集合第一课时教案-数学必修1第一章集合与函数概念1.1人教A版
新人教版高中数学必修一全套教案
第一章集合与函数概念§1.1集合1.1.1集合的含义与表示(第一课时)教学目标:1.理解集合的含义。
2.了解元素与集合的表示方法及相互关系。
3.熟记有关数集的专用符号。
4.培养学生认识事物的能力。
教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。
归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。
复习问题x-<问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有理数的集合,不等式73的解的集合,到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合等等)。
(II)讲授新课1.集合含义通过以上实例,指出:(1)含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
问题4:由此上述例中集合的元素分别是什么?2. 集合元素的三个特征由以上四个问题可知,集合元素具有三个特征:(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。
集合第一课时教案数学必修第一章集合与函数概念11人教A版
第一章集合与函数的概念1.1 集合第一课时 1.1.1 集合的含义与表示1 教学目标[1]通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法[2]使学生体会元素与集合的“属于”关系[3]能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2 教学重点/难点教学重点:集合的基本概念与表示方法理解元素与集合之间的从属关系教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合掌握集合中元素的特性的应用3 专家建议这是高中数学的第一节课。
虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。
在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。
要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。
在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。
本节课要记的东西多,可让学生自己阅读,然后在老师的引导下思考问题,进一步解决问题。
在本节课的学习过程中,教师一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想.在教学过程中通过恰当的应用信息技术,从而突破难点4 教学方法启发式讲授法5 教学过程5.1 复习引入【师】我们初中学过的实数自然数都还记得吗?它们之间有什么关系呢?【板演/PPT】5.2 实例引入【师】我们来看下下面这些实例【板演/PPT】⑴ 1~20以内的所有整数;⑵我国从1991~2015的25年内所发射的所有人造卫星;⑶某汽车厂2015年生产的所有汽车;⑷所有的正方形;⑸某中学2015年9月入学的高一学生全体.5.3 新知介绍[1]元素与集合的相关概念【师】我们试着总结下这些事例它们有什么共同点?【生】思考交流【师】我们生活中的很多东西都能构成集合,你能举出一些例子吗?通过以上分析,能给出集合的含义吗【板书\PPT】一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d…表示[2]元素与集合的关系【师】如果用A表示我们学校全体高一学生组成的集合,用a表示高一学生中的一位同学,b 是高二年级的一位同学,那么a、b与集合A分别有什么关系?由此可见元素与集合之间有什么关系?我们怎样才能简单明了地表示它们的关系呢?【生】讨论交流【板书\PPT】如果a是集合A的元素,就说a属于集合A,记作a∈A如果b不是集合A的元素,就说b属于集合A,记作b?A[3]集合的表示方法【师】我们用什么方法来表示我们的集合呢【生】讨论与理解【师】归纳总结【板书/PPT】列举法:把集合中的元素一个一个地写在一对大括号内表示集合的方法描述法:把集合中元素共有的,也只有该集合中元素才有的属性描述出来,已确定集合的方法【师】同学们请看题【板书\PPT】用适当的方法表示下列集合(1)方程 -4=0的解组成的集合{-2,2}或{x| -4=0}(2)大于3小于9的实数组成的集合{x|3<x<9,x∈R}(3)所有奇数组成的集合{y|y=2n-1,n∈Z}[4]集合元素的性质【师】我们观察一下实例中的数据它们能不能构成组合它们都有什么特征呢?【生】理解与交流【师】总结【板书/PPT】(1)确定性:集合中的元素必须是确定的,任何一个元素都能明确它是或不是某个集合的元素(2)互异性:集合中的元素必须是互不相同的(3)无序性:集合中的元素是无先后顺序的。
高一数学必修1第一章集合全章教案
第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3. 集合相等:构成两个集合的元素完全一样。
4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。
人教版高中数学必修1第一章第一节《集合的含义与表示》第一课时教学设计
人教版高中数学必修1第一章第一节《集合的含义与表示》第一课时教学设计一、教材内容分析教学内容为人教版高中数学必修1第一章第一节集合的含义与表示的第一课时。
集合的含义与表示是高中数学生活的开始。
通过学习能够提高同学们对高中数学的学习兴趣。
二、学情分析在初中的时候有基本的数学功底,对知识有一定的积累。
但本节课是高中数学的第一课,这节课同学们要掌握许多新的名词,以及之前没后见过的数学符号,本节课要提高同学们对高中数学生活的兴趣。
三、教学目标1.能够初步掌握集合的概念,感知元素和集合的关系。
2.能够清楚的知道集合中常用的表示符号。
3.了解集合元素的特征:确定性、互异性、无序性。
四、教学重、难点1.教学重点:集合的含义与表示2.教学难点:能够选择准确的表示方法。
五、学法指导以学生的自主学习为主,教师引导为辅。
六、教学用具多媒体七、教学过程的设计(一)创设情境,揭示所学教师引入问题:初中的时候,我们已经接碰到过一些集合,大家能够说一说吗?接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。
(设计意图:温故而知新。
)(二)引入新知同学们,我们班所有同学站起来。
同学们做动作。
老师提问:老师口令的对象是谁,是全班的同学还是某些同学?老师总结:这些是一个集合,他们是一个整体而不是个体。
所以,今天我们要学习新的一个概念:集合。
多媒体出示课件:1)20以内的所有的偶数;2)我国都有哪些省份;3)所有的三角形;同学们讨论,这些例子有什么共同的特征?概括这些例子的共同特征:一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.老师强调全体我们称为集合,整体中的部分就是集合的元素。
老师指出:集合常用大写字母A,B,C,D,。
表示,元素常用小写字母a,b,c,d。
表示.(设计意图:通过自己的发现,让同学们对集合的概念有明确的认识。
知道正确的区分集合和元素两个概念。
)(三)根据资料,探索集合中元素的特点(1)阅读教材中的相关内容,集合中元素有什么特点?注意个别同学的指导,解答学生疑难.让学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.(2)判断以下元素的全体是否组成集合,并说明理由:(1)大于5小于18的偶数;(2)我国的直辖市。
人教课标版高中数学必修1第一章 集合与函数概念集合教案
课题:1.1集合-集合的概念(1)教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N +{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q (5)实数集:全体实数的集合记作R{}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……⑵“∈”的开口方向,不能把a ∈A 颠倒过来写三、练习题:1、教材P 5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复) 3、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素5、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2ba b b a a ---不一定都是整数, ∴211b a x +==2222222b a b b a a --+-不一定属于集合G 四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:八、附录:康托尔简介发疯了的数学家康托尔(Georg Cantor ,1845-1918)是德国数学家,集合论的创始者1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院真金不怕火炼,康托尔的思想终于大放光彩1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在一家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家魏尔(C.H.Her-mann Wey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学当局把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题许多数学家为之耗去许多精力,但都失败了直到1770年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展史上作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J .B .傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院于群论的重要著作当时的数学家S .K .泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》上课 题:1.1集合-集合的概念(2)教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)自然数集:全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q (5)实数集:全体实数的集合记作R ,{}数数轴上所有点所对应的=R3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a ∈A 颠倒过来写二、讲解新课: (二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只 有一个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条 件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合 例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或 23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法 如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集(三) 有限集与无限集1、 有限集:含有有限个元素的集合2、 无限集:含有无限个元素的集合3、 空集:不含任何元素的集合Φ,如:}01|{2=+∈x R x 三、练习题:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=+n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=+n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 四、小结:本节课学习了以下内容:1.集合的有关概念:有限集、无限集、空集2.集合的表示方法:列举法、描述法、文氏图五、课后作业:六、板书设计(略)七、课后记:1.2 子集、全集、补集教学目标:(1)理解子集、真子集、补集、两个集合相等概念;(2)了解全集、空集的意义,(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;(6)培养学生用集合的观点分析问题、解决问题的能力.教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含之间的区别教学用具:幻灯机教学过程设计(一)导入新课上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.【提出问题】(投影打出)已知,,,问:1.哪些集合表示方法是列举法.2.哪些集合表示方法是描述法.3.将集M、集从集P用图示法表示.4.分别说出各集合中的元素.5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.6.集M中元素与集N有何关系.集M中元素与集P有何关系.【找学生回答】1.集合M和集合N;(口答)2.集合P;(口答)3.(笔练结合板演)4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)5.,,,,,,,(笔练结合板演)6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(二)新授知识1.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B 的元素,我们就说集合A包含于集合B,或集合B包含集合A。
人教A版高中数学必修1教案完整版
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn 图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
人教版高中数学必修1第一章集合与函数的概念-《1.2.1函数的概念》教案(1)
函数的概念》的教学设计【教材分析】本节课选自《普通高中课程标准实验教科书数学Ⅰ必修本( A 版)》的第一章 1.2.1 函 数的概念。
函数是中学数学中最重要的基本概念之一, 它贯穿在中学代数的始终, 从初一字 母表示数开始引进了变量, 使数学从静止的数的计算变成量的变化, 而且变量之间也是相互 联系、 相互依存、相互制约的, 变量间的这种依存性就引出了函数。
在初中已初步探讨了函 数概念、 函数关系的表示法以及函数图象的绘制。
到了高一再次学习函数, 是对函数概念的 再认识, 是利用集合与对应的思想来理解函数的定义, 从而加深对函数概念的理解。
函数与 数学中的其他知识紧密联系,与方程、不等式等知识都互相关联、 互相转化。
函数的学习也 是今后继续研究数学的基础。
在中学不仅学习函数的概念、性质、 图象等知识,尤为重要的 是函数的思想要更广泛地渗透到数学研究的全过程。
函数是中学数学的主体内容, 起着承上启下的作用。
函数又是初等数学和高等数学衔接 的枢纽, 特别在应用意识日益加深的今天, 函数的实质是揭示了客观世界中量的相互依存又 互有制约的关系。
因此对函数概念的再认识, 既有着不可替代的重要位置, 又有着重要的现 实意义。
本节的内容较多,分二课时。
本课时的内容为:函数的概念、函数的三要素、简单 函数的定义域及值域的求法、区间表示等。
(第二课时内容为:函数概念的复习、较复杂函 数的定义域及值域的求法、分段函数、函数图象等)【学情分析】 学生在学习本节内容之前, 已经在初中学习过函数的概念, 并且知道可以用函数描述变 量之间的依赖关系。
然而, 函数概念本身的表述较为抽象, 学生对于动态与静态的认识尚为 薄弱,对函数概念的本质缺乏一定的认识, 对进一步学习函数的图象与性质造成了一定的难 度。
初中是用运动变化的观点对函数进行定义, 虽然这种定义较为直观, 但并未完全揭示出 函数概念的本质。
例如,对于函数如果用集合与对应的观点来解释,就十分自然。
近年高考数学总复习第一章集合与函数概念1.1.1集合的含义与表示(第一课时)教案新人教A版必修1(
2019高考数学总复习第一章集合与函数概念1.1.1 集合的含义与表示(第一课时)教案新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学总复习第一章集合与函数概念1.1.1 集合的含义与表示(第一课时)教案新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学总复习第一章集合与函数概念1.1.1 集合的含义与表示(第一课时)教案新人教A版必修1的全部内容。
1.1.1 集合的含义与表示(第一课时)课程目标学科素养A.了解集合的含义;理解元素与集合的“属于"与“不属于”关系;熟记常用数集专用符号.B.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.C.会用集合的两种表示方法表示一些简单集合。
感受集合语言的意义和作用。
1.数学抽象:集合概念的理解,描述法表示集合的方法;2。
逻辑推理:集合的互异性的辨析与应用; 3。
数学运算:集合相等时的参数计算,集合的描述法转化为列举法时的运算;4。
直观想象:集合的图形表示;5。
数学建模:用集合思想对实际生活中的对象进行判断与归类。
1。
教学重点:集合的基本概念与表示方法;2.教学难点:运用集合的两种常用表示方法--列举法与描述法,正确表示一些简单的集合;知识点一 集合的概念(1)集合:一般地,指定的某些对象的全体称为集合.集合常用大写字母A ,B ,C ,D ,…标记.(2)元素:集合中的每个对象叫作这个集合的元素.常用小写字母a ,b ,c ,d ,…表示集合中的元素.知识点二 元素与集合的关系思考 1是整数吗?21是整数吗?有没有这样一个数,它既是整数,又不是整数?【答案】 1是整数;21不是整数;没有.梳理 元素与集合的关系有且只有两种,分别为属于、不属于,数学符号分别为∈、∉。
高中数学第一章 集合与函数概念教案人教版必修①
第1讲 §1.1.1 集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合;(2)大于2且小于7的整数. 解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17 A ; -5 A ; 17 B .解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉; 由6117m -=,解得3m Z =∈,所以17B ∈.【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x =的自变量的值组成的集合. 解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A . 解:化方程212x ax +=-为:2(2)0x x a --+=.应分以下三种情况:⑴方程有等根且不是 △=0,得94a =-,此时的解为12x =,合.⑵方程有一解为,而另一解不是:将x =代入得a =,此时另一解1x =⑶方程有一解为,而另一解不是:将x =代入得a =,此时另一解为1x ,合.综上可知,9{,4A =-.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第1练 §1.1.1 集合的含义与表示※基础达标1.以下元素的全体不能够构成集合的是( ).A. 中国古代四大发明B. 地球上的小河流C. 方程210x -=的实数解D. 周长为10cm 的三角形 2.方程组{23211x y x y -=+=的解集是( ).A . {}51,B. {}15,C. (){}51,D. (){}15,3.给出下列关系:①12R ∈;Q ;③ *3N ∈;④0Z ∈. 其中正确的个数是( ). A. 1 B. 2 C. 3 D. 4 4.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{45}x x <<是有限集. 其中正确的说法是( ).A. 只有(1)和(4)B. 只有(2)和(3)C. 只有(2)D. 以上四种说法都不对 5.下列各组中的两个集合M 和N, 表示同一集合的是( ).A. {}M π=, {3.14159}N =B. {2,3}M =, {(2,3)}N =C. {|11,}M x x x N =-<≤∈, {1}N =D. {}M π=, {,1,|N π= 6.已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是 . 7.已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为 . ※能力提高8.试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合; (2)函数232y x =-的自变量的值组成的集合.9.