虚拟仪器课设

合集下载

虚拟仪器程序课程设计

虚拟仪器程序课程设计

虚拟仪器程序课程设计一、课程目标知识目标:1. 理解虚拟仪器的概念、原理及其在工程测试中的应用;2. 掌握虚拟仪器软件LabVIEW的基本操作与编程方法;3. 学会使用虚拟仪器进行数据采集、处理、分析及展示。

技能目标:1. 能够运用LabVIEW软件设计简单的虚拟仪器程序;2. 能够独立进行虚拟仪器的搭建与调试,解决实际测试问题;3. 能够通过虚拟仪器实验,培养实际操作能力及创新能力。

情感态度价值观目标:1. 培养学生对虚拟仪器技术的兴趣,激发学习热情;2. 培养学生严谨的科学态度,注重实验数据的准确性和可靠性;3. 培养学生团队协作精神,提高沟通与表达能力。

课程性质:本课程为实践性较强的课程,结合理论知识,注重培养学生的实际操作能力和创新能力。

学生特点:学生具备一定的计算机操作基础,对新技术充满好奇,具有一定的探索精神。

教学要求:结合学生特点,采用案例教学、任务驱动等方法,引导学生主动参与,提高教学效果。

通过课程学习,使学生能够达到上述课程目标,为后续相关课程及实际工作打下基础。

二、教学内容1. 虚拟仪器概述- 虚拟仪器定义、特点及发展历程- 虚拟仪器与传统仪器的区别与联系2. LabVIEW软件基础- LabVIEW软件安装与界面认识- 基本操作:创建、保存、打开、运行VI- 数据类型、控件与函数3. 虚拟仪器程序设计- 前面板设计:控件布局、属性设置- 框图程序设计:结构、循环、条件、事件结构- 数据采集、处理与分析4. 虚拟仪器应用实例- 搭建简单虚拟仪器系统,进行数据采集与显示- 结合实际测试需求,设计相应虚拟仪器程序5. 虚拟仪器实验- 实验一:虚拟温度计设计- 实验二:虚拟信号发生器设计- 实验三:虚拟频率计设计教学内容安排与进度:第一周:虚拟仪器概述、LabVIEW软件安装与界面认识第二周:LabVIEW基本操作与数据类型第三周:虚拟仪器程序设计(一)第四周:虚拟仪器程序设计(二)第五周:虚拟仪器应用实例分析与讨论第六周:虚拟仪器实验(一)第七周:虚拟仪器实验(二)第八周:虚拟仪器实验(三)教材章节关联:本教学内容与教材第3章“虚拟仪器技术”和第4章“LabVIEW编程及应用”相关。

基于labview的课课程设计

基于labview的课课程设计

基于labview的课课程设计一、教学目标本课程的教学目标是使学生掌握基于LabVIEW的实验设计和数据分析方法,培养学生的实验技能和科学探究能力。

具体目标如下:1.知识目标:学生能够理解LabVIEW的基本概念和操作方法,掌握虚拟仪器的设计原理和实现方法。

2.技能目标:学生能够运用LabVIEW设计简单的虚拟仪器,进行数据采集和分析,解决实际问题。

3.情感态度价值观目标:学生通过课程学习,培养对科学实验的兴趣和热情,增强创新意识和团队合作精神。

二、教学内容本课程的教学内容主要包括LabVIEW的基本概念、操作方法、虚拟仪器设计原理和数据分析方法。

具体安排如下:1.第一章:LabVIEW简介,介绍LabVIEW的发展历程、基本功能和应用领域。

2.第二章:LabVIEW基本操作,讲解LabVIEW的界面布局、编程环境和数据类型。

3.第三章:虚拟仪器设计,讲解虚拟仪器的概念、设计方法和实现步骤。

4.第四章:数据采集与分析,讲解数据采集原理、数据处理方法和图像显示技术。

5.第五章:实验与实践,进行实际操作练习,让学生掌握 LabVIEW 设计和数据分析方法。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:讲解LabVIEW的基本概念、操作方法和虚拟仪器设计原理。

2.案例分析法:分析实际案例,让学生了解LabVIEW在各个领域的应用。

3.实验法:让学生动手实践,掌握LabVIEW操作和数据分析技巧。

4.讨论法:学生进行小组讨论,培养学生的创新思维和团队合作精神。

四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用《LabVIEW教程》作为主讲教材,系统介绍LabVIEW的基本概念和操作方法。

