2017年4月长宁金山区数学二模考试
2017上海长宁初三数学二模

初三数学试卷 共4页 第 页 1 2016学年第二学期初三数学教学质量检测试卷(考试时间100分钟,满分150分) 2017.4考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、单项选择题(本大题共6题,每题4分,满分24分) 1.已知3=4x y ,那么下列各式中正确的是( ) A.74=+y x y ; B. 3-=y x x ; C.3102=+x y x ; D. x -y y =14 . 2.把不等式组⎩⎨⎧<-≥+02,132x x 的解集表示在数轴上,正确的表示为( )3.在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的 值为( ) A .12; B .22; C .32;D .33. 4.如图,在四边形ABCD 中,动点P 从点A 开始沿A →B →C →D 的路径匀速前进到点D 为止.在这个过程中,△APD 的面积S 随时 间t 的变化关系用图像表示正确的是( )5.已知P 为线段AB 的黄金分割点,且AP <PB ,则( ) A. AP 2=AB ·PB ; B. AB 2=AP ·PB ; C. PB 2=AP ·AB ; D. AP 2+BP 2=AB 2.tSt StStSDCBAOOOOA. B. C. D.-1321-2-1321-2-1321-20-2123-1第4题图第3题图初三数学试卷 共4页 第 页 2 6.下列说法中,正确的是( )A. 一组数据-2,-1,0,1,1,2的中位数是0;B. 质检部门要了解一批灯泡的使用寿命,应当采用普查的调查方式;C. 购买一张福利彩票中奖是一个确定事件;D. 分别写有三个数字-1,-2,4的三张卡片(卡片的大小形状都相同),从中任意抽取两张,则卡片上的两数之积为正数的概率为13.二、填空题(本大题共12题,每题4分,满分48分)7.计算:313a b ⎛⎫= ⎪⎝⎭_________.8.在实数范围内因式分解:23x -=_________.9.已知函数x x x f 1)(+=,那么)(1-2f =_________.10.已知反比例函数xk y 1-=的图象经过一、三象限,则实数k 的取值范围是_________.11.抛物线a x x y ++=2-2的对称轴是_________. 12.方程11x -=的解为_________.13.已知关于x 的方程02-2=+k kx x 有两个相等的实数根,那么实数k =_________.14.某物流仓储公司用A、B两种型号的机器人搬运物品,已知A 型机器人比B 型机器人每小时多搬运20千克物品,A 型机器人搬运1000千克物品所用时间与B 型机器人搬运800千克物品所用时间相等,设A 型机器人每小时搬运物品x 千克,列出关于x 的方程为_________. 15.化简:=-)313-2b a a (________. 16.如图,在菱形ABCD 中,EF ∥BC ,31=BE AE ,EF =3, 则CD 的长为________.17.在△ABC 中,已知BC =4 cm ,以边AC 的中点P 为圆心1 cm 为半径画⊙P ,以边AB 的中点Q 为圆心x cm 长为半径画⊙Q ,如果⊙P 与⊙Q 相切,那么x =_________ cm .第16题图初三数学试卷 共4页 第 页 3 18.如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且 ∠DAE =45°.设BE =a ,DC =b ,那么AB =_________.(用含a 、b 的式子表示AB )三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:01)2017(45tan 33)21(++--- .20.(本题满分10分)解方程组:⎩⎨⎧=+++=062-30-4222y x xy x y x ,.21.(本题满分10分) 已知直线321-+=x y 与x 轴、y 轴分别交于A 、B 两点,设O 为坐标原点. (1)求∠ABO 的正切值;(2)如果点A 向左平移12个单位到点C ,直线l 过点C 且与直线1-32y x =+平行,求直线l 的解析式.22.(本题满分10分)小明在海湾森林公园放风筝.如图所示,小明在A 处,风筝飞到C 处,此时绳长BC 为40米,若小明双手牵住绳子的底端B 距离地面1.5米,从B 处测得C 处的仰角为60°,求此时风筝离地面的高度CE . (计算结果精确到0.1米,)23.(本题满分12分)3 1.732≈第18题图第22题初三数学试卷 共4页 第 页 4 如图,在△ABC 中,点P 是AC 边上的一点,过点P 作与BC 平行的直线PQ ,交AB 于点Q ,点D 在BC 边上,联结AD 交PQ 于点E ,且CP QECD BD,点G 在BC 的延长线上,∠ACG 的平分线CF 交直线PQ 于点F . (1)求证:PC =PE ;(2)当P 是边AC 的中点时,求证:四边形AECF 是矩形.24.(本题满分12分)已知△OAB 在直角坐标系中的位置如图,点A 在第一象限,点B 在x 轴正半轴上,OA =OB =6, ∠AOB =30°. (1)求点A 、B 的坐标;(2)开口向上的抛物线经过原点O 和点B ,设其顶点为E ,当△OBE 为等腰直角三角形时,求抛物线的解析式;(3)设半径为2的⊙P 与直线OA 交于M 、N 两点,已知MN =32, P (m ,2)(m>0),求m 的值.25.(本题满分14分)如图,△ABC 的边AB 是⊙O 的直径,点C 在⊙O 上,已知AC =6 cm ,BC =8 cm ,点P 、Q 分别在边AB 、BC 上,且点P 不与点A 、B 重合,BQ =k ·AP (k >0),连接PC 、PQ . (1)求⊙O 的半径长;(2)当k =2时,设AP =x ,△CPQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△CPQ ∽△ABC ,且∠ACB =∠CPQ ,求k 的值.第24题图yxBAO第23题图GQFEABCP初三数学试卷 共4页 第 页 52016学年第二学期初三数学教学质量检测试卷参考答案及评分建议2017.4一、选择题:1.A ; 2.B ; 3.B ; 4.C ; 5.C ; 6.D . 二、填空题:7.3ab ; 8.(x x ; 9. 10.1k >; 11.直线1x =; 12.2x =;13.0或1; 14.100080020x x =-; 15.3a b +; 16.12;17.1或3; 18三、解答题:19.