已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合A . ※探究创新10.给出下列集合:①{(x ,y )|x ≠1,y ≠1,x ≠2,y ≠-3}; ②{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭且 ③{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭或 ; ④{(x ,y )|[(x -1)2+(y -1)2]·[(x -2)2+(y +3)2]≠0}. 其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,-3)之外的所有点的集合”的序号有 .第2讲 §1.1.2 集合间的基本关系A BB A A B A BA .B .C .D . ¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn 图表达集合间的关系.¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0}; ∅ {0}; N {0}. 解:(1), ;(2)=, ∈, ,. 【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ). 解:简单列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅,易知B ≠⊂A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.解:由26023x x x +-=⇒=-或,因此,{}2,3M =-. (i )若0a =时,得N =∅,此时,N M ⊆; (ii )若0a ≠时,得1{}N a =. 若N M ⊆,满足1123a a ==-或,解得1123a a ==-或. 故所求实数a 的值为0或12或13-. 点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.解:若22a b axa b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1. 当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去.若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0.因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-. 经检验,此时A =B 成立. 综上所述12x =-. 点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第2练 §1.1.2 集合间的基本关系※基础达标1.已知集合{}{}3,,6,A x x k k Z B x x k k Z ==∈==∈, 则A 与B 之间最适合的关系是( ).A.A B ⊆B.A B ⊇C. A ≠⊂B D. A ≠⊃B2.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k >- D .2k ≥ 3.若2{,0,1}{,,0}a a b -=,则20072007a b +的值为( ). A. 0 B. 1 C. 1- D. 2 4.已知集合M ={x |x =2k +14,k ∈Z }, N ={x |x =4k +12, k ∈Z }. 若x 0∈M ,则x 0与N 的关系是( ).A. x 0∈NB. x 0∉NC. x 0∈N 或x 0∉ND.不能确定 5.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的值是( ). A. 1 B. -1 C. 1或-1 D. 0,1或-1 6.已知集合{},,,A a b c =,则集合A 的真子集的个数是 .7.当2{1,,}{0,,}ba a ab a=+时,a =_________,b =_________.※能力提高8.已知A ={2,3},M ={2,5,235a a -+},N ={1,3, 2610a a -+},A ⊆M ,且A ⊆N ,求实数a 的值.9.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.若B A ⊆,求实数m 的取值范围.※探究创新10.集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A 且x +1∉A ,则称x 为A 的一个“孤立元素”,写出S 中所有无“孤立元素”的4元子集.第3讲 §1.1.3 集合的基本运算(一)¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的B (读作“B (读作“U A (读作“{|B x x ={|B x x ={|U A x =号 图形表示¤例题精讲:【例1】设集合,{|15},{|39},,()U R A x x B x x A B A B ==-≤≤=<<求.解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤,(){|1,9}U C AB x x x =<-≥或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()A A B C . 解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------. (1)又{}3B C =,∴()A B C ={}3;(2)又{}1,2,3,4,5,6BC =,得{}()6,5,4,3,2,1,0A C BC =------.∴ ()A A C BC {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示: 由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C AB ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C AB =.由{5,8}AB =,则(){1,2,3,4,6,7,9}UC A B =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =, 则()(){6,7,9}U U C A C B =,()(){1,2,3,4,6,7,9}U U C A C B =.由计算结果可以知道,()()()U U U C A C B C AB =,()()()U U U C A C B C A B =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn 图研究()()()U U U C A C B C A B =与()()()U U U C A C B C AB = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第3练 §1.1.3 集合的基本运算(一)※基础达标1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则UA =( ).A. ∅B. {}2,4,6C. {}1,3,6,7D. {}1,3,5,72.若{|02},{|12}A x x B x x =<<=≤<,则A B =( ).A. {|2}x x <B. {|1}x x ≥C. {|12}x x ≤<D. {|02}x x <<3.右图中阴影部分表示的集合是( ).A. U A BB. U A BC.()UA B D.()UA BUA-2 4 m xB AAA BB A4.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB =( ).A. {}1,2B. {}0,1C. {}0,3D. {}35.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k -> D .12k -<≤6.设全集*{|8}U x N x =∈<,{1,3,5,7}A =,{2,4,5}B =,则()U C A B = . 7.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N = . ※能力提高8.设全集*{|010,}U x x x N =<<∈,若{3}AB =,{1,5,7}UAB =,{9}UUAB =,求集合A 、B . 9.设U R =,{|24}A x x =-≤<,{|8237}B x x x =-≥-,求()UA B 、()()UUA B .※探究创新10.设集合{|(4)()0,}A x x x a a R =--=∈,{|(1)(4)0}B x x x =--=. (1)求A B ,A B ;(2)若A B ⊆,求实数a 的值;(3)若5a =,则A B 的真子集共有 个, 集合P 满足条件()A B ≠⊂P ≠⊂()AB ,写出所有可能的集合P .第4讲 §1.1.3 集合的基本运算(二)¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n AB n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维.¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A B =,求实数a 的值.解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9A B =,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去;当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去; 3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意. 所以,3a =-. 【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , A B .(教材P 14 B 组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =,A B =∅; 当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =; 当4a =时,{3,4}A =,则{1,3,4}A B =,{4}A B =;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a =,A B =∅. 