人教版七年级上册3.4 实际问题与一元一次方程(行程问题)练习
人教新版七年级上学期《3.4 实际问题与一元一次方程》同步练习卷
人教新版七年级上学期《3.4 实际问题与一元一次方程》同步练习卷一.选择题(共6小题)1.超市正在热销某种商品,其标价为每件100元,若这种商品打7折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.100×0.7﹣x=15B.100﹣x×0.7=15C.(100﹣x)×0.7=15D.100﹣x=15×0.72.新年将至,小明的母亲准备为小明网购一件羽绒服,某服装电商销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可获利60元,设这款服装的进价为x元,根据题意可列方程为()A.300×0.8﹣x=60B.300﹣0.8x=60C.300×0.2﹣x=60D.300﹣0.2x=603.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x人生产甲种零件,则根据题意可得的方程为()A.12x=62(23﹣x)B.3×12x=2×23(62﹣x)C.2×12x=3×23(62﹣x)D.×23(62﹣x)=12x4.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x,则下列关于x的方程符合题意的是()A.8x﹣3=7x+4B.8(x﹣3)=7(x+4)C.8x+4=7x﹣3D.x+45.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.+3(100﹣x)=100B.﹣3(100﹣x)=100C.3x﹣=100D.3x+=1006.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟,问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.﹣=+B.+=﹣C.﹣=﹣D.+10=﹣5二.填空题(共2小题)7.甲、乙两同学从学校到少年宫去,甲每小时走4千米,乙每小时走6千米,甲先出发半小时,结果还比乙晚到半小时,若设学校与少年宫的距离为s千米,则可列方程.8.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走步才能追上走路慢的人.三.解答题(共8小题)9.一名通讯员需要在规定的时间把信件送到某地,他骑自行车每小时15km,可早到24分钟,如果每小时行12km,就要迟到小时,求原定时间是多少小时,出发地距某地的路程有多远.10.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)11.学校要购入两种记录本,其中A种记录本每本3元,B种记录本每本2元,且购买A 种记录本的数量比B种记录本的2倍还多20本,总花费为460元.(1)求购买B种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?12.列方程解应用题:某水果店计划购进A、B两种水果下表是A、B这两种水果的进货价格:水果品种A B进货价格(元/kg)1015(1)若该水果店要花费600元同时购进两种水果共50kg,则购进A、B两种水果各为多少?(2)若水果店将A种水果的售价定为14元/kg,要使购进的这批水果在完全售出后达到50%的利润率,B种水果的售价应该定为多少?13.某商店购进A、B两种商品共100件,花费3100元,其进价和售价如表:进价(元/件)售价(元/件)A2530B3545(1)A、B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?14.华联超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如表:(注:获利=售价﹣进价)甲乙进价(元/件)2030售价(元/件)2540(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售?15.目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?16.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.人教新版七年级上学期《3.4 实际问题与一元一次方程》同步练习卷参考答案与试题解析一.选择题(共6小题)1.超市正在热销某种商品,其标价为每件100元,若这种商品打7折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.100×0.7﹣x=15B.100﹣x×0.7=15C.(100﹣x)×0.7=15D.100﹣x=15×0.7【分析】设该商品每件的进价为x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,此题得解.【解答】解:设该商品每件的进价为x元,依题意,得:100×0.7﹣x=15.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.2.新年将至,小明的母亲准备为小明网购一件羽绒服,某服装电商销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可获利60元,设这款服装的进价为x元,根据题意可列方程为()A.300×0.8﹣x=60B.300﹣0.8x=60C.300×0.2﹣x=60D.300﹣0.2x=60【分析】设这款服装的进价是每件x元,根据利润=售价﹣进价建立方程.【解答】解:设这款服装的进价是每件x元,由题意,得300×0.8﹣x=60.故选:A.【点评】本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系的运用,解答时根据利润=售价﹣进价建立方程是关键3.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x人生产甲种零件,则根据题意可得的方程为()A.12x=62(23﹣x)B.3×12x=2×23(62﹣x)C.2×12x=3×23(62﹣x)D.×23(62﹣x)=12x【分析】设应分配x人生产甲种零件,(62﹣x)人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套,根据每人每天平均能生产甲种零件12个或乙种零件23个,可列方程.【解答】解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,故选:C.【点评】本题考查理解题意的能力,关键是设出生产甲和乙的人数,以配套的比例列方程求解.4.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x,则下列关于x的方程符合题意的是()A.8x﹣3=7x+4B.8(x﹣3)=7(x+4)C.8x+4=7x﹣3D.x+4【分析】根据“总钱数不变”可列方程.【解答】解:设人数为x,则可列方程为:8x﹣3=7x+4故选:A.【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.5.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.+3(100﹣x)=100B.﹣3(100﹣x)=100C.3x﹣=100D.3x+=100【分析】设大和尚有x人,则小和尚有(100﹣x)人,根据3×大和尚人数+小和尚人数÷3=100,即可得出关于x的一元一次方程,此题得解.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟,问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.﹣=+B.+=﹣C.﹣=﹣D.+10=﹣5【分析】设他家到学校的路程是xkm,根据每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟,列方程即可.【解答】解:设他家到学校的路程是xkm,由题意得,+=﹣.故选:B.【点评】本题考查了有实际问题抽象出一元一次方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.二.填空题(共2小题)7.甲、乙两同学从学校到少年宫去,甲每小时走4千米,乙每小时走6千米,甲先出发半小时,结果还比乙晚到半小时,若设学校与少年宫的距离为s千米,则可列方程﹣=1.【分析】根据“甲所用时间﹣乙所用时间=1小时”可得答案.【解答】解:若设学校与少年宫的距离为s千米,则可列方程﹣=1,故答案为:﹣=1.【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,找到题目蕴含的相等关系.8.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走250步才能追上走路慢的人.【分析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三.