排序算法

合集下载

排序算法

排序算法

排序算法所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

排序算法,就是如何使得记录按照要求排列的方法。

排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。

一个优秀的算法可以节省大量的资源。

在各个领域中考虑到数据的各种限制和规范,要得到一个符合实际的优秀算法,得经过大量的推理和分析。

分类排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。

稳定度(稳定性)一个排序算法是稳定的,就是当有两个相等记录的关键字R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。

当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。

然而,假设以下的数对将要以他们的第一个数字来排序。

(4,1)(3,1)(3,7)(5,6)在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:(3,1)(3,7)(4,1)(5,6) (维持次序)(3,7)(3,1)(4,1)(5,6) (次序被改变)不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。

不稳定排序算法可以被特别地实现为稳定。

作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,就会被决定使用在原先数据次序中的条目,当作一个同分决赛。

然而,要记住这种次序通常牵涉到额外的空间负担。

在计算机科学所使用的排序算法通常被分类为:(a)计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。

一般而言,好的性能是O(nlogn),且坏的性能是O(n^2)。

对于一个排序理想的性能是O(n)。

而仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(nlogn)。

(b)存储器使用量(空间复杂度)(以及其他电脑资源的使用)(c)稳定度:稳定的排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

10种常用典型算法

10种常用典型算法

10种常用典型算法1. 冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它通过依次比较相邻的两个元素,如果顺序不对则交换位置。

