人教版小学数学四年级奥数训练第34讲 行程问题(二)
小学六年级奥数第34讲 行程问题(二)(含答案分析)
第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114+334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。
图34——1BA图34-1图34——2图34-22、兄、妹2人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
兄每秒走1.3米。
妹每秒走1.2米。
他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
小学数学行程问题之相遇与追及问题(二)完整版例题讲解训练+详细答案
相遇与追及问题题型训练【例题1】甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54千米;出发5小时后,两人还相距27千米.问出发多少小时后两人相遇?【巩固1】下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).【例题2】甲、乙两地相距240 千米,一列慢车从甲地出发,每小时行60千米.同时一列快车从乙地出发,每小时行90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)【巩固2】甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?【例题3】解放军某部先遣队,从营地出发,以每小时6千米的速度向某地前进,12小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络,问多少时间后,通讯员能赶上先遣队?【巩固3】甲地和乙地相距40千米,平平和兵兵由甲地骑车去乙地,平平每小时行14千米,兵兵每小时行17千米,当平平走了6千米后,兵兵才出发,当兵兵追上平平时,距乙地还有多少千米?【例题4】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的明具盒忘在家中,爸爸带着明具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?当爸爸追上小明时他们离家多远?【巩固4】哥哥和弟弟在同一所学校读书.哥哥每分钟走65米,弟弟每分钟走40米,有一天弟弟先走5分钟后,哥哥才从家出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?【例题5】小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度.【巩固5】小聪和小明从学校到相距2400米的电影院去看电影.小聪每分钟行60米,他出发后10分钟小明才出发,结果俩人同时到达影院,小明每分钟行多少米?【例题6】一辆慢车从甲地开往乙地,每小时行40千米,开出5小时后,一辆快车以每小时90千米的速度也从甲地开往乙地.在甲乙两地的中点处快车追上慢车,甲乙两地相距多少千米?【例题7】小强每分钟走70米,小季每分钟走60米,两人同时从同一地点背向走了3分钟,小强掉头去追小季,追上小季时小强共走了多少米?【巩固7】六年级同学从学校出发到公园春游,每分钟走72米,15分钟以后,学校有急事要通知学生,派李老师骑自行车从学校出发9分钟追上同学们,李老师每分钟要行多少米才可以准时追上同学们?【例题8】王芳和李华放学后,一起步行去体校参加排球训练,王芳每分钟走110米,李华每分钟走70米,出发5分钟后,王芳返回学校取运动服,在学校又耽误了2分钟,然后追赶李华.求多少分钟后追上李华?【巩固8】小王、小李共同整理报纸,小王每分钟整理72份,小李每分钟整理60份,小王迟到了1分钟,当小王、小李整理同样多份的报纸时,正好完成了这批任务.一共有多少份报纸?【例题9】甲、乙两车同时从A地向B地开出,甲每小时行38千米,乙每小时行34千米,开出1小时后,甲车因有紧急任务返回A地;到达A地后又立即向B地开出追乙车,当甲车追上乙车时,两车正好都到达B地,求A、B两地的路程.【巩固9】小李骑自行车每小时行13千米,小王骑自行车每小时行15千米.小李出发后2小时,小王在小李的出发地点前面6千米处出发,小李几小时可以追上小王?【例题10】甲、乙两辆汽车同时从A地出发去B地,甲车每小时行50千米,乙车每小时行40千米.途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地.A、B两地间的路程是多少?【巩固10】甲车每小时行40千米,乙车每小时行60千米。
六年级奥数举一反三第34讲 行程问题(二)含答案
第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114+334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。
图34——1BA图34-1图34——2图34-22、兄、妹2人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
兄每秒走1.3米。
妹每秒走1.2米。
他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
四年级奥数经典试题之行程问题
四年级奥数经典试题之行程问题行程问题是奥数题的一个重要知识点,下面是小编给大家准备的四年级奥数经典试题之行程问题,供大家参考,希望能喜欢。
专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。
所以,求两人几小时相遇,就是求20千米里面有几个10千米。
因此,两人20÷(6+4)=2 小时后相遇。
练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500 米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。
四年级奥数行程问题及答案【三篇】
【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是为⼤家整理的《四年级奥数⾏程问题及答案【三篇】》供您查阅。
【第⼀篇】甲、⼄两个港⼝之间的⽔路长300千⽶,⼀只船从甲港到⼄港,顺⽔5⼩时到达,从⼄港返回甲港,逆⽔6⼩时到达。
求船在静⽔中的速度和⽔流速度? 解答:由题意可知,船在顺⽔中的速度是300÷5=60千⽶/⼩时,在逆⽔中的速度是300÷6=50千⽶/⼩时,所以静⽔速度是(60+50)÷2=55千⽶/⼩时,⽔流速度是(60-50)÷2=5千⽶/⼩时。