解:原式=(231-+. ·························································································· (8分). ··············································································································· (2分)20.解:由①得20x y +=或20x y -=. ········································································· (2分)原方程组可化为 (Ⅰ)2203260.x y x xy x y +=⎧⎨-+++=⎩,或(Ⅱ)2203260.x y x xy x y -=⎧⎨-+++=⎩,········· (4分)解(Ⅰ),方程组无解; ························································································ (1分) 解(Ⅱ)得方程组的解是1124x y =-⎧⎨=-⎩,;2236x y =-⎧⎨=-⎩,. ·················································· (2分) 所以,原方程组的解为1124x y =-⎧⎨=-⎩,;2236x y =-⎧⎨=-⎩,.······················································ (1分)初三数学试卷 共4页 第 页6 21.解:(1)由题意得,A (6,0),B (0,3). ························································· (3分) 在Rt △ABO 中,6tan 23OA ABO OB ∠===. ······················································ (2分) (2)∵点A 向左平移12个单位得到点C ,∴C (6-,0). ··························· (1分)∵直线l 与直线1+32y x =-平行,∴设直线l 的解析式为12y x b =-+. ··························································· (1分)∵直线l 经过点C ,∴()1062b =-⨯-+,∴b=3-. ································ (2分)∴直线l 的解析式为132y x =--. ······························································ (1分)22.解:过点B 作BD //AE ,交CE 于点D .由题意,得BD ⊥CE ,AB = ED=1.5,∠CBD =60°,BC =40. ······························· (2分) 在Rt △BCD 中, ∵sin CDCBD BC∠=,∴sin604034.64CD =︒⨯≈. ······································ (6分) ∵CE =ED +DC ,∴CE =1.5+34.64=36.1. ································································· (1分) 答:此时风筝离地面的高度约为36.1米. ··························································· (1分)23.证明:(1)∵PQ //BC ,∴QE AE BD AD =, AE EPAD DC= ····································································· (2分) ∴QE EPBD DC =∵CP QE CD BD =, ∴CP EP CD DC=. ··························································································· (1分) ∴PC =PE . ····································································································· (1分) (2)∵CF 平分∠ACG ,∴∠PCF =∠FCG , ···························································· (1分)∵PQ //BC ,∴∠PFC =∠FCG , ······································································· (1分) ∴∠PFC =∠PCF , ···························································································· (1分) ∴PC =PF .········································································································ (1分) ∵PC =PE初三数学试卷 共4页 第 页7 ∴PE=PF ∵P 是AC 的中点∴AP =CP ··········································································································· (1分) ∴四边形AECF 是平行四边形. ····································································· (1分) ∴AC =2PC , EF =2PE ∵PC =PE∴AC= EF ··········································································································· (1分) ∴四边形AECF 是矩形 . ·············································································· (1分)24.