红外光谱的解析
红外光谱解析
10 (cm ) (m)
1
4
各种振动方式及能量
分子振动方式分为:
伸缩振动 -----对称伸缩振动 s ----反对称伸缩振动 as 弯曲振动 ----面内弯曲振动 ----剪式振动 s -----平面摇摆 -----面外弯曲振动- ----非平面摇摆 -----扭曲振动 按能量高低为: as >
的,只有在立体结构上互相靠近的基团之间才能产生F效应, 例如:
环己酮 4,4-二甲基环己酮 2-溴-环己酮 4,4-二甲基-2-溴-环己酮
C=O
1712
1712
1716
1728
-氯代丙酮的三个异构体的C=O 吸收频率不同
氢键效应
氢键使吸收峰向低波数位移,并使吸收强度加强,
例如: - 和-羟基蒽醌
二氧化碳的IR光谱
O=C=O
对称伸缩振动 不产生吸收峰
O=C=O
反对称伸缩振动 2349
O=C=O
面内弯曲振动 667
O=C=O
面外弯曲振动 667
因此O=C=O的 IR光谱只有2349 和 667/cm 二个吸收峰
二、IR光谱得到的结构信息
IR光谱表示法:
红外光谱(最全-最详细明了)
1. 收集谱图数据
通过红外光谱仪获取样品的光 谱数据。
3. 峰识别与标记
识别谱图中的特征峰,并对其 进行标记。
5. 结果输出
得出样品成分的红外光谱解析 结果。
谱图解析技巧
1. 峰归属参考
查阅相关资料,了解常见官能团或分子结构 的红外光谱峰归属。
3. 多谱图比对
将待测样品谱图与标准样品谱图进行比对, 提高解析准确性。
红外光谱与其他谱学的联用技术
红外光谱与拉曼光谱联用
拉曼光谱可以提供分子振动信息,与红外光 谱结合,可更全面地解析分子结构和化学组 成。
红外光谱与核磁共振谱联用
核磁共振谱可以提供分子内部结构的详细信息,与 红外光谱结合,有助于深入理解分子结构和化学键 。
红外光谱与质谱联用
质谱可以提供分子质量和结构信息,与红外 光谱结合,有助于对复杂化合物进行鉴定和 分析。
红外光谱在大数据与人工智能领域的应用
红外光谱数据的处理与分析
利用大数据技术对大量红外光谱数据进行处理、分析和挖掘,提取有用的化学和物理信息 。
人工智能在红外光谱中的应用
利用人工智能技术对红外光谱数据进行模式识别和预测,提高红外光谱的解析能力和应用 范围。
红外光谱数据库的建立与完善
建立和完善红外光谱数据库,为科研和工业界提供方便、快捷的红外光谱查询和服务。
分子振动与转动能级
1 2
分子振动
分子中的原子或分子的振动,产生振动能级间的 跃迁。
转动能级
分子整体的转动,产生转动能级间的跃迁。
3
振动与转动能级间的耦合
某些特定的振动模式会导致分子的转动能级发生 跃迁。
红外光谱的吸收峰与跃迁类型
吸收峰
由于分子振动或转动能级间的跃迁,导致光谱上出现暗线或 暗带。
红外光谱谱图解析完整版
X—Y伸缩, X—H变形振动区
2020/4/1
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
2020/4/1
一、认识红外光谱图
2020/4/1
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
变形振动 亚甲基
2020/4/1
甲基的振动形式
伸缩振动 甲基:
对称 υs(CH3) 2870 ㎝-1
变形振动 甲基
2020/4/1
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
二、解析红外光谱图
2020/4/1
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。
2020/4/1
红外光谱解析
generally absorbs only weakly. Hence, trained observer would not
interpret a strong peak at 1670 cm-1 to be a C=C double bond, nor would they interpret a weak absorption at this frequency to be due to a carbonyl group.
3
How to approach the analysis of a spectrum?
