2018届中考总复习解题技巧:换元法解答通关50题(PDF版 含答案)

合集下载

【中考汇编】2018版中考数学真题汇编310页(含答案解析)

【中考汇编】2018版中考数学真题汇编310页(含答案解析)

【中考汇编】2018版中考数学真题汇编目录【中考汇编】2018版中考数学真题汇编:1.1实数【中考汇编】2018版中考数学真题汇编:1.2整式及其运算【中考汇编】2018版中考数学真题汇编:1.3因式分解【中考汇编】2018版中考数学真题汇编:1.4分式【中考汇编】2018版中考数学真题汇编:1.5二次根式【中考汇编】2018版中考数学真题汇编:2.1一元一次方程【中考汇编】2018版中考数学真题汇编:2.2一元二次方程【中考汇编】2018版中考数学真题汇编:2.3二元一次方程组【中考汇编】2018版中考数学真题汇编:2.4不等式与不等式组【中考汇编】2018版中考数学真题汇编:3.1平面直角坐标系【中考汇编】2018版中考数学真题汇编:3.2一次函数【中考汇编】2018版中考数学真题汇编:3.3二次函数【中考汇编】2018版中考数学真题汇编:3.4反比例函数【中考汇编】2018版中考数学真题汇编:4.1图形的初步认识【中考汇编】2018版中考数学真题汇编:4.2三角形【中考汇编】2018版中考数学真题汇编:4.3全等三角形【中考汇编】2018版中考数学真题汇编:4.4等腰三角形【中考汇编】2018版中考数学真题汇编:4.5多边形【中考汇编】2018版中考数学真题汇编:4.6矩形、菱形、正方形【中考汇编】2018版中考数学真题汇编:5.1圆的有关概念与性质【中考汇编】2018版中考数学真题汇编:5.2圆的有关计算【中考汇编】2018版中考数学真题汇编:5.3与圆有关的位置关系【中考汇编】2018版中考数学真题汇编:6.1视图与投影【中考汇编】2018版中考数学真题汇编:6.2轴对称、平移、旋转【中考汇编】2018版中考数学真题汇编:6.3图形的相似【中考汇编】2018版中考数学真题汇编:6.4锐角三角函数【中考汇编】2018版中考数学真题汇编:7.1统计【中考汇编】2018版中考数学真题汇编:7.2概率【中考汇编】2018版中考数学真题汇编专题(1)规律探索问题【中考汇编】2018版中考数学真题汇编专题(2)开放探究问题【中考汇编】2018版中考数学真题汇编专题(3)方案设计问题【中考汇编】2018版中考数学真题汇编专题(4)图表信息问题【中考汇编】2018版中考数学真题汇编专题(5)阅读理解问题【中考汇编】2018版中考数学真题汇编专题(6)运动变化问题第一篇基础知识梳理第一章数与式§1.1实数A组2015年全国中考题组一、选择题1.(2015·浙江湖州,1,3分)-5的绝对值是()A.-5 B.5 C.-15 D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·浙江嘉兴,1,4分)计算2-3的结果为() A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·浙江绍兴,1,4分)计算(-1)³3的结果是() A.-3 B.-2 C.2 D.3解析(-1)³3=-3,故选A.答案 A4.(2015·浙江湖州,3,3分)4的算术平方根是() A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·浙江宁波,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为() A.0.6³1013元B.60³1011元C.6³10元D.6³10元解析6万亿=60 000³100 000 000=6³104³108=6³1012,故选C.答案 C6.(2015·江苏南京,5,2分)估计5-12介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·浙江杭州,2,3分)下列计算正确的是() A.23+26=29B.23-26=2-3C.26³23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·浙江杭州,6,3分)若k<90<k+1(k是整数),则k=() A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·浙江金华,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是 ()A.点A B.点B C.点C D.点D解析∵-3=-1.732,∴表示-3的点与表示-2的点最接近.答案 B二、填空题10.(2015·浙江宁波,13,4分)实数8的立方根是________.解析∵23=8,∴8的立方根是2.答案 211.(2015·浙江湖州,11,4分)计算:23³⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·四川巴中,20,3分)定义:a 是不为1的有理数,我们把11-a称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4= -12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23. 答案 23 三、解答题13.(2015·浙江嘉兴,17(1),4分)计算:|-5|+4³2-1. 解 原式=5+2³12=5+1=6.14.(2015·浙江丽水,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·浙江温州,17(1),5分)计算:2 0150+12+2³⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·浙江衢州,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·浙江舟山,1,3分)-2的相反数是( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·云南,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·安徽,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2³(-12)=1,∴-2的倒数是-12. 答案 A4.(2013·浙江温州,1,4分)计算:(-2)³3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)³3=-2³3=-6.故选A. 答案 A5.(2014·浙江绍兴,1,4分)比较-3,1,-2的大小,正确的是 ( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·浙江丽水,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3. 答案 C7.(2014·浙江宁波,2,4分)宁波轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为 ( )A .253.7³108B .25.37³109C .2.537 ³1010D .2.537 ³1011解析 253.7亿=253.7³10=2.537 ³10,故选C. 答案 C8.(2014·浙江丽水,1,3分)在数23,1,-3,0中,最大的数是 ( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B. 答案 B9.★(2013·山东德州,1,3分)下列计算正确的是( )A.⎝ ⎛⎭⎪⎫13-2=9 B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·浙江台州,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·浙江宁波,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2. 答案 -212.(2013·湖南永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8³10-4.答案 8³10-13.(2014·河北,18,3分)若实数m ,n 满足||m -2+(n -2 014)2=0,则m -1+n 0=________.解析 ∵||m -2+(n -2 014)2=0,∴m -2=0,n -2 014=0,即m =2,n =2 014.∴m -1+n 0=2-1+2 0140=12+1=32.故答案为32. 答案 32 三、解答题14.(2014·浙江金华,17,6分)计算:8-4cos 45°+(12)-1+||-2.解8-4cos 45°+(12)-1+||-2=22-4³22+2+2=22-22+4=4.15.(2014·浙江丽水,17,6分)计算:(-3)2+||-4³2-1-(2-1)0. 解 原式=3+4³12-1=3+2-1=4.16.★(2013·山东滨州,20,7分)(计算时不能使用计算器) 计算:33-(3)2+(π+3)0-27+|3-2|. 解 原式=3-3+1-33+2-3=-3 3.§1.2 整式及其运算A 组 2015年全国中考题组一、选择题1.(2015·浙江衢州,3,3分)下列运算正确的是 ( )A .a 3+a 3=2a 6B .(x 2)3=x 5C .2a 4÷a 3=2a 2D .x 3²x 2=x 5解析 A .a 3+a 3=2a 3;B.(x 2)3=x 6;C.2a 4÷a 3=2a ,故选D. 答案 D2.(2015·山东济宁,2,3分)化简-16(x -0.5)的结果是 ( )A .-16x -0.5B .16x +0.5C .16x -8D .-16x +8解析 计算-16(x -0.5)=-16x +8.所以D 项正确. 答案 D3.(2015·四川巴中,4,3分)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎨⎧a -b =2,a +b =4,解得⎩⎨⎧a =3,b =1,故选A.答案 A4.(2015·浙江丽水,2,3分)计算(a 2)3结果正确的是 ( )A .3a 2B .a 6C .a 5D .6a解析 本题属于积的乘方,底数不变指数相乘,故B 正确. 答案 B5.(2015·贵州遵义,5,3分)计算3x 3²2x 2的结果为 ( )A .5x 5B .6x 5C .6x 6D .6x 9解析 属于单项式乘单项式,结果为:6x 5,故B 项正确. 答案 B6.(2015·福建福州,6,3分)计算a·a-的结果为() A.-1 B.0 C.0 D.-a解析a·a-1=1,故A正确.答案 A二、填空题7.(2015·福建福州,12,4分)计算(x-1)(x+2)的结果是________.解析由多项式乘以多项式的法则可知:(x-1)(x+2)=x2+x-2.答案x2+x-28.(2015·山东青岛,9,3分)计算:3a3²a2-2a7÷a2=________.解析本题属于同底数幂的乘除,和合并同类项,3a3·a2-2a7÷a2=3a5-2a5=a5.答案a59.(2015·安徽安庆,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·浙江温州,17(2),5分)化简:(2a+1)(2a-1)-4a(a-1).解原式=4a2-1-4a2+4a=4a-1.11.(2015·湖北随州,19,5分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2.解原式=4-a2+a2-5ab+3ab=4-2ab,当ab=-12时,原式=4+1=5.B组2014~2011年全国中考题组一、选择题1.(2014·贵州毕节,13,3分)若-2a m b 4与5a n +2b 2m+n可以合并成一项,则m n的值是 ( )A .2B .0C .-1D .1解析 由同类项的定义可得⎩⎨⎧m =n +2,4=2m +n ,解得⎩⎨⎧m =2,n =0.∴m n =20=1.故选D.答案 D2.(2014·浙江丽水,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·贵州遵义,8,3分)若a +b =22,ab =2,则a 2+b 2的值为 ( ) A .6 B .4 C .3 2D .2 3解析 ∵a +b =22,∴(a +b )2=(22)2,即a 2+b 2+2ab =8.又∵ab =2,∴a 2+b 2=8-2ab =8-4=4.故选B. 答案 B4.(2013·浙江宁波,2,3分)下列计算正确的是 ( )A .a 2+a 2=a 4B .2a -a =2C .(ab )2=a 2b 2D .(a 2)3=a 5解析 A .a 2+a 2=2a 2,故本选项错误;B.2a -a =a ,故本选项错误;C.(ab )2=a 2b 2,故本选项正确;D.(a 2)3=a 6,故本选项错误.故选C. 答案 C5.★(2013·湖南湘西,7,3分)下列运算正确的是( )A .a ²a =aB .(x -2)(x +3)=x -6C .(x -2)2=x 2-4D .2a +3a =5a解析 A 中,a 2·a 4=a 6,∴A 错误;B 中,(x -2)(x +3)=x 2+x -6,∴B 错误;C 中,(x -2)2=x 2-4x +4,∴C 错误;D 中,2a +3a =(2+3)a =5a ,∴D 正确.故选D. 答案 D 二、填空题6.(2013·浙江台州,11,5分)计算:x 5÷x 3=________. 解析 根据同底数幂除法法则,∴x 5÷x 3=x 5-3=x 2. 答案 x 27.(2013·浙江义乌,12,4分)计算:3a ·a 2+a 3=________. 解析 3a ·a 2+a 3=3a 3+a 3=4a 3. 答案 4a 38.(2013·福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3²(a -b )3的值是________.解析 法一 ∵a +b =2,a -b =5,∴原式=23³53=103=1 000. 法二 原式=[(a +b )(a -b )]3=103=1 000. 答案 1 000 三、解答题9.(2013·浙江衢州,18,6分)如图,在长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长. 解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12). 整理得:8x 2=24, 解得x =±3.10.(2014·浙江湖州,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·浙江绍兴,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时, 原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·浙江金华,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.解 (x +5)(x -1)+(x -2)2=x 2+4x -5+x 2-4x +4 =2x 2-1.当x =-2时, 原式=2³(-2)2-1=8-1=7.§1.3因式分解A组2015年全国中考题组一、选择题1.(2015·四川宜宾,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是() A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x -2)2,故D正确.答案 D2.