泵和风机

合集下载

泵与风机完整课件

泵与风机完整课件
泵与风机完整课件
目录
CONTENTS
• 泵与风机基本概念及分类 • 泵与风机选型与设计 • 泵与风机运行特性及调节方法 • 泵与风机性能测试与评估 • 泵与风机故障诊断与维护保养 • 泵与风机节能技术探讨
01 泵与风机基本概念及分 类
定义及工作原理
定义
泵与风机是流体机械中的两类重 要设备,用于输送气体或液体, 提升流体的压力或输送流体。
01
02
03
变速调节
通过改变泵的转速来调节 流量和扬程,适用于需要 大范围调节且对效率要求 较高的场合。
节流调节
通过改变管路中阀门的开 度来调节流量和扬程,适 用于小范围调节且对效率 要求不高的场合。
切割叶轮调节
通过切割叶轮直径来改变 泵的扬程和流量,适用于 需要降低扬程或流量的场 合。
实例分析:某泵站运行调节策略优化

确定流量和扬程
根据工艺要求确定所需流量和 扬程,并考虑一定余量。
选择泵或风机类型
根据流体性质、输送距离、安 装条件等选择适合的泵或风机
类型。
校核性能参数
对所选泵或风机的性能参数进 行校核,确保其满足工艺要求

设计计算方法
相似换算
利用相似原理,将模型试验结 果换算到实际泵或风机的性能
参数上。
系统阻力计算
采用标准化的测试程序,包括准备、 安装、调试、运行和数据分析等步骤 ,确保测试结果的准确性和可重复性 。
性能测试标准
测试参数与指标
关注流量、扬程、功率、效率等关键 性能参数,以及振动、噪音、温升等 辅助指标,全面评估泵与风机的性能 表现。
遵循国际或行业内的相关标准,如 ISO、API等,以及特定的设备制造商 标准,确保测试的公正性和客观性。

泵与风机

泵与风机

泵与风机属通用的流体机械。

它是将原动机的机械能传递给流体,使流体获得压力能和动能的机械。

泵与风机的流量、扬程、全压与转速有关。

转速越高,则输送的流量、扬程、全压亦越大。

叶轮级数减少,轴变粗短。

离心式:叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。

流体沿轴向流入叶轮并沿径向流出。

轴流式:利用旋转叶轮、叶片对流体作用的升力来输送流体,并提高其压力。

流体沿轴向流入叶轮并沿轴向流出。

假设(1)泵与风机内流动的流体为无黏性流体。

在推导方程时可不计能量损失。

(2)叶轮上叶片厚度无限薄,叶片数无穷多,所以流道的宽度无限小,那么流体完全沿着叶片的弯曲形状流动。

分析(1)当叶轮内流量减小到某一值时,即Wm 降低到某一值时,会出现叶片工作面上的相对速度W=0。

若流量再下降时,则在叶片的工作面上出现逆流。

所以,对于每个叶轮都有一个临界的工作流量。

泵与风机运转时,输送的流量低于这个临界流量时,会在叶片的工作面上产生逆流。

(2)如果流道内的流量不变,则轴向漩涡与叶片数Z (即流道宽度B )有关,与泵与风机叶轮的旋转角速度W 有关。

目前,大容量的锅炉给水泵转速都较高,因此有可能在叶片的工作面上出现12m k B B R ωω⎛⎫>+⎪⎝⎭,产生逆流的速度区,造成扬程下降。

为此,需要改变流道宽度B ,或装置长短叶片。

黏性流体在泵与风机中流动时,存在沿程阻力,局部阻力及冲击阻力损失,使扬程或全压下降。

因为在推导公式时,曾作了两个假设,假设与实际情况并不相符,因而实际应用时,须进行修正。

离心式叶轮叶片的型式:后弯式叶片、前弯式叶片、径向式叶片采用后弯式叶片原因:(1)后弯式叶片流动效率高(2)后弯式叶片流道效率高(3)后弯式叶片性能稳定离心泵主要部件:叶轮、吸入室、压出室、轴向力和径向力平衡装置及轴端密封装置。

叶轮组成:前盖板、叶片、后盖板、轮毂。

单吸与双吸之分。

泵与风机完整PPT课件

泵与风机完整PPT课件

03
泵与风机运行调节与维护
运行调节方法
01
02
03
变速调节
通过改变泵与风机的转速 来调节流量,适用于电动 机驱动的设备。
节流调节
通过改变管道中阀门的开 度来调节流量,简单易行 但效率较低。
汽蚀调节
通过改变泵入口压力或温 度来调节流量,适用于某 些特定类型的泵。
维护保养措施
定期检查
对泵与风机的运行状态进 行定期检查,包括振动、 噪音、温度等指标。
高效水力设计
01
通过优化水力模型,降低水力损失,提高泵与风机的运行效率。
高效电机设计
02
采用高效电机,提高电机效率,降低能源消耗。
高效控制系统设计
03
采用先进的控制系统,实现泵与风机的智能控制和优化运行,
提高整体运行效率。
系统节能改造方案
系统诊断与优化
通过对现有泵与风机系统进行全 面诊断,找出能源浪费的症结所
实验讨论
03
04
05
1. 分析实验结果与理论 2. 讨论实验操作过程中 3. 提出改进实验方案或
预测的差异及原因;
遇到的问题及解决方法; 方法的建议。
THANKS
感谢观看
发生。
04
泵与风机节能技术及应用
节能技术概述
节能技术定义
通过改进设备设计、提高运行效率、减少能源浪费等手段,实现 能源的有效利用和节约。
节能技术分类
包括设备节能技术、系统节能技术广泛应用于工业、建筑、交通等领域,是实现可持续发展的重要 手段。
高效节能产品设计
确定转速n和功率P
根据所选类型和性能参数确定 转速和功率。
选型原则
根据实际需求,综合考虑性能 参数、可靠性、经济性等因素 进行选型。