2.参考书:提供《LabVIEW编程实践》等参考书籍,供学生深入学习。

3.多媒体资料:制作课件、视频教程等多媒体资料,帮助学生更好地理解课程内容。

虚拟仪器课程设计.ppt

虚拟仪器课程设计.ppt
❖ 前置面板的设计
数据文件的将记录存储
4基于labview函数发生器的设计
❖ 一个用声卡实现的基本信号发生器,它可以产生正弦波、矩形波等,并 实现频率、幅值等的控制。前面版如下
三、小组分配
学生可根据喜好和兴趣,从设计题目中选择或经老师同意的其它题目 进行设计,但每人必须完成两个任务。
四、成绩评定
❖ 1基于labview交通灯的设计
❖ 此次设计可以用六盏灯来指示路口的红绿灯状况,它们分 别是下文中的东红、东黄、东绿、北红、北黄、北绿。
❖ 信号灯按一定规律循环点亮,每盏红灯亮35秒,每盏黄灯 亮5秒,每盏绿灯亮30秒。每个循环包括四个阶段。第一 阶段:北黄和东红灯点亮,时间为5秒。第二阶段:北红 和东绿灯点亮,时间为30秒。第三阶段:东黄和北红灯点 亮,时间为5秒。第四阶段:北绿和东红灯点亮,时间为 30秒。每个循环用时70秒。东、北两个方向分别放置一个 时间显示器来显示离下一个信号到来的时间。
一、设计题目
❖ 1.基于labview交通灯的设计 ❖ 2.基于labview声卡的虚拟仪器设计 ❖ 3.基于labview压力表设计 ❖ 4.基于labview函数发生器的设计 ❖ 5.其它征得老师同意的自选方案。
二、设计要求
❖ 自觉遵守实验室各项规章制度,认真完成所选题 目的程序调试,编写设计说明书。
前面版如下
2基于labview声卡的虚拟仪器设计
❖ 根据题目要求,整个过程可以分为三大部分:声音信号的采集、分析与 处理、声音信号回放。
❖ 声音面版
3基于labview压力表设计
❖ 了解力转换成电信号的工作原理, 设计虚拟压力测量仪,要求绘制出压 力随时间的变化曲线,以表格的形式存放采集的数据。
❖ 成绩评定由3部分组成: ❖ 实验成绩演示:(占40%) ❖ 课程设计报告:(占40%) ❖ 考勤:(20%)