(2015·山东临沂,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1C.x2-1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案 A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是 () A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案 B二、填空题4.(2015·浙江温州,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)5.(2015·浙江杭州,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·山东济宁,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·湖北孝感,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·四川泸州,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·江苏宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·湖南岳阳,7,3分)下列因式分解正确的是 () A.x2-y2=(x-y)2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案 C2.(2014·贵州毕节,4,3分)下列因式分解正确的是() A.2x2-2=2(x+1)(x-1)B.x+2x-1=(x-1)C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D错误.故选A.答案 A3.(2014·山东威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是() A.x2-1 B.x(x-2)+(2-x)C.x2-2x+1 D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x -2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案 D4.(2012·浙江温州,5,4分)把a2-4a多项式分解因式,结果正确的是() A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案 A5.(2011·浙江金华,3,3分)下列各式能用完全平方公式进行分解因式的是() A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案 D二、填空题6.(2014·浙江台州,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·浙江绍兴,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·浙江绍兴,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·四川南充,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·四川自贡,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·江苏泰州,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n +1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案 112.(2013·贵州黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.4 分 式A 组 2015年全国中考题组一、选择题1.(2015·浙江丽水,4,3分)分式-11-x 可变形为( )A .-1x -1B.11+xC .-11+xD.1x -1解析 由分式的性质可得:-11-x =1x -1. 答案 D2.(2015·山东济南,3,3分)化简m 2m -3-9m -3的结果是( )A .m +3B .m -3C.m -3m +3D.m +3m -3解析 原式=m 2-9m -3=(m +3)(m -3)m -3=m +3.答案 A3.(2015·山西,3,3分)化简a 2+2ab +b 2a 2-b 2-ba -b 的结果是 ( )A.aa -bB.b a -bC.a a +bD.b a +b解析 原式= (a +b )2(a +b )(a -b )-b a -b =a +b a -b -b a -b =a +b -b a -b =aa -b .答案 A4.(2015·浙江绍兴,5,3分)化简 x 2x -1+11-x 的结果是( )A .x +1B.1x +1C .x -1D.x x -1解析 原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1. 答案 A5.(2015·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________. 解析1a -1+a1-a =1-a a -1=-1. 答案 -16.(2015·四川泸州,19,6分)化简:m 2m 2+2m +1÷⎝ ⎛⎭⎪⎫1-1m +1=________.解析 原式=m 2(m +1)2÷m +1-1m +1=m 2(m +1)2·m +1m =mm +1.答案 mm +17.(2015·山东青岛,16,4分)化简:⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =________.解析 ⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =⎝ ⎛⎭⎪⎫2n +1n+n 2n ·n n 2-1=n 2+2n +1n ·n n 2-1=(n +1)2n ·n(n +1)(n -1)=n +1n -1. 答案n +1n -18.(2015·福建福州,18,7分)化简:(a +b )2a 2+b 2-2aba 2+b 2=________. 解析 (a +b )2a 2+b 2-2aba 2+b 2=a 2+2ab +b 2-2ab a 2+b 2=a 2+b 2a 2+b 2=1.答案 1 三、解答题9.(2015·山东烟台,19,5分)先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你最喜欢的值代入求值.解 原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2²x (x -1)x +1=x 2x -1.当x =2时,原式=4.B 组 2014~2011年全国中考题组1.(2014·浙江温州,4,4分)要使分式x +1x -2有意义,则x 的取值应满足 ( )A .x ≠2B .x ≠-1C .x =2D .x =-1解析 由x -2≠0得x ≠2,故选A. 答案 A2.(2014·浙江杭州,7,3分)若(4a 2-4+12-a)·w =1,则w = ( )A .a +2(a ≠-2)B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠±2)解析 原式可以化简如下:4-(a +2)(a +2)(a -2)·w =1,-(a -2)(a +2)(a -2)·w=1,-1a +2·w =1,所以w =-(a +2)=-a -2.故选D.答案 D3.(2013·江苏南京,2,2分)计算a 3²⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .aB .a 5C .a 6D .a 9解析 a 3·⎝ ⎛⎭⎪⎫1a 2=a 3·1a 2=a ,故选A. 答案 A4.(2013·山东临沂,6,3分)化简a +1a 2-2a +1÷(1+2a -1)的结果是( )A.1a -1 B.1a +1 C.1a 2-1D.1a 2+1解析 原式=a +1(a -1)2÷a +1a -1=a +1(a -1)2³a -1a +1 =1a -1,故选A.答案 A5.(2013·浙江杭州,6,3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2 C.12<k <1D .0<k <12解析 甲图中阴影部分面积是:a 2-b 2,乙图中阴影部分的面积是a 2-ab ,∴k =a 2-b 2a 2-ab =(a +b )(a -b )a (a -b )=a +b a =1+b a .∵a >b >0,∴0<b a <1.∴1<1+ba <2. 答案 B 二、填空题6.(2011·浙江嘉兴,11,4分)当x ________时,分式13-x有意义. 解析 要使分式13-x有意义,必须3-x ≠0,即x ≠3. 答案 ≠37.(2012·浙江杭州,12,4分)化简m 2-163m -12得________;当m =-1时,原式的值为________. 解析 m 2-163m -12,=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1.答案m +43 18.(2014·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________.解析 1a -1+a 1-a =1a -1-aa -1=1-a a -1=-(a -1)a -1=-1.答案 -19.(2014·山东东营,15,4分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =0,2x +3y =3,那么代数式⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y的值为______. 解析 解方程组可得⎩⎨⎧x =3,y =-1.∴⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y =⎝ ⎛⎭⎪⎫xy x +y +2·(x +y )=xy +2x+2y =3³(-1)+2³3+2³(-1)=1. 答案 110.(2014·浙江台州,16,3分)有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下: 输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次的运算结果=____________(含字母x 和n 的代数式表示). 解析 将第2、3、4次化简后列表如下:故答案为2x(2n -1)x +1.答案 2n x(2n -1)x +1三、解答题11.(2012·浙江宁波,19,6分)计算:a 2-4a +2+a +2.解 法一:原式=(a +2)(a -2)a +2+a +2=a -2+a +2=2a .法二:原式=a 2-4a +2+(a +2)2a +2=a 2-4a +2+a 2+4a +4a +2=2a 2+4a a +2=2a (a +2)a +2=2a .12.(2013·四川宜宾,17,5分)化简:b a 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b . 解 原式=b(a +b )(a -b )÷⎝⎛⎭⎪⎫a +b a +b -a a +b =b (a +b )(a -b )²a +b b =1a -b. 13.(2013·江西,17,6分)先化简,再求值:x 2-4x +42x ÷x 2-2x x 2+1,在0,1,2,三个数中选一个合适的,代入求值. 解 原式=(x -2)22x ²x 2x (x -2)+1=x -22+1=x2. 当x =1时,原式=12.14.(2014·湖南娄底,21,8分)先化简x -4x 2-9÷⎝ ⎛⎭⎪⎫1-1x -3,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解 原式=x -4(x +3)(x -3)÷x -3-1x -3=x -4(x +3)(x -3)²x -3x -4=1x +3.解不等式2x -3<7,得x <5. 取x =0时,原式=13.(本题最后答案不唯一,x ≠±3,x ≠4即可)§1.5二次根式A组2015年全国中考题组一、选择题1.(2015·重庆,3,3分)化简12的结果是() A.4 3 B.2 3 C.3 2 D.2 6解析化简得:23,故B正确.答案 B2.(2015·山东济宁,3,3分)要使二次根式x-2有意义,x必须满足() A.x≤2 B.x≥2 C.x<2 D.x>2解析由x-2≥0得:x≥2.故B正确.答案 B3.(2015·江苏淮安,4,3分)下列式子为最简二次根式的是()A. 3B. 4C.8D.1 2解析4=2,8=22,12=22,4,8,12都不是最简二次根式,故选A.答案 A4.(2015·湖北孝感,9,3分)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是() A.0 B. 3 C.2+ 3 D.2- 3解析原式=(7+43)(2-3)2+(2+3)(2-3)+3=49-48+4-3+3=2+ 3.故选C.答案 C二、填空题5.(2015·贵州遵义,11,4分)27+3=________.解析原式=33+3=4 3.6.(2015·江苏南京,12,3分)计算5³153的结果是________. 解析5³153=5³5=5. 答案 57.(2015·江苏泰州,12,3分)计算:18-212等于________.解析 原式=32-2=2 2. 答案 2 2 三、解答题8.(2015·四川凉山州,19,5分)计算:-32+3³1tan 60°+|2-3|.解 -32+3³1tan 60°+|2-3|=-9+3³13+3-2=-5- 2.9. (2015·山西,21,6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解 第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎝ ⎛⎭⎪⎫1+52-1-52=15³5=1. 第2个数,当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15³1³5=1.B 组 2014~2011年全国中考题组一、选择题1.(2013·上海,1,4分)下列式子中,属于最简二次根式的是 ( ) A.9B.7C.20D.13解析 ∵9=32=3,20=22³5=25,13=13=33,∴9,20,13都不是最简二次根式,7是最简二次根式,故选B. 答案 B2.(2013·广东佛山,5,3分)化简2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 2解析2+(2-1)=2+2-1=22-1,故选A.答案 A3.★(2013·江苏泰州,2,3分)下列计算正确的是 ( )A .43-33=1 B.2+3= 5 C .212= 2D .3+22=5 2错误;212=2³22=2,∴C正确;3和22一个是有理数,一个是无理数,不能合并,∴D错误.综上所述,选C.答案 C4.(2013·山东临沂,5,3分)计算48-913的结果是 ()A.- 3 B. 3 C.-113 3 D.113 3解析48-913=43-33= 3.答案 B5.(2014·山东济宁,7,3分)如果ab>0,a+b<0,那么下面各式:①ab=ab,②ab²ba=1,③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③解析∵ab>0,a+b<0,∴a,b同号,且a<0,b<0,∴ab>0,ba>0.ab=ab.等号右边被开方数小于零,无意义,∴①不正确;ab·ba=ab·ba=1,②正确;ab÷ab=ab·ba=b2=-b,∴③正确.故选B.答案 B二、填空题6.(2013·浙江舟山,11,4分)二次根式x-3中,x的取值范围为________.解析由二次根式有意义,得出x-3≥0,解得x≥3.答案x≥37.