第一章泵与风机的分类及工作原理

第一章泵与风机的分类及工作原理

Dk
22u
sl
2
(曲1((.类线二同12,))型类)成风流型系离为压量风数心类系系机式型数数必特通有性风共曲同机P线特PP的QQQQ4p。pQ性sulpDp类Q222。2Qu4Q44型42p反pDsDulu系、22映r2222r22pcuu4uu442数2同222uD42QDb4Db2类2和2222ucDucDc型2uup2类2222r222r2u2通uDuD、型Q23常222且2风3uu数曲22机常k数线共 同k 特性的
(二)几种常用轴流式通风机 1、2K60型通风机 (1)结构特点 (2)技术性能和性能曲线 (3)型号意义
2、2K56型轴流式通风机
三、矿用通风机的反风
(一)反风的意义及要求 1.意义 2.要求 《煤矿安全规程》规定:生产矿井主要通风机必须装 有反风设施,必须能在10min内改变巷道中的风流方向。 当风流方向改变后,主要通风机的供风量,不应小于 正常风量的40%。 反风设施由矿长组织有关部门每季度至少检查一次, 每年应进行1次反风演习。当矿井通风系统有较大变化时, 也应进行1次反风演习。
形状 外壳的截面呈螺旋状。 3.集流器(进风口)
集流器的作用是保证气流平稳地进入叶轮,使叶 轮得到良好的进气条件。常用的是锥弧形的
集流器与叶轮入口部分之间的间隙形式和大小, 对容积损失和流动损失有重要影响。4-72和G4- 73模型机采用径向间隙
(二)几种常用离心式通风机
1.4-72-11型离心式通风机 (1)结构特点 (2)型号意义 □4—72—11—No.20 B 右90° □——一般用字母表示通风机的用途。“G”表示锅炉用通
(3)功率 单位kW。
①轴功率 N 原动机传给通风机轴上的功率。 ②有效功率 Na 单位时间内气体从通风机获得的能量。

第一章 泵与风机简介

第一章  泵与风机简介

课程名称热工与流体机械任课老师乔红编写日期授课日期授课班级基本课题泵与风机概述课程要求掌握泵与风机的分类、工作原理和主要性能参数,了解泵与风机在国民经济中,尤其是电厂的作用、发展趋势及新技术成就作业布置第一章泵与风机概述一、课程性质泵与风机是将原动机的机械能转换为被输送流体的压能和动能的一种动力设备。

输送液体的机械设备称为泵。

即:泵的主要作用是提高液体能量并输送液体。

输送气体的机械设备称为风机。

即:风机的主要作用是提高气体能量并输送气体。

二、泵与风机在国民经济建设和火电厂的地位给水泵:向锅炉输送水。

循环水泵:向汽轮机凝汽器输送冷却水。

凝结水泵:排送凝汽器中的凝结水。

疏水泵:排送热力系统中各处的疏水。

补给水泵:补充管路系统的汽水损失。

灰渣泵、冲灰水泵:排除锅炉燃烧后的灰渣等。

润滑油泵:供给汽轮机各轴承润滑油的泵。

炉膛燃烧需要空气和煤粉,设有排粉风机,送风机,排除锅炉燃烧后的烟气设有引风机。

三、电厂用泵与风机输送的介质泵输送的介质有给水、凝结水、冷却水、润滑油、水与灰渣的混合物等。

风机输送的介质有空气、烟气、煤粉和空气的混合物。

第二节泵与风机的分类及工作原理一、泵与风机的分类1、按工作原理来分类(1)泵分为:叶片式泵(依靠叶轮旋转,叶片对流体做功),容积式泵(工作室容积的周期性变化来输送流体),其他类型的泵叶片式泵又分为:离心泵(离心惯性力作用)轴流泵(叶轮对流体推力作用)混流泵容积式泵又分为:往复泵(工作部件往复间歇运动)齿轮泵()螺杆泵其他类型的泵又分为:喷射泵、水击泵、真空泵(2)风机分为:叶片式风机 容积式风机叶片式风机又分为:离心风机、轴流风机、混流风机容积式风机又分为:往复风机、回转风机2、按产生的压强分类(1)泵: 低压泵 MP a 2p < 中压泵 MP a 6p MP a 2<< 高压泵 MP a 6p >(2)风机:通风机 KP a 15p < 鼓风机 kPa 340p kPa 15<< 压气机:MP a 6p > 通风机又可分为:离心通风机 轴流通风机离心通风机又可分为:低压离心通风机 KPa p 1<中压离心通风机 KPa 3p KPa 1<<高压离心通风机 KP a 15p KP a 3<<轴流通风机又可分为:低压轴流通风机 KPa p 5.0<高压轴流通风机 KPa 5p KPa 5.0<<3、按在生产中的用途分类给水泵 凝结水泵 循环水泵 疏水泵 灰渣泵 送风机 引风机 排粉风机等二、 泵与风机的工作原理(一) 叶片式泵与风机的工作原理叶片式泵与风机是依靠装在主轴上叶轮的旋转运动,通过叶轮的叶片对流体做功来提高流体能量,从而实现输送流体的。

泵与风机教案§

泵与风机教案§

泵与风机教案一、教学目标1. 了解泵和风机的基本概念和作用;2. 掌握不同类型的泵和风机的工作原理及应用领域;3. 能够分辨泵和风机的区别,并能够正确选择和使用;4. 能够进行泵和风机的维护保养工作。