When analyzing the spectrum of an unknown, concentrate your first effort on determining the presence (or absence) of a few major functional groups. The C=O, OH, NH, CO, C=C, CC, CN, and NO2 peaks are the most conspicuous and give immediate structural information if they are present. Do not try to make a detailed analysis of the CH absorptions near 3000 cm-1; almost all compounds have these absorptions. Do not worry about subtleties of the exact environment in which the functional group is found. Following is a major checklist of the important gross features. 1. Is a carbonyl group present?
手把手教你红外光谱谱图解析
手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
红外光谱解析
第一节 基本原理与分子中 原子的振动类型
一、基本原理 双原子分子振动示意图
该振动符合物理学上的简偕运 动,遵从虎克定律。
4
虎克定律:
1 K 1 K
2
m1m2 m1 m2
2
ν: 振动频率
K:力常数(这里可看作是键能)
m1、m2:分别为两个原子的质量
μ: 原子的折合质量 从上式可看出:振动频率与键能成正比, 与原子的折合质量成反比。
50
第一节 朗勃-比尔定律 与紫外吸收光谱图
一、朗勃-比尔定律
A log
I
ECL
A :吸光度 I0 E :消光系数
C : 溶液的浓度 L : 液层的厚度
溶液的浓度若用mol/L表示,则消光系数用ε
来表示,称为摩尔消光系数:
A CL
A
摩尔消光系数的大小CL
反映电子跃迁几率的高低
51
二、紫外吸收光谱图
9
3、原子的质量越大,振动吸收频率越低。
ν (cm-1) C__ H ~3000
C__ C 1200
C__ O 1100
ν (cm-1) C__ Cl 800
C__ Br 550
C __ I ~500
4、吸电子诱导效应使振动吸收频率升高。
O
O
= =
R-C-R
νC=O (cm-1)
1715
R-C-Cl
19
二、烯烃 1. ν=C-H
3100
δ 3. =C -H (面外)
2. νC= C
1680-1620
990和910两个峰
890
970
20
1—辛烯的红外光谱图
4
1
红外光谱解析方法
红外光谱解析方法红外光谱解析方法是一种常用的分析化学方法,可以用于对化合物的结构进行研究和鉴定。
红外光谱解析方法主要利用化合物在红外光的作用下,不同官能团的振动与转动引起红外光吸收的特性来分析化合物的结构。
本文将介绍一些常用的红外光谱解析方法,并给出一些结构分析实例。
首先,红外光谱解析方法通常是通过红外光谱仪测量化合物在特定波数范围内的光谱图像,然后根据不同官能团的振动频率和光谱峰的位置、强度等特征来进行结构分析。
以下是一些常用的红外光谱解析方法:1. 官能团峰位置分析法:不同官能团具有不同的红外光谱吸收特点,可以通过观察红外光谱图中各个官能团的吸收峰的位置来判断化合物中存在的官能团。
例如,羧酸官能团的C=O振动通常在1700-1725 cm^-1之间,酮和酰胺官能团的C=O振动通常在1650-1750 cm^-1之间。