(2014·福建福州,13,4分)计算:(2+1)(2-1)=________.解析由平方差公式可得(2+1)(2-1)=(2)2-12=2-1=1.答案 1解析 原式=3³2-(3)2-26-3+6=6-3- 26-3+6=-6. 答案 -69.(2012·浙江杭州,14,4分)已知a (a -3)<0,若b =2-a ,则b 的取值范围是________.解析 由题意知,a >0,∴a >0,∴a -3<0,解得:0<a <3,∴2-3<2-a <2,即:2-3<b <2. 答案 2-3<b <2 三、解答题10.(2013·浙江温州,17,5分)计算:8+(2-1)+⎝ ⎛⎭⎪⎫120.解8+(2-1)+⎝ ⎛⎭⎪⎫120=22+2-1+1=3 2.11.(2013·湖北孝感,19,6分)先化简,再求值:1x -y ÷⎝ ⎛⎭⎪⎫1y -1x ,其中x =3+2,y =3- 2. 解1x -y ÷⎝⎛⎭⎪⎫1y -1x =1x -y ²xy x -y =xy (x -y )2,当x =3+2,y =3-2时, 原式=(3+2)(3-2)(3+2-3+2)2=18.第二章方程(组)与不等式(组)§2.1一元一次方程与可化为一元一次方程的分式方程A组2015年全国中考题组一、选择题1.(2015·山东济宁,8,3分)解分式方程2x-1+x+21-x=3时,去分母后变形正确的为() A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)解析公分母为x-1,结果为:2-(x+2)=3(x-1),故D正确.答案 D2.(2015·浙江杭州,7,3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程() A.54-x=20%³108 B.54-x=20%(108+x)C.54+x=20%³162 D.108-x=20%(54+x)解析∵改造完后的林地为(108+x)公顷,改造完后的旱地是(54-x)公顷,∴54-x=20%(108+x).故选B.答案 B3.(2015·山东济南,5,3分)若代数式4x-5与2x-12的值相等,则x的值是()A.1 B.32 C.23D.2解析根据题意得:4x-5=2x-12,去分母得:8x-10=2x-1,解得:x=32,故选B. 答案 B4.(2015·四川自贡,5,3分)方程x2-1x+1=0的解是()A .1或-1B .-1C .0D .1解析 去分母得:x 2-1=0,即x 2=1,解得:x =1或x =-1,经检验x =-1是增根,分式方程的解为x =1. 答案 D5.(2015·湖南常德,6,3分)分式方程2x -2+3x2-x=1的解为 ( )A .1B .2C.13D .0解析 去分母得:2-3x =x -2,解得:x =1,经检验x =1是分式方程的解. 答案 A 二、填空题6.(2015·四川巴中,14,3分)分式方程3x +2=2x 的解x =________. 解析 去分母得:3x =2x +4,解得:x =4.经检验x =4是原分式方程的解. 答案 47. (2015·浙江绍兴,16,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm 高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56 cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5 cm. 解析 第一种情况,甲比乙高0.5 cm ,0.5÷56=35分钟;第二种情况,乙比甲高0.5 cm 且甲的水位不变,时间为3320分钟; 第三种情况,乙达到5 cm 后,乙比甲高0.5 cm ,时间为17140分钟. 答案 35或3320或171408.(2015·湖北,13,3分)分式方程1x -5-10x 2-10x +25=0的解是________.解析去分母得:x-5-10=0,解得:x=15,经检验x=15是分式方程的解.答案159.(2015·山东威海,12,3分)分式方程1-xx-3=13-x-2的解为________.解析去分母得:1-x=-1-2x+6,解得:x=4,经检验x=4是分式方程的解.答案x=4三、解答题10.(2015·广东深圳,22,7分)下表为深圳市居民每月用水收费标准(单位:元/m3).(1)某用户用水10(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户用水量为x立方米,∵用水22立方米时,水费为:22³2.3=50.6<71,∴x>22,∴22³2.3+(x-22)³(2.3+1.1)=71,解得:x=28.答:该用户用水28立方米.11.(2015·四川广安,19,4分)解方程:1-xx-2=x2x-4-1.解化为整式方程得:2-2x=x-2x+4,解得:x=-2.经检验x=-2是分式方程的解.12.(2015·广东深圳,18,8分)解方程:x2x-3+53x-2=4.解去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得:3x -2x +10x -15=24x -52x +24,即7x -20x +13=0,分解因式得:(x -1)(7x -13)=0,解得:x 1=1,x 2=137,经检验x 1=1与x 2=137都为分式方程的解.13.(2015·浙江湖州,22,8分)某工厂计划在规定时间内生产24 000 个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.解 (1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的根,且符合题意, ∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400 个,规定的天数是10天.(2)设原计划安排工人人数为y 人,由题意得,⎣⎢⎡⎦⎥⎤5³20³(1+20%)³2 400y +2 400³(10-2)=24 000. 解得y =480.经检验y =480是原方程的根,且符合题意. 答:原计划安排工人人数为480人.B 组 2014~2011年全国中考题组一、选择题1.(2014·海南,2,3分)方程x +2=1的解是 ( )A .3B .-3C .1D .-1解析 x +2=1,移项得:x =1-2,x =-1.故选D. 答案 D2.(2014·浙江台州,7,3分)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是() A.1-2x=3 B.x-1-2x=3C.1+2x=3 D.x-1+2x=3解析两边同时乘以(x-1),得x-1-2x=3,故选B.答案 B3.(2014·山东枣庄,6,3分)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是 () A.350元B.400元C.450元D.500元解析设这批服装的标价为x元,得0.6x-200200=20%,解得x=400,故选B.答案 B4.(2013·江苏宿迁,6,3分)方程2xx-1=1+1x-1的解是()A.x=-1 B.x=0 C.x=1 D.x=2解析方程两边都乘以x-1,得2x=x-1+1.移项,合并,得x=0.经检验,x=0是原方程的解.故选B.答案 B二、填空题5.(2014·浙江宁波,14,4分)方程xx-2=12-x的根x=________.解析去分母,两边同乘以x-2,得x=-1,经检验x=-1是原方程的根,故答案为-1.答案-16.(2013·浙江丽水,12,4分)分式方程1x-2=0的解是________.解析去分母得1-2x=0,解得x=12.经检验,x=12是原方程的解.答案x=1 27.★(2013·黑龙江齐齐哈尔,16,3分)若关于x的分式方程xx-1=3a2x-2-2有非负数解,则a 的取值范围是________. 解析 去分母,得2x =3a -2(2x -2), 解得x =3a +46.∵有非负数解, ∴3a +4≥0,即a ≥-43. 又∵x -1≠0,即x ≠1, ∴3a +4≠6,解得a ≠23. ∴a ≥-43且a ≠23. 答案 a ≥-43且a ≠238.(2013·浙江舟山,15,4分)杭州到北京的铁路长1 487千米,动车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为________.解析 动车从杭州到北京以平均速度为x 千米/时行完全程所需时间为1 487x 小时,提速后行完全程所需时间为1 487x +70小时,又行驶时间缩短了3小时,即少用3小时,故所列方程应为1 487x -1 487x +70=3.答案 1 487x -1 487x +70=3三、解答题9.(2014·浙江嘉兴,18,8分)解方程:1x -1-3x 2-1=0. 解 方程两边同乘x 2-1,得: x +1-3=0. ∴x =2.经检验,x =2是原方程的根.10.(2014·浙江宁波,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解(1)裁剪出的侧面个数为6x+4(19-x)=(2x+76)个,裁剪出的底面个数为5(19-x)=(-5x+95)个.(2)由题意,得2x+763=-5x+952,∴x=7.当x=7时,2x+763=30.∴能做30个盒子.§2.2一元二次方程A组2015年全国中考题组一、选择题1.(2015·浙江金华,5,3分)一元二次方程x2+4x-3=0的两根为x1,x2,则x1²x2的值是() A.4 B.-4 C.3 D.-3解析根据两根之积x1·x2=ca=-3.所以D正确.答案 D2.(2015·四川巴中,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是() A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1+x2)=315解析由题意可列方程为:560(1-x)2=315.故B正确.答案 B3.(2015·山东济宁,5,3分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为() A.13 B.15 C.18 D.13或18解析解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13.答案 A4.(2015·四川攀枝花,5,3分)关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.-12<m<2 D.34<m<2解析 根据题意得m -2≠0且Δ=(2m +1)2-4(m -2)·(m -2)>0,解得m >34且m ≠2,设方程的两根为a 、b ,则a +b =-2m +1m -2>0,ab =m -2m -2=1>0,而2m +1>0,∴m -2<0,即m <2,∴m 的取值范围为34<m <2. 答案 D 二、填空题5.(2015·山东泰安,22,4分)方程:(2x +1)(x -1)=8(9-x )-1的根为________. 解析 化简为:2x 2+7x -72=0,解得:x 1=-8,x 2=4.5. 答案 x 1=-8,x 2=4.56.(2015·贵州遵义,14,4分)关于x 的一元二次方程x 2-3x +b =0有两个不相等的实数根,则b 的取值范围是________. 解析 有题意得:Δ=9-4b >0,解得 b <94. 答案 b <947.(2015·四川泸州,15,3分)设x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为________.解析 ∵x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,∴x 1+x 2=5,x 1x 2=-1,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=25+2=27.答案 278.(2015·四川宜宾,11,3分)关于x 的一元二次方程x 2-x +m =0没有实数根,则m 的取值范围是________.解析 由题意得(-1)2-4³1³m <0解之即可. 答案 m >149.(2015·四川宜宾,13,3分)某楼盘2013年房价为每平方米8 100元,经过两年连续降价后,2015年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为________.解析 先根据题意将每个量用代数式表示,然后利用等量关系建立等式即可.答案8 100(1-x)=7 600三、解答题10.(2015·山东青岛,16,8分)关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,求m的取值范围.解∵关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,∴Δ=32-4³2³(-m)>0,∴m>-98,即m的取值范围是m>-98.11.(2015·四川巴中,28,8分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1 140 m2,求小路的宽.解设小路的宽为x m.图中的小路平移到矩形边上时,种植面积是不改变的.∴(40-x)(32-x)=1 140.解得x1=2,x2=70(不合题意,舍去).∴小路的宽为2 m.答:小路的宽为2 m.12.(2015·安徽,21,8分)(1)解下列方程:①x+2x=3根为________;②x+6x=5根为________;③x+12x=7根为________;(2)根据这类方程特征,写出第n个方程为________,其根为________;(3)请利用(2)的结论,求关于x的方程x+n2+nx-3=2n+4(n为正整数)的根.解(1)①去分母,得:x2+2=3x,即x2-3x+2=0,(x-1)(x-2)=0,则x-1=0,x-2=0,解得:x1=1,x2=2.经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2-5x+6=0,(x-2)(x-3)=0,则x-2=0,x-3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2-7x+12=0,(x-3)(x-4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)列出第n个方程为x+n(n+1)x=2n+1,解得:x1=n,x2=n+1;(3)x+n+nx-3=2n+4,即x-3+n(n+1)x-3=2n+1,则x-3=n或x-3=n+1,解得:x1=n+3,x2=n+4.B组2014~2011年全国中考题组一、选择题1.(2013·浙江丽水,7,3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是() A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-4解析开方得x+6=±4,∴另一个一元一次方程是x+6=-4,故选D.答案 D2.(2014·陕西,8,3分)若x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为() A.1或4 B.-1或-4C.-1或4 D.1或-4解析把x=-2代入x2-52ax+a2=0得(-2)2-52a³(-2)+a2=0,解得a1=-1,a2=-4.故选B.答案 B3.(2011·浙江嘉兴,2,3分)方程x(x-1)=0的解是() A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-1解析x(x-1)=0,x=0或x-1=0,x1=0或x2=1.答案 C4.(2013·山东滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为() A.有两个相等的实数根B.没有实数根。