二、教学重点1. 泵和风机的基本概念和作用;2. 不同类型的泵和风机的工作原理及应用领域;3. 泵和风机的选择和使用方法。

三、教学内容1. 泵的基本概念和作用1.1 泵的定义和分类1.2 泵的工作原理1.3 泵的应用领域2. 泵的种类及其工作原理 2.1 压力泵和力泵2.2 往复式泵和离心泵 2.3 水泵和真空泵2.4 其他类型的泵3. 泵的选择和使用3.1 泵的选择要点3.2 泵的安装和调试3.3 泵的运行和维护4. 风机的基本概念和作用 4.1 风机的定义和分类 4.2 风机的工作原理4.3 风机的应用领域5. 风机的种类及其工作原理5.1 离心风机和轴流风机5.2 往复式风机和推力风机5.3 通风风机和工业风机5.4 其他类型的风机6. 风机的选择和使用6.1 风机的选择要点6.2 风机的安装和调试6.3 风机的运行和维护四、教学方法本教学内容以理论课为主,结合实际案例和示范操作,注重实践操作,培养学生的实际操作能力。

五、教学评价通过考试和实际操作的评价,检测学生对于泵和风机相关知识和技能的掌握情况。

六、教材参考1. 《泵与风机原理与应用》2. 《泵与风机维修与保养》3. 《泵与风机实验教程》4. 《泵与风机技术手册》5. 《泵与风机选型手册》七、教学进度安排本教学内容预计需要授课10个学时,其中包括理论讲授、实际操作和实验实践等环节。

八、教学资源教师将准备相关教学课件和案例,提供实践操作所需的泵和风机设备。

九、教学宣传通过校内公告、教务网站等途径宣传本次泵与风机教学活动,并邀请感兴趣的学生参加。

十、教学效果评估在教学结束后,将进行学生对本次教学的评估,以收集学生的反馈和建议,以进一步优化教学设计和教学内容。

泵与风机概述

泵与风机概述

喷射泵工作原理
将高压的工作流体7,由压力 管送入工作喷嘴6,经喷嘴后 压能变成高速动能,将喷嘴 外围的液体(或气体)带走。 此时因喷嘴出口形成高速使 扩散室2的喉部吸入室5造成 真空,从而使被抽吸流体8不 断进入与工作流体7混合,然 后通过扩散室将压力稍升高 输送出去。 工作流体可以为高压蒸汽, 也可为高压水,前者称蒸汽 喷射泵,后者称射水抽气器。 在电厂中都可用作抽出凝气 器中的空气。
齿轮泵的工作原理
齿轮泵具有一对互相 啮合的齿轮。 在输油系统中可用作 传输、增压泵; 在燃油系统中可用作 输送、加压、喷射的 燃油泵; 在一切工业领域中, 均可作润滑油泵用。
螺杆泵的工作原理
螺杆泵乃是一种利用 螺杆相互啮合来吸入 和派出液体的一种回 转式泵。螺杆泵的转 子由主动螺杆1和从 动螺杆2组成。主动 螺杆与从动螺杆做相 反方向转动,螺纹相 互啮合,流体从吸入 口进入,被螺旋轴向 前推进增压至排出口。
泵与风机的工作原理
离心式泵与风机的工作原理 轴流式泵与风机的工作原理 往复泵工作原理 齿轮泵工作原理 螺杆泵工作原理 喷射泵工作原理 水循环式真空泵工作原理
Home
离心式泵与风机的工作原理
原理 :叶轮高速旋转时产生的离心力使流体获 能量,即流体通过叶轮后,压能和动能都得到提 高,从而能够被输送到高处或远处。
n η

•65:进口直径为65mm
•50:出口直径为50mm •125:叶轮名义直径为125mm
Ne=ρgQH=QP
•功率N:有效功率Ne,轴功率N
离心式通风 机 型号:4-72 № P 5 流量:11830m3/h 电机功率: 13kW • 4:风机最高效率点全压系数乘 10取整 全压: 290mm H2O 转速: 2900r/min •72:表示比转数 出厂编号: 出厂: 年5:风机机号 月 日 5:叶轮外径的分米数 •№

泵与风机

泵与风机

第四讲 流体在离心式有限叶片叶轮中的 流动分析; 流动分析; 叶片式泵与风机的损失和效率 §1.4 叶片有限时对理论能头的影响 一、轴向涡流 1.举例 (点击观看流体在叶轮流道中的运 动示意动画) 2.泵内涡流:将叶轮流道的进出口 封闭起来,叶轮在旋转时, 流道内理想 流体也同样存在着一个和叶轮旋转角速 度相等,但旋转方向相反的轴向涡流。
二、ΔPv qvT-qv=q 泄漏流量 叶轮进口、轴封、平衡装置 ΔPv=ρgqvHT/1000 KW ηv=P'/Ph =(P-ΔPm-ΔPv)/(P-ΔPm) =(ρgqvHT)/(ρgqvTHT) =qv/(qv+q) 摩擦损失、局部损失、 三、ΔPh 摩擦损失、局部损失、冲击损失 1.摩擦损失和局部损失 (1)吸入室 (2)叶轮流道(一般扩散) (3)压出室:扩散,正导叶扩散,反导叶收缩 2.冲击损失;叶片入口,导叶入口(流量偏离设计工况) (1)冲角δ:相对速度方向和叶片进口切线之间夹角 (2)影响: ① qv=qvd时,β1=β1y,δ=0 ② qv〈qvd时,β1〈β1y,δ〉0 ③ qv〉qvd时,β1〉β1y,δ〈0
(二)流体在叶轮内的流动(复合流动) 牵连速度(圆周速度) u=rω=πDn/60
相对速度 ω
绝对速度 υ
(三)进出口速度三角形作法
已知:qvT,n、几何尺寸 作进口速度三角形需知条件: u1 =nπD1/60 υ1r=qvT/A1=qvT/(πD1b1ψ1) υ1方向(υ1r)(即α1) 作出口速度三角形需知条件: u2=nπD2/60 υ2r=qvT/A2=qvT/(πD2b2ψ2) w2方向(即β2)
4.反作用度:HT∞=Hd∞+Hst∞ 反作用度:H st∞
(既然泵扬程由动压头和静压头两部分组成,引入 反作用度) τ=Hst∞/HT∞ =(HT∞-Hd∞)/HT∞ =1-Hd∞/HT∞ (1)当β2y∞=β2y∞min时,τ=1 (2)当β2y∞=90°,τ=1/2 (3)当β2y∞=β2y∞max时,τ=0,此时HT =2u22/g ∞ (4)τ=1,流体从泵中未得到能量(扬程为 0); τ=0,流体得不到输送(静扬程为0) (5)τ影响 HT∞和η,须综合考虑选择