解:(1)∵OB =6,∴ B (6,0). ············································································· (1分) 过点A 作AH ⊥x 轴,垂足为点H .∵OA =6,∠AOB =30°,∴AH =3,OH= ·············································· (1分) ∴ A(3). ·························································································· (1分) (2)∵抛物线经过原点O 和点B ,∴该抛物线的对称轴为直线3x =. ·········· (1分) 设该抛物线与x 轴交于点D , ∵△OBE 为等腰直角三角形, ∴ED =OD=BD .∴ E (3,3-). ··································································· (1分)设该抛物线的解析式为()233y a x =--. 将原点(0,0)代入得,13a =. ································································· (1分) ∴()21333y x =--. ···················································································· (1分) (3)设直线OA 的解析式为y kx =.∵A(3)∴3y x =,当2y =时,x = ······························ (1分) 设直线2y =与直线OA 交于点Q ,得∠PQA =30°. 当点P 在点Q 右侧时,过点P 作PG ⊥MN ,垂足为点G.由垂径定理,得NG = ················· (1分)∴cos PNG ∠=,∴∠PNG =30°. ························································· (1分)∴点N 与点Q重合,∴2m =, ························································· (1分)初三数学试卷 共4页 第 页 8 当点P 在点Q 左侧时,同理可得,点M 与点Q重合,∴2m =. ········································· (1分) 25.解:(1)联结OC .∵AB 是⊙O 的直径, ∴OA =OB =OC , ································································································· (1分) ∴∠OAC =∠OCA ,∠OCB =∠OBC , ···························································· (1分) 又∵∠OAC +∠OCA +∠OCB +∠OBC =180°, ∴∠OCA +∠OCB =90°.即∠ACB =90°. ···················································· (1分) ∵AC =6,BC =8,∴10AB =.∴⊙O 的半径为5. ························································································· (1分) (2)过点P 作PD ⊥BC ,垂足为点D .∵AP =x ,∴BQ =2x ,CQ =8-2x ,PB =10-x . ······················································· (1分) 在Rt △PDB 中,∵sin PD B PB ∠=,∴61010PDx =-. ······························································· (1分) ∴365PD x =-.······························································································ (1分)∴()113826225y CQ PD x x ⎛⎫=⋅=-- ⎪⎝⎭()2342240455x x x =-+<< ·········· (2分) (3)(i ) 当∠PQC =∠B 时,因为∠PQC >∠B ,不合题意,舍去. ········· (1分)(ii )当∠PQC =∠A 时,∠PCQ =∠B , 此时点P 和点O 重合,∴AP = PC =5. ······················································ (1分) ∵cos cos PCQ B ∠=∠,∴5810CQ =. ∴254CQ =. ·································································································· (1分) ∴257844BQ =-=. ····················································································· (1分) ∴7174520BQ k AP ==⨯=. ············································································· (1分)。
上海市长宁、金山、青浦区2017届高三二模数学试卷含答案

上海市长宁、金山、青浦区 2017 届高三二模数学试卷含答案2017 年徐汇区高三二模考试数学试卷(满分 150 分,考试时间 120 分钟)一、填空题(本大题共有 12 题,满分 54 分,第 1-6 题每题 4 分,第 7-12 题每题 5 分)考生应 在答题纸的相应位置直接填写结果。