换元法选题通关50题-1(含答案)

换元法选题通关50题-1(含答案)

A. t t h
B. t t h
C. t t h
D. t t h
28. 求 出
t,因此
的值,可令 h h t ,所以 h
的值为
,则 h t .仿照上述的思路方法,计算
A.
t
B.
t
C.
D. t
29. 已知 ,㔵 为实数,

A.
B.

h ,则代数式 㔵 的值为
C.
D. 或
30. 若 A.
31. A.
h
,则代数式
B. 换元与降次
C. 消元
D. 公理化
2. 已知
h ,则 的值等于
A.
B.
C.
D. 或
3. 当使用换元法解方程
A. t t h
B. t
h 时,若设 t h ,则原方程可变形为
th
C. t t h
D. t t h
4. 解分式方程
h 时,可设 h t ,则原方程可化为整式方程是
A. t t h
B. t t h
h ,则
B.
C.
8. 如果一个三角形的三边长分别为 , , ,化简 t
A.
B.
C.
9. 方程 A. h , h
h 的解为
B. h , h
C.
的值为 h, h
D. 的结果是
D.
D. h , h
10. 若


h ,则 㔵h
A. 或
B. 或
C. 或
D. 或
11. 用换元法解方程 A. t t h
12. 用换元法解方程
㔵h
㔵h
D.
t
h 晦 的解是

换元法专题含答案

换元法专题含答案

的斜率为 , 是坐标原点. (1)求 的方程; (2)设过点 的直线 与 相交于 , 两点,当
的面积最大时,求直线 的方程.
14. 已知椭圆 t
t 的离心率为 ,左焦点 到点 区 的距离为 t.
(1)求椭圆的标准方程;
(2)过椭圆右焦点 的直线 与椭圆交于不同的两点 , ,则
内切圆的面积是否存
在最大值?若存在,求出这个最大值及此时直线 的方程;若不存在,请说明理由.
t
区. t
在 t区 t 上恒成立,
即:
t
t 在 t区 t 上恒成立,令
,则
log .
第 15页(共 38 页)来自 QQ 群高中数学解题研究会 339444963
t
t
t
t
t

区t 时恒成立,所以
t
因为 t,所以 t
,所以 t

所以 t

t

min

所以

t min
所以

5. (1) 因为

所以 sin sin⸷,
16. 已知椭圆 ㌱: t
t 的左右焦点和短轴的两个端点构成边长为 的正方形.
(1)求椭圆 ㌱ 的方程;
(2)过点 区t 的直线 与椭圆 ㌱ 相交于 ,⸷ 两点,且点
别为 , ,当
取最大值时,求直线 的方程.
区 ,记直线 , ⸷ 的斜率分
第 5页(共 38 页)来自 QQ 群高中数学解题研究会 339444963
(1)求椭圆 ㌱ 的方程; (2)设过点 的动直线 与椭圆 ㌱ 相交于 , 两点,当
程.
的面积最大时,求直线 的方
29. 已知函数 (1)若函数 (2)若

专题04 换元法专题研究(解析版)

专题04 换元法专题研究(解析版)

备战2020中考数学解题方法专题研究专题4 换元法专题【方法简介】解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用。

换元法又称变量替换法, 是我们解题常用的方法之一。

利用换元法, 可以化繁为简, 化难为易, 从而找到解题的捷径。

【真题演练】1. 若(x2+y2﹣2)2=9,则x2+y2的值为()A.1 B.﹣1 C.5 D.5或﹣1【解析】:设t=x2+y2(t≥0),由原方程得:(t﹣2)2=9,解得t﹣2=±3,解得t=5或t=﹣1(舍去).故选:C.2. 用“整体法”求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A.x1=1,x2=3 B.x1=﹣2,x2=3 C.x1=﹣3,x2=﹣1 D.x1=﹣2,x2=﹣1【解析】:(2x+5)2﹣4(2x+5)+3=0,设2x+5=y,则原方程变形为y2﹣4y+3=0,解得:y1=1,y2=3,当y=1时,2x+5=1,解得:x=﹣2,当y=3时,2x+5=3,解得:x=﹣1,即原方程的解为x1=﹣2,x2=﹣1,故选:D.3. 若实数a,b满足(2a+2b)(2a+2b﹣2)﹣8=0,则a+b=.【解析】设a+b=x,则由原方程,得2x(2x﹣2)﹣8=0,整理,得4x2﹣4x﹣8=0,即x2﹣x﹣2=0,分解得:(x+1)(x﹣2)=0,解得:x1=﹣1,x2=2.则a+b的值是﹣1或2.故答案是:﹣1或2.4. 阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.【解析】:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.【名词释义】概念:换元法是数学中一个非常重要而且应用十分广泛的解题方法。