虚拟仪器应用教案模板范文

虚拟仪器应用教案模板范文

课时安排:2课时教学目标:1. 让学生了解虚拟仪器的概念、原理和特点。

2. 掌握虚拟仪器的软件操作和硬件连接方法。

3. 通过实际操作,培养学生运用虚拟仪器进行实验的能力。

4. 培养学生的创新思维和团队协作精神。

教学重点:1. 虚拟仪器的概念和特点。

2. 虚拟仪器的软件操作和硬件连接。

教学难点:1. 虚拟仪器软件的安装与配置。

2. 虚拟仪器在实际实验中的应用。

教学准备:1. 教学课件。

2. 虚拟仪器软件安装包。

3. 实验设备(如示波器、信号发生器等)。

教学过程:第一课时一、导入1. 提问:什么是虚拟仪器?虚拟仪器有哪些特点?2. 学生回答,教师总结。

二、讲解虚拟仪器的概念、原理和特点1. 介绍虚拟仪器的定义和起源。

2. 阐述虚拟仪器的原理,包括虚拟仪器的工作流程、软件和硬件的关系等。

3. 分析虚拟仪器的特点,如可编程性、模块化、可扩展性等。

三、虚拟仪器的软件操作1. 介绍虚拟仪器软件的安装步骤。

2. 讲解虚拟仪器软件的基本操作,如信号发生、数据采集、波形显示等。

3. 通过实例演示,让学生了解虚拟仪器软件的具体应用。

四、虚拟仪器的硬件连接1. 介绍虚拟仪器的硬件设备,如示波器、信号发生器等。

2. 讲解虚拟仪器硬件设备的连接方法,包括接口类型、连接顺序等。

3. 通过实物连接,让学生了解虚拟仪器硬件的连接过程。

五、课堂小结1. 回顾本节课所学内容,强调虚拟仪器的概念、原理、特点、软件操作和硬件连接。

2. 布置课后作业,要求学生完成虚拟仪器的简单实验。

第二课时一、复习1. 回顾上节课所学内容,检查学生对虚拟仪器的掌握程度。

2. 针对学生的疑问,进行解答。

二、实际操作1. 将学生分成小组,每组配备一台虚拟仪器和实验设备。

2. 教师布置实验任务,如信号发生、数据采集、波形显示等。

3. 学生按照实验步骤进行操作,教师巡回指导。

三、讨论与交流1. 各小组汇报实验结果,教师点评。

2. 学生之间进行讨论,分享实验心得。

labview虚拟仪器课程设计

labview虚拟仪器课程设计

labview虚拟仪器课程设计一、课程目标知识目标:1. 学生能理解LabVIEW虚拟仪器的概念,掌握其基本组成和原理。

2. 学生能掌握LabVIEW编程的基本语法和操作,如数据类型、结构控制、循环等。

3. 学生能运用LabVIEW完成简单的数据采集、处理和显示功能。

技能目标:1. 学生能独立安装和配置LabVIEW环境,进行基本操作。

2. 学生能运用LabVIEW设计简单的虚拟仪器,实现特定功能。

3. 学生能通过LabVIEW编程解决实际问题,提高实践操作能力。

情感态度价值观目标:1. 学生培养对虚拟仪器的兴趣,激发学习热情,增强自主学习能力。

2. 学生通过团队协作,培养沟通、合作能力和解决问题的能力。

3. 学生认识到虚拟仪器在现代科技领域的重要作用,增强对科技创新的热情。

课程性质:本课程为实践性较强的课程,旨在让学生通过动手实践,掌握虚拟仪器的原理和应用。

学生特点:学生具备一定的计算机操作基础,对编程有一定了解,但对虚拟仪器了解较少。

教学要求:教师需注重理论与实践相结合,引导学生主动参与,关注学生个体差异,提供个性化指导。

通过课程学习,使学生能够达到上述课程目标,并具备实际应用能力。

二、教学内容1. 虚拟仪器概述- 了解虚拟仪器的定义、特点及应用领域。

- 熟悉LabVIEW软件的界面和基本操作。

2. LabVIEW编程基础- 学习数据类型、控件、函数和簇的使用。

- 掌握结构控制(如顺序结构、循环结构)和条件控制(如条件结构、事件结构)。

3. 数据采集与处理- 学习数据采集卡的使用和配置。

- 掌握数据采集、信号处理和数据显示的基本方法。

4. 虚拟仪器设计实例- 分析并设计简单的虚拟仪器,如温度计、示波器等。

- 学习使用图表、波形图等控件进行数据展示。

5. 综合应用与拓展- 结合实际需求,设计具有一定功能的虚拟仪器系统。

- 了解LabVIEW在物联网、自动化测试等领域的应用。

教学内容依据课程目标进行科学性和系统性的组织,涵盖虚拟仪器的基本概念、编程基础、数据采集与处理以及实际应用。

关于虚拟仪器的课程设计

关于虚拟仪器的课程设计

关于虚拟仪器的课程设计一、课程目标知识目标:1. 学生能理解虚拟仪器的概念、功能及在工程测量中的应用。

2. 学生能够掌握虚拟仪器软件的基本操作流程和使用方法。

3. 学生能够描述至少三种常见虚拟仪器的原理及使用场景。

技能目标:1. 学生能够独立操作虚拟仪器软件,进行基础的数据采集与分析。

2. 学生能够运用虚拟仪器解决简单的实际测量问题,如信号处理、波形分析等。

3. 学生通过小组合作,设计并实施一个简单的虚拟仪器应用方案。

情感态度价值观目标:1. 学生培养对科学研究的兴趣,特别是在工程测量和虚拟仪器领域的探索热情。

2. 学生在学习过程中形成合作意识,培养团队精神和解决问题的积极态度。

3. 学生能够认识到虚拟仪器在现代社会中的重要作用,理解科技发展对生活的影响。

课程性质:本课程为实践性与理论性相结合的课程,旨在通过虚拟仪器的学习,提高学生的动手能力和实际问题解决能力。

学生特点:考虑到学生处于高年级,已具备一定的物理知识和实验操作技能,能够较快地掌握虚拟仪器原理和操作。

教学要求:教师需采用讲授与实操相结合的教学方式,注重引导学生主动探索,鼓励学生将理论知识应用于实践操作中,并通过小组合作培养学生的团队协作能力。

通过具体的学习成果评估,确保学生达到课程目标。

二、教学内容1. 虚拟仪器概述- 定义与分类- 发展历程- 应用领域2. 虚拟仪器原理- 数据采集与处理- 信号分析与显示- 常用算法介绍3. 虚拟仪器软件- LabVIEW软件安装与界面认识- 基本操作与编程- 实例分析与实操演练4. 常见虚拟仪器介绍- 数字示波器- 频谱分析仪- 数据记录仪5. 虚拟仪器应用案例- 简单电路信号测量- 声音信号处理- 小组项目:设计并实施一个虚拟仪器应用方案教学内容安排与进度:第一周:虚拟仪器概述第二周:虚拟仪器原理第三周:LabVIEW软件安装与基本操作第四周:常见虚拟仪器介绍第五周:虚拟仪器应用案例及小组项目实施本教学内容依据课程目标,紧密结合教材相关章节,注重理论与实践相结合,使学生能够系统地掌握虚拟仪器相关知识。

虚拟仪器技术》课程设计

虚拟仪器技术》课程设计

虚拟仪器技术》课程设计一、教学目标本课程的学习目标主要包括知识目标、技能目标和情感态度价值观目标。

知识目标要求学生掌握虚拟仪器技术的基本概念、原理和应用;技能目标要求学生能够运用虚拟仪器技术进行实验设计和数据分析;情感态度价值观目标要求学生培养创新意识、团队合作精神和对科学技术的热爱。

通过本课程的学习,学生将能够:1.描述虚拟仪器技术的基本概念和原理。

2.解释虚拟仪器技术在实际应用中的优势和局限。

3.运用虚拟仪器技术进行实验设计和数据分析。

4.展示创新意识、团队合作精神和对科学技术的热爱。

二、教学内容本课程的教学内容主要包括虚拟仪器技术的基本概念、原理和应用。

教学大纲将按照以下顺序进行安排和进度:1.虚拟仪器技术的基本概念:介绍虚拟仪器技术的定义、特点和分类。

2.虚拟仪器技术的原理:讲解虚拟仪器技术的工作原理和相关技术。

3.虚拟仪器技术的应用:介绍虚拟仪器技术在各个领域的应用案例。

教材将为学生提供理论知识的学习,同时配合实验设备进行实践操作,以加深学生对虚拟仪器技术的理解和掌握。

三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式。

包括:1.讲授法:教师讲解虚拟仪器技术的基本概念、原理和应用。

2.讨论法:学生分组讨论虚拟仪器技术的实际应用案例,分享心得体会。

3.案例分析法:分析具体案例,让学生了解虚拟仪器技术在不同领域的应用。

4.实验法:学生亲自动手进行实验操作,培养实际操作能力和数据分析能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:提供理论知识的学习,为学生打下扎实的理论基础。