这样,每一趟排序都会将最大的元素移动到末尾。

通过多次重复这个过程,直到所有元素按照升序排列为止。

2. 选择排序(Selection Sort)选择排序也是一种简单的排序算法。

它通过每次从未排序的部分中选出最小的元素,放到已排序部分的末尾。

通过多次重复这个过程,直到所有元素按照升序排列为止。

3. 插入排序(Insertion Sort)插入排序是一种简单且稳定的排序算法。

它通过将未排序的元素逐个插入到已排序部分的正确位置。

每次插入一个元素,已排序部分都是有序的。

通过多次重复这个过程,直到所有元素按照升序排列为止。

4. 快速排序(Quick Sort)快速排序是一种高效的排序算法。

它通过选择一个基准元素,将数组分成两部分,一部分元素小于基准,另一部分元素大于基准。

然后对这两部分递归地进行快速排序。

通过多次重复这个过程,直到所有元素按照升序排列为止。

5. 归并排序(Merge Sort)归并排序是一种稳定的排序算法。

它通过将数组递归地分成两半,分别对这两半进行归并排序,然后将排序好的两部分合并起来。

通过多次重复这个过程,直到所有元素按照升序排列为止。

6. 堆排序(Heap Sort)堆排序是一种高效的排序算法。

它利用堆的性质来进行排序,通过构建一个最大堆或最小堆,并不断地取出堆顶元素并调整堆。

通过多次重复这个过程,直到所有元素按照升序排列为止。

7. 计数排序(Counting Sort)计数排序是一种非比较性的整数排序算法。

它通过统计每个元素的个数来排序。

首先统计每个元素出现的次数,然后根据元素的大小顺序将其放入新的数组中。

通过多次重复这个过程,直到所有元素按照升序排列为止。

8. 桶排序(Bucket Sort)桶排序是一种非比较性的排序算法。

它通过将元素划分到不同的桶中,每个桶内再使用其他排序算法进行排序。

排序算法及应用

排序算法及应用
基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位 置,使数列依然有序;直到待排序数据元素全部插入完为止。
a:array[0..n] of integer; {a[0]记录当前待插元a[i]} for i:=2 to n do begin a[0]:=a[i]; {取第i个元素作为待插入元素} j:=i-1; {从已排好的最后一个a[i-1]开始比较} while a[0]<a[j] do // 找j满足: a[j]<=a[0]<a[j+1] begin a[j+1]:=a[j]; {当待插入元素a[0]小于当前a[j]时, a[j]后移} j:=j-1; end; {当a[0]>=a[j]时循环结束} a[j+1]:=a[0]; {在第j+1个位置插入a[i]元素} end;
3、插入排序算法:
基本思想:
经过i-1遍处理后,a[1],a[2],……,a[i-1]已排好序。
第i遍处理是将元素a[i]插入到a[1],a[2],……,a[i-1]的适当的位置,从 而使得a[1],a[2],……,a[i-1],a[i]又是排好的序列。
排序的关键字:从小到 大 20 30 10 15 16 13 8
主程序的调用: qsort(1,n);
const maxn=10000;//快速排序源程序 var a:array[1..maxn] of integer; n,i:integer; procedure qsort(l,r:integer); var i,j:integer; x:integer; begin i:=l; j:=r; x:=a[l]; while i<j do begin while (a[j]>=x) and(j>i) do dec(j); if i<j then begin a[i]:=a[j]; inc(i); end; while (a[i]<=x)and(j>i) do inc(i); if i<j then begin a[j]:=a[i]; dec(j); end; end; a[i]:=x; //i=j if l<(i-1) then qsort(l,i-1); if (i+1)<r then qsort(i+1,r); end;

所有排序的原理

所有排序的原理

所有排序的原理排序是将一组数据按照某种特定顺序进行排列的过程。

在计算机科学中,排序是一种基本的算法问题,涉及到许多常见的排序算法。

排序算法根据其基本原理和实现方式的不同,可以分为多种类型,如比较排序、非比较排序、稳定排序和非稳定排序等。

下面将详细介绍排序的原理和各种排序算法。

一、比较排序的原理比较排序是指通过比较数据之间的大小关系来确定数据的相对顺序。

所有常见的比较排序算法都基于这种原理,包括冒泡排序、插入排序、选择排序、归并排序、快速排序、堆排序等。

比较排序算法的时间复杂度一般为O(n^2)或O(nlogn),其中n是待排序元素的数量。

1. 冒泡排序原理冒泡排序是一种简单的比较排序算法,其基本思想是从待排序的元素中两两比较相邻元素的大小,并依次将较大的元素往后移,最终将最大的元素冒泡到序列的尾部。

重复这个过程,直到所有元素都有序。

2. 插入排序原理插入排序是一种简单直观的比较排序算法,其基本思想是将待排序序列分成已排序和未排序两部分,初始状态下已排序部分只包含第一个元素。

然后,依次将未排序部分的元素插入到已排序部分的正确位置,直到所有元素都有序。

3. 选择排序原理选择排序是一种简单直观的比较排序算法,其基本思想是每次从待排序的元素中选择最小(或最大)的元素,将其放到已排序部分的末尾。

重复这个过程,直到所有元素都有序。

4. 归并排序原理归并排序是一种典型的分治策略下的比较排序算法,其基本思想是将待排序的元素不断地二分,直到每个子序列只包含一个元素,然后将相邻的子序列两两归并,直到所有元素都有序。

5. 快速排序原理快速排序是一种常用的比较排序算法,其基本思想是通过一趟排序将待排序的元素分割成两部分,其中一部分的元素均比另一部分的元素小。

然后,对这两部分元素分别进行快速排序,最终将整个序列排序完成。

6. 堆排序原理堆排序是一种常用的比较排序算法,其基本思想是利用堆这种数据结构对待排序的元素进行排序。

排序算法十大经典方法

排序算法十大经典方法

排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。

以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。

2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。

3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。

4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。

5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。

6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。

7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。

8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。

9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。

10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。

以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。

排序算法数学公式

排序算法数学公式

排序算法数学公式排序算法是计算机科学中非常重要的一项技术,用于对一组数据进行排序。

不同的排序算法有不同的实现方式和效率,并且在不同的应用场景下会有不同的选择。

本文将介绍几种常见的排序算法,并通过数学公式的方式进行解释,帮助读者理解和选择适合自己需求的排序算法。

1. 冒泡排序算法冒泡排序算法通过比较相邻的元素大小,依次将较大(或较小)的元素交换到右侧。

该过程类似于气泡从水底冒出来的过程,因此得名冒泡排序。

冒泡排序是一种简单但效率较低的排序算法,其时间复杂度为O(n^2)。

冒泡排序的数学公式为:```for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]```2. 插入排序算法插入排序算法的基本思想是将一个元素插入到已排序好的序列中的适当位置,使得插入后的序列仍然有序。