《泵与风机的运行》课件

《泵与风机的运行》课件
案例总结
通过该案例,我们可以了解到节能技术在泵和风机上的应用以及其对降低生产成本和提高能源利用效率 的作用。同时也可以认识到维护和保养对于设备正常并联技术
智能控制技术
与泵的串联和并联技术类似,通过多台风 机的串联或并联运行,实现流量和压力的 叠加,提高风机运行效率。
通过智能控制系统,实时监测风机的运行 状态,自动调节风机的运行参数,实现节 能。
泵与风机节能技术的发展趋势
智能化
随着物联网、大数据等技术的发 展,泵与风机的智能控制将成为
案例总结
通过该案例,我们可以了解到泵和风机的运行与维护对于工厂生产的重 要性,以及定期检查、保养和维修对于设备正常运行的关键作用。
某工厂风机的运行与维护案例
案例概述
某工厂的风机在运行过程中出现了故障,导致生产线的停产。为了解决这个问题,该工厂 采取了一系列措施。
案例细节
该工厂的风机在运行过程中出现了轴承磨损、振动过大等问题。为了解决这些问题,该工 厂采取了更换轴承、调整动平衡等措施,并加强了设备的日常维护和保养。
ERA
泵的启动与关闭
启动
在启动泵之前,应确保泵的入口和出口管道已经安装好,并且所有的阀门都已经打开。然后,启动电 机,观察泵的转动方向是否正确,如果方向错误,应立即切断电源,将电机接线反过来再试。在启动 后,应检查泵的出口压力和流量是否正常,如果异常应及时处理。
关闭
在关闭泵之前,应先逐渐关闭泵的出口阀门,然后停电机。如果泵的出口有止回阀,则可以同时关闭 出口和进口阀门。在关闭后,应清理泵的周围环境,保持清洁。
,也应进行相应的检查和保养。
04
泵与风机的节能技术
BIG DATA EMPOWERS TO CREATE A NEW

泵与风机

泵与风机

泵与风机绪论1、泵与风机定义:是把原动机的机械能转变成流体的势能和动能的一种流体机械。

2、分类:叶片泵:离心泵,轴流泵,混流泵,旋涡泵。

容积泵:往复泵,齿轮泵,螺杆泵,滑片泵,真空泵。

叶片式风机:离心风机,轴流风机。

容积式风机:往复风机,叶氏风机,回转风机。

3、低压泵(2Mpa以下)中压泵(2~6Mpa)高压泵(6Mpa以上)。

通风机(风压15Kpa以下)鼓风机(15~350Kpa)压缩机(350Kpa以上)。

低压通风机(1Kpa以下)中压通风机(1~3Kpa)高压通风机(3~15Kpa)。

4、泵与风机发展趋势:大容量,高转速,高效率,低噪音,自动化。

第一章5、离心泵分类:单级单吸,单级双吸,分段式多级离心泵。

6、单级双吸离心泵:半螺旋吸入室,水平中开式结构。

7、分段式多级离心泵:适用高差较大,输送距离较远。

8、Y型离心油泵分为:油泵(输送200度以下),热油泵(输送400度以下)。

9、油泵分类:单级单吸,单级双吸,双级单吸,多级分段式离心泵和管道泵。

10、离心式风机:用于洞库储油区或洞内作业区的强制通风,降低油蒸汽浓度或洞内空气湿度,保证安全。

11、离心泵主要零部件:叶轮,泵轴,吸入室,压出室,泵体,密封装置,轴向力平衡装置件等。

12、离心式风机主要部件:集流器,叶轮,机壳,进气箱。

13、离心泵过流部件:吸入室,叶轮,压出室。

14、吸入室:泵吸入口到叶轮进口前的一段流道。

作用:液流分布均匀,速度方向符合要求,减小水力损失。

分类:锥形,环形,半螺旋形,弯管形吸入室。

15、锥形吸入室:用于单级悬臂式离心泵。

环形吸入室:存在冲击和旋涡,流速分布不均,用于分段式多级泵。

半螺旋形:流速分布均匀,扬程略有降低,用于单级双吸式水泵,水平中开式多级泵,大型分段式多级泵,某些单级悬臂泵。

弯管形:用于大型离心泵,大型轴流泵,优点与锥形一致。

16、叶轮:传递能量的主要部件,过流部件的核心。

分类:闭式,开式,半开式叶轮。

电厂泵与风机

电厂泵与风机

优 点
示意图
圆筒型多级离心泵主要优点
1.由于内外壳体之间充满由泵末级叶轮引入的高压 水,该高压水在两层壳体之间流动,因而使壳体 上下受热均匀。 2.检修时不必拆除进出口管路,同时也不必拆除与 基础相连接的外筒体。只要打开端盖,整个芯包 即可从高压端整体抽出进行检修,或将备用芯包 放入外筒体,即可在较短时间内投入运行。因此, 拆卸装配十分方便、快捷。 3.运行时高度安全可靠,效率高。
臵带动活塞的运动,将轴的圆周转动
转化为活塞的往复运动。活塞不断往 复运动,泵的吸水与压水过程就连续 不断地交替进行。
四、回转式泵与风机 1. 齿轮泵 原理:齿轮泵具有一对互相啮 合的齿轮,如图所示,齿轮主 动轮固定在主动轴上,轴的一 端伸出壳外由原动机驱动,另 一个齿轮从动轮装在另一个轴 上,齿轮旋转时,液体沿吸油 管进入到吸入空间,沿上下壳 壁被两个齿轮分别挤压到排出 空间汇合(齿与齿啮合前),然 后进入压油管排出。