2.官能团峰强度分析法:通过观察红外光谱图中各个官能团的吸收峰的强度可以推测化合物中该官能团的相对含量。
例如,苯环的C-H伸缩振动通常表现为较强的峰,而取代基的C-H伸缩振动通常较弱。
3.官能团复合分析法:化合物通常由多个官能团组成,各个官能团的振动频率和位置可以相互影响。
通过综合分析化合物中多个官能团的吸收峰的位置、强度等特征,可以进一步确定化合物的结构。
例如,当化合物同时含有羟基和羧基时,其红外光谱图中会出现OH和CO的吸收峰,它们的相对位置和强度可以提供更多的结构信息。
下面给出一个红外光谱解析的实例:假设有一个未知化合物,它的分子式为C5H10O,并测得其红外光谱图如下:(图略)根据红外光谱图,我们可以进行如下的结构分析:从红外光谱图中我们可以观察到两个很强的特征峰,一个位于2750-2850 cm^-1之间,一个位于1725-1740 cm^-1之间。
根据我们的经验,2750-2850 cm^-1之间的峰通常是C-H的伸缩振动,而1725-1740 cm^-1之间的峰通常是C=O的伸缩振动。
红外光谱分析
红外光谱分析简介红外光谱分析(Infrared Spectroscopy)是一种常用的分析技术,用于研究物质的结构和组成。
通过测量物质对红外辐射的吸收和散射情况,可以获取有关分子振动和结构的信息。
红外光谱分析广泛应用于有机化合物的鉴定和定量分析、材料分析、环境和食品安全监测等领域。
原理红外光谱分析基于物质分子的振动和转动产生的谱线。
大部分物质的振动频率位于红外光谱范围内,因此该技术可以用来研究物质的结构和组成。
红外光谱分析的原理可概括为以下几个方面:1.吸收谱线:物质分子在特定波长的红外辐射下,会吸收特定频率的红外光,产生吸收谱线。
不同官能团或结构单位的振动频率不同,因此吸收谱线可以用来识别物质的组成和结构。
2.波数:红外光谱中使用波数来表示振动频率。
波数与波长的倒数成正比,常用的单位是cm-1。
波数越大,振动频率越高。
3.力常数:物质分子中的振动频率受到分子内力的限制,可以通过量化力常数来描述。
力常数与振动能量相关,可以通过红外光谱数据计算得到。
4.傅里叶变换红外光谱(FTIR):FTIR是一种常用的红外光谱仪器,利用傅里叶变换原理将红外辐射的吸收信号转换为频率谱线。
FTIR具有快速、高分辨率和高灵敏度的特点,适用于各种物质的分析。
实验步骤进行红外光谱分析通常需要以下步骤:1.样品制备:将待分析的样品制备成适当形式,如固体样品可以通过压片或混合胶制备成薄片,液体样品可以直接放置在红外吸收盒中。
在制备过程中需要注意去除杂质和保持样品的均匀性。
2.仪器校准:使用已知物质进行仪器校准,确保红外光谱仪的准确性和灵敏度。
校准样品通常是有明确红外光谱特征的化合物,如苯环等。
3.获取红外光谱:将样品放置在红外光谱仪中,启动仪器进行红外辐射的扫描。
扫描过程中,红外光谱仪会记录样品对吸收红外辐射的响应。
得到光谱数据后,可以进行后续的数据处理和分析。
4.数据处理和分析:利用软件工具对得到的光谱数据进行处理和分析。
红外光谱的解析
红外光谱解析步骤
准备工作 确定未知物的不饱和度
官能团分析
图谱解析
准备工作
1、了解样品的来源、外观和制样方法。 2、注意样品的纯度以及样品的元素分析及 其它物理常数的测定结果。
确定未知物的不饱和度
不饱和度是表示有机分子中碳原子的不 饱和程度。计算不饱和度UN的经验公式 为: UN=1+n4+(n3-n1)/2 式中n4、n3、n1分别为分子中所含的四价 (C、Si)、三价(N、P)和一价(H、F、 Cl、Br、I)元素原子的数目。 二价原子 如S、O等不参加计算。
注: 与标准谱图核对,主要是对指纹区谱带 的核对。在对照标准谱时,红外光谱的测试 条件最好与标准谱图一致。
红外谱图解析实例
某化合物的分子式C6H14,红外谱图如下, 试推测该化合物的结构。
解答