解答题(共8小题)9.一名通讯员需要在规定的时间把信件送到某地,他骑自行车每小时15km,可早到24分钟,如果每小时行12km,就要迟到小时,求原定时间是多少小时,出发地距某地的路程有多远.【分析】等量关系为:15×速度为15千米/时所用时间=12×速度为12千米/时所用时间,把相关数值代入即可求解.【解答】解:设原定x小时,24min=0.4h,则x=3S=15×2.6=39(km)答:原定3小时,路程为39km.【点评】考查了一元一次方程的应用,两个未知量:时间和路程,应设数目相对较小的量时间为未知数,根据路程来列等量关系不易出差错.10.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)【分析】根据路程、速度、时间之间的关系列出方程即可解答.【解答】解:设AB两地距离为x千米,则CB两地距离为(x﹣2)千米.根据题意,得+=3解得x=.答:AB两地距离为千米.【点评】本题考查了一元一次方程的应用,解题关键是理解题意找到等量关系.11.学校要购入两种记录本,其中A种记录本每本3元,B种记录本每本2元,且购买A 种记录本的数量比B种记录本的2倍还多20本,总花费为460元.(1)求购买B种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?【分析】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,根据总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据节省的钱数=原价﹣优惠后的价格,即可求出结论.【解答】解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.列方程解应用题:某水果店计划购进A、B两种水果下表是A、B这两种水果的进货价格:水果品种A B进货价格(元/kg)1015(1)若该水果店要花费600元同时购进两种水果共50kg,则购进A、B两种水果各为多少?(2)若水果店将A种水果的售价定为14元/kg,要使购进的这批水果在完全售出后达到50%的利润率,B种水果的售价应该定为多少?【分析】(1)设购进A水果x千克,则购进B水果(50﹣x)千克,根据等量关系:一共花费600元列出方程求解即可;(2)设B种水果的售价应该定为y元/千克,根据等量关系:购进的这批水果在完全售出后达到50%的利润率,列出方程求解即可.【解答】解:(1)设购进A水果x千克,则购进B水果(50﹣x)千克,依题意有10x+15(50﹣x)=600,解得:x=30,50﹣x=20.故购进A水果30千克,购进B水果20千克;(2)设B种水果的售价应该定为y元/千克,依题意有(14﹣10)×30+(y﹣15)×20=600×50%,解得:y=24.故B种水果的售价应该定为24元/千克.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.13.某商店购进A、B两种商品共100件,花费3100元,其进价和售价如表:进价(元/件)售价(元/件)A2530B3545(1)A、B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?【分析】(1)设购进A种商品a件,则购进B种商品(100﹣a)件,然后根据题意和表格中的数据即可列出相应的方程,从而可以求得A、B两种商品分别购进多少件;(2)根据(1)中的结果和表格中的数据可以计算出两种商品售完后共获取利润多少元.【解答】解:(1)设购进A种商品a件,则购进B种商品(100﹣a)件,25a+35(100﹣a)=3100解得,a=40则100﹣a=60答:A、B两种商品分别购进40件、60件;(2)(30﹣25)×40+(45﹣35)×60=5×40+10×60=200+600=800(元)答:两种商品售完后共获取利润800元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.14.华联超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如表:(注:获利=售价﹣进价)甲乙进价(元/件)2030售价(元/件)2540(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售?【分析】(1)设第一次购进乙种商品x件,则购进甲种商品2x件,根据题意列出方程即可求出答案;(2)根据利润等于单件利润乘以售出件数即可求出答案.(3)根据题意列出方程即可求出答案.【解答】解:(1)设第一次购进乙种商品x件,则购进甲种商品2x件,根据题意得:20×2x+30x=7000,解得:x=100,∴2x=200件,答:该超市第一次购进甲种商品200件,乙种商品100件.(2)(25﹣20)×200+(40﹣30)×100=2000(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润2000元.(3)方法一:设第二次乙种商品是按原价打y折销售根据题意得:(25﹣20)×200+(40×﹣30)×100×3=2000+800,解得:y=9答:第二次乙商品是按原价打9折销售.方法二:设第二次乙种商品每件售价为y元,根据题意得:(25﹣20)×200+(y﹣30)×100×3=2000+800,解得:y=36×100%=90%答:第二次乙商品是按原价打9折销售.方法三:2000+800﹣100×3=1800元∴=6,∴×100%=90%,答:第二次乙商品是按原价打9折销售.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.15.目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,根据甲乙两种灯的总进价为46000元列出一元一次方程,解方程即可;(2)设乙型节能灯需打a折,根据利润=售价﹣进价列出a的一元一次方程,求出a的值即可.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000解得:x=400购进乙型节能灯1200﹣x=1200﹣400=800只.答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.16.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为2或8元.【分析】(1)设钢笔得单价为x元,则毛笔单价为(x+6)元,根据题意列出方程,求出方程的解即可得到结果;(2)①设单价为19元得钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意列出方程,求出方程的解即可得到结果;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意列出关系式,根据z,a 为整数,确定出a与z的值,即可得到结果.【解答】解:(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元,由题意得:30x+20(x+6)=1070,解得:x=19,则x+6=25,答:钢笔的单价为19元,毛笔的单价为25元;(2)①设单价为19元的钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意得:19y+25(60﹣y)=1322,解得:y=,不合题意,即张老师肯定搞错了;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意得:19z+25(60﹣z)=1322﹣a,即6z=178+a,由a,z都是整数,且178+a应被6整除,经验算当a=2时,6z=180,即z=30,符合题意;当a=8时,6z=186,即z=31,符合题意,则签字笔的单价为2元或8元.故答案为:2或8.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.。
人教版数学七年级上册3.4实际问题与一元一次方程:行程问题