中考分式方程组易错题50题含答案解析

中考分式方程组易错题50题含答案解析

中考分式方程组易错题50题含答案解析一、单选题1.甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( ) A .240280130x x=- B .240280130x x=-C .240280130x x += D .240280130x x-= 2.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,今年7月的水费则是30元.已知小丽家今年7月的用水量比去年12月的用水量多35m .设该市去年居民用水的价格为x 元3/m ,根据题意下列方程正确的是( ) A .15305113x x -=⎛⎫+ ⎪⎝⎭B .30155113x x -=⎛⎫+ ⎪⎝⎭C .30155113x x -=⎛⎫+ ⎪⎝⎭D .15305113x x -=⎛⎫+ ⎪⎝⎭3.去分母解关于x 的方程322x mx x -=--产生增根,则m 的值为( ) A .2B .2-C .1D .1-4.把分式方程132x x=-转化成整式方程时,方程两边同乘( ) A .xB .2xC .()2x x -D .()32x x -5.下列方程中,无实数解的是( ) A .2+x =0B .2﹣x =0C .2x =0D .2x=06.一艘轮船在静水中的最大航速为40/km h ,它以最大航速沿河顺流航行100km 所用时间,和它以最大航速沿河逆流航行80km 所用时间相等,设河水的流速为/v km h ,则可列方程为( ) A .100804040v v =+- B .100804040v v =-+ C .100804040v v=+-D .100804040v v=-+ 7.如果关于x 的方程3111a x x=---无解,则a =( ) A 1B 3C 1D 138.某施工队挖掘一条长96米的隧道,开工后每天比原计划多挖2米,结果提前4天完成任务,若设原计划每天挖x 米,则依题意列出正确的方程为( ) A .B .C .D .9.相距S 千米的两个港口A 、B 分别位于河的上游和下游,货船在静水中的速度为a 千米/时,水流的速度为b 千米/时,一艘货船从A 港口出发,在两港之间不停顿地往返一次所需的时间是( ) A .2Sa b+小时 B .2Sa b -小时 C .S S a b ⎛⎫+ ⎪⎝⎭小时D .S S a b a b ⎛⎫+ ⎪+-⎝⎭小时10.下列分式方程有解的是( ). A .210x x+=B .123x -=0 C .2111x x x x +=-- D .11x -=1 11.若整数k 关于x 的一元一次不等式组422x x x k +<+⎧⎨>⎩的解集是2x >,且使关于y 的分式方程24111y k y y y---=--有非负整数解,则符合条件的所有整数k 的值之和为( ) A .4-B .2-C .1-D .012.若关于x 的方程211-=--x mxx x无解,则m =( ) A .1-B .1或1-C .1D .1-或53-13.若关于x 的方程233x m x x -=--有正数解,则( ). A .m >0且m ≠3 B .m <6且m ≠3 C .m <0 D .m >614.分式方程21x --31x +=0的解为( ) A .x =3B .x =-5C .x =5D .无解15.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木万棵,由于志愿者的加入,实际每天植树比原计划多,结果提前天完成任务,设原计划每天植树万棵,可列方程是 ( ) A .B .C .D .16.下列说法中,正确的是( ) A .若24x =,则2x =±B .方程()2121x x x -=-的解为1x =C .若分式222x xx ++的值为0,则0x =或2-D .当12k =时,方程()222110k x k x +-+=的两个根互为相反数17.若关于aa 为整数,若关于x 的分式方程1122x a x x+-=---的解为正数,则满足条件的所有a 的值的和为( ) A .﹣7 B .﹣10 C .﹣12 D .﹣1518.如果关于x 的方程2430ax x +-=有两个实数根,且关于x 的分式方程233x a a x x-+=--有整数解,则 符合条件的整数a 有( )个. A .2B .3C .4D .519.若整数a 使得关于x 的分式方程()16244ax x x x +=--有正整数解,且使得关于y 的不等式组11123132y y y a +-⎧->⎪⎪⎨-⎪≥-⎪⎩有解,那么符合条件的所有整数a 的和为( )A .23B .20C .16D .1020.要使关于x 的一元二次方程2210ax x +-=有两个实数根,且使关于x 的分式方程2244x a x x++=--的解为非负数的所有整数a 的个数为( ) A .5个 B .6个 C .7个 D .8个二、填空题 21.若代数式62x +与4x的值相等,则x =_________. 22.分式方程1222x x x +=--的解是__________. 23.若51544x x x--=--有增根,则增根为______. 24.为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际每天施工多少平方米?设原计划平均每天施工x 平方米,则可列出方程为_______.25.用换元法解方程221321x xx x +-=+,若设21x y x+=,则原方程可化为关于y 的整式方程是_________.26.若分式方程231x x --1m x -=1有增根,则m 的值为_________27.分式方程233x x=-的解是______. 28.若关于x 的分式方程233a x x x +=--有增根,则a 的值_____. 29.关于x 的分式方程223111kx x x x +=--+会产生增根,则k =______. 30.分式方程123x x-=的解x 等于______ 31.分式方程321x -=1的解是______. 32.用换元法解分式方程225111x x x x++=+时,若设21x y x =+,则原方程可以化为整式方程_____. 33.分式方程321xx =+的解为x =______. 34.若关于x 的方程232x mx +=-的解是非负数,则m 的取值范围是________. 35.方程12022x x-=-的解是______. 36.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学,一共有x 人则可列分式方程________.37.一个不透明的袋子中有除颜色外其余都相同的红蓝黄色球若干个,其中红色球有6个,黄色球有9个,已知从袋子中随机摸出一个蓝色球的概率为25,那么随机摸出一个为红球的概率为____.38.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是______元. 39.若关于x 的分式方程211x ax +=-的解为正数,则a 的取值范围为________.40.若2x =是方程113x a x -=+的解,则a =____.三、解答题41.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数. 42.解方程 (1)1311x x x =+++ (2)22403191x x -=-- 43.一个盒子里有3个红球,2个绿球和4个黄球,球的大小、质地完全相同,搅均匀后从盒中随机地摸出1个球.(1)“摸到红球”是 事件, “摸到黑球”是 事件.(填“不可能”或“必然”或“随机”)(2)如果要使摸到盒子里黄球的概率为12,则需要往盒内再放入多少个黄球?(3)盒内球的数量不变,你怎样改变各色球的数目,使得每种颜色球被取出的可能性一样大?说明理由.44.台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度. 45.解方程: (1)321x x =+ (2)11322xx x-=--- 46.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?47.某幼儿园计划购进一批甲、乙两种玩具,已知一件甲种玩具的价格与一件乙种玩具的价格的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的价格分别是多少元?(2)该幼儿园计划用3500元购买甲、乙两种玩具,由于采购人员把甲、乙两种玩具的件数互换了,结果需4500元,求该幼儿园原计划购进甲、乙两种玩具各多少件? 48.解方程:21333x x x-+=-- 49.分式方程2212212x x x x--=-的解为多少?50.解方程和不等式组:⑴ 212112x x x =--- ⑴ 4111123x xx x +>-⎧⎪⎨≤+⎪⎩()参考答案:1.A【分析】设甲每天做x 个零件,根据甲做240个零件与乙做280个零件所用的时间相同,列出方程即可.【详解】解:设甲每天做x 个零件,根据题意得:240280130x x =-, 故选:A .【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率. 2.B【分析】利用总水费÷单价=用水量,结合小丽家今年7月的用水量比去年12月的用水量多5m 3,进而得出等式即可.【详解】设去年居民用水价格为x 元3/m ,根据题意列方程: 30155113x x -=⎛⎫+ ⎪⎝⎭,故选:B .【点睛】本题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键. 3.D【分析】先把分式方程化为整式方程,由于原分式方程有增根,则有x−2=0,得到x =2,即增根只能为2,然后把x =2代入整式方程即可得到m 的值. 【详解】解:方程两边乘(x−2)得,x−3=m , ⑴分式方程有增根, ⑴x−2=0,即x =2, ⑴2−3=m , ⑴m =−1. 故选:D .【点睛】本题考查了根据分式方程有增根,求方程中的参数,掌握增根的定义是解题关键. 4.C【分析】根据最简公分母的确定方法确定分式132x x-、的最简公分母即可解答.【详解】解:⑴分式132x x-、的最简公分母()2x x-,⑴把分式方程132x x=-转化成整式方程时,方程两边同乘()2x x-.故选C.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.D【分析】根据解方程,可得答案.【详解】解:A、x+2=0,解得x=﹣2,故A正确;B、2﹣x=0,解得x=2,故B正确;C、2x=0,解得x=2,故C正确;D、2x,方程无解,故D错误;故选D.【点睛】本题考查了分式方程的解,熟练掌握解方程的方法是解题的关键.6.C【分析】分析题意,由江水的流速为vkm/h,可知顺水速度为(40+v)km/h,逆水速度为(40-v)km/h;根据题意可得等量关系:以以最大航速沿河顺流航行100km所用时间和它以最大航速沿河逆流航行80km所用时间相等,根据顺流时间=逆流时间,列出方程即可.【详解】设水的流速为vkm/h,根据题意得:10080 4040v v=+-【点睛】本题考查了分式方程的应用,分析题意,根据路程、速度、时间的关系,找出等量关系是解题的关键.7.B【分析】先去分母,化成整式方程,令x-1=0,确定x的值,回代x=4-a,得a值.【详解】⑴3111ax x=---,⑴去分母,得3=x-1+a,整理,得x=4-a,令x-1=0,得x=1,⑴4-a =1, ⑴a =3. 故选B .【点睛】本题考查了分式方程无解问题,正确理解分式方程无解的意义是解题的关键. 8.C【详解】设原计划每天挖x 米,原来所用时间为,开工后每天比原计划多挖2米,现在所用时间为, 可列出方程:﹣=4.故选C .9.D【分析】先分别算出顺水和逆水的速度,再根据时间=路程÷速度,算出往返时间. 【详解】依据顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度, 则顺水速度为a b +,时间为Sa b +,逆水速度为a b -,时间为S a b-, 所以往返时间为S S a b a b++-. 故选D【点睛】本题主要考查了列代数式,熟练掌握顺水逆水速度,以及时间、路程、速度三者直接的关系是解题的关键. 10.D【分析】分别按照解分式方程的步骤去分母,解整式方程可判断方程的解的情况. 【详解】A 、方程两边都乘以x 得:x 2+1=0,此整式方程无解,故原分式方程无解; B 、方程两边都乘以2x -3得:1=0,不成立,故方程无解;C 、方程两边都乘以x -1得:2x =x +1,解得x =1,而x =1时分母x -1=0,故原分式方程无解;D 、方程两边都乘以x -1得:x -1=1,解得x =2,当x =2时,分母x -1=1≠0,x =2是原分式方程的解; 故选:D .【点睛】本题主要考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 11.B【分析】根据不等式组的解集确定k 的取值范围,再根据分式方程有非负整数解得出k 的所有可能的值,再进行计算即可.【详解】解:解不等式422x x +<+得:2x >,⑴整数k 使关于x 的一元一次不等式组422x x x k +<+⎧⎨>⎩的解集是2x >,⑴2k ≤, 解分式方程24111y k y y y ---=--得: 32y k =+, 则32k +是非负整数, ⑴1k =或1k =-或3k =-,当1k =-时,1y =是方程的增根,舍去, ⑴1k =或3k =-,⑴符合条件的所有整数k 的值之和为132-=-, 故选:B .【点睛】本题考查分式方程的整数解,解一元一次不等式组,掌握分式方程的解法、一元一次不等式组的解法,理解分式方程的整数解的意义是正确解答的前提. 12.B【分析】方程无解,说明原方程分母为零或化为整式方程后,x 的系数为0,分别解出m 的值即可. 【详解】解:211-=--x mxx x去分母,方程两边同时乘以(x ﹣1),得 2﹣x =﹣mx ∵方程211-=--x mxx x无解, ∴原分式方程分母为零或整式方程无解, ①当x ﹣1=0时,则x =1是方程的增根, ∴2﹣1=﹣m , ∴m =﹣1;②当整式方程2﹣x =﹣mx 无解时, ﹣x +mx + 2=0,(m -1)x =-2,m -1=0,m =1,∴m 的值为1或1-.故选:B .【点睛】本题主要考查了分式方程的增根问题,计算时要小心,容易丢解,明确增根是令分母等于0的值.13.B【分析】首先根据解分式方程的方法求出x 的值,然后根据解为正数以及x ≠3求出m 的取值范围.【详解】解:将方程的两边同时乘以(x -3)可得:x -2(x -3)=m ,解得:x =6-m ,根据解为正数可得:0x >且3x ≠,则:60m ->且63m -≠,解得:6m <且3m ≠.故选B .【点睛】本题主要考查的就是解含有参数的分式方程以及分式的增根问题.在解决这个问题的时候很多同学容易忽视这个增根,从而导致答案错误.如果本题将正数解改为负数解,对于增根我们就没有必要再去考虑,所以同学们一定要注意增根是否在给出的解的范围之内,从而进行解答.14.C【分析】方程两边同时乘以()()11x x -+去掉分母,在解一元一次方程求出x 的值,最后检验即可得答案. 