2.参考书:为学生提供更多的学习资料和扩展知识。

3.多媒体资料:通过视频、动画等形式,生动展示虚拟仪器技术的工作原理和应用案例。

4.实验设备:为学生提供实际操作的机会,培养实际操作能力和数据分析能力。

五、教学评估为了全面、客观、公正地评估学生的学习成果,本课程将采用多种评估方式。

虚拟仪器课程设计作品

虚拟仪器课程设计作品

虚拟仪器课程设计作品一、教学目标本课程旨在通过虚拟仪器的设计与实践,让学生掌握虚拟仪器的概念、原理及其在工程测量中的应用。

具体目标如下:1.了解虚拟仪器的定义、特点及分类。

2.掌握虚拟仪器的设计原理和基本方法。

3.熟悉虚拟仪器在工程测量中的典型应用。

4.能够运用虚拟仪器设计原理,独立完成简单虚拟仪器的设计与实现。

5.能够运用虚拟仪器进行工程测量,并处理测量数据。

6.能够分析虚拟仪器的性能,提出改进措施。

情感态度价值观目标:1.培养学生对新技术的敏感性和好奇心,激发学生学习虚拟仪器的兴趣。

2.培养学生团队合作精神,提高学生解决实际问题的能力。

3.培养学生关注社会、关注工程测量技术发展的意识。

二、教学内容本课程的教学内容主要包括以下几个部分:1.虚拟仪器概述:虚拟仪器的定义、特点、分类和发展趋势。

2.虚拟仪器设计原理:硬件系统、软件系统及接口技术。

3.虚拟仪器在工程测量中的应用:典型应用案例分析。

4.虚拟仪器性能分析与改进:性能指标、优化方法。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:讲解虚拟仪器的概念、原理和设计方法。

2.案例分析法:分析虚拟仪器在工程测量中的典型应用。

3.实验法:让学生动手设计并实现简单的虚拟仪器。

4.讨论法:引导学生探讨虚拟仪器技术的未来发展。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《虚拟仪器设计与应用》。

2.参考书:相关领域的学术论文、技术报告。

3.多媒体资料:教学PPT、视频教程。

4.实验设备:计算机、虚拟仪器软件平台。

通过以上教学资源,为学生提供丰富的学习体验,提高教学效果。

五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用以下评估方式:1.平时表现:评估学生在课堂上的参与度、提问回答等情况,占比20%。

2.作业:布置适量作业,评估学生的理解和应用能力,占比30%。

3.实验报告:评估学生在实验过程中的操作技能和数据分析能力,占比20%。

虚拟仪器相关课程设计

虚拟仪器相关课程设计

虚拟仪器相关课程设计一、课程目标知识目标:1. 让学生理解虚拟仪器的概念、原理及其在工程测试中的应用。

2. 掌握虚拟仪器软件LabVIEW的基本操作、编程方法及数据采集、处理与分析技巧。

3. 了解虚拟仪器在不同领域的实际应用案例,拓展知识视野。

技能目标:1. 培养学生运用LabVIEW软件设计简单的虚拟仪器系统,进行数据采集与处理的能力。

2. 能够独立完成虚拟仪器的搭建、调试与优化,提高实际操作技能。

3. 学会查阅相关资料,对虚拟仪器系统进行改进与创新,培养解决问题的能力。

情感态度价值观目标:1. 激发学生对虚拟仪器技术的学习兴趣,培养主动探索、勇于实践的精神。

2. 培养学生的团队合作意识,学会与他人共同解决问题,提高沟通能力。

3. 通过课程学习,使学生认识到虚拟仪器在现代工程技术中的重要性,树立正确的价值观。

课程性质:本课程为专业选修课,以实践为主,理论联系实际,注重培养学生的动手能力和创新能力。

学生特点:学生具备一定的电子技术、计算机编程基础,对新技术具有较强的好奇心,喜欢实践操作。

教学要求:结合学生特点,采用任务驱动、案例教学等方法,引导学生主动参与实践,提高综合运用知识的能力。

在教学过程中,注重分层教学,满足不同层次学生的学习需求。

通过课程学习,使学生能够达到上述课程目标,为未来从事相关领域工作打下基础。

二、教学内容1. 虚拟仪器概述:介绍虚拟仪器的定义、发展历程、分类及其在现代工程测试中的应用。

教材章节:第一章 虚拟仪器概述2. LabVIEW软件基础:学习LabVIEW软件的安装、界面、操作方法、编程基本概念和流程。

教材章节:第二章 LabVIEW编程基础3. 数据采集与处理:学习虚拟仪器的数据采集原理、硬件接口、数据采集卡的使用及数据处理方法。

教材章节:第三章 数据采集与处理4. 虚拟仪器设计实例:分析不同领域的虚拟仪器应用案例,学习虚拟仪器的搭建、调试与优化。

教材章节:第四章 虚拟仪器设计实例5. 创新设计与实践:结合所学知识,指导学生进行虚拟仪器创新设计,提高实际操作和创新能力。

虚拟仪器课程设计

虚拟仪器课程设计

虚拟仪器课程设计一、课程目标知识目标:1. 让学生理解虚拟仪器的概念、原理及其在工程测试中的应用。

2. 掌握虚拟仪器的设计流程和关键编程技术,如LabVIEW或Python等编程语言。

3. 学习虚拟仪器在不同领域的实际案例,理解其功能及操作方法。

技能目标:1. 培养学生运用虚拟仪器软件进行数据采集、处理和分析的能力。

2. 提高学生利用虚拟仪器解决实际问题的动手操作能力。

3. 培养学生团队协作、沟通表达的能力,能在项目中进行有效分工与合作。

情感态度价值观目标:1. 激发学生对虚拟仪器及工程测试领域的兴趣,提高学习积极性。

2. 培养学生严谨的科学态度,注重实验数据的真实性和准确性。

3. 增强学生的创新意识,鼓励他们在虚拟仪器设计和应用中提出新思路和新方法。

分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握虚拟仪器基础知识的基础上,提高实践操作能力,培养创新精神和团队协作能力。