从谱图看,谱峰少,峰形尖锐,谱图相对简单,可能化合 物为对称结构。 从分子式可看出该化合物为烃类,不饱和度的计算: UN=(6×2+2-14)/2=0 表明该化合物为饱和烃类。由于1380cm-1的吸收峰为一单 峰,表明无偕二甲基存在。775cm-1 的峰表明亚甲基基团是独 立存在的。因此结构式应为:
Analysis: C8H8O
解答
IUPAC Name: acetophenone
Analysis: C3H10NO
解答
IUPAC Name: N-methylacetamide (N-methylethanamide)
Analysis: C4H8O2
C8H16O2
C7H6O2
某化合物的分子式C6H14,红外谱图如下,试推测该化合 物的结构。
图谱解析
图谱的解析一般程序是先官能团区, 后指纹区;先强峰后弱峰;先否定后肯定。 首先在官能团区搜寻特征伸缩振动, 再根据指纹区的吸收情况,进一步确认该 基团的存在以及与其它基团的结合方式。 最后再结合其它分析资料,综合判断分析 结果,提出最可能的结构式,然后用已知 样品或标准图谱对照,核对判断的结果是 否正确。
红外光谱分析
红外光谱分析红外光谱分析是一种重要的分析技术,广泛应用于化学、生物、材料等领域。
通过测量物质在红外光谱范围内的吸收和发射特性,可以得到物质分子的结构信息,实现物质的鉴定、定量分析和质量控制等目的。
本文将从红外光谱的基本原理、仪器设备、样品制备和数据解析等方面介绍红外光谱分析的相关知识。
一、基本原理红外光谱分析基于物质对红外辐射的吸收特性。
红外辐射是电磁波谱中的一部分,波长范围在0.78μm至1000μm之间,对应的频率范围在3000GHz至0.3THz之间。
物质分子由原子组成,原子核围绕电子运动,当受到外界的电磁波激发时,分子内部的键振动和转动将发生改变,导致物质吸收特定波长的红外辐射。
不同物质的分子结构和化学键在红外光谱图上表现出特征性的吸收峰,通过观察这些吸收峰的位置和强度可以确定物质的成分和结构。
二、仪器设备进行红外光谱分析需要使用红外光谱仪。
常见的红外光谱仪包括傅立叶变换红外光谱仪(FTIR)和光散射式红外光谱仪(IR)。
FTIR光谱仪通过傅立叶变换技术将红外辐射转换为光谱图,具有高灵敏度和快速测量的优点,适用于定性和定量分析。
光散射式红外光谱仪则通过散射光信号进行检测,适用于固态样品和表面分析。
三、样品制备在进行红外光谱分析前,需要对样品进行适当的制备处理。
液态样品可以直接涂覆在透明吸收的样品基底上进行测试,固态样品通常需要将样品捣碎并与适当的载体混合后进行测试。
在取样和制备过程中需要避免空气和水分的干扰,避免发生氧化和水解反应,影响测试结果的准确性。
四、数据解析红外光谱分析得到的数据通常以吸收光谱图的形式呈现。
吸收光谱图的横轴表示波数或波长,纵轴表示吸收强度,吸收峰的位置和形状反映了物质的分子结构。
数据解析是红外光谱分析的关键步骤,需要借助专业的光谱库和软件进行分析和比对,以确定样品的成分和结构信息。
在实际应用中,红外光谱分析可用于鉴定有机化合物、无机物质、生物大分子等多种样品,广泛应用于医药、食品、环境、材料科学等领域。
红外光谱解析方法
红外光谱解析方法
红外光谱解析方法主要包括以下四个步骤:
1. 收集红外光谱数据:这是解析红外光谱的第一步,可以通过实验或在线数据库获得红外光谱数据。
2. 绘制红外光谱图:将收集到的红外光谱数据以图形形式表示出来,横轴为波数(单位为cm^-1),纵轴为透射比或吸光度。
3. 观察红外光谱图:观察红外光谱图可以发现不同物质的红外光谱具有不同的特征峰,这些特征峰的位置和强度反映了物质的结构和组成。
4. 解析红外光谱图:通过比对已知的红外光谱数据库或利用化学计量学方法对未知的红外光谱进行解析,可以推断出物质的结构和组成。
在具体解析红外光谱时,可以参考以下方法:
1. 谱库对比:适用于单一物质和均聚物,对于多组分共聚物检索匹配度不高;谱库涵盖不高的情况下无法匹配出对应物质。