【详解】21x --31x +=0 方程两边同时乘以()()11x x -+得()()21310x x +--=,去括号得:22330x x +-+=,移项合并同类项可得:5x -=-,解得5x=,经检验可得5x=是原分式方程的根,故选:C.【点睛】本题考查解分式方程,解分式方程主要是“转化思想”,把分式方程转化为整式方程,最后要检验,避免有增根.15.A【详解】试题解析:设原计划每天植树x万棵,需要天完成,⑴实际每天植树(x+0.2x)万棵,需要天完成,⑴提前5天完成任务,⑴﹣=5,故选A.考点:由实际问题抽象出分式方程.16.A【分析】根据解一元二次方程、分式方程的方法进行判断,根据一元二次方程根与系数的关系和根的判别式判定方程根的关系.【详解】A、运用直接开平方法解,得x=±2.故此选项正确;B、运用因式分解法,得x=1或12.故此选项错误;C、当x=-2时,x+2=0,是分式方程的增根,则原方程的根是x=0.故此选项错误;D、当k=12时,有方程12x2+1=0,此方程没有实数根.故此选项错误.故选A.【点睛】此题综合考查了一元二次方程的解法、分式方程的解法以及运用一元二次方程的根与系数的关系的结论时,前提是方程必须有实数根.17.C50a-≤<,再根据分式的解12ax-=为正数,可得1a>,确定a的取值范围,当2x=时的情形除外,求得所有正数解a,再求其和即可【详解】⑴. 500a a +≥⎧∴⎨->⎩50a ∴-≤< ⑴1122x a x x+-=--- 12x a x ++=-+解得 12a x -= 102a -> 1a ∴<2x ≠122a -∴≠ 3a ≠-综合⑴⑴:50,3a a -≤<≠-50,3a a -≤<≠-,a 为整数5,4,2,1a ∴=----,其和为542112----=-故选:C .【点睛】本题考查了二次根式的性质,分式方程的解法,不等式的整数解,解题的关键是综合运用以上知识.18.B【分析】由一元二次方程根的判别式求得a 的取值范围,再解分式方程,利用解为整数分析得出答案.【详解】解:因为:关于x 的方程2430ax x +-=有两个实数根,所以:244(3)0a -⨯-≥,且0a ≠,解得:43a ≥-且0a ≠,因为:233x a a x x-+=--, 所以:23x a ax a -+=-,所以:(1)22a x a -=+,当1a =时,方程无解,当1a ≠时,方程的解为224211a x a a +==+--, 因为x 为整数且3x ≠,所以1a -是4的约数,所以11,12,14,a a a -=±-=±-=±所以a 的值为:3,1,0,2,3,5--, 又因为:43a ≥-且0a ≠,1,a ≠ 3x ≠,所以3,0,5a a a =-==不合题意舍掉,所以a 的值为:1,2,3,-.故选B .【点睛】本题考查的是一元二次方程根的判别式,分式方程的解的情况,掌握知识点并能注意到分式方程的增根是解题关键.19.C【分析】解不等式组和分式方程,得出关于y 的范围及x 的值,根据不等式组有解和分式方程的解为正整数解,得出a 的范围,进而可得整数a ,再把整数a 相加即可. 【详解】解:11123132y y y a +-⎧->⎪⎪⎨-⎪≥-⎪⎩①②, 解不等式①得:1y >,解不等式②得:25y a ≤-,⑴不等式组有解,⑴不等式组的解为:125y a <≤-,⑴125a <-,解得:3a >;()16244a x x x x +=-- 解得:82x a =-, ⑴分式方程有正整数解,⑴2a -是8的约数,且8 42a ≠-,802a ≠-,2a ≠,解得:3a =或6或10,又⑴3a >,⑴符合条件的所有整数a 为6、10,⑴符合条件的所有整数a 和为:61016+=.故选:C【点睛】本题考查了分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的能力,并根据题意得到关于a 的范围是解本题的关键.20.B【分析】根据一元二次方程根的情况得到0a ≠且()224?10a ∆=--≥解得:1a ≥-且0a ≠,再把分式方程化简求值得:6x a =-+,因为解为非负数,60a -+≥且64a -+≠即6a ≤且2a ≠,所以16a -≤≤且0,2a a ≠≠,即可得出满足题意的整数解.【详解】解:关于x 的一元二次方程2210ax x +-=有两个实数根则2024(1)0a a ≠⎧⎨∆=--⎩1a ∴≥-且0a ≠关于x 的分式方程2244x a x x++=-- 去分母得:(2)2(4)x a x -+=-解得:6x a =-+分式方程的解为非负数60a ∴-+≥且64a -+≠即6a ≤且2a ≠16a ∴-≤≤且0,2a a ≠≠∴满足题意的整数a 的值为1,1,3,4,5,6-故答案为:B .【点睛】本题考查一元二次方程根的情况、分式方程的解,注意二次项系数不为0及分式方程的解要有意义,这是此题的易错点.21.4 【分析】根据代数式62x +与4x的值相等,列出等式,解方程即可. 【详解】解:根据题意得:642x x=+,去分母得:64(2)x x =+,移项合并同类项得:28x =,解得:4x =.经检验,x =4是原方程的解,故答案为:4.【点睛】本题考查了解分式方程,解题的关键在于根据题意列出方程,解方程时注意按步骤进行,并且需要验根.22.x 53= 【分析】去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】两边同乘以2x -去分母得:﹣x +1=2x ﹣4,解得:x 53=, 经检验x 53=是分式方程的解. 故答案为:x 53=. 【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.4x =【分析】根据分式方程增根的定义:在分式方程化为整式方程的过程时,若整式方程的根使分式的分母为0,那么这个根叫做原分式方程的增根,即可求出.【详解】解:⑴51544x x x--=--有增根 ⑴40x -=解得:4x =故答案为:4x =.【点睛】此题考查的是分式方程的增根,掌握分式方程增根的定义是解决此题的关键. 24.3300033000111.2x x -= 【分析】设原计划平均每天施工x 平方米,则实际平均每天施工(120%)x +平方米,由题意列出分式方程即可【详解】设原计划平均每天施工x 平方米,则实际平均每天施工(120%)x +平方米,根据题意得:3300033000111.2x x -=. 故答案为:3300033000111.2x x-=. 【点睛】本题考查分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 25.2230y y --= 【分析】把21x y x+=代入原方程,去分母化简即可. 【详解】解:把21x y x+=,代入原方程得,32y y -=, 去分母,得2230y y --=.故答案为:2230y y --=.【点睛】本题考查了换元法解方程,解题关键是熟练运用代入法进行换元,准确化简方程.26.3 【详解】试题分析:先把分式方程231x x --1m x -=1去分母得,再根据增根的定义可得,最后把代入方程即可求得结果. 方程231x x --1m x -=1去分母得由分式方程231x x --1m x -=1有增根 所以,解得.考点:分式方程的增根点评:解题的关键是熟练掌握使分式方程的最简公分母等于0的根就是分式方程的增根. 27.9x =【分析】观察可得最简公分母是x (x -3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程的两边同乘x (x -3),得3x -9=2x ,解得x =9.检验:把x =9代入x (x -3)=54≠0.⑴原方程的解为:x =9.故答案为:x =9.【点睛】本题考查了解分式方程,掌握节分是方程的方法和步骤是解题的关键. 28.3【分析】首先把所给的分式方程化为整式方程,然后根据分式方程有增根,得到30x -=,据此求出x 的值,代入整式方程求出a 的值即可.【详解】解:去分母,得:2(3)a x x -+=-,由分式方程有增根,得到30x -=,即3x =,把3x =代入整式方程,可得:3a =.故答案为:3.【点睛】本题主要考查了分式方程的增根,解答此题的关键是要明确:(1)化分式方程为整式方程;(2)把增根代入整式方程即可求得相关字母的值.29.4-或6##6或-4【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k 的值.【详解】解:方程两边同时乘以(1)(1)x x +-,得:2(1)+3(1)x kx x +=-,即(1)5k x -=-最简公分母为(1)(1)x x +-原方程的增根为1x =±将1x =代入整式方程得:4k =-,将=1x -代入整式方程得:6k =,故答案为:4-或6,【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:⑴化分式方程为整式方程;⑴把增根代入整式方程即可求得相关字母的值,掌握分式方程增根的含义是解题的关键.30.【详解】解方程:去分母得: 移项得: 系数化为1得:31.x=2.【分析】本题考查解分式方程的能力,观察可得方程最简公分母为(x+1)方程去分母后化为整式方程求解. 【详解】解:321x -=1 3=21x -x=2经检验x=2是原方程的解故答案为:x=2.【点睛】本题考查解分式方程,掌握解方程的步骤正确计算是解题关键,注意分式方程结果要检验.32.2510y y +-=【分析】本题考查用换元法化分式方程为整式方程的能力,注意观察方程中分式与y 的关系,代入换元. 【详解】解:设21x y x =+,则2551x y x =+,211x x y +=, 代入原方程得151y y+=, 整理得,2510y y +-=.故答案为:2510y y +-=.【点睛】本题考查了解分式方程,利用换元法是解题关键.33.2【分析】去分母,移项、合并同类项,再对所求的根进行检验即可求解. 【详解】解:321x x =+, 322=+x x ,2x =, 经检验2x =是方程的解.故答案为:2.【点睛】本题主要考查解分式方程,熟练掌握分式方程的解法,注意对所求的根进行检验是解题的关键.34.6m ≥-且4m ≠-【分析】分式方程去分母转化为整式方程,由分式方程的解是非负数,确定出m 的范围,但是必须保证分母不为零即可.【详解】解:分式方程去分母得:2x +m =3x -6,解得:x =m +6,由分式方程的解是非负数,得到m +6≥0,且m +6≠2,解得:6m ≥-且4m ≠-,故答案为:6m ≥-且4m ≠-.【点睛】本题考查分式方程的解,分式方程有意义的条件以及解一元一次不等式,熟练掌握运算法则是解本题的关键.35.25x = 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【详解】解:去分母得:240x x --=, 解得:25x =, 检验:把25x =代入得:220x x -≠(), ∴分式方程的解为25x =. 故答案为:25x =. 【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 36.600600105x x-=- 【分析】关键描述语是:“每个同学比原来少分摊了10元车费”;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可.【详解】解:设实际参加游览的同学一共有x 人, 由题意得:600600105x x -=-, 故答案为:600600105x x-=-. 【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到相应的等量关系是解决问题的关键.37.625【详解】设蓝色球有x 个,由题意得2695x x =++ , 解之得10x =⑴随机摸出一个为红球的概率为66691025=++ . 38.4【分析】由去年这种水果批发销售总额为10000元,可得今年的批发销售总额为10000(1+20%)=12000元,设这种水果今年每千克的平均批发价是x 元,则去年的批发价为(x +1)元,可列出方程:12000100010001x x -=+,求得x 即可 【详解】解:设这种水果今年每千克的平均批发价是x 元,则去年的批发价为(x +1)元 今年的批发销售总额为10000(1+20%)=12000元 ⑴120001000010001x x -=+ 整理得x 2-x -12=0解得x =4或x =-3经检验x =4或-3都是分式方程的解(x =-3不合题意,舍去).故这种水果今年每千克的平均批发价是4元.故答案为:4.【点睛】本题主要考查了分式方程的应用,正确找出等量关系是解答本题的关键. 39.1a <-且2a ≠-##a ≠-2且a <-1【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:去分母得:21x a x +=- ,解得:1x a =-- ,由分式方程的解为正数,得到10a --> ,且11a --≠ , 解得:a <-1且a ≠-2,故答案为:1a <-且2a ≠-.【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.40.1【分析】把2x =代入方程113x a x -=+,解一元一次方程可得. 【详解】把2x =代入方程113x a x -=+,得 21213a -=+, 去分母,得6-3a=3解得a=1故答案为1【点睛】考核知识点:分式方程的解.解一元一次方程是关键.41.甲平均每分钟打60个字.【详解】分析:设甲平均每分钟打x 个字,则乙平均每分钟打(x +20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x 的分式方程,解之经检验后即可得出结论.详解:设甲平均每分钟打x 个字,则乙平均每分钟打(x+20)个字, 根据题意得:135x =18020x +, 解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 42.(1)2x =-(2)无解【分析】(1)去分母化为整式方程即可解决问题,最后检验;(2)去分母化为整式方程即可解决问题,最后检验.【详解】(1)1311x x x =+++ 方程两边同乘()1x +,得:()131x x =++解得:2x =-检验:当2x =-时,()10x +≠所以,原分式方程的解为:2x =-.(2)22403191x x -=-- 方程两边同乘()()3131x x +-,得:()23140x +-=, 解得:13x =, 检验:当13x =时,()()31310x x +-=,因此13x =不是原分式方程的解, 所以,原分式方程无解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.43.(1)随机,不可能(2)需要往盒子里再放入1个黄球(3)将1个黄色球换成绿色球,理由见解析【分析】(1)根据随机事件和不可能事件的定义即可得出答案;(2)当黄球个数是总数的一半时,摸到盒子里黄球的概率为12,由此可解;(3)让每种颜色球的个数变成一样即可.(1)解:盒子里有红球、绿球和黄球,因此“摸到红球”是随机事件,“摸到黑球”是不可能事件,故答案为:随机,不可能;(2)解:设需要往盒内再放入x 个黄球,根据题意得:413242x x +=+++ 解得:x =1,经检验:x =1为原方程的解,答:需要往盒子里再放入1个黄球.(3)。