一、常用泵的典型结构
锅炉给水泵 凝结水泵 循环水泵 灰渣泵
(一)锅炉给水泵
锅炉给水泵是火力发电厂的重要辅助设备之一。 作用:是将经过加热除氧的高温水升压到某一额 定压力后送往锅炉。给水泵必须不间断地向锅炉 供水,以保证锅炉的安全运行。 工作特点:容量大(驱动功率大)、转速高、压 力大、水温高。 目前给水泵的型式规格较多,常用的几种型式: 分段式多级离心泵 圆筒型多级离心泵 水平中开式多级离心泵
二、轴流式泵与风机
原理:旋转叶片的挤压推进力使流体获得能量,升高其压能 和动能,叶轮安装在圆筒形(风机为圆锥形)泵壳内,当叶轮 旋转时,流体轴向流入,在叶片叶道内获得能量后,沿轴向 流出。轴流式泵与风机适用于大流量、低压力,制冷系统中 常用作循环水泵及送引风机。

泵与风机第一章-1

泵与风机第一章-1

u r
二、流体在叶轮中的运动及速度三角形
(一)流体在叶轮中的运动及速度三角形 1、叶轮的轴面投影及平面投影
叶片出口宽度
叶片进口宽度
轴面投影图
叶片进口直径
叶片出口直径
平面投影图
轴面(子午面):通过叶轮上的一点和叶轮轴线构 成平面或经过轴心线所作的平面(一个叶轮有无数个轴 面,但是每个轴面相同) 轴面投影:它是将叶片上每一点绕轴线旋转一定角 度投影到同一轴面上的投影,叫轴面投影。
叶片出口安装角对静扬程及动扬程的影响。
结论:
(1, 1/2), 后向式叶轮, 2y (2ymin,90) ① τ
1/2,
径向式叶轮, 2y =90
(1/2 ,0), 前向式叶轮,
2y(90,2ymax)
几种叶片形式的比较 (1)从流体所获得的扬程看,前向叶片最大,径 向叶片稍次,后向叶片最小。 (2)从效率观点看,后向叶片最高,径向叶片居 中,前向叶片最低。 (3)从结构尺寸看,在流量和转速一定时,达到 相同的压力前提下,前向叶轮直径最小,而径向 叶轮直径稍次,后向叶轮直径最大。 (4)从工艺观点看,直叶片制造最简单。 因此,大功率的泵与风机一般用后向叶片较多。如 果对泵与风机的压力要求较高,而转速或圆周速 度又受到一定限制时,则往往选用前向叶片。从 摩擦和积垢角度看,选用径向直叶片较为有利。
1、β2a<90°(后弯式叶片)
HT 0
叶片出口安装角,对理论扬程的影响
当流体以 1 90 进入叶轮时,其理论扬程为 H T

H T
u2 (u2 v2 m cot 2 a ) g
cot 2a 0
u2v2u g
2 u2 g
2、β2a=90°(径向式叶片)

泵与风机

泵与风机
• 密封装置主要用来防止压力增加时流体的
泄漏。密封装置有很多种类型,用得最多 的是填料式密封和机械式密封。
热风干燥风机
热风干燥风机
入口密封排烟风机
助燃风机
泵与风机的性能参数
• 泵与风机的主要性能参数
风机、泵的主要性能参数有下列几个: (一)、流量(flow guantity) 单位时间内输送的流体数量。 (二)、压力、扬程(pressure,head) 1、通风机全压 单位体积的气体在通风机内所获得总能量叫通风机全 压。单位为:毫米水柱,牛/米2。 2、离心泵扬程 单位重量的液体在泵内所获得总能量叫泵的扬程。单 位为:米液柱。 (三)、转速(rotary rate) 叶轮每分钟旋转周数叫转速。单位为:转/分。 (四)、功率和效率(power and efficiency) 通风机和泵之功率有铀功率、有效功率和原动机效率 之分。
泵与风机的简介
泵与风机的定义
• 泵、风机、压缩机、水轮机、等都属于流
体机械。所谓流体机械,是指在流体具有 的机械能和机械所做的功之间进行能量转 换的机械。
泵与风机的分类
按照产生的全压高低分:
• 泵:
低压泵:压力<2MPa; 中压泵:2MPa <压力<6MPa; 高压泵:压力>6MPa; 风机: 通风机:全压<11.375KPa; 鼓风机:11.375KPa<全压<11.375KPa; 压气机:全压>241.6KPa
用一对或几个特殊形 状的回转体如齿轮, 螺杆或其他形状的转 子。在壳体内作旋转 运动来输送流体并提 高其压力。
泵与风机的主要过流部件及典型 结构
泵的主要过流部件有吸入室、压出室以及 叶轮。
离心式风机的整机构造分解图