实际问题与一元一次方程——行程问题一、单选题1.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米2.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为( )A .1800米B .2000米C .2800米D .3200米3.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭4.方方早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x 分钟,那么可列出的方程是( )A .()25015290080x x -=-B .()80152502900x x -+=C .()25015290080x x -=+D .()80250152900x x ++=5.有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第三天走的路程为( )A .96里B .48里C .24里D .12里6.轮船在静水中速度为每小时20km ,水流速度为每小时4km ,从甲码头顺流行驶到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离,设两码头间的距离为xkm ,则列出方程正确的是( ).A .(20+4)x +(20-4)x =5B .20x +4x =5C .x x 5204+=D .x x 520420-4+=+ 7.一辆快车和一慢车同时从A 地出发沿同一公路同方向行驶,快车的行驶速度是120km/h ,慢车的行驶速度是80km/h ,快车比慢车早2h 经过B 地.设A 、B 两地间的路程是xkm ,由题意可得方程( )A .120x ﹣80x =2B .120x ﹣80x =2C .80x ﹣120x =2D .80x ﹣120x =2 8.某铁路桥长1200m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min .整列火车完全在桥上的时间共40s .则火车的长度为( )A .250mB .240mC .200mD .180m9.如图,跑道由两个半圆部分AB ,CD 和两条直跑道AD ,BC 组成,两个半圆跑道的长都是115m ,两条直跑道的长都是85m .小斌站在A 处,小强站在B 处,两人同时逆时针方向跑步,小彬每秒跑4m ,小强每秒跑6m .当小强第一次追上小斌时,他们的位置在( )A .半圆跑道AB 上 B .半圆跑道CD 上C .直跑道AD 上 D .直跑道BC 上 10.已知某桥全长1000米,现有一列火车匀速从桥上通过,测得火车从开始上桥到完全通过共用60秒,整列火车完全在桥上的时间是40秒,设火车的长度为x ,所列方程正确的是( )A .100010004060x x -+= B .100010004060x x +-= C .100010004060x += D .100010004060x += 11.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x 小时两车相遇,则根据题意可列方程为( )A .75+(120-75)x =270B .75+(120+75)x =270C .120(x -1)+75x =270D .120×+(120+75)x =27012.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了3h .已知水流的速度是3km h ,设船在静水中的平均速度为km h x ,根据题意列方程( ).A .()()2333x x +=-B .()()3323x x +=-C .()()2333x x +=-D .()()3323x x +=-二、填空题13.学校操场的环形跑道长400米,小聪的爸爸陪小聪锻炼,小聪跑步每秒行2.5米,爸爸骑自行车每秒行6.5米,两人从同一地点出发,同向而行,每隔________秒两人相遇一次. 14.甲乙两车分别从AB 、两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A 地后未作停留,继续保持原速向远离B 地的方向行驶,而甲车在相遇后又行驶了2小时到达B 地后休整了1小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地,则,A C 两地相距_________千米.15.如图所示,甲、乙两人沿着边长为10m 的正方形,按A→B→C→D→A ...的方向行走,甲从A 点以5m /分钟的速度,乙从B 点以8m /分钟的速度行走,两人同时出发,当甲、乙第15次相遇时,它们在______边上.16.如图,已知等边三角形ABC 的边长为24厘米,甲、乙两动点同时从顶点A 出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,相遇后甲、乙的速度均增加1厘米/秒且都改变原方向移动.则第二次相遇时乙与最近顶点的距离是__________厘米.17.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地(C 在A 、B 两地之间),共乘船3h ,已知船在静水中的速度是8km/h ,水流速度是2km/h ,若A 、C 两地距离为2km ,则A 、B 两地间的距离是________.18.AB 、两地相距450千米,甲、乙两车分别从A B 、两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,设经过t 小时两车相距50千米,则t 的值是_______________小时.三、解答题19.甲、乙两地相距3千米,小王从甲地出发步行到乙地,小李从乙地出发步行到甲地.两人同时出发,20分钟后两人相遇.已知小王的速度比小李的速度每小时快1千米,求两人的速度.20.从甲地到乙地,长途汽车原来需要8小时,开通高速公路后,路程缩短了40千米.平均车速增加了30千米/时,需要4.5小时即可达到.求长途汽车原来行驶的速度.21.甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地问:(1)甲车速度是________千米/小时,乙车速度是_________千米/小时.A,B距离是_______千米.(2)这一天,若乙车晚1小时出发,则再经过多长时间,两车相距20千米?22.一列火车匀速行驶,经过一条长475m的A隧道用了30s的时间.A隧道的顶上有一盏灯,垂直向下发光,行驶过程中灯光照在火车上的时间是11s.(1)求这列火车的长度;(2)若这列火车经过A隧道后按原速度又经过了一条长775m的B隧道,求这列火车经过B隧道需要的时间.23.甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为60千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,已知丙城在甲、乙两城之间,且与甲城相距260千米.用一元一次方程的知识解答下列问题:(1)已知客车和出租车在甲、乙之间的M处相遇,求M处与丙城的距离;(2)求客车与出租车相距200千米时客车的行驶时间.参考答案1.C解:12秒=1300小时,150米=0.15千米,设火车长x千米,根据题意得:1300×(4.5+120)=x+0.15,解得:x=0.265,0.265千米=265米.答:火车长265米.故选:C.2.C解:设小宇的速度为x米/分,根据题意得:1018010800x=⨯-,解得:10x=,则小宇家离学校的距离为10180102800x+⨯=(米),故选:C.3.C解:设野鸭与大雁从南海和北海同时起飞,经过x天相遇,根据题意得:111 79x⎛⎫+=⎪⎝⎭.故选:C.4.A解:设他推车步行的时间为x分钟,骑自行车上学时间为(15-x)分钟,根据题意得:80x+250(15-x)=2900,变形得:250(15-x)=2900-80x,.故选择:A.5.B解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,12x里,14x里,18x里,依题意,得:4x+2x+x+12x+14x+18x=378,解得:x =48.故选:B .6.D解:顺流的速度为(20+4)km/h ,∴顺流的时间为204x +小时; 同理可得逆流的时间为204x -小时, 可列方程 204x ++204x -=5. 故选:D .7.D解:设A 、B 两地间的路程为x km , 根据题意得:280120x x -=; 故选:D .8.B解:设火车长度是xm , 列式:120012006040x x +-=,解得240x =. 故选:B .9.D解:设小强第一次追上小彬的时间为x 秒,根据题意,得:6x -4x+115=2×115+2×85,解得x=142.5,整个跑道长为2×115+2×85=400(m),小强第一次追上小彬时,小彬跑了4x=570(m),而570-400=170>115,∴他们的位置在直跑道BC 上,故选:D .10.A解:火车从车头上桥到车尾离桥运动的总路程为:(1000)x m +,整列火车完全在桥上运动的总路程为:(1000)x m -火车是匀速运动的,根据题意可列方程为:100010004060x x -+=, 故选:A .11.B解:设再经过x 小时两车相遇,则75+(120+75)x =270,故选:B12.C解:设船在静水中的平均速度为km h x ,已知水流的速度是3km h ,则船顺流而行的速度是(x+3)km /h ,船逆流而行的速度是(x -3)km /h ,根据题意列方程:()()2333x x +=-故选:C .13.100解:设每隔x 秒两人相遇一次,根据题意得:(6.5-2.5)x =400,解得:x =100.答:每隔100秒两人相遇一次.