课程目标具体、可衡量,为后续教学设计和评估提供明确依据。

二、教学内容1. 虚拟仪器概述- 虚拟仪器定义、特点及其发展历程- 虚拟仪器与传统仪器的区别与联系2. 虚拟仪器原理与组成- 数据采集原理- 虚拟仪器硬件与软件组成- 常用传感器及其应用3. 虚拟仪器设计流程- 需求分析- 硬件选型与搭建- 软件设计流程(以LabVIEW或Python为例)- 系统调试与优化4. 虚拟仪器编程技术- LabVIEW编程基础与实例- Python在虚拟仪器中的应用- 数据处理与分析方法5. 虚拟仪器应用案例- 案例分析:虚拟仪器在机械、电子、生物等领域的应用- 实践操作:学生分组进行虚拟仪器设计与实现6. 教学进度安排- 概述与原理:2课时- 设计流程与编程技术:4课时- 应用案例与实践操作:6课时教学内容根据课程目标进行科学性和系统性组织,明确教学大纲和进度安排。

结合课本内容,确保学生掌握虚拟仪器基础知识,培养实践操作能力。

同时,通过案例分析与实践操作,提高学生的实际应用能力。

虚拟仪器课程设计

虚拟仪器课程设计

目录摘要 1课程设计任务书 21.信号发生器的设计 3(1)基本原理 3(2)框图程序 3(3)前面板结果演示 52.频谱分析仪 7(1)基本原理 8(2)框图程序 8(3)前面板结果演示 93.消噪演示仪 12(1)基本原理 12(2)框图程序 12(3)前面板结果演示 134.串行通信演示仪 14(1)基本原理 14(2)框图程序 14(3)前面板结果演示 155.实验总结 15参考文献 16摘要:LabVIEW 程序又称虚拟仪器,即VI,其外观和操作类似于真实的物理仪器(如示波器和万用表)。

LabVIEW拥有一整套工具用于采集、分析、显示和存储数据,以及解决用户编写代码过程中可能出现的问题。

LabVIEW 提供众多输入控件和显示控件用于创建用户界面,即前面板。

输入控件指旋钮、按钮、转盘等输入装置。

显示控件指图形、指示灯等输出显示装置。

创建用户界面后,可添加各种VI 和结构作为代码,从而控制前面板对象。

代码在程序框图中编写。

LabVIEW 不仅可与数据采集、视觉、运动控制设备等硬件进行通信,还可与GPIB、PXI、VXI、RS232 以及RS485 等仪器通信。

本次课程设计的设计内容是在LABVIEW开发平台下,结合测试与信号处理理论设计三种虚拟仪器:函数发生器,频谱分析仪和串口通信演示仪。

并要求函数发生器输出正弦波、方波、三角波,波形可选择;频率、幅值和初相位可以调节;前面板上显示输出波形。

频谱分析仪采样频率、采样点数、信号频率、幅值和初相位可调;分析正弦波、方波和三角波的频谱特性。

串口通信演示仪在前面板上设置串口号、数据帧(起始位、数据位、奇偶校验位和停止位、)格式,波特率;在前面板上有文本输入框和输出框,用于输入和显示传输的数据。

关键字:虚拟仪器函数发生器频谱分析仪串口通信演示仪课程设计任务书1.信号发生器的设计(1)基本原理测试信号有多种产生途径,我们这里主要研究的是在Labview中的波形产生函数得到的仿真信号波形数据。

(完整word版)虚拟仪器课程课程设计

(完整word版)虚拟仪器课程课程设计

《虚拟仪器课程》课程设计题目:任意波形发生器学院名称:电气工程学院专业班级:学生姓名:学号:指导教师:设计地点:设计时间:2011-12-12~2011-12-18目录一、labVIEW介绍 (3)二、任意波形发生器的设计 (4)2.1小组任务分配 (4)2.2 仪器功能描述 (4)2.3任意波形发生器发生器的前面板 (4)2.4任意波形发生器的程序框图构成 (5)2. 5 波形产生设计 (6)三、设计小结 (11)一、labVIEW介绍LabVIEW (Laboratory Virtual Instrument EngineeringWorkbench,实验室虚拟仪器集成环境)是一个基于G(Graphic)语言的图形编程开发环境,在工业界和学术界中广泛用作开发数据采集系统、仪器控制软件和分析软件的标准语言,对于科学研究和工程应用来说是很理想的语言。

它含有种类丰富的函数库,科学家和工程师们利用它可以方便灵活地搭建功能强大的测试系统。

LabVIEW编程语言最主要的两个特点是图形化编程和数据流驱动:(1)图形化编程LabVIEW与Visual C++、Visual Basic、LabWindows/CVI等编程语言不同,后几种都是基于文本的语言,而LabVIEW则是使用图形化程序设计语言G 语言,用框图代替了传统的程序代码,编程的过程即是使用图形符号表达程序行为的过程,源代码不是文本而是框图。