1、设全集 U 1, 2,3, 4 ,集合 A x x 5 x 4 0, x Z ,则 CU A _______________22、参数方程为 x t2 y 2t( t 为参数)的曲线的焦点坐标为_______________3、已知复数 z 满足 z 1,则 z 2 的取值范围是_______________ 4、设数列 an 的前项和为 Sn ,若 S n 1 n2 an (n N * ) ,则 lim S n _______________ n 31 * 5、若 x (n 4, n N ) 的二项展开式中前三项的系数依次成等差数列,则 n _____ 2x 2 3、、 4 5、 6、、 7 8、 9、 10 分别写在 10 张形状大小一样的卡片上,随机抽取一张卡片,则抽到写着偶数或大 6、把 1、、 于 6 的数的卡片的概率为_______________。
(结果用最简分数表示)17、若行列式 cos2 x 2 x cos 2 sin41 0 中元素 4 的代数余子式的值为 ,则实数 x 的取值集合为_______________ 2x 2 x sin 288、满足约束条件 x 2 y 2 的目标函数 z y x 的最小值是_______________log 2 x, 0 x 2 9、已知函数 f ( x) 2 x 5 ,若函数 g ( x) f ( x) k 有两个不同的零点,则实数 k 的取值范围是 , x 2 3 9_______________。
上海市长宁、金山、青浦区2017届高三数学二模试卷

如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!上海市长宁、金山、青浦区2017届高三数学二模试卷2017.04一、填空题:(本大题共14小题,每小题5分,共70分)1. 已知集合{}|1,A x x x R =>-∈,集合{}|2,B x x x R =<∈,则A B =I .2. 已知复数z 满足()2332i z i -=+(i 为虚数单位),则z = .3.函数()sin 2cos 2cos sin x x f x xx的最小正周期为 .4.已知双曲线()()2222103x y a a a -=>+的一条渐近线方程为2y x =,则a = . 5.若圆柱的侧面展开图是边长为4cm 的正方形,则圆柱的体积为 . cm 3(精确到0.1cm 3)6.已知,x y 满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值为 .7.直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点个数是 .8.已知函数()22,0log ,01x x f x x x ⎧≤=⎨<≤⎩的反函数是()1f x -,则112f -⎛⎫= ⎪⎝⎭ .9.设多项式()()()()2311110,nx x x x x n N *++++++++≠∈L 的展开式中x 项的系数为nT ,则2limnn T n →∞= .10.生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p ,每道工序产生产生废品相互独立,若经过两道工序得到的零件不是废品的概率为0.9603,则p = .11.已知函数()f x x x a =-,若对任意的[]1212,2,3,x x x x ∈≠,恒有()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,则实数a 的取值范围为 . 12.对于给定的实数0k >,函数()kf x x=的图象上总存在点C,使得以C 为圆心,1为半径的圆上有两个不同的点到原点O 的距离为1,则k 的取值范围为 . 二、选择题:13.设,a b R ∈,则“4a b +>”是“1a >且3b >”的 A. 充分不必要条件 B. 必要不充分条件C. 充要条件D.既不充分也不必要条件14.如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC ∆在该正方体各个面上的射影可能是A. ①②③④B. ①③C. ①④D. ②④15.如图,AB 为圆O 的直径且AB=4,C 为圆上不同于A,B 的任意一点,若P 为半径OC 上的动点,则()PA PB PC +⋅u u u r u u u r u u u r的最小值为A. -4B. -3C. -2D. -116.设1210,,x x x K 为1,2,,10L 的一个排列,则满足对于任意正整数,m n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同的排列的个数为A.512B. 256C. 255D. 64三、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分14分)如图,在正方体1111ABCD A B C D -中,,E F 分别是1,BC CD 线段的中点.(1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11ABB A 所成角的大小.18.(本题满分14分)某动物园要为刚入园的小动物建造一间两面靠墙的三角形露天活动室,地面形状如图所示,已知已有两面墙的夹角为3π(即3ACB π∠=),墙AB 的长度为6米(已有两面墙的可利用长度足够大),记.ABC θ∠=(1)若4πθ=,求ABC ∆的周长(结果精确到0.01米);(2)为了使小动物能健康成长,要求所建造的三角形露天活动室面积即ABC ∆的面积尽可能大,问θ当何值时,该活动室面积最大?并求最大面积.19.(本题满分14分)已知抛物线()220y px p =>,其准线方程为10x +=,直线l 过点(),0T t 0t >且与抛物线交于两点,A B ,O 为坐标原点.(1)求抛物线的方程,并证明:OA OB ⋅u u u r u u u r为值与直线倾斜角的大小无关;(2)若P 为抛物线上的动点,记PT 的最小值为函数()d t ,求()d t 的解析式.20.(本题满分16分)对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,其中m n <,同时满足:①()f x 在[],m n 内是单调函数;②当定义域为[],m n 时,()f x 的值域为[],m n ,则称函数()f x 是区间[],m n 上的“保值函数”,区间[],m n 称为“保值区间”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)若函数()()2112,0f x a R a a a x=+-∈≠是区间[],m n 上的“保值函数”,求a 的取值范围; (3)对(2)中函数()f x ,若不等式()22a f x x ≤对1x ≥恒成立,求实数a 的取值范围.21.(本题满分16分)已知数列{}n a 中,已知()12121,,n n n a a a a k a a ++===+对任意n N *∈都成立,数列{}n a 的前n 项和为n S .(1)若{}n a 是等差数列,求k 的值; (2)若11,2a k ==-,求n S ; (3)是否存在实数k ,使得数列{}n a 是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.。