故答案为:100.14.420解:设乙车每小时行驶x 千米,则甲车每小时行驶(x +20)千米,由题意得:3x =2(x +20),解得:x =40,则x +20=60,即乙车每小时行驶40千米,则甲车每小时行驶60千米,∴A ,B 两地的距离为:3×60+3×40=300(千米),设两车相遇后经过y 小时到达C 地,由题意得:60(y -3)=40(y +3),解得:y =15,∴B ,C 两地的距离为:60(15-3)=720(千米),∴A ,C 两地的距离为:720-300=420(千米),故答案为420.15.BC解:设第一次相遇用时1t 分钟,1185103t t -=⨯,解得110t =,设又过了2t 分钟第二次相遇,2285104t t -=⨯,解得2403t =, ∴从第二次相遇开始每隔403分钟甲、乙相遇一次, ∴第15次相遇用时为:4059010(151)33+⨯-=(分钟), ∴乙的路程为:59018403933⨯÷=(圈),故相遇在BC 边. 16.6 解:设出发x 秒后甲乙第一次相遇,根据题意得:x+3x=24×3,解得:x=18,此时甲的路程:18118⨯=,∴相遇地点在线段AC 上,距离点C 的距离为:24186-=厘米;∴第二次相遇的时间为:18+24×3÷(2+4)=30(秒),∴乙第二次运动的时间为:301812-=秒,∴乙第二次的路程为:41248⨯=厘米,∴第二次相遇的地点在线段AB 上,距离点A 的距离为24246486++-=厘米,∴第二次相遇时乙与最近顶点A 的距离是6厘米;故答案为:6.17.12.5km解:设A 、B 两地间的距离是:x km∴A 、C 两地距离为2km∴B 、C 两地距离为()2x -km 根据题意得:238282x x -+=+-,即23106x x -+= ∴()35290x x +-=∴8100x =∴2512.52x==∴A、B两地间的距离是:12.5km故答案为:12.5km.18.2或2.5解:当甲、乙两车相遇前相距50千米时,根据题意得:(120+80)t+50=450,解得:t=2;当甲、乙两车相遇后相距50千米时,根据题意得:(120+80)t=450+50,解得:t=2.5,综上,t的值为2小时或2.5小时.故答案为:2或2.519.小李的速度为每小时4千米,小王的速度为每小时5千米.解:设小李的速度为每小时x千米,则小王的速度为每小时()1x+千米根据题意得:13(x+x+1)=3,解得:x=4,∴小李的速度为每小时4千米,小王的速度为每小时5千米.20.50千米/时解:设长途汽车原来行驶的速度为x千米/时,开通高速公路后,速度为(30)x+千米/时,根据题意,得:840 4.5(30)x x-=⨯+解得:50x=答:长途汽车原来行驶的速度为50千米/时.21.(1)15,45,180;(2)2912小时或3712小时解:(1)设甲的速度为xkm/h,则乙的速度为3903x+=x+30(km/h),根据题意得:3x=x+30,解得:x=15,∴x+30=45,∴AB的距离为:45×4=180km,∴AB的距离为180km;(2)设再经过y小时,两人相距20km,则15(y+1)+45y=180-20或15(y+1)+45y=180+20,解得:y=2912或3712,∴再经过2912小时或3712小时后,两人相距20km.22.(1)275米;(2)42秒解:(1)设这列火车的长度为x米,依题意,得:475 1130x x+=,解得:x=275.答:这列火车的长度为275米.(2)这列火车的速度为275÷11=25(米/秒),这列火车经过B隧道需要的时间为(275+775)÷25=42(秒).答:这列火车经过B隧道需要的时间为42秒.23.(1)60km;(2)4小时或203小时解:(1)设客车和出租车x小时相遇则60x+90x=800∴x=163,此时客车走的路程为320km,距离甲城为320km,∴ 丙城与甲城相距260千米,∴丙城与M处之间的距离为320-260=60(km)(2)设当客车与出租车相距200千米时客车的行驶时间是t小时,∴当客车和出租车没有相遇时60t+90t+200=800解得t=4,∴当客车和出租车相遇后60t+90t-200=800解得:t=203,∴当客车与出租车相距200千米时客车的行驶时间是4小时或203小时.。
人教版七年级数学上册《3.4 实际问题与一元一次方程》练习题-带参考答案
人教版七年级数学上册《3.4 实际问题与一元一次方程》练习题-带参考答案一、选择题1.某电冰箱的进价为1530元,按商品标价的九折出售时,利润率为15%,若设该电冰箱的标价为x元,则可列方程为()A.90%x−1530=15%×1530B.90%x−1530=(1+15%)xC.1530×90%=15%x D.x−1530×90%=15%x2.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.参与种树的有()人.A.8 B.7 C.6 D.53.某车间24名工人生产螺栓和螺母,每人每天平均生产螺栓4个或螺母6个,现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:3配套,为求x列出的方程是()A.3×4(24﹣x)=6x B.4x=3×6(24﹣x)C.3×6x=4(24﹣x)D.3×4x=6(24﹣x)4.足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分,一个球队进行了14场比赛,共得19分,若其中只负5场,那么这个队胜了()A.3场B.4场C.5场D.6场5.互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元6.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程()A.54−x=20%×108 B.54−x=20%×(108+x)C.54+x=20%×162 D.108−x=20%(54+x)7.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.2天B.3天C.4天D.8天8.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.320二、填空题9.一项工程甲单独做要20 h,乙单独做要12 h.现在先由甲单独做5 h,然后乙加入进来合做.完成整个工程一共需要多少小时?若设一共需要x h,则所列的方程为10.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为°.11.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份,经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变,这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是12.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,所有工人全部参与生产,则生产螺钉的工人有人.13.某超市推出如下优惠方案:⑴一次性购物不超过100元不享受优惠;⑵一次性购物超过100元但不超过300元一律9折;⑶一次性购物超过300元一律8折。
人教版七年级数学上册实际问题与一元一次方程(配套+行程问题)同步训练
17.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.
(1)调入多少名工人;
(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?
18.应分配30人生产甲种零件,45人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.
19.(1)80千米;(2)租用甲车合算
20.(1)15,45,180;(2) 小时或 小时
A. ቤተ መጻሕፍቲ ባይዱ.
C. D.
二、填空题
9.要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分 张做侧面,另一部分 张做底面.已知每张白卡纸可以做侧面2个,或做底面3个,如果5个侧面可以和2个底面做成一个包装盒.依题意列方程组为__________.
10. 个工人生产螺栓和螺母,已知一个工人每天生产 个螺栓或 个螺母,且一个螺栓配 个螺母,如何分配工人使生产的螺栓与螺母恰好配成套.如果设生产螺栓的工人数为 个,根据题意可列方程为:__________________.
A. B.
C. D.
3.河北省某机械厂加工车间有34名工人,平均每名工人每天加工大齿轮20个或小齿轮15个.已知3个大齿轮和2个小齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能刚好配套?若设加工大齿轮的工人有 名,则可列方程为()
A. B.
C. D.
4.某车间有28名工人生产螺钉和螺母,每人每小时平均能生产螺钉12个或螺母18个,1个螺钉需要配2个螺母,若安排 名工人生产螺钉时每小时生产的螺栓和螺母刚好配套,那么可列方程为()
人教版七年级上册数学实际问题与一元一次方程(行程问题)专项训练
(1)爸爸追上小丽用了多长时间?
(2)追上小丽时,距离学校还有多远?
参考答案
1.A
2.B
3.D
4.A
5.D
6.B
16.某铁路桥长1200m,现有一列火车从桥上通过,测得该火车从开始到完全过桥共用了1min,整列火车完全在桥上的时间共40s,则火车的长度为_________米.