插入排序的时间复杂度也是O(n^2),但相比冒泡排序,其效率要高一些。

插入排序的数学公式为:```for i in range(1, n):key = arr[i]j = i-1while j >= 0 and arr[j] > key:arr[j+1] = arr[j]j -= 1arr[j+1] = key```3. 选择排序算法选择排序算法每次从未排序的部分选择最小(或最大)的元素,然后将其放到已排序序列的末尾。

选择排序的时间复杂度也是O(n^2),但相比冒泡排序和插入排序,其交换次数较少,因此效率更高一些。

选择排序的数学公式为:```for i in range(n):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```4. 快速排序算法快速排序算法是一种分治的排序算法,通过选择一个元素作为基准值,将序列划分为左右两个子序列,并递归地对子序列进行排序。

简单排序算法

简单排序算法

简单排序算法排序算法是计算机科学中最基本、最常用的算法之一。

通过对原始数据集合进行排序,可以更方便地进行搜索、统计、查找等操作。

常用的排序算法有冒泡排序、选择排序、插入排序等。

本文将介绍这些简单排序算法的具体实现及其优缺点。

一、冒泡排序(Bubble Sort)冒泡排序是一种基础的交换排序算法。

它通过不断地交换相邻的元素,从而将数据集合逐渐排序。

具体实现步骤如下:1.比较相邻的元素。

如果第一个比第二个大,就交换它们两个;2.对每一对相邻元素做同样的工作,从第一对到最后一对,这样一轮排序后,就可以确保最后一个元素是最大的元素;3.针对所有元素重复以上的步骤,除了最后一个;4.重复步骤1~3,直到排序完成。

冒泡排序的优点是实现简单、容易理解。

缺点是排序效率较低,尤其是对于较大的数据集合,时间复杂度为O(n²)。

二、选择排序(Selection Sort)选择排序是一种基础的选择排序算法。

它通过在数据集合中选择最小的元素,并将其放置到最前面的位置,然后再从剩余元素中选出最小的元素,放置到已排序部分的末尾。

具体实现步骤如下:1.在未排序序列中找到最小元素,存放到排序序列的起始位置;2.再从剩余未排序元素中继续寻找最小元素,放到排序序列末尾;3.重复步骤1~2,直到排序完成。

选择排序的优点是实现简单、固定时间复杂度O(n²)。

缺点是排序效率仍然较低,尤其是对于大数据集合,因为每次只能交换一个元素,所以相对于冒泡排序,它的移动次数固定。

三、插入排序(Insertion Sort)插入排序是一种基础的插入排序算法。

它将未排序的元素一个一个插入到已排序部分的正确位置。

具体实现步骤如下:1.从第一个元素开始,该元素可以认为已经被排序;2.取出下一个元素,在已经排序的元素序列中从后往前扫描;3.如果该元素(已排序)大于新元素,将该元素移到下一位置;4.重复步骤3,直到找到已排序的元素小于或等于新元素的位置;5.将新元素插入到该位置后;6.重复步骤2~5,直到排序完成。

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。

非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。

0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。

不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。

时间复杂度:对排序数据的总的操作次数。

反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述比较相邻的元素。

如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。

1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。

8种排序算法

8种排序算法

J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])
堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
(6)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 [38 65 97 76 49 27 49]
第二趟排序后 13 27 [65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。

十种排序方法

十种排序方法

十种排序方法排序是计算机科学中常见的操作,它将一组数据按照一定的规则进行重新排列,以便更方便地进行查找、比较和分析。

在本文中,我将介绍十种常见的排序方法,并对它们的原理和特点进行详细讲解。

一、冒泡排序冒泡排序是一种简单直观的排序算法,它重复地遍历待排序的元素,比较相邻的两个元素,并按照规定的顺序交换它们,直到整个序列有序为止。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