点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B = 由定义{|,}A B x x A x B -=∈∉且,则{1,3,4,7,8}A B -=.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U A C B .第4练 §1.1.3 集合的基本运算(二)※基础达标1.已知集合A = {}1,2,4, B ={}8x x 是的正约数, 则A 与B 的关系是( ).A. A = BB. A ≠⊂B C. A ≠⊃B D. A ∪B =∅2.已知,,a b c 为非零实数, 代数式||||||||a b c abca b c abc +++的值所组成的集合为M , 则下列判断正确的是( ).A. 0M ∉B. 4M -∉C. 2M ∈D. 4M ∈ 3.(08年湖南卷.文1)已知{}2,3,4,5,6,7U =,{}3,4,5,7M =,{}2,4,5,6N =,则( ).A .{}4,6MN = B.MN U = C .()u C N M U = D.()u C M N N =4.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).A .9 B. 14 C. 18 D. 215.设全集U 是实数集R ,{}2|4M x x =>与{}|31N x x x =≥<或都是U 的子集(如右图所示),则阴影部分所表示的集合为( ). A. {}|21x x -≤< B. {}|22x x -≤≤C. {}|12x x <≤D. {}|2x x <6.已知集合{11}A x x =-≤≤,{}B x x a =>,且满足AB φ=,则实数a 的取值范围是 .7.经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为 .※能力提高 8.已知集合2{|0}A x x px q =++=, 2{|20}B x x px q =--=,且{1}AB =-,求A B .9.已知集合U =2{2,3,23}a a +-,A ={|a +1|,2},U C A ={a +3},求实数a 的值.※探究创新 10.(1)给定集合A 、B ,定义A ※B ={x |x =m -n ,m ∈A ,n ∈B }.若A ={4,5,6},B ={1,2,3},则集合A ※B 中的所有元素之和为 ( )A .15B .14C .29D .-14(2)设全集为U ,集合A 、B 是U 的子集,定义集合A 、B 的运算:A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( )A .AB .BC .()U A B ∩D .()U A B ∪(3)已知集合A ={x |2x n ≠且3x n ≠,n ∈N ,x ∈N *,x ≤100},试求出集合A 的元素之和.第5讲 §1.2.1 函数的概念¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.¤知识要点: 1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y x x x =-++=--+. 所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1(2)3f =-.(2)设11x t x -=+,解得11t x t -=+,所以1()1t f t t -=+,即1()1xf x x-=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x x x ++=+=+==+++++.(2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.第5练 §1.2.1 函数的概念※基础达标1.下列各组函数中,表示同一函数的是( ). A. 1,xy y x==B. 11,y x y =+= C. ,y x y ==D. 2||,yx y ==2.函数y =的定义域为( ).A. (,1]-∞B. (,2]-∞C. 11(,)(,1]22-∞-- D. 11(,)(,1]22-∞-- 3.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).4.下列四个图象中,不是函数图象的是( ). 5.已知函数()f x 的定义域为A.B.C.D.[1,2)-,则(1)f x -的定义域为( ).A .[1,2)-B .[0,2)-C .[0,3)-D .[2,1)-6.已知()f x =2x +x +1,则(2)f =______;f [(2)f ]=______. 7.已知2(21)2f x x x +=-,则(3)f = . ※能力提高8.(1)求函数21x y x -=-的定义域; (2)求函数2113x y x+=-的定义域与值域. 9.已知2()f x ax bx c =++,(0)0f =,且(1)()1f x f x x +=++,试求()f x 的表达式.※探究创新 10.已知函数()f x ,()g x 同时满足:()()()()()g x y g x g y f x f y -=+;(1)1f -=-,(0)0f =,(1)1f =,求(0),(1),(2)g g g 的值.第6讲 §1.2.2 函数的表示法¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <. 所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞, ∴ f (0)=32.又 ∵32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52. 【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右:点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第6练 §1.2.2 函数的表示法※基础达标1.函数f (x )= 2(1)x x x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 42.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).3.已知函数()f x 满足()()()f ab f a f b =+,且(2)f p =,(3)f q =,那么(12)f 等于( ).A . p q + B. 2p q + C. 2p q + D. 2p q +4.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ).A. f :x →y =12xB. f :x →y =13xC. f :x →y =14xD. f :x →y =16x 5.拟定从甲地到乙地通话m 分钟的话费由[]3.71,(04)() 1.06(0.52),(4)m f m m m <≤⎧⎪=⎨+>⎪⎩给出,其中[]m 是不超过m 的最大整数,如:[]3.743=,从甲地到乙地通话5.2分钟的话费是( ).A. 3.71B. 4.24C. 4.77D. 7.956.已知函数(),m f x x x=+且此函数图象过点(1,5),实数m 的值为 . 7.24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 ;若00()8,f x x ==则 . ※能力提高8.画出下列函数的图象:(1)22||3y x x =-++; (2)2|23|y x x =-++.9.设二次函数()f x 满足(2)(2)f x f x +=-且()f x =0的两实根平方和为10,图象过点(0,3),求()f x 的解析式O d t O d t O d t O dtA. B. C. D.※探究创新10.(1)设集合{,,}A a b c =,{0,1}B =. 试问:从A 到B 的映射共有几个?(2)集合A 有元素m 个,集合B 有元素n 个,试问:从A 到B 的映射共有几个?第7讲 §1.3.1 函数的单调性 ¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别. ¤知识要点: 1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1x f x x =-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >. 所以,函数2()1x f x x =-在(0,1)上是减函数. 【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性. 解:设任意12,x x R ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.若0a <,当122b x x a <≤-时,有120x x -<,12b x x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a-∞-上单调递增. 同理可得()f x 在[,)2b a -+∞上单调递减. 【例3】求下列函数的单调区间:(1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右. 由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数. 点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.【例4】已知31()2x f x x +=+,指出()f x 的单调区间. 解:∵ 3(2)55()322x f x x x +--==+++, ∴ 把5()g x x -=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,得到()f x 的图象,如图所示.由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.第7练 §1.3.1 函数的单调性※基础达标1.函数26y x x =-的减区间是( ).A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞2.在区间(0,2)上是增函数的是( ).A. y =-x +1B. yC. y = x 2-4x +5D. y =2x3.