一个VI有三个主要部分组成:框图、前面板和图标/连接器。

框图是程序代码的图形表示。

LabVIEW的框图中使用了丰富的设备和模块图标,与科学家、工程师们习惯的大部分图标基本一致,这使得编程过程和思维过程非常的相似。

多样化的图标和丰富的色彩也给用户带来不一样的体验和乐趣。

前面板是VI的交互式用户界面,外观和功能都类似于传统仪器面板,用户的输入数据通过前面板传递给框图,计算和分析结果也在前面板上以数字、图形、表格等各种不同方式显示出来。

labview课程设计文库

labview课程设计文库

labview课程设计文库一、教学目标本课程旨在通过学习LabVIEW软件的使用,使学生掌握数据采集、处理和显示的基本方法,培养学生运用虚拟仪器技术进行实验设计的能力。

具体目标如下:1.知识目标:使学生了解LabVIEW软件的基本功能和操作方法,理解虚拟仪器的概念及其在数据采集与处理中的应用。

2.技能目标:培养学生熟练使用LabVIEW进行数据采集、处理和显示的能力,能够独立设计并实现简单的虚拟仪器。

3.情感态度价值观目标:培养学生对科学探究的兴趣,提高学生运用现代技术手段解决实际问题的能力,培养学生的创新意识和团队合作精神。

二、教学内容本课程的教学内容主要包括LabVIEW软件的基本操作、数据采集、数据处理和显示等方面。

具体安排如下:bVIEW软件的基本操作:介绍LabVIEW软件的界面布局、菜单栏功能、工具箱使用等基本操作。

2.数据采集:讲解如何通过LabVIEW软件进行数据的采集、传输和接收,包括模拟数据的采集和数字信号的采集。

3.数据处理:教授如何使用LabVIEW软件对采集到的数据进行处理,包括数学运算、信号处理、数据分析等。

4.数据显示:讲解如何利用LabVIEW软件对处理后的数据进行可视化显示,包括图形、图表、动态曲线等。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式进行教学,包括:1.讲授法:讲解LabVIEW软件的基本操作、数据采集、数据处理和显示等理论知识。

2.案例分析法:通过分析具体案例,使学生掌握LabVIEW软件在实际应用中的操作方法和技巧。

3.实验法:安排实验室实践环节,让学生亲自动手操作,巩固所学知识,提高实际操作能力。

4.讨论法:学生进行小组讨论,分享学习心得和经验,培养学生的团队合作精神。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用《LabVIEW教程》作为主讲教材,系统介绍LabVIEW软件的基本操作和应用。

虚拟仪器课程设计

虚拟仪器课程设计

虚拟仪器 课程设计一、课程目标知识目标:1. 了解虚拟仪器的定义、分类及其在工程领域的应用;2. 掌握虚拟仪器的原理、设计方法和操作流程;3. 理解虚拟仪器与传统仪器的区别及优势。

技能目标:1. 学会使用虚拟仪器软件(如LabVIEW)进行程序设计和数据采集;2. 能够独立设计简单的虚拟仪器系统,完成特定功能的测试;3. 培养学生运用虚拟仪器解决实际问题的能力。

情感态度价值观目标:1. 培养学生对虚拟仪器技术的兴趣,激发其探索精神;2. 增强学生的团队合作意识,提高沟通协作能力;3. 引导学生认识虚拟仪器在现代社会中的重要作用,树立正确的技术观。

本课程针对高年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。

课程旨在使学生掌握虚拟仪器的相关知识,培养其实践操作能力,并在此基础上,激发学生的创新意识,提高其解决实际问题的能力。

通过本课程的学习,为学生未来在工程技术领域的进一步发展奠定基础。

二、教学内容1. 虚拟仪器概述- 虚拟仪器的定义、分类及发展历程- 虚拟仪器与传统仪器的区别及优势2. 虚拟仪器原理与设计- 虚拟仪器的硬件组成与工作原理- 虚拟仪器软件(LabVIEW)的基本操作与编程方法- 虚拟仪器的设计流程与案例分析3. 虚拟仪器应用实例- 数据采集与信号处理- 控制系统设计与仿真- 虚拟仪器在特定领域的应用案例4. 实践操作与项目设计- 虚拟仪器软件(LabVIEW)实操训练- 简单虚拟仪器系统的设计与实现- 团队项目设计、实施与展示教学内容按照上述四个部分进行组织,共计16课时。

其中,理论教学占8课时,实践操作占6课时,团队项目设计与展示占2课时。

教材参考《虚拟仪器原理与应用》一书,结合课程目标和教学大纲,确保内容的科学性和系统性。

教学内容安排和进度如下:第1-2课时:虚拟仪器概述第3-4课时:虚拟仪器原理与设计(一)第5-6课时:虚拟仪器原理与设计(二)第7-8课时:虚拟仪器应用实例第9-12课时:实践操作与项目设计(一)第13-15课时:实践操作与项目设计(二)第16课时:团队项目展示与总结三、教学方法本课程采用多种教学方法相结合,旨在激发学生的学习兴趣,提高学生的主动参与度和实践能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