二、选择排序选择排序是一种简单直观的排序算法,它每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到整个序列有序为止。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

三、插入排序插入排序是一种简单直观的排序算法,它将待排序的元素插入到已排序序列的合适位置,使得插入之后的序列仍然有序。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

四、希尔排序希尔排序是插入排序的一种改进算法,它通过将待排序的元素分组,分组进行插入排序,然后逐步缩小分组的间隔,直到间隔为1,最后进行一次完整的插入排序。

希尔排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

五、归并排序归并排序是一种分治排序算法,它将待排序的序列分成两个子序列,分别进行排序,然后将已排序的子序列合并成一个有序序列。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

六、快速排序快速排序是一种分治排序算法,它通过选择一个基准元素,将待排序的序列分成两个子序列,一边存放比基准元素小的元素,一边存放比基准元素大的元素,然后对两个子序列进行递归排序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。

七、堆排序堆排序是一种选择排序算法,它通过构建一个最大堆(或最小堆),将堆顶元素与堆的最后一个元素交换,并对剩余的元素进行调整,直到整个序列有序为止。

堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

经典十大排序算法

经典十大排序算法

经典⼗⼤排序算法前⾔排序种类繁多,⼤致可以分为两⼤类:⽐较类排序:属于⾮线性时间排序,时间复杂度不能突破下界O(nlogn);⾮⽐较类排序:能达到线性时间O(n),不是通过⽐较来排序,有基数排序、计数排序、桶排序。

了解⼀个概念:排序的稳定性稳定是指相同⼤⼩的元素多次排序能保证其先后顺序保持不变。

假设有⼀些学⽣的信息,我们先根据他们的姓名进⾏排序,然后我们还想根据班级再进⾏排序,如果这时使⽤的时不稳定的排序算法,那么第⼀次的排序结果可能会被打乱,这样的场景需要使⽤稳定的算法。

堆排序、快速排序、希尔排序、选择排序是不稳定的排序算法,⽽冒泡排序、插⼊排序、归并排序、基数排序是稳定的排序算法。

1、冒泡排序⼤多数⼈学编程接触的第⼀种排序,名称很形象。

每次遍历排出⼀个最⼤的元素,将⼀个最⼤的⽓泡冒出⽔⾯。

时间复杂度:平均:O(n2);最好:O(n);最坏:O(n2)空间复杂度:O(1)public static void bubbleSort(int[] arr) {/*** 总共⾛len-1趟即可,每趟排出⼀个最⼤值放在最后*/for (int i = 0; i < arr.length - 1; i++) {for (int j = 0; j < arr.length - i - 1; j++) {if (arr[j] > arr[j + 1]) {int tp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tp;}}}}2、选择排序最直观易理解的排序算法,每次排出⼀个最⼩的元素。

也是最稳定的算法,时间复杂度稳定为O(n^2)。

需要⼀个变量记录每次遍历最⼩元素的位置。

时间复杂度:O(n2)空间复杂度:O(1)public static void selectSort(int[] arr){int n = arr.length;for (int i = 0; i < n; i++) {int maxIdx = 0;for(int j = 1; j < n - i; j++){if(arr[maxIdx] < arr[j]){maxIdx = j;}}int tp = arr[maxIdx];arr[maxIdx] = arr[n - 1 - i];arr[n - 1 - i] = tp;}}3、插⼊排序⼀种直观的排序算法,从第⼆个元素开始,每次往前⾯遍历找到⾃⼰该在的位置。