三、解答题
17.A、B两地相距900km,甲车从A地驶向B地,2h后距B地800km,与此同时乙车以100km/h的速度沿着相同的道路从A地驶向B地.
人教版七年级上册数学3.4实际问题与一元一次方程(行程问题)专项训练
一、单选题
1.A、B两地相距500 km,大客车以每小时60 km的速度从A地驶向B地,2小时后,小汽车以每小时90 km的速度沿着相同的道路行驶,设小汽车出发x小时后追上大客车,根据题意可列方程为()
A.60(x+2)=90从A地开往B地,速度分别为 和 ,甲车到达B地后立刻以原速返回A地,A、B两地相距 ,在乙车到达B地之前,出发___________时,两车相距 .
13.一客轮逆水行驶,船上一乘客掉了一件物品,浮在水面上,乘客发现后,轮船立即掉头去追(轮船掉头时间不计),已知轮船从掉头到追上共用9分钟,则乘客丢失了物品后_______分钟后发现的.
A. B.
C. D.
4.轮船沿江从 港顺流行驶到 港,比从 港返回 港少用3小时,若船速为26千米/时,水速为2千米/时,求 港和 港相距多少千米.设 港和 港相距 千米.根据题意,可列出的方程是()
人教版七年级上册 3.4 实际问题与一元一次方程同步练习(含答案)
行程问题1.基本公式:___2.基本类型:相遇问题、追及问题、环形跑道问题、航行问题、飞行问题。
3.航行问题的数量关系:(1)顺水航行的路程=逆水航行的路程(2)4.飞行问题基本等量关系:完成下面的题1.甲、乙两地路程为180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同时出发,相向而行,问经过多少时间两人相遇?解:易知摩托车的速度是每小时45千米。
设经过x小时两人相遇,依题意,得15x+45x=180解得x=3答:经过3小时两人相遇。
2. 甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且先出发2小时,问摩托车经过多少时间追上自行车?解:设摩托车经过x小时追上自行车,依题意,得45x—15(x+2)=180解得x=7答:摩托车经过7小时追上自行车3.一架直升机在A,B两个城市之间飞行,顺风飞行需要4小时,逆风飞行需要5小时.如果已知风速为30km/h,求A,B两个城市之间的距离.解:设飞机无风时的速度为x 千米/小时,依题意,得解得x=270所以(270+30)× 4=1200(千米)答:A,B两个城市之间的距离为1200千米。
4.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同.一地方同时出发同向而行...........,甲的速度为100米/分,乙的速度是甲速度的32倍,问(1)经过多少时间后两人首次相遇(2)第二次相遇呢?解:乙的速度是10032⨯=150米/分。
(1)设经过x分钟后两人首次相遇,依题意,得150100400x x-=解得x=8(2)设经过x分钟后两人第二次相遇,依题意,得150100800x x-=解得x=16答:(1)设经过8分钟后两人首次相遇;(2)设经过16分钟后两人第二次相遇。
人教版数学七年级上学期:实际问题与一元一次方程 练习
3.4 探实际问题与一元一次方程(一)快乐晋级1.一只签字笔进价0.8元,售价1元,销售这种笔的利润是______%.2.某工厂6月份的产值是200万元,7月份的产值比6月份减价了10%,该厂7月份的产值是________万元.3.某种商品的价格为a元,降价10%后又降价10%,销售一下子上升了,商场决定再提价20%,提价后这种商品的价格为( )A.a元B.1.08a元C.0.96a元D.0.972a元4.一城市现有42万人口,预计一年后城镇人口增加0.8%,农村人口增加1.1%, 这样全市人口将增加1%,求这个城市的现有城镇人口数和农村人口数.5.一年期定期储蓄年利率为2.25%,所得利息交纳20%的利息税,已知某储户的一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入多少本金?拓广探索6.某城市2003年工农业总产值为126亿元,比2002年降低了10%,由于加大了改革力度,预计2004年的工农业总产值将比2003年增加10%,如果预计准确,2004年的工农业总产值能达到2002年的水平吗?7.据《新华月报》消息,巴西医生马廷恩经过10年研究后得出结论:卷入腐败行为的人容易得癌症和心血管病.如果将犯有贪污、受贿罪的580名官员与600 名廉洁官员进行比较,可发现:后者的健康人数比前者的健康人数多272人,两者患病( 包含致死)者共444人,试问:犯有贪污、受贿罪的官员的健康人数占580 名官员的百分之几?3.4 实际问题与一元一次方程(二)快乐晋级1.做完电学实验,某同学记录下电压V(伏特)与电流I(安培)之间的对应关系:I(安培) … 2 4 6 8 10 …V(伏特) …15 12 9 6 3 …如果电流I=5安培,那么电压V=( )伏特.A.10B.10.5C.11D.11.52.2004年中国足球甲级联赛规定每队胜一场得3分、平一场得1分、负一场得0分.武汉黄鹤楼队前14场保持不败,共得34分,该队共平了( )场A.3B.4C.5D.63.某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系: 1170 33D P+-=.(1)当单价为4元时,市场需求量是多少?(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?4.某商店积压了100件某种商品,为使这批货物尽快脱手, 该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理:第1次降价30%,第2 次又降价30%,第3次再降价30%,3次降价处理销售结果如下表:降价次数一二三销售件数10 40 一抢而光问:(1)第3次降价后的价格占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部倍完,哪一种方案更盈利?5.某商店对超过15000元的物品提供分期付款服务,顾客可以先付3000元, 以后每月付1500元,阮叔叔想用分期付款的形式购买价值19000元的电脑, 他需用多长时间才能付清全部贷款?拓广探索6.一份数学竞赛试卷有20道选择题,规定做对一题得5分,一题不做或做错■■■■( 此处因印刷原因看不清楚).文文做对了16道,但只得了74分,这是为什么?答案1.B2.B3.(1)5千件;(2)需求量减少了3千件4.(1)设原价为a元,2.5a( 1-30%)3/a=85.75%;(2)按原价的销售额=100a元;按新方案的销售额=10×2.5a(1- 30%)+40×2.5a(1-30%)2+50×2.5a(1-30%)3=109.375a元,所以按新方案销售更盈利.5.设阮叔叔需用x月的时间,3000+1500x=1900,x=2103,需用11个月的时间.6.设一题不做或做错得x分,16×5+(20-16)x=74,x=-4,所以一题不做或做错扣4分.答案1.252.1803.D4.设现有城镇人口为x万人,x(1+0.8%)+(42-x)(1+1.1%)=42(1+1%),x=14,42-x=28.5.设该储户存入x元,2.25%x(1-20%)=450,x=250006.设2002年工农业总产值为x亿元,x(1-10%)=126,x=140;126(1+10%)=138.6,不能达到2002年的水平7.设犯有贪污和受贿罪的官员的健康人数为x人,(580-x)+[600-(x+272)]=444,x=232,232÷580=46.4%3.4实际问题与一元一次方程(2)同步精练◆阶段性内容回顾1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.若干应用问题等量关系的规律(1)和、差、倍、分问题增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc3.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.4.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.5.行程问题基本量之间的关系路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题快行距+慢行距=原距(2)追及问题快行距-慢行距=原距(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.6.工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=17.储蓄问题(1)利润=每个期数内的利息本金×100%(2)利息=本金×利率×期数.