上海市长宁区2017年中考二模数学试卷含答案

2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷;(C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用、表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .第14题图AB CDE F第15题图第16题图DCBA第18题图AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.ACDB第21题图第22题图ACDEF GB第23题图24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.备用图第24题图OAC BO BA C DBAO长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分)若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分) (2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
上海市长宁区2017年中考二模数学试卷有答案

2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD , 若a AD =,b DC =,用a 、b 表示=DB ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,AD第14题图 A BCD EF第15题图 第16题图 D CBA 第18题图ABCD135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知第22题图ACDEF GB第23题图备用图圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.学年第二学参考答案议2018.3一、选择题:(本大题共6题,每题41.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分)20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分) 将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)O A C BO BA C DBAO另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分)(2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GF BE AD = ∴AGGF BG DG = (1分)∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分)(3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限 由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BOAO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5,∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
上海市长宁区2017年中考二模数学试卷含答案

2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷;(C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD , 若a AD =,b DC =,用、表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x . 20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)第14题图 A BCD EF第15题图第16题图D CBA 第18题图ABCD如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.ADB第21题图第22题图ACDEF GB第23题图25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.长学年第二参考答案2018.3一、选择题:(本大题共6题,每题41.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53;13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++;18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)O A C BO BA C DBAO解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分)(2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GF BE AD = ∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGD BD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分)(2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分)(3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD ,∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BOAO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分) (2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5,∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