五种常用的排序算法详解

五种常用的排序算法详解

五种常用的排序算法详解排序算法是计算机科学中的一个重要分支,其主要目的是将一组无序的数据按照一定规律排列,以方便后续的处理和搜索。

常用的排序算法有很多种,本文将介绍五种最常用的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。

一、冒泡排序冒泡排序是最简单的排序算法之一,其基本思想是反复比较相邻的两个元素,如果顺序不对就交换位置,直至整个序列有序。

由于该算法的操作过程如同水中的气泡不断上浮,因此称之为“冒泡排序”。

冒泡排序的时间复杂度为O(n^2),属于较慢的排序算法,但由于其实现简单,所以在少量数据排序的场景中仍然有应用。

以下是冒泡排序的Python实现代码:```pythondef bubble_sort(arr):n = len(arr)for i in range(n-1):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```二、选择排序选择排序也是一种基本的排序算法,其思想是每次从未排序的序列中选择最小数,然后放到已排序的序列末尾。

该算法的时间复杂度同样为O(n^2),但与冒泡排序相比,它不需要像冒泡排序一样每次交换相邻的元素,因此在数据交换次数上略有优势。

以下是选择排序的Python代码:```pythondef selection_sort(arr):n = len(arr)for i in range(n-1):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```三、插入排序插入排序是一种简单直观的排序算法,其基本思想是通过构建有序序列,对于未排序的数据,在已排序序列中从后向前扫描,找到相应位置并插入该元素。