【第⼆篇】某船在静⽔中的速度是每⼩时15千⽶,它从上游甲地开往下游⼄地共花去了8⼩时,⽔速每⼩时3千⽶,问从⼄地返回甲地需要多少时间? 【分析】顺⽔速度是15+3=18千⽶/⼩时,从甲地到⼄地的路程是18×8=144千⽶,从⼄地返回甲地时是逆⽔,逆⽔速度是15-3=12千⽶/⼩时,⾏驶时间为144÷12=12⼩时。
【第三篇】A、B两港相距360千⽶,甲轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时。
⼄轮船在静⽔中的速度是每⼩时12千⽶,⼄轮船往返两港要多少⼩时? 解答:⾸先要求出⽔流速度,由题意可知,甲轮船逆流航⾏需要(35+5)÷2=20⼩时,顺流航⾏需要 20-5=15⼩时,由此可以求出⽔流速度为每⼩时[360÷15-360÷20]÷2=3千⽶,从⽽进⼀步可以求出⼄船的顺流速度是每⼩时 12+3=15千⽶,逆⽔速度为每⼩时12-3=9千⽶,最后求出⼄轮船往返两港需要的时间是360÷15+360÷9=64⼩时。
(完整版)奥数四年级行程问题
(完整版)奥数四年级行程问题第三部分行程问题【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度?时间,时间=距离÷速度,速度=距离÷时间。
在这三个量中,已知两个量,即可求出第三个量。
掌握这三个数量关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度?总时间。
【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
小学六年级奥数第34讲 行程问题(二)(含答案分析)
第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114+334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。
图34——1BA图34-1图34——2图34-22、兄、妹2人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
兄每秒走1.3米。
妹每秒走1.2米。
他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
小学六年级奥数-第34讲 行程问题(二)后附答案
第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114 +334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。
2、兄、妹2人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
图34——1BA图34-1图34——2图34-2兄每秒走1.3米。
妹每秒走1.2米。
他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
小学四年级奥数第34讲 行程问题(二)(含答案分析)
第34讲行程问题(二)一、专题简析:行船问题是指在流水中的一种特殊的行程问题,它也有路程、速度与时间之间的数量关系。
因此,它比一般行程问题多了一个水速。
在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度。
船在水中漂流,不借助其他外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速。
行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速二、精讲精练:例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。
东西两地相距多少千米?1、甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米,求全程长多少千米。
2、甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。
东西两城相距多少千米?例2:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。
A、B两地间的路长多少米?1、甲每分钟走75米,乙每分钟走80米,丙每分钟走100米,甲、乙从东镇,丙人西镇,同时相向出发,丙遇到乙后3分钟再遇到甲。
求两镇之间相距多少米?2、有三辆客车,甲、乙两车从东站,丙车从西站同时相向而行,甲车每分钟行1000米,乙车每分钟行800米,丙车每分钟行700米。
丙车遇到甲车后20分钟又遇到乙车。
求东西两站的距离。
例3:甲、乙两港间的水路长286千米,一只船从甲港开往乙港顺水11小时到达;从乙港返回甲港,逆水13小时到达。
求船在静水中的速度(即船速)和水流速度(即水速)。
1、A、B两港间的水路长208千米。
四年级级下册数学人教版行程问题
四年级级下册数学人教版行程问题行程问题是数学中的一种典型问题类型,通过解决行程问题,可以锻炼学生的逻辑思维能力和计算能力。
在四年级下册数学人教版中,涉及到了行程问题的解决方法和相关知识点。
下面我们将从行程问题的定义、解决步骤以及一些实例来详细介绍行程问题。
首先,什么是行程问题呢?行程问题是指根据给定的条件和要求,通过寻找有效策略,计算出满足条件的行程方案。
在行程问题中,一般会涉及到两个或多个物体、位置或地点,并且要求按照一定的规则进行行动和移动。
通过解决行程问题,可以培养学生的观察、分析和计算能力。
解决行程问题的一般步骤如下:1.仔细阅读题目,理解题意。
了解问题中所涉及的物体、位置或地点,以及要求行动和移动的规则。
2.列出已知条件,确保准确无误。
列出已知条件是解决行程问题的基础,要求学生能够准确地提取出题目中给出的信息。
3.分析问题,确定解决方案。
根据已知条件进行思考,确定一套满足条件的行程方案。
这一步需要学生进行逻辑思维的训练,判断哪些条件是重要的,哪些条件是可以利用的。
4.进行计算和验证。
将确定的方案转化为数学计算问题,进行计算并验证结果是否满足题目要求。
接下来,我们将通过一些具体的实例来演示解决行程问题的过程。
例1:小明从家到学校的距离是6公里,他每天骑车上学,每天早上10分钟,下午5分钟,上午中午各休息10分钟,请问小明一共需要多长时间才能从家到学校?解:首先,我们要理解题目中给出的条件。