2. 排除法:不能确定物质是什么,通过排除法确定不是什么物质,如1870cm-1-1550cm-1没有出现对应的特征峰,则代表此物质不含羰基基团C=O,从而判定物质不属于聚酯、聚酰胺等含羰基高聚物。
3. 认可法:主要吸收带对应主要官能团位置。
4. 排除与认可结合法:按谱带位置、相对强度、形状确定某些基团的存在,同时排除某些结构。
实际谱图解析过程中,可能需要上述四种方法相结合同时应用才能更准确的解析红外光谱图。
红外光谱深度解析
环张力对红外吸收波数的影响: 环数减小,环的张力增大: 环外单键加强,吸收频率增大 环内双键减弱,吸收频率减小
1565cm-1 3060cm-1
35
空间位阻
36
跨环共轭效应
37
偶极场效应
• 偶极场效应(Field effect)是通过分子内空间相对位置 起作用的,只有在立体结构上互相靠近的基团之间才能 产生F效应,例如:
a 蒸气(134℃)b 液体(室温)
22
内部因素---质量效应
化学键
X-H 键的伸缩振动波数(cm-1)
波数(cm-1)
化学键
波数(cm-1)
C-H C=C-H Ar-H C三 C-H
3000 3100-3000 3100-3000
3300
F-H Cl-H
Br-H I-H
Si-H Ge-H
Sn-H
1947年第一台实用的双光束自动记录的红外分光光度计 问世。这是一台以棱镜作为色散元件的第一代红外分光光 度计。
4
到了六十年代,用光栅代替棱镜作分光器的第二代红 外光谱仪投入了使用。这种计算机化的光栅为分光部件的 第二代红外分光光度计仍在应用。
七十年代后期,干涉型傅里叶变换红外光谱仪(FT-IR) 投入了使用,这就是第三代红外分光光度计。
O
Cl C Cl
C
C
H HH H
υC=O ( cm-1) 1755
O
Cl C H
C
C
H H H Cl
1742
O
HC H
C
C
Cl H H Cl
1728
38
羰基的α位上有卤素 ,因卤素相对位置(空间构型)不 同而引起υC=O的位移作用叫“α卤代酮”规律。
04 红外光谱分析
E E2 E1 光子 hv Ee Ev E j
分子的三种能级跃迁示意图
一、红外光区的划分
不饱和度: =1+n4+(n3-n1)/2 式中n4、n3、n1、分别为分子中所含的四价、 三价和一价元素原子的数目。 二价原子如S、O 等不参加计算。 =0时,表示分子是饱和的,不含双键; =1时,可能有一个双键或脂环; =2时,可能有两个双键和脂环,也可能有一 个叁键; =4时,可能有一个苯环等。
红外光谱在可见光区和微波光区之间,波长 范围约为 0.75 ~ 1000µ m。
红外光谱的三个波区
区域 近红外区(泛频区) 波长/nm 0.75~2.5 波数/cm-1 13158~4000 4000~400 400~10 能级跃迁类型 键的倍频吸收 分子振动,伴 随转动 分子转动
中红外区(基本振动区) 2.5~25 远红外区(转动区) 25~1000
硅碳棒
投射样品池 检测器:对红外光响应 真空热电偶:温差转变为电势 热释电检测器(硫酸三苷肽TGS): 温度升高释放电荷,响应速度快 碲镉汞(MCT)检测器: 灵敏度高,响应速度快
二、Fourier变换红外光谱仪(FTIR) 与色散型红外光度计的主要区别在于干涉仪和 电子计算机两部分。 Fourier变换 红外光谱仪 没有色散元件,主
色散型红外光谱仪的组成部件与紫外-可见分 光光度计相似,但每一个部件的结构、所用的材 料及性能不同。 红外光谱仪的样品是放在光源和单色器之间; 而紫外-可见分光光度计是放在单色器之后。
红外光谱原理及解析
红外光谱原理及解析红外光谱(Infrared Spectroscopy)是一种常见的分析技术,通过检测物质在红外辐射下发生的振动、转动和伸缩等分子的运动引起的能级跃迁,来获取物质的结构信息和化学特性。