◆阶段性巩固训练:列方程解应用题1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?答案:阶段性巩固练习1.解:设甲、乙一起做还需x小时才能完成工作.根据题意,得16×12+(16+14)x=1解这个方程,得x=11 5115=2小时12分 答:甲、乙一起做还需2小时12分才能完成工作. 2.解:设x 年后,兄的年龄是弟的年龄的2倍,则x 年后兄的年龄是15+x ,弟的年龄是9+x . 由题意,得2×(9+x )=15+x 18+2x=15+x ,2x-x=15-18 ∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)3.解:设圆柱形水桶的高为x 毫米,依题意,得π ·(2002)2x=300×300×80 x ≈229.3答:圆柱形水桶的高约为229.3毫米.4.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为600x分. 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程x+50=2x-50 得x=100∴2x-50=2×100-50=150答:第一铁桥长100米,第二铁桥长150米. 5.解:设这种三色冰淇淋中咖啡色配料为2x 克,那么红色和白色配料分别为3x 克和5x 克. 根据题意,得2x+3x+5x=50 解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克. 6.解:设这一天有x 名工人加工甲种零件,则这天加工甲种零件有5x 个,乙种零件有4(16-x )个. 根据题意,得16×5x+24×4(16-x )=1440 解得x=6答:这一天有6名工人加工甲种零件. 7.解:(1)由题意,得0.4a+(84-a )×0.40×70%=30.72 解得a=60(2)设九月份共用电x 千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750故为了获利最多,选择第二种方案.一元一次方程应用中的“定长”与“定量”在一元一次方程的应用中,经常遇到“定长”与“定量”问题。
人教版七年级上册数学实际问题与一元一次方程行程问题
人教版七年级上册数学3.4 实际问题与一元一次方程 行程问题一、单选题1.李华和赵亮从相距30千米的A 、B 两地同时出发,李华每小时走4千米,3小时后两个人相遇,设赵亮的速度为x 千米/时,所列方程正确的是( )A .()3430x +=B .3430x ⨯+=C .3430x +=D .()3430x -= 2.A 、B 两地相距200km ,大客车以每小时50km 的速度从A 地驶向B 地,1小时后,小汽车以每小时70km 的速度沿着相同的道路同向行驶,设小汽车出发x 小时后追上大客车,根据题意可列方程为( )A .()50701x x =-B .()50170x x +=C .()50701200x x +-=D .()50170200x x ++= 3.如图所示,已知数轴上点A 表示的数为8,点B 表示的数为﹣6.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动;动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,点P 运动( )秒追上点Q .A .5B .6C .7D .8 4.某人骑电动车到单位上班,若每小时骑30千米,则可早到10分种;若每小时骑20千米,则迟到5分种.设他家到单位的路程为x 千米,则所列方程为( ) A .1053020x x B .10530602060x x +=- C .51030602060x x +=- D .10530602060x x -=+ 5.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意可列方程为( )A .240x +150x =12×15B .240x =150x -12×150C .240(x -12)=150x +150D .240x =150x +12×1506.小明早上8点从家骑车去图书馆,计划在上午11点30分到达图书馆.出发半小时后,小明发现若原速骑行,将迟到10分钟,于是他加速继续骑行,平均每小时多骑行1千米,恰好准时到达,则小明原来的速度是( )A .12千米/小时B .17千米/小时C .18千米/小时D .20千米/小时 7.我国元朝朱世杰所著的《算学启蒙》中记载:“良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.”意思是:“跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x 天可以追上慢马,则可列方程为( )A .()15012240x x +=B .()24012150x x +=C .()15012240x x -=D .()24012150x x -=8.《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x 天相遇,根据题意可列方程为( )A .11179x ⎛⎫+= ⎪⎝⎭B .11179x ⎛⎫-= ⎪⎝⎭C .()971x -=D .()971x +=二、填空题9.某船顺流航行的速度为27km/h , 逆流航行的速度为19km/h ,则水流的速度是____km/h .10.一列火车匀速行驶,经过一条长350m 的隧道需要12s 的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是5s ,设火车的行驶速度为x m/s ,依题意列方程是 _____.11.一对双胞胎姐妹同时从家里出发去同一所学校,姐姐的速度为6千米/小时,妹妹的速度为5千米/小时,结果姐姐比规定时间早10分钟到校,妹妹迟到5分钟.若设这对姐妹家离学校的距离为x 千米,可列方程_________.12.一列火车长110米,现在以30km/h 的速度向北缓缓行驶,9:20追上向北行走的路人甲,15秒离开甲,9:26迎面遇上向南行走的路人乙,12秒钟后离开乙.若路人甲、乙行走速度不变,请问路人甲和乙相遇时间是火车迎面遇上路人乙后_______分钟.13.一辆客车和一辆卡车同时从A 地出发沿同一条公路同方向行驶,客车的行驶速度是70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地.A ,B 两地间的路程是多少?若设A ,B 两地相距x km ,可列方程_____.14.小明和小刚从学校出发去敬老院送水果,小明带着东西先走了200m ,小刚才出发.若小明每分钟行80m ,小刚每分钟行120m ,则小刚用______分钟可以追上小明. 15.一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早30分钟经过B地.则A、B两地路程为________.16.甲、乙两地相距400千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中速度是______千米/时.三、解答题17.一艘轮船从甲码头到乙码头顺流而行,用了3h,从乙码头返回甲码头逆流而行,用了4h.已知水流的速度是3km/h,求船在静水中的平均速度.18.甲车和乙车分别从A、B两地同时出发,沿同一路线相向匀速而行.出发后1.5h 两车相距80km,之后再行驶2.5h甲车到达B地,而乙车还差40km才能到达A 地.求A地和B地相距多少km?19.A,B两列火车的长分别为156m和180m,A车比B车每秒多行4m.(1)若两列火车相向而行,从相遇到全部错开,需要8s.问两车速度各是多少?(2)在(1)的条件下,若两列火车同向行驶,且B车行驶在A车前方,求A车的车头从B车的车尾开始追及到A车车尾超过B车车头需多少时间?20.如图,点C在线段AB上.点P从点C出发向点B运动,速度为2cm/s;同时,点Q也从点C出发,速度为4cm/s,用1s到达A处,并在A处停留2s,然后按原速度向点B运动.最终,点Q比点P早1s到达B处.设点P运动的时间为t s.(1)线段AC的长为cm;(2)求线段BC的长;(3)从P,Q两点同时出发至点P到达点B处的这段时间内,t为何值时,P,Q两点相距1cm?答案第1页,共1页 参考答案:1.A2.B3.C4.B5.D6.C7.A8.A9.410.125350x x =+11.155660x x -= 12.2413.16070x x -= 14.515.210km16.9017.船在静水中的平均速度为21km /h18.甲地和乙地相距260千米.19.(1)A 车的速度为23m/s ,则B 车的速度为19m/s ;(2)84s20.(1)4(2)BC =20;(3)t 为16s 或152s 或172s 或192s 时,P ,Q 两点相距1cm .。