虚拟仪器课程设计班级:08测控三班学号:姓名:时间:2011年9月29日目录摘要............................................... 错误!未定义书签。

第一章生产工艺介绍.............................. 错误!未定义书签。

1.1包钢热电厂简介.............................. 错误!未定义书签。

1.2 热电厂锅炉生产工艺简介..................... 错误!未定义书签。

第二章影响蒸汽温度变化的主要因素.................. 错误!未定义书签。

2.1过热蒸汽温度的影响因素...................... 错误!未定义书签。

2.2 再热蒸汽温度的影响因素..................... 错误!未定义书签。

第三章锅炉蒸汽温度控制系统的设计.................. 错误!未定义书签。

3.1 工艺概况................................... 错误!未定义书签。

3.2 过热蒸汽温度控制方案....................... 错误!未定义书签。

3.2.1过热蒸汽温度串级结构分析.............. 错误!未定义书签。

3.2.2串级控制系统具有的特点................ 错误!未定义书签。

3.2.3过热蒸汽温度结构框图.................. 错误!未定义书签。

3.2.5温度变送器的选择...................... 错误!未定义书签。

3.2.6主副调节器调节规律的选择.............. 错误!未定义书签。

3.2.7执行器的选择.......................... 错误!未定义书签。

3.2.8控制器仪表的选择...................... 错误!未定义书签。

3.3过热蒸汽温度的动态特性...................... 错误!未定义书签。

3.4 再热蒸汽温度控制系统方案.................. 错误!未定义书签。

3.4.1改变再循环烟气流量.................... 错误!未定义书签。

3.4.2改变通过低温再热器的烟气流量状态...... 错误!未定义书签。

3.4.3改变燃烧器的倾角...................... 错误!未定义书签。

第四章设计总结.................................... 错误!未定义书签。

参考文献:......................................... 错误!未定义书签。

摘要:随着计算机硬件和软件技术的迅速发展,测控技术也日新月异。

虚拟仪器(Virtual Instrumentation)概念的提出使我们可以充分利用计算机软件硬件资源来实现计算机与测量仪器的有机结合,从而极其容易的组建一个性能优异的现场测控系统。

关键词:虚拟仪器温度软件第一章虚拟仪器(VI)概述使用LabVIEW开发平台编制的程序称为虚拟仪器程序,简称为VI。

VI包括三个部分:程序前面板、框图程序和图标/连接器。

程序前面板用于设置输入数值和观察输出量,用于模拟真实仪表的前面板。

在程序前面板上,输入量被称为控制(Controls),输出量被称为显示(Indicators)。

控制和显示是以各种图标形式出现在前面板上,如旋钮、开关、按钮、图表、图形等,这使这得前面板直观易懂。

下面是一个温度计程序(Thermometer VI)的前面板。

每一个程序前面板都对应着一段框图程序。

框图程序用LabVIEW图形编程语言编写,可以把它理解成传统程序的源代码。

框图程序由端口、节点、图框和连线构成。

其中端口被用来同程序前面板的控制和显示传递数据,节点被用来实现函数和功能调用,图框被用来实现结构化程序控制命令,而连线代表程序执行过程中的数据流,定义了框图内的数据流动方向。

1.2 虚拟仪器及Labview8.5简介虚拟仪器的概念是美国NI公司(National Instrument)在20世纪80年代中期提出来的。

所谓虚拟仪器就是以计算机作为仪器统一的硬件平台,充分利用计算机的运算、存储、回放、调用、显示及文件管理等智能化功能,同时把传统仪器的专业化功能和面板控件软件化,使之与计算机结合构成一台从外观到功能都完全与传统硬件仪器相同,同时又充分享用了计算机智能资源的全新仪器系统。

与传统仪器相比,虚拟仪器有许多优点:对测试量的处理和计算可更复杂且处理速度更快,测试结果的表达方式更加丰富多样,可以方便地存储和交换测试数据,价格低,技术更新快。

它的最大特点就是把由仪器生产厂家定义仪器功能的方式转变为由用户自己定义仪器功能,满足多种多样的应用需求。

由于虚拟仪器的测试功能、面板控件都实现了软件化,任何使用者都可通过修改虚拟仪器的软件来改变它的功能和规模,这充分体现了软件就是仪器的设计思想。

虚拟仪器的技术基础是计算机技术,核心是计算机软件技术。

其中最有代表性的图形化编程软件是美国NI公司推出的Labview(laboratory virtualinstrument engineering workbench即实验室虚拟仪器工作平台)。

它是世界上第一个采用图形化编程技术的面向仪器的32位编译型程序开发系统,它的目标就是简化程序的开发工作,提高编程效率,让科学家和工程技术人员充分利用计算机的资源和强大功能,快速简捷地完成自己的工作任务,它被称为科学家与工程师的20年来,无论是初学乍用的新手还是经验丰富的程序开发人员,虚拟仪器在各种不同的工程应用和行业的测量及控制的用户中广受欢迎,这都归功于其直观化的图形编程语言。

虚拟仪器的图形化数据流语言和程序框图能自然地显示您的数据流,同时地图化的用户界面直观地显示数据,使我们能够轻松地查看、修改数据或控制输入。

美国国家仪器公司NI(National Instruments)提出的虚拟测量仪器(VI)概念,引发了传统仪器领域的一场重大变革,使得计算机和网络技术得以长驱直入仪器领域,和仪器技术结合起来,从而开创了“软件即是仪器”的先河。