红外光谱广泛应用于化学、生物、药物、材料等领域,为科学研究和工业生产提供了有力的工具。
红外光谱的原理主要基于分子吸收红外辐射的现象。
分子由原子通过共价键连接而成,光谱的测量是根据分子中一些特定键的振动模式对入射光的吸收。
利用红外光谱仪,通过在样品中通过红外光或者红外辐射,使样品中的分子以不同的方式振动,然后测量样品中被吸收或反射的红外光强度的变化。
红外光谱通常使用波数(cm-1)作为横坐标,波数是以光的频率而非波长为单位的。
不同的分子和它们的化学键具有不同的振动频率和振动强度,这些不同的频率和强度表现为光谱上不同的峰和强度。
红外光谱可以分为三个区域:近红外区(4000-1400 cm-1)、中红外区(4000-400 cm-1)和远红外区(400-10 cm-1)。
在这三个区域,最常用的是中红外区域,因为大多数有机化合物和无机物的振动吸收位于该区域。
中红外光谱主要包括振动伸缩、弯曲、转动和振转结合等谱带。
振动伸缩谱带主要来自于有机分子中的C-H、O-H、N-H和C-O键等的振动。
弯曲谱带来自于烷基、芳香和杂环等分子中的键角弯曲振动。
转动谱带来自于小分子和气体的转动运动。
而振转结合谱带是指一些具有较高分子对称性的物质在红外光谱中表现出的特殊谱带。
红外光谱的解析和分析可以通过比对红外光谱仪测得的光谱图和对应的标准谱图库进行。
这些标准谱图库包括已知物质的红外光谱图,可以通过比对谱带的位置和强度与标准样品进行鉴定和分析。
此外,红外光谱还可用于物质浓度测定、物质含量定量、反应动力学研究等。
在实际应用中,红外光谱常常与其他技术结合使用,如液相色谱(HPLC)、气相色谱(GC)等。
通过与这些技术结合,可以实现对混合物中不同组分的定性和定量分析,提高分析能力和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
15
试推断化合物C4H5N的结构
b
16
解答
不饱和度计算: UN=(4×2+2-5+1)/2=3
由不饱和度分析,分子中可能存在一个双键和一个叁键。由 于分子中含N,可能分子中存在—CN基团。 由红外谱图看:从谱图的高频区可看到:2260cm-1,氰基的伸 缩振动吸收;1647cm-1 ,乙烯基的—C=C—伸缩振动吸收。 可推测分子结构为:
当UN=4时,可能有一个苯环(可理解为一 个脂环和三个双键)。
b
7
官能团分析
b
8
分析时应注意以下几点: 1、当某个基团的吸收峰不出现时,可以
说不存在该基团。反之,说可能存在该基团。 2、在指纹区,并不是每个吸收峰都能解
释。一般情况下,在1400~1000 cm-1处有许多 不能肯定归属的吸收峰。
表明该化合物为饱和烃类。由于1380cm-1的吸收峰为一单 峰,表明无偕二甲基存在。775cm-1的峰表明亚甲基基团是独 立存在的。因此结构式应为:
CH3 CH3 CH2 CH CH2 CH3
b
14
谱峰归属
3000-2800cm-1:饱和C—H的伸缩振动 1461cm-1:亚甲基和甲基弯曲振动。 1380cm-1:甲基弯曲振动。 775cm-1: 乙基—CH2—的平面摇摆振动 。
CH3
CHO
b
19
试推断化合物C7H9N的结构
b
20
解答
不饱和度的计算: U=(7×2+2-9+1)/2=4 不饱和度为4,可能分子中有多个双键,或者含有一个苯环 。 3520和3430cm-1:两个中等强度的吸收峰表明为-NH2的反对 称和对称伸缩振动吸收(3500和3400cm-1)。 1622,1588,1494,1471cm-1:苯环的骨架振动 (1600、 1585、1500及1450cm-1)。证明苯环的存在。 748cm-1:苯环取代为邻位(770-735cm-1)。 1442和1380cm-1:甲基的弯曲振动(1460和1380cm-1)。 1268cm-1:伯芳胺的C—N伸缩振动(1340-1250cm-1)。 由以上信息可知该化合物为邻-甲苯胺。
b
3