上海市长宁区2017年中考二模数学试卷(含答案)

2017学年第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷;(C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD ,若a AD =,b DC =,用、表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .第14题图AB CDE F第15题图第16题图DCBA第18题图AB CD三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.ACDB第21题图第22题图ACDEF GB第23题图24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.备用图第24题图OAC BO BA C DBAO长宁区2017学年第二学期初三数学参考答案和评分建议2018.3一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分)若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO =5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分) (2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
2017年4月长宁、金山区数学二模试卷

2017年4月长宁、金山区数学二模试卷D234567第22题21.(本题满分10分) 已知直线321-+=x y 与x 轴、y 轴分别交于A 、B 两点,设O 为坐标原点.(1)求∠ABO 的正切值;(2)如果点A 向左平移12个单位到点C ,直线l 过点C 且与直线1-32y x =+平行,求直线l 的解析式.22.(本题满分10分)小明在海湾森林公园放风筝.如图所8示,小明在A 处,风筝飞到C 处,此时绳长BC 为40米,若小明双手牵住绳子的底端B 距离地面1.5米,从B 处测得C 处的仰角为60°,求此时风筝离地面的高度CE .(计算结果精确到0.13 1.732≈)23.(本题满分12分)如图,在△ABC 中,点P 是AC 边上的一点,过点P 作与BC平行的直线PQ ,交AB 于点Q ,点D 在 BC 边上,联结AD 交PQ 于点E ,且CP QE CD BD =,点G 在BC 的延长线上,∠ACG 的平分线CF 交直线PQ 于点F .(1)求证:PC =PE ;第23题图 Q F E A P(2)当P是边AC的中点时,求证:四边形AECF 是矩形.24.(本题满分12分)已知△OAB在直角坐标系中的位置如图,点A在第一象限,点B在x轴正半轴上,OA=OB=6,∠AOB=30°.(1)求点A、B的坐标;(2)开口向上的抛物线经过原点O和点B,设其顶点为E,当△OBE 为等腰直角三角形时,求抛物线的解析式;(3)设半径为2的⊙P与直线OA交于M、N两点,已知MN=32,P(m,2)(m>0),求m的910 第24题图 y x B A O 值.25.(本题满分14分)如图,△ABC 的边AB 是⊙O 的直径,点C 在⊙O 上,已知AC =6 cm ,BC =8 cm ,点P 、Q 分别在边AB 、BC 上,且点P 不与点A 、B 重合,BQ =k ·AP (k >0),连接PC 、PQ .(1)求⊙O 的半径长;(2)当k =2时,设AP =x ,△CPQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域;(3)如果△CPQ ∽△ABC ,且∠ACB =∠CPQ ,求k 的值.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年4月长宁金山区数学二模考试
————————————————————————————————作者:————————————————————————————————日期:
第3题图
2017年长宁区初三数学教学质量检测试卷
(考试时间100分钟,满分150分) 2017.4
一、单项选择题(本大题共6题,每题4分,满分24分) 1.已知
3
=4
x y ,那么下列各式中正确的是( ) A.
74=+y x y ; B. 3-=y x x ; C.3
10
2=+x y x ; D. x -y y =14 . 2.把不等式组⎩
⎨⎧<-≥+02,
132x x 的解集表示在数轴上,正确的表示为( )
3.在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的 值为( ) A .
12
; B .
22
; C .32;
D .
3
3
. 4.如图,在四边形ABCD 中,动点P 从点A 开始沿A →B →C →D 的路径匀速前进到点D 为止.在这个过程中,△APD 的面积S 随时
间t 的变化关系用图像表示正确的是( )
t
S
t S
t
S
t
S
D
C
B
A
O
O
O
O
5.已知P 为线段AB 的黄金分割点,且AP <PB ,则( ) A. AP 2=AB ·PB ; B. AB 2=AP ·PB ; C. PB 2=AP ·AB ; D. AP 2+BP 2=AB 2.
6.下列说法中,正确的是( )
A. 一组数据-2,-1,0,1,1,2的中位数是0;
B. 质检部门要了解一批灯泡的使用寿命,应当采用普查的调查方式;
C. 购买一张福利彩票中奖是一个确定事件;
D. 分别写有三个数字-1,-2,4的三张卡片(卡片的大小形状都相同),从中任意抽取两张,
A. B. C. D.
-1
3
2
1
-2
-1
3
2
1
-2
-1
3
2
1
-2
0-2
12
3
-1第4题图
第16题图
第18题图
则卡片上的两数之积为正数的概率为
13.