人教版七年级上册数学实际问题与一元一次方程(行程问题)训练
C. D.
8.一艘轮船从甲码头到乙码头顺水航行,用了 ,从乙码头到甲码头逆水航行,用了 .已知水流速度为 .设轮船在静水中的速度为 ,则可列出的方程为()
A. B.
C. D.
二、填空题
9.一轮船在A、B两地间航行,顺流航行速度为40千米/时,逆流航行速度为20千米/时.则船在静水中的速度为______千米/时,水流的速度为__________千米/时.
A.2B.1.5C.2或1.5D.2或2.5
6.一轮船从甲码头到乙码头顺水航行,用了 小时,从乙码头到甲码头逆水航行,用了 小时.已知水流速度为 千米 时,设轮船在静水中的速度为 千米 时,根据题意可列方程为()
A. B. C. D.
7.甲、乙两人环湖竞走,环湖一周为400米,乙的速度是80米 分,甲的速度是乙的 倍,且甲在乙前100米处,多少分钟后,两人第一次相遇?设经过 分钟两人第一次相遇,所列方程为()
18.某中学组织学生去郊游,一队学生从学校出发,以5千米/时的速度步行先走,一位老师在学生出发40分钟后骑摩托车追赶,速度为30千米/时,结果他们同时到达目的地,求目的地距学校多少千米?
19.A、B两地相距480千米,一辆快车从A地出发,每小时行驶80千米,一辆慢车从B地出发,每小时行驶60千米.
(1)两车同时出发,相向而行,x小时相遇,可列方程:____________________;
12.运动场的跑道一圈长400m.甲练习骑自行车,平均每分骑350m;乙练习跑步,平均每分跑250m.两人从同一处同时同向出发,经过_________分钟首次相遇.
13.李叔叔骑车从家到工厂,通常要40分钟,如果他骑车速度比原来每小时增加2千米,那么可节约10分钟,李叔叔的家离工厂有_______千米.
人教版七年级上册数学 实际问题与一元一次方程 专项训练1
3.4一.选择题1.一商店在某一时间以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件号损25%,卖两件衣服总共亏损4元,则a的值为()A.30B.40C.50D.602.某商店出售两件衣服,每件售价600元,其中一件赚了20%,而另一件赔了20%,那么这家商店销售这两件衣服的总体收益情况是()A.赚了50元B.赔了50元C.赚了80元D.赔了80元3.已知八年级某班30位学生种树100棵,男生每人种3棵树,女生每人种2树,设男生有x人,则()A.3x+2(30−x)=100B.3x+2(100−x)=30C.2x+3(30−x)=100D.2x+3(100−x)=304.一件商品以进价120%的价格标价,后又打八折出售,最后这件商品是()A.赚了B.亏了C.不赚不亏D.不确定盈亏5.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10B.20C.30D.256.婷婷要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若婷婷得了94分,则婷婷答对的题数是()道.A.17B.18C.19D.206.某足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了()A. 3场B.4场C.5场D.6场7.一名旅客携带了30 kg行李从A飞往B,按民航规定,旅客最多可免费携带20 kg行李,超重部分每千克按飞机票价格的1.5%购买行李票.现该旅客购买了120元的行李票,则他的飞机票价格应是()A.1000元B.800 元C.600 元D.400 元8.乐乐去银行存人本金1 000元,作为一年期的定期储蓄,到期后乐乐税后共取了1 018元,已知银行税率为20%,则一年期储蓄的利率为()A.2.25% B.4.5% C.22.5% D.45%二.填空题米/秒,火车长为400米,则隧道长9.一辆火车用30秒通过一条笔直的隧道,已知火车的速度为1003为米.10.某文具店二月份销售各种水笔300支,三月份销售各种水笔的支数比二月份增长了10%,那么该11.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,则A的成本是元,B的成本是元.12.爷爷和孙子下棋,爷爷赢一盘记1分,孙子赢一盘记为3分,两人下了12盘(末出现和棋)后,得分相同,则爷爷赢盘.13.商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同.其中,每个小书包的利润率为30%,每个大书包的利润率为20%,如果该商店某日出售大书包5个,小书包10 个,则这一天该商店出售书包的利润额是元.三.解答题14.用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,1个瓶身配2个瓶底,现有150张铝片,用多少张铝片制瓶身,多少张铝片制瓶底,可以正好制成成套的饮料瓶?15.某文艺团体为某次募捐组织了一场义演,共售出2000张票,筹得票款13600元.已知学生票5元/张,成人票8元/张,问成人票与学生票各售出多少张?16.初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?17.乐乐用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖.(1)乐乐要买20本练习本,到哪个商店较省钱?(2)乐乐要买10本以上练习本,买多少本时到两个商店付的钱一样多?(3)乐乐现有32元钱,最多可买多少本练习本?18.琪琪要购买珠子串成一条如图所示的手链,黑色珠子需要3个,白色珠子需要4个,此手链共花855。
人教版七年级上册数学实际问题与一元一次方程--行程问题训练
13.某人在同一条路上来回一次共用2小时.来时步行,平均速度是5千米 小时;回去的时坐公共汽车,平均速度是20千米 小时,则这条路长是__________千米.
14.张芳和李强在学校400米的环形跑道上跑步,已知张芳每秒钟跑2米,李强每秒钟跑3米,若他们同时同地出发,那么______秒钟后他们第一次相遇.
7.A
8.C
9.200
10.( + )x=1
11.100
12.
13.8
14.400或80
15.200
16.
17.甲原来需要行驶的时间是1小时,A、B两地间的距离30千米.
