微波技术与天线(第二版)刘学观课后习题答案
《微波技术与天线》第二版刘学观 第1章
(1-1-5)
式中, Z=R+jωL, Y=G+jωC, 分别称为传输线单位长串联阻抗和 单位长并联导纳。
第1章 均匀传输线理论 2. 均匀传输线方程的解 将式(1- 1- 5)第1式两边微分并将第 2 式代入, 得
d 2U ( z ) ZYU ( z ) 0 2 dz
同理可得
d I ( z) ZYI ( z ) 0 2 dz
第1章 均匀传输线理论
图 1-1 各种微波传输线 (a) 双导体传输线; (b) 波导; (c) 介质传输线
第1章 均匀传输线理论 对均匀传输线的分析方法通常有两种: 一种是场分析法, 即
从麦克斯韦尔方程出发, 求出满足边界条件的波动解, 得出传输
线上电场和磁场的表达式, 进而分析传输特性; 第二种是等效电 路法, 即从传输线方程出发, 求出满足边界条件的电压、 电流波 动方程的解, 得出沿线等效电压、电流的表达式, 进而分析传输 特性。前一种方法较为严格, 但数学上比较繁琐, 后一种方法实
b Z0 ln r a
60
(1-1-17)
式中, εr为同轴线内、外导体间填充介质的相对介电常数。 常
用的同轴线的特性阻抗有50 Ω 和75Ω两种。
第1章 均匀传输线理论 2) 传播常数 γ 传播常数 γ 是描述传输线上导行波沿导波系统传播过程中 衰减和相移的参数, 通常为复数,由前面分析可知
1 2 1 2
。 对于 LC
R G j LC 1 jL 1 jC
1 ( RY0 GZ 0 ) j LC 2
于是小损耗传输线的衰减常数α和相移常数β分别为
(1-1-19)
1 α= (RY0+GZ0) 2 LC β=ω
微波技术与天线习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ r ln 600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1min l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
《微波技术与天线》习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线课后习题答案(西电版刘学观、郭辉萍).docx
反射系数的模值
I rd- T
p~I 3
由.二叙+令=牛
求紂反豺条数的相位0」予•因向圮反射•条数
乙=乙= 82. 4/64.3°
1一几
[1.7]求无耗传榆线上冋波损耗为3(IB和10dB时的庇波比"
I?根抿回波揽耗的定义$
/.
Lr=-20 lg厂|・UP/1 1= 10
因而驻波比
_1 +1几]
★了解同轴线的特性阴抗及分类。
1.4
[L1]设-特性殂抗为50Q的均匀传输线终璀接负^/< =ICO Q.求负戎反射系故
人・在离负我0.2入,0.25入及0.5入处的输入阳抗及反射系数分别为多少?
解终瑞反肘系教为
R-Z=100 —3D二丄
& +Z。一100 4- 50 —T
根加传输线上任恿心的反射系数和输入Ffl抗的公式
p~ I T「I
所以.当冋波损耗分别为3dk和10db时的驻波比分别为5.85和1.92。
【1・8】 设某传输系统如题1.8图戍爪.咖出八”段及BC段沿线4点电压、电流和B1
抗的振幅分巾图•并求出电压的J6人值和駁小值.(图中R-soon)
fi 1.8图
解 传输线AH段为行波状态•其匕电H1大小不变.幅值等于430 V;阳抗等于450 0・电流大小不变.幅值竽于1.
Z|=Z-1- =322.87 —)736.95Q
并联支节的W
/j — T"<«rvtiin世+0.13入一0.22入 加©
并联支廿的长度,
/» =-j- -*- y- arctan卩厂]0.12A
1
[1.13]一均匀无耗传输线的特性飢抗为70Q.负裁俎抗为乙=70+jMOQ・匸作波 长人20 cm。试设计串联支彷匹配器的位置和长度.