函数()||()(2)f x x g x x x ==-和的递增区间依次是( ).A. (,0],(,1]-∞-∞B. (,0],[1,)-∞+∞C. [0,),(,1]+∞-∞D. [0,),[1,)+∞+∞4.已知()f x 是R 上的增函数,令()(1)3F x f x =-+,则()F x 是R 上的( ).A .增函数B .减函数C .先减后增D .先增后减5.二次函数2()2f x x ax b =++在区间(-∞,4)上是减函数,你能确定的是( ).A. 2a ≥B. 2b ≥C. 4a ≤-D. 4b ≤-6.函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x -->,则()f x 在(,)a b 上是 . (填“增函数”或“减函数”或“非单调函数”)7.已知函数f (x )= x 2-2x +2,那么f (1),f (-1),f 之间的大小关系为 .※能力提高8.指出下列函数的单调区间及单调性:(1)3()1x f x x +=-;(2)2|23|y x x =-++ 9.若2()f x x bx c =++,且(1)0,(3)0f f ==. (1)求b 与c 的值;(2)试证明函数()f x 在区间(2,)+∞上是增函数.※探究创新10.已知函数()f x 的定义域为R ,对任意实数m 、n 均有()()()1f m n f m f n +=+-,且1()22f =,又当12x >-时,有()0f x >. (1)求1()2f -的值; (2)求证:()f x 是单调递增函数.第8讲 §1.3.1 函数最大(小)值¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a -=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac b a-. 3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值.¤例题精讲:【例1】求函数261y x x =++的最大值. 解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -件,所赚得的利润为 (8)[10010(10)]y x x =---.即2210280160010(14)360y x x x =-+-=--+. 当14x =时,max 360y =.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元.【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数,所以当1x =时,min 2112y =+-=,函数的最小值为2.点评:形如y ax b cx d =+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令1x t -=,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--. 解:(1)二次函数232y x x =--的对称轴为2b x a=-,即1x =-. 画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-. (2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3. 点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第8练 §1.3.1 函数最大(小)值※基础达标1.函数42y x =-在区间 []3,6上是减函数,则y 的最小值是( ). A . 1 B. 3 C. -2 D. 52.函数221y x x =-+的最大值是( ). A. 8 B. 83C. 4D. 43 3.函数2()2f x x ax a =-+在区间(,1)-∞上有最小值,则a 的取值范围是( ).A .1a <B .1a ≤C .1a >D . 1a ≥4.某部队练习发射炮弹,炮弹的高度h 与时间t 的函数关系式是()24.914.718h t t t =-++则炮弹在发射几秒后最高呢( ).A. 1.3秒B. 1.4秒C. 1.5秒 D 1.6秒 5. 23()1,[0,]2f x x x x =++∈已知函数的最大(小)值情况为( ). A. 有最大值34,但无最小值 B. 有最小值34,有最大值1 C. 有最小值1,有最大值194D. 无最大值,也无最小值 6.函数3y x =的最大值是 .7.已知3()3x f x x =-,[4,6]x ∈. 则()f x 的最大值与最小值分别为 . ※能力提高8.已知函数2()2f x x x =-+.(1)证明()f x 在[1,)+∞上是减函数;(2)当[]2,5x ∈时,求()f x 的最大值和最小值.9.一个星级旅馆有100个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价?※探究创新 10.已知函数2142a y x ax =-+-+在区间[0,1]上的最大值为2,求实数a 的值. 第9讲 §1.3.2 函数的奇偶性¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系. ¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-. 解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有3311()()()()f x x x f x x x -=--=--=--, 所以为奇函数.(2)原函数定义域为R ,对于定义域的每一个x ,都有()|1||1||1||1|()f x x x x x f x -=--+-+=-++=,所以为偶函数.(3)由于23()()f x x x f x -=+≠±,所以原函数为非奇非偶函数.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f x g x x -=+,求()f x 、()g x . 解:∵ ()f x 是奇函数,()g x 是偶函数,∴ ()()f x f x -=-,()()g x g x -=. 则1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪---=⎪-+⎩,即1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪--=⎪-+⎩. 两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-. 【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.解:作出函数22242(1)2,0y x x x x =-+=--+≥的图象,其顶点为(1,2).∵ ()f x 是偶函数, ∴ 其图象关于y 轴对称.作出0x <时的图象,其顶点为(1,2)-,且与右侧形状一致,∴ 0x <时,22()2(1)224f x x x x =-++=--.点评:此题中的函数实质就是224||y x x =-+. 注意两抛物线形状一致,则二次项系数a 的绝对值相同. 此类问题,我们也可以直接由函数奇偶性的定义来求,过程如下.【另解】当0x <时,0x ->,又由于()f x 是偶函数,则()()f x f x =-,所以,当0x <时,22()()2()4()24f x f x x x x x =-=--+-=--.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.解:∵ ()f x 在区间(,0)-∞上是减函数, ∴ ()f x 的图象在y 轴左侧递减.又 ∵ ()f x 是奇函数,∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减.又 (0)(0)f f -=-,解得(0)0f =, 所以()f x 的图象在R 上递减.∵ 22(33)(32)f a a f a a +-<-,∴ 223332a a a a +->-,解得1a >.点评:定义在R 上的奇函数的图象一定经过原点. 由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.第9练 §1.3.2 函数的奇偶性※基础达标1.函数(||1)y x x =- (|x |≤3)的奇偶性是( ).A .奇函数 B. 偶函数 C. 非奇非偶函数 D. 既奇又偶函数2.(08年全国卷Ⅱ.理3文4)函数1()f x x x =-的图像关于( ). A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称3.已知函数()f x 是奇函数,当0x >时,()(1)f x x x =-;当0x <时,()f x 等于( ).A. (1)x x -+B. (1)x x +C. (1)x x -D. (1)x x --4.函数()11f x x x =+--,那么()f x 的奇偶性是( ).A .奇函数B .既不是奇函数也不是偶函数C .偶函数D .既是奇函数也是偶函数。
人教版高中数学必修1第一章《集合与函数的概念》教案1