泵与风机完整课件

泵与风机完整课件

泵与风机完整课件教案内容一、教学内容本节课的教学内容选自人教版小学科学四年级下册第五单元第二课《泵与风机》。

本节课主要介绍泵与风机的作用、工作原理和应用场景。

通过学习,使学生了解泵与风机在日常生活和工业生产中的重要性,培养学生对科学现象的探究兴趣。

二、教学目标1. 知道泵与风机的作用和应用场景;2. 了解泵与风机的工作原理;3. 培养学生对科学现象的观察、思考和表达能力。

三、教学难点与重点重点:泵与风机的作用、工作原理和应用场景;难点:泵与风机工作原理的理解和应用。

四、教具与学具准备教具:PPT、视频资料、泵与风机模型;学具:笔记本、彩笔。

五、教学过程1. 实践情景引入:教师展示一段关于泵与风机在工厂中应用的视频资料,引导学生关注泵与风机的作用和应用场景。

2. 知识讲解:教师通过PPT讲解泵与风机的作用、工作原理和应用场景,让学生了解泵与风机的重要性。

3. 例题讲解:教师通过泵与风机模型,讲解泵与风机的工作原理,让学生直观地感受泵与风机的工作过程。

4. 随堂练习:教师设计一些有关泵与风机的问题,让学生回答,检查学生对知识的理解和掌握程度。

5. 课堂小结:六、板书设计板书内容:泵与风机作用:输送液体、气体;提升液体、气体;降低液体、气体压力;提高液体、气体压力。

应用场景:农业灌溉、工业生产、城市建设、环境保护等。

工作原理:利用电磁力、压力差、 centrifugal force 等实现流体的输送和压力变化。

七、作业设计1. 描述一下你所了解的泵与风机在日常生活和工业生产中的应用场景。

答案:泵与风机在日常生活和工业生产中具有广泛的应用,例如,农田灌溉、工厂生产、城市供水、污水处理等。

2. 简要说明泵与风机的工作原理。

答案:泵与风机的工作原理主要是利用电磁力、压力差、centrifugal force 等实现流体的输送和压力变化。

八、课后反思及拓展延伸本节课通过视频、模型和PPT等多种教学手段,使学生了解了泵与风机的作用、工作原理和应用场景。

泵与风机

泵与风机

五、混流泵的主要部件
其结构和性能介于离心泵与轴流泵之间。 其结构和性能介于离心泵与轴流泵之间。
§1.3 泵与风机的主要性能参数
一、流量
单位时间内输送的流体数量。 单位时间内输送的流体数量。
二、扬程和全压
流体通过泵或风机获得的能量,泵扬程,风机全压。 流体通过泵或风机获得的能量,泵扬程,风机全压。
三、功率与效率
一、按压力分
泵:低压,<2MPa;中压,2-6MPa;低压,>6MPa。 低压,<2MPa;中压, 6MPa;低压,>6MPa。 风机:通风机,<15kPa,又分低中高压离心、 风机:通风机,<15kPa,又分低中高压离心、轴流通 风机;鼓风机,15-340kPa;压气机, 风机;鼓风机,15-340kPa;压气机,>340kPa 。
二、按工作原理分
泵,1、叶片式:离心、轴流、混流;2、容积式:往 叶片式:离心、轴流、混流; 容积式: 复式(活塞、柱塞、隔膜)、回转式(齿轮、螺杆、 )、回转式 复式(活塞、柱塞、隔膜)、回转式(齿轮、螺杆、 滑片);其它(真空、射流、水锤)。 );其它 滑片);其它(真空、射流、水锤)。 风机, 叶片式:离心、轴流、混流;容积式: 风机,1、叶片式:离心、轴流、混流;容积式:往 回转(叶式、罗茨;螺杆)。 复、回转(叶式、罗茨;螺杆)。
三、能量方程
利用离心式的公式得式(13.8、 利用离心式的公式得式(13.8、9)。
§2.2 轴流泵与风机的叶轮理论
四、翼型及叶栅的空气动力学特性
单翼型的空气动力学特性:指翼型升力和阻力特性, 单翼型的空气动力学特性:指翼型升力和阻力特性, 即升力和阻力与翼型的几何形状、气流参数的关系。 即升力和阻力与翼型的几何形状、气流参数的关系。 升力角:合力与升力之间的夹角,夹角越小, 升力角:合力与升力之间的夹角,夹角越小,说明升 力越大而阻力越小,翼型的空气动力特性越好。 力越大而阻力越小,翼型的空气动力特性越好。 失速现象:冲角较大时,后缘点前发生边界层分离, 失速现象:冲角较大时,后缘点前发生边界层分离, 在翼型后形成旋涡区使翼型凹凸面的压差减小,升力 在翼型后形成旋涡区使翼型凹凸面的压差减小, 系数和升力随之减小, 系数和升力随之减小,升力系数和升力减小的点称失 速点。冲角增大到失速点后, 速点。冲角增大到失速点后,空气动力特性就大为恶 这种现象称为失速现象。 化,这种现象称为失速现象。