2018中考数学专题复习 换元法解答通关50题(pdf)

2018中考数学专题复习 换元法解答通关50题(pdf)

h.
4. 解下列方程组.
(1)



(2)

5. 阅读并探索:在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.例:试
比较 h hh数 h hh 与 h hh㤠 h hh数 的大小.
解:设 h hh数 , h hh数 h hh , h hh㤠 h hh数,
㤵(填“ ”、“ ”或“ ”);
②当 点在抛物线上运动时,猜想 R 与 㤵 有何数量关系,并证明你的猜想;
(3)当 㤵R 为等边三角形时,求点 坐标;
(4)如图 2,设点 h ⸷ ,问是否存在点 ,使得以 ,R,㤵 为顶点的三角形与 th 相
似?若存在,求出 点的坐标;若不存在,请说明理由.
19. 若
7. 解下列分式方程:
(1)

(2) ;


(3)


(4)


8. 下面是某同学对多项式

解:设 ,
原式
㤠 第一步 数 㤠 第二步 第三步
第四步
请问:
(1)该同学因式分解的结果是否彻底?
出因式分解的最后结果.
(2)请你模仿以上方法尝试对多项式

,t
,试比较

与 t 的大小.
20. 分解因式:
㤠.
21. 阅读下列材料,并用相关的思想方法解决问题.
计算:




令 t, 则
原式
t t
tt
t t t tt


问题:计算:
t h
t

h h

全国2018年中考数学真题汇总(含答案)

全国2018年中考数学真题汇总(含答案)

全国2018年中考数学真题汇总(含答案)图形初步、相交线、平行线(20题)一、选择题1.若一个角为,则它的补角的度数为()A. B. C. D.【答案】C【解析】一个角为,则它的补角的度数为:故答案为:C.【分析】根据补角的定义,若两个角之和为180°,则这两个角互为补角,即可求解。

2.如图,直线a,b被直线c所截,那么∠1的同位角是()A. ∠2B. ∠3C. ∠4D. ∠5【答案】C【解析】解:∵直线a,b被直线c所截,∴∠1的同位角是∠4故答案为:C【分析】两条直线被第三条直线所截,位于两条直线的同一侧,第三条直线的同旁,呈“F”形的角是同位角,即可得出答案。

3.如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D【解析】:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故答案为:D.【分析】根据二直线平行,同旁内角互补得出∠3+∠5=180°,根据对顶角相等及等量代换得出∠3+∠4=180°,4.如图是正方体的表面展开图,则与“前”字相对的字是()A. 认B. 真C. 复D. 习【答案】B【解析】观察正方形的展开图,可得出与“前”字相对的字是“真”.【分析】观察正方形的展开图,可得出答案。

5.如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④【答案】A【解析】:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故答案为:A.【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.6.如图,直线被所截,且,则下列结论中正确的是( )A. B. C. D.【答案】B【解析】:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.7.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()。

初中数学换元法练习

初中数学换元法练习
(1)求 , 两个品种去年平均亩产量分别是多少千克?
(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计 , 两个品种平均亩产量将在去年的基础上分别增加 和 .由于 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨 ,而 品种的售价保持不变, , 两个品种全部售出后总收入将增加 ,求 的值.
25.阅读材料:为解方程 ,我们可以将 视为一个整体,然后设 ,则 ,原方程化为 ①,解得 , .
当 时, , , ;
当 时, , , ;
原方程的解是 , , , .
解答问题:(1)填空:在由原方程得到方程①的过程中利用了换元法达到了的目的;
(2)利用材料中的方法解方程: .
答案
第一部分
1. B
2. C
因为 不小于 ,
所以 .
13. 或
【解析】 ,
将 两边同除以 得: ,
令 ,则 ,
因式分解得: ,
解得 或 ,
即 的值是 或 .
14.
【解析】设 ,则方程 可变形为: ,
方程两边同乘 ,整理得 .
故答案为: .
15.无解
【解析】设 , ,则 .
原方程化为 .
又 ,

,解得 .
经检验, 是增根.故原方程无解.
7.用换元法解方程 时,如果设 ,则原方程可化为
A. B. C. D.
8.我们知道方程组: 的解是 则方程组 的解是
A. B. C. D.
9.为求 的值,可令 ,则 ,因此 .仿照以上推理,计算出 的值为
A. B. C. D.
10.在求 的值时,小林发现:从第二个加数起每一个加数都是前一个加数的 倍,于是她设: 然后在 式的两边都乘以 ,得: 得 ,即 ,所以 得出答案后,爱动脑筋的小林想:如果把“ ”换成字母“ ”( 且 )能否求出 的值?你的答案是

《解一元二次方程—换元法》典型例题解析与同步训练(后附答案)

《解一元二次方程—换元法》典型例题解析与同步训练(后附答案)
解:(1)换元,降次
(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,
解得x=3或x=6;
(4)化简得:(x﹣1﹣2)(x﹣1﹣3)=0
即(x﹣3)(x﹣4)=0
解得x=3或x=4.
例4.阅读下面材料:解答问题
为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将(x2﹣1)看作一个整体,然后设x2﹣1=y,那么原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,∴x2=2,∴x=± ;当y=4时,x2﹣1=4,∴x2=5,∴x=± ,故原方程的解为x1= ,x2=﹣ ,x3= ,x4=﹣ .
2.2.5《解一元二次方程—换元法》典型例题解析与同步训练
【知识要点】
1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.
解得y1=6,y2=﹣2(4分)
当y=6时,x2﹣x=6即x2﹣x﹣6=0
∴x1=3,x2=﹣2(6分)
当y=﹣2时,x2﹣x=﹣2即x2﹣x+2=0
∵△=(﹣1)2﹣4×1×2<0
∴方程无实数解(8分)
∴原方程的解为:x1=3,x2=﹣2.(9分)
例5.阅读下面的材料,回答问题:
解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
(2)先移项,然后把x2﹣9因式分解为(x+3)(x﹣3),然后再提取公因式,因式分解即可.
(3)先移项,然后用提取公因式法对左边进行因式分解即可.

测试卷2:因式分解的方法二—换元法参考答案

测试卷2:因式分解的方法二—换元法参考答案

因式分解的方法二——换元法参考答案知识要点:换元法是数学中的一种重要方法,在解题和证明中常常起到桥梁作用。

用换元法分解因式,是把题目中的某一部分或某几部分看成一个整体,设为一个或几个新的变元,从而使代数式的结果简单化,便于分解。

A 卷一、填空题1、分解因式:()()_______________122122=-++++x x x x .2、分解因式:()()()()_______________157531=+++++x x x x .3、(重庆市竞赛题)分解因式:()____________________199911999199922=---x x .4、(第12届“五羊杯”初二试题)分解因式:()()()_____________22333=-----y x y x . 5、(“TI 杯”初中竞赛题)若142=++y xy x ,282=++x xy y ,则y x +的值为 .二、选择题6、当1=-y x 时,42233433y xy y x y x xy x ++---的值为( )A 、1-B 、0C 、2D 、17、(武汉市选拔赛)若133=-x x ,则199973129234+--+x x x x 的值等于( )A 、1999B 、2001C 、2003D 、20058、要使()()()()m x x x x +--+-8431为完全平方式,则m 为( )A 、12B 、24C 、196D 、200B 卷一、填空题9、化简:()()()_______________111120022=++++++++x x x x x x x .11、(2005年第16届“希望杯”初二年级竞赛题)在有理数范围内分解因式: ()()()()________________________________________63212=+++++x x x x x二、解答题12、分解因式:(2)()13322132222-+-+-x x x x 解原式()()13211132222---+-=x x x x令y x x =-322,则原式()11112--+=y y y y 92-=()9-=y y()()9323222---=x x x x ()()()32332+--=x x x x(3)()()()91729522---+a a a (湖北省黄冈市竞赛题)解原式()()()()91723352---++=a a a a()()[]()()[]91723352---++=a a a a()()9121215222-----=a a a a 令y a a =-22,则原式()()912115---=y y224362+-=y y()()828--=y y()()8228222----=a a a a()()()827242--+-=a a a a (4)()()42424101314x x x x x ++++-(第13届“五羊杯”竞赛题)解:设y x =+14,则原式()()4221034x x y x y ++-=44221012x x y x y +--=4222x y x y --=()()222x y x y +-=()()1122424+++-=x x x x()()[]2222211x x x -+-=()()()1112222-+++-=x x x x x (5)()()()2121231-+-⎪⎭⎫ ⎝⎛++-+++y x y x xy xy xy (天津市竞赛题) 解:设a y x =+,b xy =,则 原式()()()2121231--⎪⎭⎫ ⎝⎛+-+++=a a b b b ()2212a b b -++=()()a b a b -+++=11()()y x xy y x xy --++++=11()()()()1111--++=y x y x (6)()()()3331252332y x y x y x ---+-(第13届“五羊杯”竞赛题) 解原式()()()[]33352332y x y x y x ---+-= ()()()()[]33323322332y x y x y x y x -+---+-= 设a y x =-32,b y x =-23,则原式()333b a b a +-+= ()b a ab +-=3()()()y x y x y x 5523323----=()()()y x y x y x 233215----=C 卷一、解答题13、(安徽省竞赛试题)证明:12000199919981997+⨯⨯⨯是一个整数的平方,并求出这个整数。

【浙教版】2018年中考数学方法技巧:专题五-转化思想训练(含答案)

【浙教版】2018年中考数学方法技巧:专题五-转化思想训练(含答案)