微波技术与天线习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ r ln 600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1min l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线习题包括答案.docx
《微波技术与天线》习题答案章节微波传输线理路1.1设一特性阻抗为 50 的均匀传输线终端接负载 R 1100 ,求负载反射系数1 ,在离负载 0.2 , 0.25 及 0.5处的输入阻抗及反射系数分别为多少解: 1 ( Z 1Z 0 ) (Z 1 Z 0 ) 1 3(0.2) 1e j 2 z1 e j 0 .813(0.5)(二分之一波长重复性)3 (0.25 )13Z in (0.2 )Z 1jZ 0 tan l 29.4323.79Z 0jZ 1 tan lZ 0Z in (0.25 ) 502 /100 25(四分之一波长阻抗变换性)Z in (0.5) 100(二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗; 若在两导体间填充介电常数 r 2.25的介质,求其特性阻抗及 f300MHz 时的波长。
解:同轴线的特性阻抗 Z 060blnra则空气同轴线 Z 060 lnb65.9a当 r 2.25 时, Z 0 60b 43.9lnra当 f 300MHz 时的波长:cp0.67mfr题设特性阻抗为Z 0 的无耗传输线的驻波比,第一个电压波节点离负载的距离为l m in1,试证明此时的终端负载应为Z1 Z01j tan lmin 1j tan lmin 1证明:对于无耗传输线而言:Zin (l min 1)Z1Z 0 j tanlmin 1 Z 0Z1 j tanlmin 1 Z 0Zin (l min 1 )Z0/由两式相等推导出:Z1Z 0 1 j tan lmin 1j tan lmin 1传输线上的波长为:cfg2mr因而,传输线的实际长度为:gl0.5m4终端反射系数为:R1Z0490.9611Z 051R1输入反射系数为:in1e j 2 l490.96151根据传输线的 4 的阻抗变换性,输入端的阻抗为:2Z0Z in2500R1试证明无耗传输线上任意相距λ/4 的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少解:1))(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
【精品】《微波技术与天线》习题答案.docx
《微波技术与天线》习题答案章节微波传输线理路1.1设一特性阻抗为50Q的均匀传输线终端接负载& =100Q,求负载反射系数L,在离负载0.22, 0.25/1及0.52处的输入阻抗及反射系数分别为多少?解:r i=(Z1-Z0)/(Z1+Z0) = l/3「(0.2人)=二〃"=:疽° 服「(0.5/1) = | (二分之一波长重复性)r(0.252) = -|Z,,(0.22) = Z o Zi + jZ°tan 例=29 43z _ 23.79g0 Z o + tan/?/Z,… (0.252) = 502/100 = 25Q (四分之一波长阻抗变换性)Z,,(0.52) = 100Q (二分之一波长重复性)1. 2求内外导体直径分别为0. 25cm和0. 75cm的空气同轴线的特性阻抗;若在两导体间填充介电常数& =2.25的介质,求其特性阻抗及f = 300MHz时的波长。
解:同轴线的特性阻抗Z0=-^ln-山.ah则空气同轴线Z.=601n- = 65.9Qa当&=2.25 时,Z0=4L In-= 43.90A a当f = 300MHz时的波长:C = 0.67m1.3题设特性阻抗为Z o的无耗传输线的驻波比p ,第一个电压波节点离负载的距离为/mini,试证明此时的终端负载应为Z] = Z0X—土_七耍min 1 1 u • .07X?-jtan/?/minl证明:对于无耗传输线而言:..7_ 7 *Z] +Zo/tan—mini■ i"— ° Z°+Z"tan% 函=ZJ P由两式相等推导出:Z|=Z°x上些久些Q — J tan 风顽11.4传输线上的波长为:C/f久=# = 2m因而,传输线的实际长度为:2I =里=0.5m4终端反射系数为:=R I-Z Q =_竺如96]&+Z。
微波技术与天线部分课后答案
微波技术与天线* 1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Z πβλ8.02131)2.0(j z j e e --=Γ=Γ 31)5.0(=Γλ 31)25.0(-=Γλ Ω-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z l jZ Z Z Z in ββλ Ω==25100/50)25.0(2λin Z Ω=100)5.0(λin Z1.3设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯= 证明: 1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(* 1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
证明:令传输线上任意一点看进去的输入阻抗为in Z ,与其相距λ/4处看进去的输入阻抗为'in Z ,则有: zjZ Z z jZ Z Z ββtan tan Z 10010in ++= )()(4tan 4tan Z 10010in λβλβ++++='z jZ Z z jZ Z Z =z jZ Z z jZ Z Z ββcot cot 10010-- 所以有: 20Z Z Z in in ='⨯故可证得传输线上相距的二点处阻抗的乘积等于传输线的特性阻抗。
1.6 设某一均匀无耗传输线特性阻抗为Z 0=50Ω,终端接有未知负载Z 1。