泵与风机基本知识

泵与风机基本知识

泵与风机基本知识嘿,朋友!今天咱们来唠唠泵与风机的那些事儿。

你可别小瞧这泵和风机,它们在咱们的生活和工业生产里,那可是相当重要的角色呢!先来说说泵吧。

泵啊,就像是一个超级大力士,专门负责把液体从一个地方搬到另一个地方。

想象一下,你家的自来水是怎么来的?对喽,就是靠泵把水从水源地一路送到你家的水龙头的。

这泵要是罢工了,你就只能望“管”兴叹了,那可真是个大麻烦啊!我有个朋友叫小李,他在一家工厂工作。

有一次啊,他们厂里的一个泵坏了。

那个泵是用来输送生产线上一种特殊化学液体的。

这泵一坏,整个生产线就像突然被掐住了脖子一样,啥都干不了了。

小李当时那个着急啊,就像热锅上的蚂蚁。

他跑来跟我抱怨说:“这泵怎么就这么关键呢?感觉整个厂都围着它转了。

”我就跟他说:“那可不,泵就像人体里的心脏,把血液(液体)输送到各个器官(设备或者地方),心脏要是停了,这人还能好吗?”泵的种类可不少呢。

有离心泵,这离心泵就像一个飞速旋转的陀螺,通过高速旋转产生离心力,把液体甩出去,就这么把液体给输送走了。

还有活塞泵,这活塞泵就像打气筒一样,一推一拉,把液体一点点地往前挤。

你看,是不是很有趣呢?再说说风机。

风机和泵有点像,但它负责的是气体。

风机就像是一个大嘴巴,呼呼地把气体从这边吹到那边。

比如说,咱们夏天吹的空调,空调里面就有风机。

没有风机的话,那冷风或者热风就只能在空调里面待着,根本到不了咱们身边。

那咱们可就要在炎热或者寒冷里煎熬喽,多难受啊!我邻居老张是个搞建筑的。

他跟我说过,在他们的工地上,有那种大型的通风风机。

那些风机啊,那声音轰隆隆的,就像打雷一样。

他说:“你可别觉得这风机声音大就烦,要是没有它啊,工地下面那些通道里,空气又闷又脏,工人可就遭罪了。

”我就打趣他说:“那这风机就是工地上的空气管家呗,把新鲜空气都给照顾好了。

”老张笑着直点头。

风机也有不同类型。

轴流风机就像是一阵直直的风,沿着轴向吹过去,就像你拿着扇子直直地扇风一样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)导轮的作用 — 减少能量损失
离心泵的特性曲线
H [m] N [kW]
[%]
性能参数:
流量V [m3/s] 压头H [mH2o] 轴功率N [kW]
效率[%]
特性曲线:
H—V曲线 N—V曲线 —V曲线
36
32
IS00-80-160B Àë ÐÄ ± Ã
n=2900r/min
90 80
清理入口池的杂质,停泵拆开后疏通流道,清除异物
叶轮口环磨损太大
修理、更换备件,查磨损原因。
泵安装太高,吸水阻力大, 降低安装高度,减小吸水阻力,避免产生气蚀的原因。 产生气蚀
小。因此关闭出口阀启动离心泵,启动电流最小。
特性曲线的变换
特性曲线是制造厂用20℃清水在一定转速下实验测定的。若输送液体 性质与此相差较大,泵特性曲线将发生变化,应加以修正,使之变换为符 合输送液体性质的新特性曲线。
液体密度的影响
离心泵的理论流量和理论压头与液体密度无关,H—V曲线不随液体密 度而变,η —V曲线也不随液体密度而变。 轴功率则随液体密度的增加而
离心泵串联
同一流量下,串联泵的压头为单泵压头的两倍,据此作出串联泵合 成特性曲线
串联泵的流量大于一台单泵的流量,小于两台单泵的流量
V单 V并 V双
H HL
H串V
H2
H V 1
H1
0
V1
HL V 2择
高阻管路:串联泵 低阻管路:并联泵
高阻管路 低阻管路
Q并 Q串 Q串 Q并
离心泵常见故障
故障现象
处理方法
开启时发现扬程小
改变安装高度,或降低装置扬程或换泵。
入口管线或填料漏气
检查入口管线,堵塞漏气处,扭紧填料压盖,保证密 封,也可涂少许黄油。
泵的转向反向
改变转向,请电工帮助处理
泵的转数太低
检查电压是否符合要求的电压,传动部分是否正常, 对检查的问题对症处理。
泵的流道堵塞
N e HV g
有效功率与轴功率的比值为离心泵的效率
N e HV g
N
N
反映离心泵能量损失,包括:
容积损失:一部份已获得能量的高压液体由叶轮出口处通过叶轮与泵壳间
的缝隙或从平衡孔漏返回到叶轮入口处的低压区造成的能量损失。
水力损失:进入离心泵的粘性液体产生的摩擦阻力、局部阻力以及液体在
症状:
噪声大、泵体振动,流量、压头、效率都明显下降。
后果:
高频冲击加之高温腐蚀同时作用使叶片表面产生一个个凹穴,严重时成海 绵状而迅速破坏。
防止措施:
把离心泵安装在恰当的高度位置上,确保泵内压强最低点处的静压超过工作温度
离心泵的类型与选用
离心泵的类型
清水泵
清水泵物理化学性质类似于水的介质。清水泵有若干系列。最简单的 为单级单吸式,系列代号为“IS”,结构简图如图,若需要的扬程较高, 则可选D系列多级离心泵。若需要流量很大,则可选用双吸式离心泵,其系 列代号为“Sh” 。
培训教材
机泵与风机
流体输送机械
为流体提供机械能的机械设备统称为流体输送机械。
分类 按工作原理:
离心式;往复式;旋转式;流体作用式。
按输送介质:
流体输送机械
液体输送机械 气体压送机械