排序算法口诀

排序算法口诀

排序算法口诀排序算法是计算机科学中一个重要的概念,用于将一组元素按照特定的顺序排列。

不同的排序算法有不同的实现方式和性能特点。

以下是一些常见的排序算法口诀,帮助理解它们的工作原理和特点。

1. 冒泡排序冒泡排序是一种简单的排序算法,其基本思想是通过多次遍历数组,比较相邻元素的大小并交换。

口诀:前后比较不断扫,大的往后移小的往前。

2. 选择排序选择排序是一种不稳定的排序算法,每次从未排序的部分选择最小(或最大)的元素,与未排序部分的第一个元素交换。

口诀:遍历找最小换,往后缩一位,再继续找。

3. 插入排序插入排序是一种稳定的排序算法,通过构建有序序列,对未排序的数据逐个进行插入。

口诀:前面有序插后面,从后往前找合适的位置。

4. 希尔排序希尔排序是插入排序的改进版本,通过将待排序元素划分为若干个子序列,对子序列进行排序,最终完成整体排序。

口诀:分组插入一小步,不断缩小分组步。

5. 归并排序归并排序是一种分治策略的排序算法,通过将数组分为两半,分别排序,然后合并。

口诀:分成两半递归排,再将两半归并合。

6. 快速排序快速排序是一种分治策略的排序算法,通过选择一个基准元素,将数组划分为两部分,递归排序子数组。

口诀:选基准分左右,递归快速排。

7. 堆排序堆排序是一种选择排序的改进版本,通过建立一个最大堆(或最小堆),实现对堆顶元素的选择。

口诀:建堆选择一,交换再调整。

8. 计数排序计数排序是一种非比较性排序算法,通过统计数组中每个元素的出现次数,然后根据统计结果进行排序。

口诀:统计出现次,顺序输出来。

9. 桶排序桶排序是一种分布式排序算法,通过将待排序元素划分为若干个桶,对每个桶进行排序,最后将所有桶合并。

口诀:分桶排序,桶内再排。

10. 基数排序基数排序是一种非比较性排序算法,通过将数字按位数划分,按每个位数分别排序。

口诀:按位数排序,逐位来。

这些口诀旨在简要概括每种排序算法的核心思想,帮助记忆它们的运作方式。

计算机常见的32种算法

计算机常见的32种算法

计算机常见的32种算法
1.冒泡排序算法
2.选择排序算法
3.插入排序算法
4.希尔排序算法
5.归并排序算法
6.快速排序算法
7.堆排序算法
8.计数排序算法
9.桶排序算法
10.基数排序算法
11.贪心算法
12.动态规划算法
13.分治算法
14.回溯算法
15.图的深度优先算法(DFS)
16.图的广度优先算法(BFS)
17. Kruskal算法(最小生成树)
18. Prim算法(最小生成树)
19. Floyd-Warshall算法(最短路径)
20. Dijkstra算法(最短路径)
21.拓扑排序算法
22. 找出最大子数组的算法(Kadane算法)
23.最长公共子序列算法
24.最长递增子序列算法
25.最长回文子串算法
26.哈夫曼编码算法
27. Rabin-Karp算法(字符串匹配)
28. Boyer-Moore算法(字符串匹配)
29.KMP算法(字符串匹配)
30.后缀数组算法
31.基于哈希表的查找算法
32.基于二分查找的查找算法
需要注意的是,以上列举的只是计算机中常见的算法之一,实际上还存在着很多其他的算法。

每种算法都有其特定的应用场景和解决问题的方法。

对于每种算法的原理和具体实现细节,可以进一步深入学习和研究。

基本排序算法(11种)

基本排序算法(11种)

排序算法有很多,所以在特定情景中使用哪一种算法很重要。

为了选择合适的算法,可以按照建议的顺序考虑以下标准:(1)执行时间(2)存储空间(3)编程工作对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:一、冒泡(Bubble)排序——相邻交换二、选择排序——每次最小/大排在相应的位置三、插入排序——将下一个插入已排好的序列中四、壳(Shell)排序——缩小增量五、归并排序六、快速排序七、堆排序八、拓扑排序九、锦标赛排序十、基数排序十一、英雄排序一、冒泡(Bubble)排序----------------------------------Code 从小到大排序n个数------------------------------------void BubbleSortArray(){for(int i=1;i<n;i++){for(int j=0;i<n-i;j++){if(a[j]>a[j+1])//比较交换相邻元素{int temp;temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;}}}}-------------------------------------------------Code------------------------------------------------效率 O(n²),适用于排序小列表。

二、选择排序----------------------------------Code 从小到大排序n个数--------------------------------void SelectSortArray(){int min_index;for(int i=0;i<n-1;i++){min_index=i;for(int j=i+1;j<n;j++)//每次扫描选择最小项if(arr[j]<arr[min_index]) min_index=j;if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置{int temp;temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;}}}-------------------------------------------------Code-----------------------------------------效率O(n²),适用于排序小的列表。

序号排序公式

序号排序公式

序号排序公式
序号排序公式是指将一组数字或对象按照一定的规则进行排序,其中每个数字或对象都有一个唯一的序号。

常见的序号排序公式有:
1.升序排序:将数字或对象按照从小到大的顺序进行排序。

可以使用小于号(<)或者大于号(>)进行比较,如果a < b,则a在b的前面。

2.降序排序:将数字或对象按照从大到小的顺序进行排序。

可以使用大于号(>)或者小于号(<)进行比较,如果a > b,则a在b的前面。

3.字典序排序:将字符串按照字母顺序进行排序。

比较规则是依次比较字符串中的每个字符的字典序大小,如果当前字符相同,则比较下一个字符,直到找到不同的字符为止。

如果找到不同的字符,则较小的字符在前面。

4.自定义排序:根据特定的规则或条件进行排序,可以使用自定义的比较函数来实现。

比较函数可以根据需要定义不同的排序规则,例如按照字符串长度进行排序,按照字符串中某个特定字符的个数进行排序等。

这些排序公式可以根据实际需求进行灵活应用,在编程中常常用到。

常见的排序算法有哪些

常见的排序算法有哪些

常见的排序算法有哪些
排序算法是《数据结构与算法》中最基本的算法之一。

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。

用一张图概括:
关于时间复杂度
平方阶(O(n2)) 排序各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶(O(nlog2n)) 排序快速排序、堆排序和归并排序;
O(n1+§)) 排序,§是介于0 和1 之间的常数。

