技术比较
08
本章小结
01
PART
排序的概述
排序是以某一数据项(称为排序关键字)为依据,将一组无序记录调整成一组有序
记录,形成有序表的过程。排序问题可以定义为以下形式。
件排序时,记录分组以及每趟排序结果如右
图所示。
插入排序算法
2.3希尔排序算法
第一趟排序时,增量 h=4,因此,以
h=4 为记录间隔,将待排序文件中的记录分
为 4 组:{r[1],r[5],r[9]}、{r[2],r[6]}、{r[3],r[7]}
和{r[4],r[8]},并分别对 4 组记录进行直接插入
算法与数据结构实验册(2)
(理工类)课程名称:算法与数据结构专业班级: 15软件二班学生学号: 151 学生姓名:孙毅安所属院部:软件工程学院指导教师:黄丹丹2016 ——2017 学年第 1 学期金陵科技学院教务处制实验报告书写要求实验报告原则上要求学生手写,要求书写工整。
若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。
纸张一律采用A4的纸张。
实验报告书写说明实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。
各院部可根据学科特点和实验具体要求增加项目。
填写注意事项(1)细致观察,及时、准确、如实记录。
(2)准确说明,层次清晰。
(3)尽量采用专用术语来说明事物。
(4)外文、符号、公式要准确,应使用统一规定的名词和符号。
(5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。
实验报告批改说明实验报告的批改要及时、认真、仔细,一律用红色笔批改。
实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。
实验报告装订要求实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。
实验项目名称:顺序表实验学时: 2 同组学生姓名:陶渊,李学波,王天伟,孙兵,王磊,贲小康,梁华龙,倪云鹏实验地点:实验日期: 10.13 实验成绩:批改教师:批改时间:实验1 顺序表一、实验目的和要求掌握顺序表的定位、插入、删除等操作。
二、实验仪器和设备Turbo C 2.0三、实验内容与过程(含程序清单及流程图)1、必做题(1)编写程序建立一个顺序表,并逐个输出顺序表中所有数据元素的值。
编写主函数测试结果。
(2)编写顺序表定位操作子函数,在顺序表中查找是否存在数据元素x。
如果存在,返回顺序表中和x值相等的第1个数据元素的序号(序号从0开始编号);如果不存在,返回-1。
编写主函数测试结果。
(3)在递增有序的顺序表中插入一个新结点x,保持顺序表的有序性。
数据结构排序实验报告
数据结构排序实验报告一、实验目的本次数据结构排序实验的主要目的是深入理解和掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序,并通过实际编程和实验分析,比较它们在不同规模数据下的性能表现,从而为实际应用中选择合适的排序算法提供依据。
二、实验环境本次实验使用的编程语言为 Python 3x,开发环境为 PyCharm。
实验中使用的操作系统为 Windows 10。
三、实验原理1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
2、插入排序(Insertion Sort)插入排序是一种简单直观的排序算法。
它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个数组有序。
3、选择排序(Selection Sort)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
4、快速排序(Quick Sort)通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
5、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
四、实验步骤1、算法实现使用 Python 语言分别实现上述五种排序算法。
为每个算法编写独立的函数,函数输入为待排序的列表,输出为排序后的列表。
2、生成测试数据生成不同规模(例如 100、500、1000、5000、10000 个元素)的随机整数列表作为测试数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生课程实验报告书
10 级计算机系
专业班
学号
学年 2 第下学期实验项目:
算法的排序
实验时间: 2012- 5-31
实验目的:
实验环境:
硬件环境 wandow7
软件环境 vc6.0
实验题目:
一、最优服务问题
★问题描述:
设有n 个顾客同时等待一项服务。
顾客i需要的服务时间为 ti(1<=i<= n)。
应如何安排n
个顾客的服务次序才能使平均等待时间达到最小?平均等待时间是 n 个顾客等待服务时间的总和除以n。
★编程任务:
对于给定的n个顾客需要的服务时间,编程计算最优服务次序。
★数据输入:
输入数据:第一行是正整数n,表示有n 个顾客。
接下来的1 行中,有n个正整数,表示n个顾客需要的服务时间。
★结果输出:
将编程计算出的最小平均等待时间输出在屏幕上
输入文件示例输出文件示例
10 532.00
56 12 1 99 1000 234 33 55
99 812
#include<stdio.h>
int divideareasotr(int r[],int s,int t)
{
int i,j;
int temp;
i=s;j=t;
temp=r[s];
do
{while((r[j]>=temp)&&(i<j))
j--;
if(i<j)
{r[i]=r[j];
i++;
}
while((r[i]<=temp)&&(i<j))
i++;
if(i<j)
{
r[j]=r[i];
j--;
}
}while(i<j);
r[i]=temp;
return i;
}
void quicksort(int r[],int s,int t)
{
int i;
if(s<t)
{
i=divideareasotr(r,s,t);
quicksort(r,s,i-1);
quicksort(r,i+1,t);
}
}
void main()
{
int r[100];
int n,i;
printf("please input number:\n");
scanf("%d",&n);
printf("please input :\n");
for(i=1;i<=n;i++)
scanf("%d",&r[i]);
quicksort(r,1,n);
// for(i=1;i<=n;i++)
// printf("%d ",r[i]);
int sum=0;
for(i=1;i<=n;i++)
{
sum=sum+r[i]*(n-i+1);
}
float eve=(float)sum/n;
printf("%f",eve);
}
实验运行结果:
二、众数问题
★问题描述:
给定含有n个元素的多重集合S,每个元素在S中出现的次数称为该元素的重数。
多重集S中重数最大的元素称为众数。
例如,S={1,2,2,2,3,5}。
多重集S的众数是2,其重数为3。
★编程任务:
对于给定的由n个自然数组成的多重集S,编程计算S的众数及其重数。
★数据输入:
第1行多重集S中元素个数n;接下来的n行中,每行有一个自然数。
★结果输出:
程序运行结束时,将计算结果输出。
输出文件有2行,第1行给出众数,第2行是重数。
输入文件示例输出文件示例
6 1 2
3
2
2
2
3
5
指导教师评语:
实验成绩_______________ 指导教师_______________。