18.(1)小刚的速度是16km/h,小强的速度是:4km/h.
(2) 千米
19.72km
20.(1)14
(2)-6
(3)7秒后点B追上点A
三、解答题
17.甲以每小时30千米的速度由A地行驶到B地,如果以比原速度多20%的速度行驶,则甲花了原来时间的 多20分钟到达B地,求甲原来需要行驶的时间与A、B两地间的距离.
18.小刚和小强分别从 、 两地出发,小刚骑自行车,小强步行,沿同一线路相向匀速而行,出发两小时两人相遇,相遇时小刚比小强多走了 千米,相遇后 小时小刚到达 点.
6.我国古代有一问题:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果设快马x天可追上慢马,下面所列方程中正确的是()
A. B.
C. D.
7.小明早晨上学时,每小时走5千米,中午放学沿原路回家时,每小时走4千米,结果回家所用的时间比上学所用的时间多15分钟,问小明家离学校多远?设小明家离学校有x千米,那么所列方程是()
人教版七年级上册数学 实际问题与一元一次方程 行程问题 提升训练
3.4实际问题与一元一次方程行程问题提升训练一.单选题A.36108x--表示乐乐的速度二.填空题三.应用题16.已知:A,B两地相距500km,甲、乙两车分别从A,B两地同时出发,相向而行.甲车的速度为60km/h,乙车的速度为40km/h.请按下列要求列方程解题:(1)多少小时后甲、乙两车相遇?(2)多少小时后甲、乙两车相距100km?17.列一元一次方程解应用题注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空(填空时写清题号,按顺序填),完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答即可.问题展示:A、B两地间的路程为360千米,甲车从A地出发开往B地,每小时行驶72千米.甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米.两车相遇后,各自仍按原速度和原方向继续行驶,那么相遇以后两车相距100千米时,甲车从出发共行驶了多少小时?解题方案:设相遇以后两车相距100千米时,甲车从出发共行驶了x小时.(1)用含x的式子表示:①乙车共行驶了____________小时;②甲车行驶的路程是____________千米;③乙车行驶的路程是____________千米;(2)根据题意,列方程____________;(3)解方程,得____________;(4)答:相遇以后两车相距100千米时,两车从出发共行驶了______小时.18.已知长方形ABCD的长AB为4,宽BC为2;长方形EFGH的长EF为6,宽FG为3.如图1所示,、两边与数轴重合,且点A、点E与原点O重合.AB EF(1)当长方形ABCD从原点出发,以2个单位/秒的速度沿数轴向右匀速运动.长方形ABCD完全通过长方形EFGH时,所需时间为______秒;(2)在(1)的条件下,在运动过程中,当长方形ABCD与长方形EFGH重合面积为2个单位面积时,需要运动多少秒?(3)在(1)的条件下,长方形ABCD开始运动的同时,长方形EFGH以1个单位/秒的速度沿数轴向右匀速运动,设点A和点F运动后对应的点为A'和F',当4A F''=时,此时点F'在数轴上表示的数为多少?19.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动t t>秒.点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)(1)数轴上点B表示的数是________,点P表示的数是________(用含的式子表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4实际问题与一元一次方程
第3课时行程问题
01基础题
知识点1相遇问题
如图,A,B两地之间的距离为s,甲、乙两人分别从A,B两地同时出发,则s甲+s乙=s,t甲=t乙.
1.昆曲高速公路全长128 km,甲、乙两车同时从昆明、曲靖两地高速公路收费站相向匀速出发,经过40 min相遇,甲车比乙车每小时多行驶20 km.求甲、乙两车的速度.
2.某公路的干线上有相距108 km的A,B两个车站,某日16点整,甲、乙两车分别从A,B两站同时出发,相向而行,已知甲车的速度为45 km/h,乙车的速度为36 km/h,则两车相遇的时间是( )
A.16:20 B.17:20
C.17:40 D.16:40
3.甲、乙两车同时从相距480 km的两地相对而行,甲车每小时行驶45 km,途中因汽车故障甲车停了1 h,5 h后两车相遇.乙车每小时行驶多少千米?
知识点2追及问题
a.同时出发,s甲=s AC+s乙,t甲=t乙.
b.若甲出发t小时后,乙才出发,而后在B处追上甲,则s甲=s乙,t甲=t+t乙.
4.A,B两地相距600 km,甲车以60 km/h的速度从A地驶向B地,2 h后,乙车以100 km/h 的速度沿着相同的道路从A地驶向B地.乙车出发x小时后追上甲车,根据题意可列方程为( )
A.60(x+2)=100x B.60x=100(x-2)
C.60x+100(x-2)=600 D.60(x+2)+100x=600
5.小明每秒钟跑6 m,小虎每秒钟跑5 m,小虎站在小明前10 m处,两人同时起跑,小明追上小虎需( )
A.10 s B.8 s
C.6 s D.5 s
6.一队学生去校外进行训练,他们以5 km/h的速度行进,走了18 min的时候,学校要将一
个紧急通知传给队长,通讯员从学校出发,骑自行车以14 km /h 的速度按原路追上去,通讯员需多少时间可以追上学生队伍?
知识点3 顺水(风)逆水(风)问题
等量关系:顺水(风)行程=逆水(风)行程.
隐含条件:顺水(风)速度=静水(风)速度+水(风)速,
逆水(风)速度=静水(风)速度-水(风)速.
7.一艘轮船在甲、乙两地之间航行,已知水流速度是5 km /h ,顺水航行需要6 h ,逆水航行需要8 h ,则甲、乙两地间的距离是( )
A .220 km
B .240 km
C .260 km
D .350 km
8.一架飞机在两个城市间飞行,无风时每小时飞行552 km ,在一次往返飞行中,飞机顺风飞行用了5.5 h ,逆风飞行用了6 h ,求这次飞行的风速.
知识点4 过桥梁(隧道)问题
9.一列火车长150 m ,以15 m/s 的速度通过600 m 的隧道,从火车进入隧道口算起,到这列火车完全通过隧道,所需时间是( )
A .30 s
B .40 s
C .50 s
D .60 s
10.已知某铁轨桥长500 m ,现在一列火车匀速通过该桥,火车从开始上桥到过完桥共用了30 s ,整列火车完全在桥上的时间为20 s ,则火车的长度为多少米?
02 中档题
11.甲、乙两人从A 地到B 地,甲先走了2 h 乙再出发,结果乙比甲还早到20 min ,已知甲的速度为4 km /h ,乙的速度为6 km /h ,求A ,B 两地的距离.设A ,B 的距离为x km ,可列方程为( )
A .x 4-x 6=2-13
B .x 4-x 6
=2+20 C .x 4-x 6=2+13。