希尔排序
线性阶(O(n)) 排序基数排序,此外还有桶、箱排序。

关于稳定性
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:
•n:数据规模
•k:"桶"的个数
•In-place:占用常数内存,不占用额外内存
•Out-place:占用额外内存
•稳定性:排序后2 个相等键值的顺序和排序之前它们的顺序相同包含以下内容:
•1、冒泡排序
•2、选择排序
•3、插入排序
•4、希尔排序
•5、归并排序
•6、快速排序
•7、堆排序
•8、计数排序
•9、桶排序
•10、基数排序。

排序的几种算法

排序的几种算法

排序的几种算法
一、冒泡排序
冒泡排序就是重复“从序列右边开始比较相邻两个数字的大小,再根据结果交换两个数字的位置”这一操作的算法。

在这个过程中,数字会像泡泡一样,慢慢从右往左“浮”到序列的顶端,所以这个算法才被称为“冒泡排序”。

二、选择排序
选择排序就是重复“从待排序的数据中寻找最小值,将其与序列最左边的数字进行交换”这一操作的算法。

在序列中寻找最小值时使用的是线性查找。

三、插入排序
插入排序是一种从序列左端开始依次对数据进行排序的算法。

在排序过程中,左侧的数据陆续归位,而右侧留下的就是还未被排序的数据。

插入排序的思路就是从右侧的未排序区域内取出一个数据,然后将它插入到已排序区域内合适的位置上。

四、堆排序
堆排序的特点是利用了数据结构中的堆。

五、归并排序
归并排序算法会把序列分成长度相同的两个子序列,当无法继续往下分时(也就是每个子序列中只有一个数据时),就对子序列进行归并。

归并指的是把两个排好序的子序列合并成一个有序序列。

该操作会一直重复执行,直到所有子序列都归并为一个整体为止。

总的运行时间为O,这与前面讲到的堆排序相同。

排序算法

排序算法
吴再陵 18
希尔排序--实例
序号 1 2 3 4 5 6 7 8 9 10
数据
S1= 5 S2= 2 S3= 1
12
① 12 ① -5 ①
89 57 32 96 37 54
② 54 ② ③ -5 ① ④ ⑤ ① ②
-5