第1讲 §1.1.1 集合的含义与表示¤ 学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤ 知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤ 例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合;(2)大于2且小于7的整数.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x=的自变量的值组成的集合.【第1练 §1.1.1 集合的含义与表示】 ※基础达标1.以下元素的全体不能够构成集合的是( ).A. 中国古代四大发明B. 地球上的小河流C. 方程210x -=的实数解D. 周长为10cm 的三角形 2.方程组{23211x y x y -=+=的解集是( ).A . {}51, B. {}15,C. (){}51, D. (){}15, 3.给出下列关系:①12R ∈; ②2Q ∈;③ *3N ∈;④0Z ∈. 其中正确的个数是( ).A. 1B. 2C. 3D. 44.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{45}x x <<是有限集. 其中正确的说法是( ).A. 只有(1)和(4)B. 只有(2)和(3)C. 只有(2)D. 以上四种说法都不对 5.下列各组中的两个集合M 和N ,表示同一集合的是( ).A. {}M π=, {3.14159}N =B. {2,3}M =, {(2,3)}N =C. {|11,}M x x x N =-<≤∈, {1}N =D. {1,3,}M π=, {,1,|3|}N π=- 6.已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是 . ※能力提高8.试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合; (2)函数232y x =-的自变量的值组成的集合.第2讲 §1.1.2 集合间的基本关系¤ 学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn 图表达集合间的关系.¤ 知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊆),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A = ,则A B ⊆;若A B A = ,则B A ⊆. ¤ 例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0}; ∅ {0}; N {0}. 【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合. 【第2练 §1.1.2 集合间的基本关系】 ※基础达标1.已知集合{}{}3,,6,A x x k k Z B x x k k Z ==∈==∈,则A 与B 之间最适合的关系是( ).A.A B ⊆B.A B ⊇C. A ≠⊂B D. A ≠⊃B2.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是( ).A .2k ≤B .1k ≥-C .1k >-D .2k ≥ 3.若2{,0,1}{,,0}a a b -=,则20072007a b +的值为( ).A. 0B. 1C. 1-D. 26.已知集合{},,,A a b c =,则集合A 的真子集的个数是 . 7.当2{1,,}{0,,}ba a ab a=+时,a =_________,b =_________.※能力提高8.已知A ={2,3},M ={2,5,235a a -+},N ={1,3,2610a a -+},A ⊆M ,且A ⊆N ,求实数a 的值.9.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-. 若B A ⊆,求实数m 的取值范围.第3讲 §1.1.3 集合的基本运算(一)¤ 学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.¤ 知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集交集补集概念由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(union set )由属于集合A 且属于集合B 的元素所组成的集合,称为集合A 与B 的交集(intersection set ) 对于集合A ,由全集U 中不属于集合A 的所有元素组成的集合,称为集合A 相对于全集U 的补集(complementary set ) 记号 A B (读作“A 并B ”) A B (读作“A 交B ”) U A ð(读作“A 的补集”) 符号 {|,}A B x x A x B =∈∈ 或{|,}A B x x A x B =∈∈ 且{|,}U A x x U x A =∈∉且ð图形表示¤ 例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<< 求ð.【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ; (2)()A A B C ð.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A = ,求实数m 的取值范围.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】 已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =, 求()U C A B ,()U C A B ,()()U U C A C B ,()()U U C A C B ,并比较它们的关系.【第3练 §1.1.3 集合的基本运算(一)】 ※基础达标1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则=A C U ( ).A. ∅B. {}2,4,6C. {}1,3,6,7D. {}1,3,5,7 2.若{|02},{|12}A x x B x x =<<=≤<,则A B = ( ).A. {|2}x x <B. {|1}x x ≥C. {|12}x x ≤<D. {|02}x x << 4.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B = ( ).A. {}1,2B. {}0,1C. {}0,3D. {}35.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠ ,则k 的取值范围是( ).A .2k ≤B .1k ≥-C .1k ->D .12k -<≤6.设全集*{|8}U x N x =∈<,{1,3,5,7}A =,{2,4,5}B =,则()U C A B = .※能力提高9.设U R =,{|24}A x x =-≤<,{|8237}B x x x =-≥-,求()B A C U 、()()B C A C U U .※探究创新10.设集合{|(4)()0,}A x x x a a R =--=∈,{|(1)(4)0}B x x x =--=.(1)求A B ,A B ; (2)若A B ⊆,求实数a 的值;第4讲 §1.1.3 集合的基本运算(二)¤ 学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤ 知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B = ,()()()U U U C A B C A C B = .2. 集合元素个数公式:()()()()n A B n A n B n A B =+- .3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维.¤ 例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A B = ,求实数a 的值.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B ,A B .(教材P 14 B 组题2)点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=},B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【第4练 §1.1.3 集合的基本运算(二)】 ※基础达标1.已知集合A = {}1,2,4,B ={}8x x 是的正约数,则A 与B 的关系是( ).A. A = BB. A ≠⊂B C. A ≠⊃B D. A ∪B =∅3.已知{}2,3,4,5,6,7U =,{}3,4,5,7M =,{}2,4,5,6N =,则( ).A .{}4,6M N = B.M N U = C .()u C N M U = D. ()u C M N N =4.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).A .9 B. 14 C. 18 D. 216.已知集合{11}A x x =-≤≤,{}B x x a =>,且满足A B φ= ,则实数a 的取值范围是 . 7.经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为 . ※能力提高8.已知集合2{|0}A x x px q =++=,2{|20}B x x px q =--=,且{1}A B =- ,求A B .9.已知集合U =2{2,3,23}a a +-,A ={|a +1|,2},U C A ={a +3},求实数a 的值.※探究创新10.(1)给定集合A 、B ,定义A ※B ={x |x =m -n ,m ∈A ,n ∈B }.若A ={4,5,6},B ={1,2,3},则集合A ※B 中的所有元素之和为( ) A .15 B .14C .29D .-14(2)设全集为U ,集合A 、B 是U 的子集,定义集合A 、B 的运算:A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( ) A .AB .BC .()U A B ð∩D .()U A B ð∪。
人教A版高中数学必修1教案完整版
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
人教版高中数学必修一第一章 集合与函数概念全章教案
课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
人教A版高中数学必修一第一章集合第1讲 1.1.1 集合的含义 学案