通风机、鼓风机 压缩机、真空泵
离心泵
离心泵的工作原理
离心泵结构:
高速旋转的叶轮和固定的泵壳,叶轮上装有若干叶片,叶轮 将输入的轴功提供给液体。
1-泵体;2-泵盖;3-叶轮;4-轴;5-密封环;6-叶轮螺母;7-止动垫圈; 8-轴盖;9-填料压盖;10-填料环;11-填料;12-悬架轴承部件
耐腐蚀泵
输送腐蚀性流体用耐腐蚀泵。耐腐蚀泵所有与流体介质接触的部件都采 用耐腐蚀材料制作。离心耐腐蚀泵有多种系列,其中常用的系列代号为F。
油泵
油泵用于输送石油及油类产品,油泵系列代号为Y。因油类液体具有易 燃、易爆的特点,因此对此类泵密封性能要求较高。输送200℃以上的热油 时,还需设冷却装置。
28
70
24
60
20
50
16
40
12
12 30
8
8 20
4
4 10
0 0
20 40 60 80 100 120 1400
0
Q/ m3/h
离心泵的特性曲线由制造厂附于产品样本中,是指导正确选 择和操作离心泵的主要依据。
H—V曲线
离心泵的压头H又称扬程,是指泵对单位重量的流体所能提供的机械 能[J/N],单位为m。因此H—V曲线代表离心泵所提供的能量与流量的关系 ,离心泵压头H随流量V增加而下降。
离心泵的气蚀现象与安装高度
从整个吸入管路到泵的吸入口直至叶轮内缘,液体的压强是不断降低 的。研究表明,叶轮内缘处的叶片背侧是泵内压强最低点。
Hg p0
0
1
K
1
K
0
p1
g

p0
g

Hg

u12 2g

Hf
汽蚀现象:
当泵内某点的压强低至液体饱和蒸汽压时部分液体将汽化,产生的汽泡被液流带 入叶轮内压力较高处再凝聚。由于凝聚点处产生瞬间真空,造成周围液体高速冲击该 点,产生剧烈的水击。瞬间压力可高达数十个MPa,众多的水击点上水击频率可高达数 十kHz,且水击能量瞬时转化为热量,水击点局部瞬时温度可达230℃以上。
在真空表和压力表之间列柏努利方程:
z1

pv
g

u12 2g

H

h0

pM
g

u22 2g

Hf
H

h0

pM pv
g

u22 u12 2g

Hf
N—V曲线与—V曲线
H

h0

pM pv
g
离心泵的轴功率N是指电机输入到泵轴的功率。流体从泵获得的实际功率为
泵的有效功率Ne,由泵的流量和扬程求得
离心泵串联操作时,泵送流量相同,泵组的扬程为该流量下各泵的 扬程之和。离心泵串连工作时的合成特性曲线。
离心泵并联
同一压头下,并联泵的流量为单泵流量的两倍,据此作出合成特性 曲线
并联泵的流量大于一台单泵的流量,小于两台单泵的流量
V单 V并 V双
合成特性曲线
合成特性曲线
H
H
V单
V并
V单 V并 V双
离心泵的流量调节
改变流量 改变工作点 改变泵的特性
改变管路特性
(1)改变出口阀开度
-管路特性
关小出口阀 le 管特线变陡
工作点左上移 H , qV
开大出口阀 le 管特线变缓
工作点右下移 H , qV
(2)改变叶轮转速
-- 改变泵的特性

u12
2g


H
f 12
工作流量下泵有效功率为
H

z2
z1
p2 p1
g
0.5
0.28 0.025106
1000 9.81
31.6mH2O
泵轴功率为
Ne 2.15 64.2%
N 3.35
离心泵的工作点
当泵安装在一定 管路系统中的离心泵 工作时,泵输出的流 量即为管路流量、泵 提供的压头即为管路 所要求的压头。泵的 特性曲线与管路特性 曲线有一交点a点, 该交点称为离心泵的 工作点。
离心泵的运行
正常启动:
(1)准备工作经检查正常后可启动泵。启动后应注意电流表, 泵转向,压力表,泄漏等情况,一切正常后再慢慢打开出口阀。 (未打开出口阀前泵运转不得超过3分钟,否则液体在泵内强制 循环后温度升高,液体汽化会产生抽空等现象。) (2)检查泵的轴承温度不得大于65度,电机温度不得大于70度 (3)可用泵出口阀门调节流量 (4)观察出口压力表、电流表的波动情况 (5)检查泵的运行、振动、泄漏情况。 (6)检查泵冷却水的供应情况,润滑油液面的变化情况。 (7)打封油的泵,封油压力至少高出泵出口压力0.05-0.1MPa. (8)对于长周期运转的泵,要定期更换润滑油或润滑脂,保证 泵在良好的润滑状态下工作。
离心泵的运行
运行前准备工作:
(1)检查泵出、入口管线上的阀门、法兰地脚螺栓、联轴器、 温度计和压力表等。 (2)检查泵的运转情况,先盘车,听是否有杂音,看是否灵 活。 (3)打开入口阀,排出泵体内的气体,给泵内充满所要输送 的液体,再关死出口阀。 (4)往泵的油箱加好润滑油或润滑脂。 (5)给冷却水,打开压力表,看是否灵敏。 (6)检查安全设备如对轮罩、接地线等。 (7)对热油泵看预热情况,使泵体温度不能低于界质温度的 40度。 (8)与各有关岗位、有关单位联系好。做好启动准备。
液下泵
液下泵是一种立式离心泵,整个泵体浸入在被输送的液体贮槽内,通过 一根长轴,由安放在液面上的电机带动。
杂质泵
杂质泵有多种系列, 常分为污水泵、渣浆泵、 泥浆泵等。这类泵的主要 结构特点是叶轮上叶片数 目少,叶片间流道宽,有 的型号泵壳内还衬有耐磨 材料。
1-泵体;2-泵盖;3-叶轮;4-泵轴;5-密封环; 6-轴套;7-轴承;8-连轴器
n泵H- qV曲线上移 工作点右上移, H , qV
离心泵的并联和串联
离心泵并联和串联,将组合安装的离心泵视为一个泵组,泵组的特 性曲线或称合成特性曲线,据此确定泵组工作点。
离心泵并联操作时,泵在同一压头下工作,泵组的流量为该压头下
各泵对应的流量之和。据此,并联离心泵组的H-V特性曲线。
泵壳中由冲击而造成的能量损失。
机械损失:泵轴与轴承之间、泵轴与密封填料之间等产生的机械摩擦造成
相关文档
最新文档