79 57
④ ⑤
32 57 37 89 57 79 96 ② ① ② ① ② ① ②
① 首先,把10个元素分为5组(即增量为5),每组两个元素,对 每组进行插入排序;
d1 =5 :
结果如右图
吴再陵 17
② 在上一步基础上,重新将 10个元素分成 2组(增量为 2),每组5个元素,其中将奇数分为一组,偶数分为一组, 对每组再进行插入排序; d2=2 : 25 12 32 25 43 36 48 58 76 65
下标 1 2 3 [45 36 18 ↑i ① 36 36 18 ↑i ② 36 36 18
4 5 6 7 8 9 10 53 72 30 48 93 15 36 ] ↑j 53 72 30 48 93 15 45 ↑j 53 72 30 48 93 15 45 ↑i ↑j ③ 36 36 18 45 72 30 48 93 15 53 ↑i ↑j ④ 36 36 18 15 72 30 48 93 45 53 ↑i ↑j ⑤ 36 36 18 15 45 30 48 93 72 53 ↑i ↑j 吴再陵
end.
吴再陵
22
6、堆排序: (1) 堆的定义: 堆是由n 个关键字组成的序列{K1, K2,„„,Kn}, 当且仅当满足下列关系时,称之为堆: Ki≤K2i、Ki≤K2i+1(称为最小堆) 或 Ki≥K2i、Ki≥K2i+1(称为最大堆) 其中I=1,2,„„,n/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A[i]=array[i];
cout<<"原始数据为:"<<endl;
for(int a=1;a<=count;a++)
cout<<A[a]<<" ";
cout<<endl<<"冒泡排序过程如下:"<<endl;
int k=1,exchanged;
do
{
exchanged=0;
{
A[0]=A[k];
A[k]=A[k-d];
A[k-d]=A[0];
}
}
}
}
for(int t=1;t<=count;t++)
cout<<A[t]<<" ";
cout<<endl;
d=d/2;
cout<<A[k]<<" ";
cout<<endl;
}
cout<<endl;
return;
}
void Sort::Shell(char*F)
{
put_in(F);
if(count==0)
{
cout<<"Enter Numbers!"<<endl;
A_count++;
}
if(A[j-1]<array[i])
{
A[j]=array[i];
A_count++;
break;
}
else
A[j]=A[j-1];
}
for(int k=1;k<=A_count;k++)
void Quick(char*);
void partition(int*,int,int,int&);
void quick(int*,int,int);
void Select(char*);
private:
int count;
int array[M];
};
cout<<"原始数据为:"<<endl;
for(int j=1;j<=count;j++)
cout<<A[j]<<" ";
cout<<endl;
cout<<"选择排序过程如下:"<<endl;
for(int I=1;I<count;I++)
{
A[0]=A[I];
return;
}
int A[M];
for(int i=1;i<=count;i++)
A[i]=array[i];
cout<<"原始数据为:"<<endl;
for(int ห้องสมุดไป่ตู้=1;a<=count;a++)
cout<<A[a]<<" ";
cout<<endl<<"希尔排序过程如下:"<<endl;
Sort::Sort()
{
count=0;
}
Sort::~Sort(){}
void Sort::put_in(char*F)
{
ifstream infile(F,ios::in);
if(!infile)
{
cout<<"Open Error!"<<endl;
return;
cout<<A[a]<<" ";
cout<<endl;
}
return;
}
int main()
{
Sort sort1,sort2,sort3,sort4,sort5;
sort1.Bubble("data.txt");
cout<<endl;
sort2.Insertation("data.txt");
cout<<endl<<"快速排序过程如下:"<<endl;
quick(A,s,t);
return;
}
void Sort::Select(char*F)
{
put_in(F);
int A[M];
for(int k=1;k<=count;k++)
A[k]=array[k];
}
return;
}
void Sort::Bubble(char*F)
{
put_in(F);
if(count==0)
{
cout<<"Enter Numbers!"<<endl;
return;
}
int A[M];
for(int i=1;i<=count;i++)
int d=count/2;
while(d>=1)
{
for(int i=1;i<=d;i++)
{
for(int j=i+d;j<=count;j=j+d)
{
for(int k=j;k>i;k=k-d)
{
if(A[k]<A[k-d])
cout<<endl<<"插入排序过程如下:"<<endl;
A[1]=array[1];
cout<<A[1]<<endl;
for(int i=2;i<=count;i++)
{
for(int j=i;j>=0;j--)
{
if(j==0)
{
A[1]=array[i];
cout<<endl;
sort3.Quick("data.txt");
cout<<endl;
sort4.Select("data.txt");
cout<<endl;
sort5.Shell("data.txt");
return 0;
}
"data.txt"文件中的内容:
59 20 45 3 18 73 37 22 81 104 65 0
***********以下是数据结构中所有的排序算法,C++语言编写,可复制到cpp文件中直接运行***********
# include<iostream>
# include<fstream>
int i=s,j=t;
while(i!=j)
{
while(i<j && A[j]>A[0])
j--;
if(i<j)
{
A[i]=A[j];
i++;
}
while(i<j && A[i]<A[0])
i++;
if(i<j)
{
using namespace std;
const int M=50;
class Sort
{
public:
Sort();
~Sort();
void put_in(char*);
void Insertation(char*);
void Shell(char*);
void Bubble(char*);
cout<<A[t]<<" ";
cout<<endl;
}
while(k<=count && exchanged==1);
return;
}
void Sort::partition(int A[],int s,int t,int& cutpoint)
{
A[0]=A[s];
cout<<A[k]<<" ";
cout<<endl;
quick(A,s,i-1);
quick(A,i+1,t);
}
}
void Sort::Quick(char*F)
{
put_in(F);
if(count==0)
{
cout<<"Enter Numbers!"<<endl;
return;
}
int A[M],s=1,t=count;
for(int i=1;i<=count;i++)
A[i]=array[i];
cout<<"原始数据为:"<<endl;
相关文档
最新文档