第1讲§1.1.1 集合的含义※知识要点1.元素与集合的概念(1)元素:一般地,我们把研究统称为元素.(2)集合:把一些元素组成的叫做集合(简称集).2.集合中元素的特性(1)集合中元素的三个特性:、、.注意:若两个集合的元素是一样的,则称两个集合是的.3.元素与集合的表示(1)元素的表示:通常用小写拉丁字母表示元素.(2)集合的表示:通常用大写拉丁字母表示集合.4.元素与集合的关系(1)属于:若a是集合A的元素,就说,记作.(2)不属于:若a不是集合A中的元素,就说,记作.※题型讲练【例1】下列所给的对象能构成集合的是________.①所有的正三角形;②比较接近1的数的全体;③某校高一年级所有16岁以下的学生;④平面直角坐标系内到原点距离等于1的点的集合;⑤所有参加2018年俄罗斯世界杯的年轻足球运动员;⑥2的近似值的全体.变式训练1:1.下列能构成集合的有________.①中央电视台著名节目主持人;②我市跑得快的汽车;③中国古代的四大发明;④合肥市蜀山区的所有高楼;⑤比3大的自然数;⑥方程x2-1=0的解.【例2】给出下列6个关系:①22∈R,②3∈Q,③0∉N,④4∈N,⑤π∈Q,⑥|-2|∉Z.其中正确命题的个数为()A.4B.3C.2D.1变式训练2:1.用符号“∈”或“∉”填空.(1)5____N ;-4____Z ;0.5____R ;2____N *;13____Q .(2)若A 表示第一、三象限的角平分线上的点的集合,则点(0,0)________A ,(1,1)______A ,(-1,1)______A .2.设不等式a -2x <0的解集为M ,若1∉M ,2∈M ,求实数a 的取值范围.【例3】已知集合A 含有两个元素1和a 2.(1)求实数a 的取值范围; (2)若a ∈A ,求实数a 的值.变式训练3:1.已知集合A 是由0,m ,m 2-m 三个元素组成的集合,且2∈A ,求实数m 的值.【例4】已知集合A 的元素全为实数,且满足:若a ∈A ,则1+a 1-a∈A . (1)若a =2,求出A 中其他所有元素;(2)0是不是集合A 中的元素?请说明理由.变式训练4:1.设P,Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是________.2.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a为________.※课堂反馈1.下列对象不能构成集合的是()①我国近代著名的数学家;②所有的欧盟成员国;③空气中密度大的气体.A.①②B.②③C.①②③D.①③2.下列三个关系式:①5∈R;②14∉Q;③0∈Z.其中正确的个数是()A.1 B.2 C.3 D.03.已知集合A中只有一个元素1,若|b|∈A,则b等于()A.1 B.-1 C.±1 D.04.a,b,c,d为集合A的四个元素,那么以a,b,c,d为边长构成的四边形可能是() A.矩形B.平行四边形C.菱形D.梯形5.已知集合A含有三个元素1,0,x,若x2∈A,则实数x的值为________.6.已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.※基础夯实1.下列对象能构成集合的是()①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④2.已知集合A由x<1的数构成,则有()A.3∈A B.1∈A C.0∈A D.-1∉A 3.下列命题正确的个数有()①1∈N;②2∈N*;③12∈Q;④2+2∉R;⑤42∉Z.A.1个B.2个C.3个D.4个4.由实数x,-x,|x|,x2,-3x3所构成的集合,最多含()A.2个元素B.3个元素C.4个元素D.5个元素5.设集合A是由1,k2为元素构成的集合,则实数k的取值范围是________.6.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=________. 7.设A是由满足不等式x<6的自然数构成的集合,若a∈A且3a∈A,求a的值.8.已知集合A是由a-2,2a2+5a,12三个元素构成的,且-3∈A,求实数a的值.※能力提升1.若a是R中的元素,但不是Q中的元素,则a可以是()A.3.14B.-5 C.37D.72.设直线y=2x+3上的点的集合为P,则点(1,5)与集合P的关系是________,点(2,6)与集合P 的关系是________.3.下面有三个命题,正确命题的个数为________.(1)集合N中最小的数是1;(2)若-a不属于N,则a属于N;(3)若a∈N,b∈N*,则a+b的最小值为2.4.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.※课后小结。
人教A版必修一数学第一章1.1.1《集合的含义与表示》【教案+课件】(2份打包)
表示集合的方法叫做列举法。
如:{1,2,3,4,5},
{x2,3x+2,5y3-x,x2+y2}
注:集合中的元素具有无序性,所以用列举法表示集合时 不必考虑元素的顺序。
研探新知
集合的表示方法
2.描述法:
用集合所含元素的共同特征表示集合的方法称为描述法。
具体方法:在大括号内先写上表示这个集合元素的一般符 号及取值(或变化)范围,再画一条竖线,在 竖线后写出这个集合中元素所具有的共同特征。
研探新知
常用个数集及其记法
非负整数集(或自然数集),记作N 正整数集,记作N*或N+; 整数集,记作Z 有理数集,记作Q 实数集,记作R
研探新知问题:下面这有个限集集合、:集无合限的集分类
{ x |x2+x+1=0},它有什么特征?
显然这个集合没有元素。 我们把这样的集合叫做空集,记作。
练习:⑴ 0 ⑵{ 0 }
集合常用大写字母A、B、C......表示,元素常 用小写字母a、b、c......表示。
思考:上述5个实例能否构成集合?如果是集合, 那么它的元素分别是什么?
研探新知
集合的含义
练习:下列指定的对象,是否能构成集合? ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体
(填∈或) (填=或≠)
集合的分类: (1)按元素多少分类:有限集、无限集; (2)按元素种类分类:数集、点集等
例题讲授
例1.用集合表示: ①x2-3=0的解集; ②所有大于0小于10的奇数; ③不等式2x-1>3的解.
例题讲授
高中数学 第一章集合与函数1.2.1函数的概念教案 新人教A版必修1
§1.2.1函数的概念一、教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。
二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2、教学用具:投影仪 .四、教学思路(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)研探新知1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.(2)构成函数的三要素是什么?定义域、对应关系和值域(3)区间的概念①区间的分类:开区间、闭区间、半开半闭区间;②无穷区间;③区间的数轴表示.(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0)y =ax 2+b x +c (a ≠0)y =xk (k ≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。
人教版高中数学必修一第一章-集合与函数概念全章教案
人教版高中数学必修一第一章-集合与函数概念全章教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。
另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
人教版高中数学必修1第一章集合与函数概念-《1.1集合》教案
人教版高中数学必修1第一章集合与函数概念-《1.1集合》教案集合(第1课时)一、知识目标:①内容:初步理解集合的基本概念,常用数集,集合元素的特征等集合的基础知识。
②重点:集合的基本概念及集合元素的特征③难点:元素与集合的关系④注意点:注意元素与集合的关系的理解与判断;注意集合中元素的基本属性的理解与把握。
二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合,培养分析、判断的能力;②由集合的学习感受数学的简洁美与和谐统一美。
三、教学过程:Ⅰ)情景设置:军训期间,我们经常会听到教官在高喊:(x)的全体同学集合!听到口令,咱们班的全体同学便会从四面八方聚集到教官的身边,而那些不是咱们班的学生便会自动走开。
这样一来教官的一声“集合”(动词)就把“某些指定的对象集在一起”了。
数学中的“集合”这一概念并不是教官所用的动词意义下的概念,而是一个名词性质的概念,同学们在教官的集合号令下形成的整体即是数学中的集合的涵义。
Ⅱ)探求与研究:①一般地,某些指定的对象集在一起就成为一个集合,也简称集。
问题:同学们能不能举出一些集合的例子呢?(板书学生们所举出的一些例子)②为了明确地告诉大家,是哪些“指定的对象”被集在了一起并作为一个整体来看待,就用大括号{ }将这些指定的对象括起来,以示它作为一个整体是一个集合,同时为了讨论起来更方便,又常用大写的拉丁字母A、B、C……来表示不同的集合,如同学们刚才所举的各例就可分别记为……(板书)另外,我们将集合中的“每个对象”叫做这个集合的元素,并用小写字母a、b、c……(或x1、x2、x3……)表示同学口答课本P5练习中的第1大题③分析刚才同学们所举出的集合例子,引出:对某具体对象a与集合A,如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作a A④再次分析同学们刚才所举出的一些集合的例子,师生共同讨论得出结论:集合中的元素具有确定性、互异性和无序性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数的概念
1.1 集合
第一课时 1.1.1 集合的含义与表示
1 教学目标
[1]通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法
[2]使学生体会元素与集合的“属于”关系
[3]能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集
合语言的意义和作用;
2教学重点/难点
教学重点:集合的基本概念与表示方法
理解元素与集合之间的从属关系
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合掌握集合中元素的特性的应用
3 专家建议
这是高中数学的第一节课。
虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。
在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。
要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。
在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。
本节课要记的东西多,可让学生自己阅读,然后在老师的引导下思考问题,进一步解决问题。
在本节课的学习过程中,教师一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想.在教学过程中通过恰当的应用信息技术,从而突破难点
4 教学方法
启发式讲授法
5 教学过程
5.1 复习引入
【师】我们初中学过的实数自然数都还记得吗?它们之间有什么关系呢?【板演/PPT】
5.2 实例引入
【师】我们来看下下面这些实例
【板演/PPT】
⑴ 1~20以内的所有整数;
⑵我国从1991~2015的25年内所发射的所有人造卫星;
⑶某汽车厂2015年生产的所有汽车;
⑷所有的正方形;
⑸某中学2015年9月入学的高一学生全体.