红外光谱解析步骤
准备工作 确定未知物的不饱和度 官能团分析 图谱解析
b
4
准备工作
1、了解样品的来源、外观和制样方法。 2、注意样品的纯度以及样品的元素分析及 其它物理常数的测定结果。
b
5
确定未知物的不饱和度
不饱和度是表示有机分子中碳原子的不 饱和程度。计算不饱和度UN的经验公式 为:
b
10
注:
与标准谱图核对,主要是对指纹区谱带 的核对。在对照标准谱时,红外光谱的测试 条件最好与标准谱图一致。
b
11
红外谱图解析实例
b
12
某 试化 推合 测物该的化分合子物式 的C结6构H1。4,红外谱图如下,
b
13
解答
从谱图看,谱峰少,峰形尖锐,谱图相对简单,可能化合 物为对称结构。
从分子式可看出该化合物为烃类,不饱和度的计算: UN=(6×2+2-14)/2=0
3、以3000 cm-1为界限,可定性估计化合物 是饱和的还是不饱和的有机物。
4、要排除杂质(水3500,1630 cm-1;二氧 化碳2350 cm-1 )的存在而造成的红外光谱的 变化。Leabharlann b9图谱解析
图谱的解析一般程序是先官能团区, 后指纹区;先强峰后弱峰;先否定后肯定。
首先在官能团区搜寻特征伸缩振动, 再根据指纹区的吸收情况,进一步确认该 基团的存在以及与其它基团的结合方式。 最后再结合其它分析资料,综合判断分析 结果,提出最可能的结构式,然后用已知 样品或标准图谱对照,核对判断的结果是 否正确。
C H 2C HC H 2C N
由1865,990,935cm-1:表明为末端乙烯基。1418cm-1:亚甲
基的弯曲振动(1470cm-1,受到两侧不饱和基团的影响,向
低波数位移)和末端乙烯基弯曲振动(1400cm-1)。验证推
测正确。
b
17
试推测化合物C8H8O的分子结构。
b
18
解答
不饱和度的计算 UN=(8×2+2-8)/2=5 不饱和度大于4,分子中可能由苯环存在,由于仅含8个碳,因 此分子应为含一个苯环一个双键。 1610,1580,1520,1430cm-1:苯环的骨架振动(1600、1585 、1500及1450cm-1)。证明苯环的存在。 825cm-1:对位取代苯(833-810cm-1)。 1690cm-1:醛基—C=O伸缩振动吸收(1735-1715cm-1,由于与 苯环发生共轭向低波数方向位移)。 2820和2730cm-1:醛基的C—H伸缩振动(2820和2720cm-1)。 1465和1395 cm-1:甲基的弯曲振动(1460和1380cm-1)。 由以上信息可知化合物的结构为:
b
21
Analysis: C8H8O
b
22
解答
IUPAC Name: acetophenone
b
23
Analysis: C3H10NO
b
24
解答
IUPAC Name: N-methylacetamide (N-methylethanamide)
b
25
Analysis: C4H8O2
b
26
C8H16O2
2.5 红 外 谱 图 解 析
b
1
b
2
红外光谱解析
所谓谱图的解析就是根据红外光谱所提供 的信息,正确地把化合物的结构 “翻译”出来。 对于简单的化合物,可利用红外光谱推测他们 的结构;对大多数化合物,红外光谱主要是提 供官能团的信息,还必须配合其他测试手段如 (紫外光谱、核磁共振波谱及质谱)才能确定 分子结构。
b
27
C7H6O2
b
28
某物化的合结物构的。分子式C6H14,红外谱图如下,试推测该化合
b
29
UN=1+n4+(n3-n1)/2 式中n4、n3、n1分别为分子中所含的四价 (C、Si)、三价(N、P)和一价(H、F、 Cl、Br、I)元素原子的数目。 二价原子 如S、O等不参加计算。
b
6
当UN=0时,表示分子是饱和的,应为 链状 烃及其不含双键的衍生物。
当UN=1时,可能有一个双键或脂环; 当UN=2时,可能有 两个双键和脂环,也可 能有一个 叁键;