微波技术与天线,课后答案
1 第二章
2-3 传 输 线 电 路 图 如 图1所 示 。 问 : 图a中ab间 的 阻 抗Zab = 0对 吗 ? 图b中ab间 的阻抗Zab = ∞对吗?为什么? 解:
图 1: 题2-3图
Zin(z)
=
Z0
ZL Z0
+ jZ0tan(βz) + jZLtan(βz)
所以传输线上的电流、电压分布如图10所示。 2-31 ( ) 传输线阻抗匹配的方法有哪几种?哪些是窄频带的?哪些是 宽频带的? 答:
传输线阻抗匹配的方法主要有:λ/4阻抗变换器;宽带λ/4阻抗变换器;支 节匹配器和渐变匹配器。 其中λ/4阻抗变换器、 支节匹配器是窄带匹配; 宽带λ/4阻抗变换器、渐 变匹配器是宽带匹配;
(24)
所以有
ρ
=
ZL + jZ0tan(βz) Z0 + jZLtan(βz)
=
2
(25)
将z = λ/12,ZL = √RL + jXL,Z0 = 70代入式(25)中得: RL = 80,XL = 30 3
2-21 (√ ) 传输线长λ,特性阻抗为Z0,当终端负载分别为ZL = Z0,ZL = 0,ZL = j 3Z0时。 (1)计算相应的终端反射系数和驻波比; (2)画出相对电压振幅|U/U +|、相对电流振幅|I/I+|的沿线分布并标出其最
(20)
Γ
=
RL RL
− Z0 + Z0
当RL > Z0时 ,Γ(z)为 正 实 数 , 终 端 为 电 压 的 波 腹 点 , 则 有RL = Z0ρ,所以ρ = RL/Z0 当RL < Z0时,Γ(z)为负实数,终端为电压的波节点,则有RL = Z0/ρ,所 以ρ = Z0/RL 证毕。
微波技术与天线习题答案
《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少? 解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性) Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ r ln 600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1min l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线刘学观第二版第8章
第8章 线天线
图 8 – 2 开路传输线与对称振子
第8章 线天线
令振子沿z轴放置(图 8 - 1), 其上的电流分布为
I(z)=Imsinβ(h-|z|)
(8-1-1)
式中, β为相移常数, β=k= 2π 0 c
在距中心点为z处取电流元段dz, 则它对远区场的贡献为
D=1.64
(8 -1 -11)
方向图的主瓣宽度等于方程:
F
(
)
cos
π 2
cos
s in
1 2
0°<θ<180°的两个解之间的夹角
由此可得其主瓣宽度为78°。 因而, 半波振子的方向性比电基 本振子的方向性(方向系数1.5, 主瓣宽度为90°)稍强一些。
第8章 线天线
2.
1)
由传输线理论知, 均匀双导线传输线的特性阻抗沿线不变, 在
第8章 线天线 第8章 线天线
8.1 对称振子天线 8.2 阵列天线 8.3 直立振子天线与水平振子天线 8.4 引向天线与电视天线 8.5 移动通信基站天线 8.6 螺旋天线 8.7 行波天线 8.8 宽频带天线 8.9 缝隙天线 8.10 微带天线 8.11 智能天线 习题
第8章 线天线
8.1 对称振子天线
函数为
F
(
)
c os
2
c
os
sin
(8-1-9)
该函数在θ=90°处具有最大值(为1),而在θ=0°与θ=180° 处为零, 相应的方向图如图 8 -3 所示。将上式代入式(8 -1 -7) 得半波振子的辐射电阻为
RΣ=73.1 (Ω)
(8-1-10)
第8章 线天线
将F(θ)代入式(6 -3 -8)得半波振子的方向函数:
微波技术与天线习题答案
《微波技术与天线》习题答案章节章节 微波传输线理路微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j zj ee--=Γ=Γ 31)5.0(=Γλ (二分之一波长重复性)(二分之一波长重复性) 31)25.0(-=ΓλΩ-∠=++=ο79.2343.29tan tan )2.0(10010ljZ Z l jZ Z Z Z in ββλΩ==25100/50)25.0(2λinZ (四分之一波长阻抗变换性)(四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)(二分之一波长重复性)求内外导体直径分别为和的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=rε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗ab Z r ln 600ε= 则空气同轴线Ω==9.65ln600ab Z当25.2=r ε时,Ω==9.43ln 600a b Z r ε当MHz f 300=时的波长:m f c rp 67.0==ελ题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j lj Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z lj Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(Θ传输线上的波长为:m f r 2cg ==ελ因而,传输线的实际长度为: m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R 输入反射系数为:961.0514921==Γ=Γ-l j in e β 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R Z Z in试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。