小明从家到学校的距离是6公里,每天上午骑车10分钟,中午休息10分钟,下午骑车5分钟。
其次,我们列出已知条件:-上午骑车10分钟-中午休息10分钟-下午骑车5分钟-家到学校的距离是6公里-每次骑车的时间不考虑休息时间然后,我们分析问题,确定解决方案。
小明每天骑车上学,所以每天需要骑车的总时间是10分钟+ 5分钟= 15分钟。
由于每天上午还需要休息10分钟,所以我们需要计算出小明上午骑车的天数。
由于小明上午骑车的时间是10分钟,而每天上午总共有60分钟,所以小明骑车的天数是10分钟÷ 60分钟/天= 1/6天。
(word完整版)小学四年级奥数题行程问题(2021年整理)
(word完整版)小学四年级奥数题行程问题(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)小学四年级奥数题行程问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)小学四年级奥数题行程问题(word版可编辑修改)的全部内容。
小学四年级奥数题:历届奥数经典专题练习——行程问题(一)
小学四年级奥数题:历届奥数经典专题练习—-行程问题(二)。
小学四年级奥数(40讲)
小学四年级奥数1—40讲第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
小学奥数举一反三(四年级)全
(4)61-16
(5)95-59
2.找规律计算。
(1) 62+26=
(2) 87+78=
(3) 54+45=
【例题5】计算(1)26×11(2)38×11
【思路导航】一个两位数与11相乘,只要把这个两位数的两个数字的和插入这两个数字中间,就是所求的积。(1) 26×11=2(2+6)6=286(2) 38×11=3(3+8)8=418
二、精讲精练
【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19
【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(6)(64,62)(48,46)(29,27)(15,□)
(7)(100,50)(86,43)(64,32)(□,21)
(8)(8,6)(16,3)(24,2)(12,□)
第2讲找规律(二)
一、知识要点
对于较复杂的按规律填数的问题,我们可以从以下几个方面来思考:
1.对于几列数组成的一组数变化规律的分析,需要我们灵活地思考,没有一成不变的方法,有时需要综合运用其他知识,一种方法不行,就要及时调整思路,换一种方法再分析;
【例题2】一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。一头象的重量等于几头小猪的重量?
【思路导航】根据“一头象的重量等于4头牛的重量”与“一头牛的重量等于3匹小马的重量”可推出:“一头象的重量等于12匹小马的重量”,而“一匹小马的重量等于3头小猪的重量”,因此,一头象的重量等于36头小猪的重量。
小学奥数行程综合问题
行程综合问题教学目标1.运用各种方法解决行程内综合问题。
2.发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。
知识精讲行程问题是奥数中的一个难点,内容多而杂。
而在行程问题中,还有一些尤其复杂的综合问题。
它们大致可以分为两类:一、行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。
例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。
二、学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。
本讲内容主要就是针对这种综合性题目。
虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是很受“偏爱”的。
所以很重要。
模块一、行程内综合【例 1】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【考点】变速问题与走停问题【难度】2星【题型】解答【例 2】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【考点】变速问题与走停问题【难度】2星【题型】解答【例 3】已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?【考点】环形跑道与猎狗追兔【难度】5星【题型】解答【例 4】甲、乙两人沿400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用24 秒同时回到原地。
(完整版)四年级数学行程问题
行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120 千米,请问:谁的速度更快?2、墨墨练习慢跑,12 分钟跑了3000 千,按照这个速度慢跑25000 米需要多少分钟?如果他每天都以这个速度跑10 分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了 1 小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米, 4 小时后它们相距多少千米?这时甲提高速度打算用 2 小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45 千米,实际上由于高速公路堵车,汽车每小时只行驶30 千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午 1 点出发,晚上7 点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7、小欣家离学校1000米,平时他步行25 分钟后准时到校。
有一天他晚出发10 分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的 6 倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发, 6 小时后相遇在中点,如果甲延迟 1 小时出发,乙每小时少走 4 千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800 米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60 米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第 4 题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350 千米,A车在早上8 点从甲地出发,以每小时40 千米的速度开往乙地。