二、填空题(本大题共12题,每题4分,满分48分)
7.计算:3
13a b ⎛⎫
= ⎪⎝⎭
_________.
8.在实数范围内因式分解:23x -=_________.
9.已知函数x x x f 1
)(+
=,那么)(1-2f =_________.
10.已知反比例函数x
k y 1
-=的图象经过一、三象限,则实数k 的取值范围是_________.
11.抛物线a x x y ++=2-2
的对称轴是_________. 12.方程11x -=的解为_________.
13.已知关于x 的方程02-2=+k kx x 有两个相等的实数根,那么实数k =_________. 14.某物流仓储公司用A、B两种型号的机器人搬运物品,已知A 型机器人比B 型机器人每小时多搬运20千克物品,A 型机器人搬运1000千克物品所用时间与B 型机器人搬运800千克物品所用时间相等,设A 型机器人每小时搬运物品x 千克,列出关于x 的方程为_________. 15.化简:=-)3
1
3-2b a a (________. 16.如图,在菱形ABCD 中,EF ∥BC ,3
1
=BE AE ,EF =3, 则CD 的长为________.
17.在△ABC 中,已知BC =4 cm ,以边AC 的中点P 为圆心1 cm 为半径画⊙P ,以边AB 的中点Q 为圆心x cm 长为半径画⊙Q ,如果⊙P 与⊙Q 相切,那么x =_________ cm . 18.如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且 ∠DAE =45°.设BE =a ,DC =b ,那么AB =_________.(用含a 、b 的式子表示AB )
三、解答题:(本大题共7题,满分78分)
19.(本题满分10分)计算:01)2017(45tan 33)2
1
(++--- .
第22
题
20.(本题满分10分)解方程组:⎩⎨⎧=+++=0
62-30-4222y x xy x y x ,
.
21.(本题满分10分) 已知直线32
1
-
+=x y 与x 轴、y 轴分别交于A 、B 两点,设O 为坐标原点. (1)求∠ABO 的正切值;
(2)如果点A 向左平移12个单位到点C ,直线l 过点C 且与直线1
-32
y x =+平行,求直线l 的解析式.
22.(本题满分10分)
小明在海湾森林公园放风筝.如图所示,小明在A 处,风筝飞到C 处,此时绳长BC 为40米,若小明双手牵住绳子的底端B 距离地面1.5米,从B 处测得C 处的仰角为60°,求此时风筝离地面的高度CE . (计算结果精确到0.1米,3 1.732≈)
第24题图
y
x
B
A
O
如图,在△ABC 中,点P 是AC 边上的一点,过点P 作与BC 平行的直线PQ ,交AB 于点Q ,点D 在 BC 边上,联结AD 交PQ 于点E ,且
CP QE
CD BD
,点G 在BC 的延长线上,∠ACG 的平分线CF 交直线PQ 于点F . (1)求证:PC =PE ;
(2)当P 是边AC 的中点时,求证:四边形AECF 是矩形.
24.(本题满分12分)
已知△OAB 在直角坐标系中的位置如图,点A 在第一象限,点B 在x 轴正半轴上,OA =OB =6, ∠AOB =30°. (1)求点A 、B 的坐标;
(2)开口向上的抛物线经过原点O 和点B ,设其顶点为E ,当△OBE 为等腰直角三角形时,求
抛物线的解析式;
(3)设半径为2的⊙P 与直线OA 交于M 、N 两点,已知MN =32,P (m ,2)(m>0),求m 的
值.
第23题图
G
D
Q
F
E
A
B
C
P
如图,△ABC的边AB是⊙O的直径,点C在⊙O上,已知AC=6 cm,BC=8 cm,点P、Q分别在边AB、BC上,且点P不与点A、B重合,BQ=k·AP(k >0),连接PC、PQ.
(1)求⊙O的半径长;
(2)当k=2时,设AP=x,△CPQ的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△CPQ∽△ABC,且∠ACB=∠CPQ,求k的值.
第25题图。