“软件即是仪器”这是NI公司提出的虚拟仪器理念的核心思想。

从这一思想出发,基于电脑或工作站、软件和I/O部件来构建虚拟仪器。

I/O部件可以是独立仪器、模块化仪器、数据采集板(DAQ)或传感器。

NI所拥有的虚拟仪器产品包括软件产品(如LabVIEW)、GPIB产品、数据采集产品、信号处理产品、图像采集产品、DSP产品和VXI控制产品等。

语言。

Labview使用了所见即所得的可视化技术建立人机界面,提供了许多仪器面板中的控制对象,如表头、旋钮、开关及坐标平面图等。

用户可以通过使用编辑器将控制对象改变为适合自己工作领域的控制对象。

Labview提供了多种强有力的工具箱和函数库,并集成了很多仪器硬件库。

Labview支持多种操作系统平台,在任何一个平台上开发的Labview应用程序可直接移植到其它平台上。

测试软件是虚拟仪器的主心骨。

NI公司在提出虚拟仪器概念并推出第一批实用成果时,就用软件就是仪器来表达虚拟仪器的特征,强调软件在虚拟仪器中的重要位置。

NI公司从一开始就推出丰富而又简洁的虚拟仪器开发软件。

使用者可以根据不同的测试任务,在虚拟仪器开发软件的提示下编制不同的测试软件,来实现当代科学技术复杂的测试任务。

在虚拟仪器系统中用灵活强大的计算机软件代替传统仪器的某些硬件,特别是系统中应用计算机直接参与测试信号的产生和测量特性的分析,使仪器中的一些硬件甚至整个仪器从系统中消失,而由计算机的软硬件资源来完成它们的功能。

虚拟仪器测试系统的软件主要分为以下四部分。

(1)仪器面板控制软件仪器面板控制软件即测试管理层,是用户与仪器之间交流信息的纽带。

利用计算机强大的图形化编程环境,使用可视化的技术,从控制模块上选择你所需要的对象,放在虚拟仪器的前面板上。

(2)数据分析处理软件利用计算机强大的计算能力和虚拟仪器开发软件功能强大的函数库可以极大提高虚拟仪器系统的数据分析处理能力,节省开发时间。

(3)仪器驱动软件虚拟仪器驱动程序是处理与特定仪器进行控制通信的一种软件。

仪器驱动器与通信接口及使用开发环境相联系,它提供一种高级的、抽象的仪器映像,它还能提供特定的使用开发环境信息。

仪器驱动器是虚拟仪器的核心,是用户完成对仪器硬件控制的纽带和桥梁。

虚拟仪器驱动程序的核心是驱动程序函数/VI集,函数/VI是指组成驱动的模块化子程序。

驱动程序一般分为两层,底层是仪器的基本操作,如初始化仪器配置仪器输入参数、收发数据、查看仪器状态等。

高层是应用函数/VI层,它根据具体测量要求调用底层的函数/VI。

(4)通用I/O接口软件在虚拟仪器系统中,I/O接口软件作为虚拟仪器系统软件结构中承上启下的一层,其模块化与标准化越来越重要。

VXI总线即插即用联盟,为其制定了标准,提出了自底向上的I/O接口软件模型即VISA。

作为通用I/O标准,VISA具有与仪器硬件接口无关性的特点,即这种软件结构是面向器件功能而不是面向接口总线的。

应用工程师为带GPIB接口仪器所写的软件,也可以于VXI系统或具有RS232接口的设备上,这样不但大大缩短了应用程序的开发周期,而且彻底改变了测试软件开发的方式和手段。

1.4 虚拟仪器的特点1. 虚拟仪器是计算机技术介入仪器领域所形成的一种新型的仪器设备。

这种仪器设备往往具有智能化,分布测试,网络化等优点。

2. 强调“软件就是仪器”的概念,取代传统仪器“硬件为主体”的概念。

软件在仪器中充当了以往由硬件甚至整机来实现的角色,软件是虚拟仪器的核心,而虚拟仪器中的硬件仅仅是为了解决信号的输入与输出,这是虚拟仪器与传统仪器相比,在概念上的重大突破,用户可根据需要,将先进的处理算法、人工智能和专家系统应用于仪器的设计与集成,从而将仪器的水平提高到一个新的层次。

并且虚拟仪器充分利用计算机丰富的图形用户界面资源,建立图形化软件面板来代替常规的仪器控制面板,真正做到界面友好,人机交互。

3. 虚拟仪器的概念可由用户定义。

虚拟的功能可在用户级上产生,从而使得仪器不再完全由硬件决定,彻底打破了传统仪器一经设计、制造完成以后,其功能不可改变的封闭性、单一性。

当需要时用户可通过软件编程加入新的功能,而不必购买新的仪器,使得一台虚拟仪器可实现各种仪器的不同功能,大大提高了仪器功能的灵活性。

4. 易于构建网络化的测量仪器。

虚拟仪器基于计算机网络技术和接口技术,具有方便、灵活的互联性,可与网络及其他周边设备互联。

随着网络技术的发展,已经形成网络虚拟仪器,这是一种新型的基于Web技术的虚拟仪器,使得虚拟仪器成为Internet/Intranet的一部分,可方便地构成远程自动测试系统,实现测量、控制过程的网络化。

相关文档
最新文档