5.3 新知介绍
[1]元素与集合的相关概念
【师】我们试着总结下这些事例它们有什么共同点?
【生】思考交流
【师】我们生活中的很多东西都能构成集合,你能举出一些例子吗?
通过以上分析,能给出集合的含义吗
【板书\PPT】
一般地,我们把研究对象统称为元素(element),
把一些元素组成的总体叫做集合(set)(简称为集)
集合常用大写字母A,B,C,D,…表示,
元素常用小写字母a,b,c,d…表示
[2]元素与集合的关系
【师】如果用A表示我们学校全体高一学生组成的集合,用a表示高一学生中的一位同学,b 是高二年级的一位同学,那么a、b与集合A分别有什么关系?由此可见元素与集合之间有什么关系?我们怎样才能简单明了地表示它们的关系呢?
【生】讨论交流
【板书\PPT】
如果a是集合A的元素,就说a属于集合A,记作a∈A
如果b不是集合A的元素,就说b属于集合A,记作b∉A
[3]集合的表示方法
【师】我们用什么方法来表示我们的集合呢
【生】讨论与理解
【师】归纳总结
【板书/PPT】
列举法:把集合中的元素一个一个地写在一对大括号内表示集合的方法
描述法:把集合中元素共有的,也只有该集合中元素才有的属性描述出来,已确定集合的方法【师】同学们请看题
【板书\PPT】
用适当的方法表示下列集合
(1)方程 -4=0的解组成的集合
{-2,2}或{x| -4=0}
(2)大于3小于9的实数组成的集合
{x|3<x<9,x∈R}
(3)所有奇数组成的集合
{y|y=2n-1,n∈Z}
[4]集合元素的性质
【师】我们观察一下实例中的数据它们能不能构成组合它们都有什么特征呢?
【生】理解与交流
【师】总结
【板书/PPT】
(1)确定性:集合中的元素必须是确定的,
任何一个元素都能明确它是或不是某个集合的元素
(2)互异性:集合中的元素必须是互不相同的
(3)无序性:集合中的元素是无先后顺序的。
集合中的任何两个元素都可以交换位置
【师】同学们,请看题
【板书/PPT】
判断
(1)中央电视台著名节目主持人构成一个集合
(×)
(2)某中学全体教师构成一个集合
(√)
【师】著名主持人没有明确的标准,到底都有名气从才算是著名呢?由于集合中的元素有确定性,所以这个是不正确的。
而全体教师就很明确了也满足互异性和乱序性,所以这个是正确的
【师】下面是一些常用数集的表示方法
(1)N:自然数集(含0)
即非负整数集
(2):正整数集
(3)Z:整数集
(4)Q:有理数集
(5)R:实数集
[5]课堂小结
集合的含义:
把一些元素组成的总体叫做集合
常用大写字母A,B,C,D,…表示,集合元素的性质:
确定性,互异性,无序性
常用数集表示方法:
(1)N:自然数集(含0)
非负整数集
(2):正整数集
(3)Z:整数集
(4)Q:有理数集
(5)R:实数集
集合的表示方法:列举法描述法
实数的分类
5.4 复习总结和作业布置
[1]课堂练习
1.求不等式2x-3>5 的解集
2.用列举法和描述法表示方程2x-2x-3=0的解集。
3.求方程22x+x+1=0 的所有实数解的集合
4.已知M={2,a,b},N={2a,2,2b } ,且M=N ,求a,b的值
5已知集合A={x|a2x-2x-1=0,x∈R ,若集合A中至多有一个元素,求实数a的取值范围.
课堂练习【参考答案】
1.{x|x>4,x∈R}
2.列举法:{1,3} 描述法:{x|2x-2x-3=0}
3.∅
4.a=0,b=1 或a=1
4
,b=
1
2
5.【思路分析】本题主要考查元素与集合之间的关系,以及集合的表示法.由描述法可知集合
A 是关于x的方程a2x -2x-1=0的实数解集,首先考虑方程是不是一元二次方程.
解:当a=0时,方程只有一个根-1
2
,则a=0 符合题意;
当a≠0时,则关于x的方程a2x -2x-1=0 是一元二次方程,由于集合A中至多有一个元素,则一元二次方程a2x-2x-1=0有两个相等的实数根或没有实数根,所以△=4+4a≤0 ,解得a≤-1 .综上所得,实数
a的取值范围是 {a|a=0或a≤-1}.
答案: {a|a=0或a≤-1}
课后作业
1、复习本节课所讲内容,完成书后习题 A组 2 .3. 4. 5 B组 1. 2
预习下一课
1.1.2集合间的基本关系
5.4 板书设计
一、集合的含义
把一些元素组成的总体叫做集合(set)(简称为集)
常用大写字母A,B,C,D,…表示,
二、集合元素的性质:
确定性,互异性,无序性
三、数集及有关符号:
(1)N:自然数集(含0)
非负整数集
(2):正整数集
(3)Z:整数集
(4)Q:有理数集
(5)R:实数集
三、集合的表示方法:
列举法描述法
四、实数的分类。