小学奥数四年级行程问题练习
小学奥数四年级行程问题练习教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.以下是小编为大家整理的关于小学奥数四年级行程问题练习的文章,供大家学习参考。
米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过来,8:_货车追上了米老鼠,又过了30秒货车超过了它;另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了_秒客车离开了它。
如果客车的长度是货车的2倍,客车的速度是货车的3倍。
请问:客车和货车在什么时间相遇?两车错车需要多长时间?解答:行程问题中的三个量路程、速度和时间,如果题目中只出现了一个的量的具体数值,那么我们可以设出来没出现具体数值的两个量中的任意一个量。
当然也可以不设出来,用设份数的方法来做,但这种方法比较抽象,这里我们采用设数的方法。
设货车的长度为60米,则客车的长度为_0米。
从追上米老鼠到超过,货车用30秒,所以货车与米老师的速度差是60÷30=2米/秒。
从和米老鼠相遇到离开,客车用_秒,所以客车与米老师的速度和是_0÷_=_米/秒。
所以我们可以知道客车与货车的速度和是_+2=_米/秒。
又知道客车的速度是货车速度的3倍,则可以求出客车的速度是9米/秒,货车的速度是3米/秒。
然后可以求出米老鼠的速度是1米/秒。
实际上本题就算不知道客车速度是货车速度的3倍,也是可以做出来的。
当然,这时候就算不出客车、货车和米老鼠的具体速度了。
但还是求出来的答案的。
小学奥数四年级行程问题练习.到电脑,方便收藏和打印:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第34讲行程问题(二)
一、专题简析:
行船问题是指在流水中的一种特殊的行程问题,它也有路程、速度与时间之间的数量关系。
因此,它比一般行程问题多了一个水速。
在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度。
船在水中漂流,不借助其他外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速。
行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:
顺水速度=船速+水速
逆水速度=船速-水速
(顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
二、精讲精练:
例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。
东西两地相距多少千米?
1、甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米,求全程长多少千米。
2、甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。
东西两城相距多少千米?
例2:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。
A、B两地间的路长多少米?
1、甲每分钟走75米,乙每分钟走80米,丙每分钟走100米,甲、乙从东镇,丙人西镇,同时相向出发,丙遇到乙后3分钟再遇到甲。
求两镇之间相距多少米?
2、有三辆客车,甲、乙两车从东站,丙车从西站同时相向而行,甲车每分钟行1000米,乙车每分钟行800米,丙车每分钟行700米。
丙车遇到甲车后20分钟又遇到乙车。
求东西两站的距离。
例3:甲、乙两港间的水路长286千米,一只船从甲港开往乙港顺水11小时到达;从乙港返回甲港,逆水13小时到达。
求船在静水中的速度(即船速)和水流速度(即水速)。
1、A、B两港间的水路长208千米。
一只船从A港开往B港,顺水8小时到达;从B港返回A港,逆水13小时到达。
求船在静水中的速度和水流速度。
2、甲、乙两港间水路长432千米,一只船从上游甲港航行到下游乙港需要18小时,从乙港返回甲港,需要24小时到达。
求船在静水中的速度和水流速度。
例4:一只轮船从上海港开往武汉港,顺流而下每小时行25千米,返回时逆流而上用了75小时。
已知这段航道的水流是每小时5千米,求上海港与武汉港相距多少千米?
1、一只轮船从A港开往B港,顺流而下每小时行20千米,返回时逆流而上用了60小时。
已知这段航道的水流是每小时4千米,求A港到B港相距多少千米?
2、一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时。
已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?
例5:A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。
如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?
1、甲乙两个码头间的水路长288千米,货船顺流而下需要8小时,逆流而上需要16小时。
如果客船顺流而下需要12小时,那么客船在静水中的速度是多少?
2、A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。
如果乙船逆流而上需要20小时,那么乙船在静水中的速度是多少?
三、课后作业:
1、一条长160千米的水路,甲船顺流而下需要8小时,逆流而上需要20小时。
如果乙船顺流而下要10小时,那么乙船逆流而上需要多少小时?
2、快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时与慢车还相距7千米。
慢车每小时行多少千米?
3、甲、乙、丙三人,甲每分钟走60米,乙每分钟走67米,丙每分钟走73米。
甲、乙从南镇,丙从北镇同时相向而行,丙遇乙后10分钟遇到甲。
求两镇相距多少千米。
4、甲、乙两城相距6000千米,一架飞机从甲城飞往乙城,顺风4小时到达;从乙城返回甲城,逆风5小时到达。
求这架飞机的速度和风速。
5、某轮船在相距216千米的两个港口间往返运送货物,已知轮船在静水中每小时行21千米,两个港口间的水流速度是每小时3千米,那么,这只轮船往返一次需要多少时间?。