方法技巧专题五转化思想训练转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等.一、选择题1.[2015·山西] 我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是( ) A.转化思想 B.函数思想C.数形结合思想 D.公理化思想2.[2016·扬州] 已知M=29a-1,N=a2-79a(a为任意实数),则M、N的大小关系为( )A.M<N B.M=NC.M>N D.不能确定3.[2016·十堰] 如图F5-1所示,小华从A点出发,沿直线前进10 m后左转24°,再沿直线前进10 m,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )A.140 m B.150 mC.160 m D.240 m图F5-14.[2016·徐州] 图F5-2是由三个边长分别为6,9,x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是( )图F5-2A.1或9 B.3或5C.4或6 D.3或6二、填空题5.[2017·烟台] 运行程序如图F5-3所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x的取值范围是________.图F5-36.[2016·达州] 如图F5-4,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连结BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为________.图F5-47.[2016·宿迁] 如图F5-5,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为________.图F5-5三、解答题8.如图F5-6①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连结AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果,不必说明理由.图F5-6参考答案1.A2.A [解析] ∵N-M=a2-79a-(29a-1)=a2-a+1=(a-12)2+34>0,∴M<N.故选A.注:此题把比较两个式子的大小转化为比较两个代数式的差的正负.3.B [解析] ∵多边形的外角和为360°,这里每一个外角都为24°,∴多边形的边数为360°÷24°=15.∴小华一共走的路程=15×10=150(m ).故选B . 注:把问题转化为正多边形的周长.4.D [解析] 如图,把原图形扩充成矩形,则图中两个阴影部分的面积相等,于是可列方程x (9-x )=6×(9-6).整理,得x 2-9x +18=0,解得x 1=3,x 2=6.故选D .注:此题体现了转化思想(把不规则图形转化为规则图形)和方程思想. 5.x <8 [解析] 由题意,得3x -6<18,解得x <8.6.24+9 3 [解析] 如图,连结PQ ,则△APQ 为等边三角形.∴PQ =AP =6.易知△APC ≌△AQB ,∴QB =PC =10.由勾股定理的逆定理,可知∠BPQ =90°. ∴S 四边形APBQ =S △BPQ +S △APQ =12×6×8+34×62=24+9 3.故答案为24+9 3.注:此题体现了分散向集中转化,即通过旋转把PA ,PB ,PC 集中到△PBQ 中.7.4或2 3 [解析] 设AD 的中点为P 1,无论AB 多长,△P 1BC 都是等腰三角形,即点P 1始终是符合条件的一个点.(1)如图①,当以点B (或点C )为圆心,以BC 为半径的圆与直线AD 相切时,符合条件的点有3个, 此时AB =BC =4;(2)如图②,分别以点B (或点C )为圆心,以BC 为半径的圆经过点P 1时,符合条件的点也有3个.此时BP 1=BC =4,AB =2 3.综上所述,BA 的长为4或2 3.注:将等腰三角形的个数转化为直线与圆的交点个数. 8.解:(1)证明:如图,延长ED 交AG 于点H .∵O 为正方形ABCD 对角线的交点, ∴OA =OD ,∠AOG =∠DOE =90°, ∵四边形OEFG 为正方形,∴OG =OE ,∴△AOG ≌△DOE , ∴∠AGO =∠DEO . ∵∠AGO +∠GAO =90°, ∴∠DEO +∠GAO =90°. ∴∠AHE =90°,即DE ⊥AG .(2)①在旋转过程中,∠OAG ′成为直角有以下两种情况:(i )α由0°增大到90°的过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴在Rt △OAG ′中,sin ∠AG ′O =OA OG′=12, ∴∠AG ′O =30°, ∵OA ⊥OD ,OA ⊥AG ′, ∴OD ∥AG ′.∴∠DOG ′=∠AG ′O =30°,即α=30°.(ii )α由90°增大到180°的过程中,当∠OAG ′为直角时,同理可求得∠BOG ′=30°, 所以α=180°-30°=150°.综上,当∠OAG ′为直角时,α=30°或150°. ②AF ′长的最大值是2+22,此时α=315°. 理由:当AF ′的长最大时,点F ′在直线AC 上,如图所示.∵AB =BC =CD =AD =1, ∴AC =BD =2,AO =OD =22. ∴OE ′=E ′F ′=2OD = 2. ∴OF ′=(2)2+(2)2=2. ∴AF ′=AO +OF ′=22+2. ∵∠DOG ′=45°,∴旋转角α=360°-45°=315°.。

2018年中考数学试卷及答案(pdf解析版)

2018年中考数学试卷及答案(pdf解析版)

2018年福建省南平市中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)(2014•南平)﹣4的相反数( ) A.4B.﹣4C.D.﹣分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣4的相反数4.故选:A.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.3.(4分)(2014•南平)一个袋中只装有3个红球,从中随机摸出一个是红球( ) A.可能性为B.属于不可能事件C.属于随机事件D.属于必然事件考点:随机事件;可能性的大小.分析:根据要求判断事件的类型,再根据必然事件、不可能事件、随机事件的概念选择即可.解答:解:因为袋中只装有3个红球,所以从中随机摸出一个一定是红球,所以属于必然事件,故选:D.点评:本题主要考查必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(4分)(2014•南平)下列计算正确的是( ) A.(2a2)4=8a6B.a3+a=a4C.a2÷a=a D.(a﹣b)2=a2﹣b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项的法则,同底数幂的除法,完全平方公式以及幂的乘方的知识求解即可求得答案.解答:解:A、(2a2)4=16a8,故A选项错误;B、a3+a,不是同类项不能计算,故B选项错误;C、a2÷a=a,故C选项正确;D、(a﹣b)2=a2+b2﹣2ab,故D选项错误.故选:C.点评:本题主要考查了合并同类项的法则,同底数幂的除法,完全平方公式以及幂的乘方的知识,解题的关键是熟记法则及公式.5.(4分)(2014•南平)将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是( ) A.45°B.60°C.90°D.180°考点:平行线的性质.分析:利用平行线的性质和对顶角的性质进行解答.解答:解:如图,∵a∥b,∴∠1=∠3,∠2=∠4.又∵∠3=∠5,∠4=∠6,∠5+∠6=90°,∴∠1+∠2=90°.故选:C.点评:本题考查了平行线的性质.正确观察图形,熟练掌握平行线的性质和对顶角相等.6.(4分)(2014•南平)下列说法正确的是( ) A.了解某班同学的身高情况适合用全面调查 B.数据2、3、4、2、3的众数是2 C.数据4、5、5、6、0的平均数是5 D.甲、乙两组数据的平均数相同,方差分别是S=3.2,S=2.9,则甲组数据更稳定考点:方差;全面调查与抽样调查;算术平均数;众数.分析:根据调查方式,可判断A;根据众数的意义可判断B;根据平均数的意义,可判断C;根据方差的性质,可判断D.解答:解:A、了解某班同学的身高情况适合全面调查,故A正确;B、数据2、3、4、2、3的众数是2,3,故B错误;C、数据4、5、5、6、0的平均数是4,故C错误;D、方差越小越稳定,乙的方差小于甲得方差,乙的数据等稳定,故D错误.故选:A.点评:本题考查了方差,方差越小数据越稳定是解题关键.7.(4分)(2014•南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( ) A.1,2,1B.1,2,2C.1,2,3D.1,2,4考点:三角形三边关系.分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.解答:解:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确;故选:B.点评:此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.8.(4分)(2014•南平)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为( ) A.y=10x+30B.y=40x C.y=10+30x D.y=20x考点:函数关系式.分析:根据师生的总费用,可得函数关系式.解答:解:一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30,故选:A.点评:本题考查了函数关系式,师生的总费用的等量关系是解题关键.9.(4分)(2014•南平)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=( ) A.1:2B.2:3C.1:3D.1:4考点:相似三角形的判定与性质;三角形中位线定理.分析:在△ABC中,AD、BE是两条中线,可得DE是△ABC的中位线,即可证得△EDC∽△ABC,然后由相似三角形的面积比等于相似比的平方,即可求得答案.解答:解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC:S△ABC=()2=.故选D.点评:此题考查了相似三角形的判定与性质与三角形中位线的性质.此题比较简单,注意中位线的性质的应用,注意掌握相似三角形的面积的比等于相似比的平方定理的应用是解此题的关键.10.(4分)(2014•南平)如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是( ) A.B.C.D.1考点:规律型:数字的变化类;算术平方根.分析:根据观察数列,可得,每三个数一循环,根据有序数对的表示方法,可得有序数对表示的数,根据是数的运算,可得答案.数解答:解;每三个数一循环,1、,(8,2)在数列中是第(1+7)×7÷2+2=30个,30÷3=10,(8,2)表示的数正好是第10轮的最后一个,即(8,2)表示的数是,(2014,2014)在数列中是第(1+2014)×2014÷2=2029105个,2029105÷3=676368…1,(2014,2014)表示的数正好是第676369轮的一个数,即(2014,2014)表示的数是1,1=,故选:B.点评:本题考查了数字的变化类,利用了数字的变化规律.二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)(2014•南平)请你写出一个无理数 π .考点:无理数.专题:开放型.分析:①开方开不尽的数,②无限不循环小数,③含有π的数,由此可写出答案.解答:解:由题意可得,π是无理数.故答案可为:π.点评:此题考查了无理数的定义,关键是掌握无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,难度一般.12.(3分)(2014•南平)已知点P在线段AB的垂直平分线上,PA=6,则PB= 6 .考点:线段垂直平分线的性质.分析:直接根据线段垂直平分线的性质进行解答即可.解答:解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.点评:本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.13.(3分)(2014•南平)五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是 80 .考点:中位数.分析:将这组数据从小到大的顺序排列后,处于中间位置的那个数是80,那么由中位数的定义可知,这组数据的中位数是80.解答:解:将这组数据从小到大排列,中间的数为80,所以中位数是80.故答案为:80.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14.(3分)(2014•南平)点P(5,﹣3)关于原点的对称点的坐标为 (﹣5,3) .考点:关于原点对称的点的坐标.专题:几何图形问题.分析:两点关于原点对称,横坐标互为相反数,纵坐标互为相反数.解答:解:∵5的相反数是﹣5,﹣3的相反数是3,∴点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3),故答案为(﹣5,3).点评:主要考查两点关于原点对称的坐标的特点:两点关于原点对称,两点的横坐标互为相反数,纵坐标互为相反数,用到的知识点为:a的相反数为﹣a.15.(3分)(2014•南平)同时掷两枚硬币,两枚硬币全部正面朝上的概率为 .考点:概率公式.分析:列举出所有情况,看所求的情况占总情况的多少即可.解答:解:可能出现的情况有:正正,正反,反正,反反,所以全部正面朝上的概率为.点评:此题考查了列举法求概率,解题的关键是找到所有的情况.16.(3分)(2014•南平)分解因式:a3﹣2a2+a= a(a﹣1)2 .考点:提公因式法与公式法的综合运用.分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.解答:解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.点评:本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.(3分)(2014•南平)将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′= 65 °.考点:角的计算;翻折变换(折叠问题).分析:根据折叠前后对应部分相等得∠AEB′=∠AEB,再由已知求解.解答:解:∵∠AEB′是△AEB沿AE折叠而得,∴∠AEB′=∠AEB.又∵∠BEC=180°,即∠AEB′+∠AEB+∠CEB′=180°,又∵∠CEB′=50°,∴∠AEB′==65,故答案为:65.点评:本题考查了角的计算以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量. 18.(3分)(2014•南平)如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.①四边形AO1BO2为菱形;②点D的横坐标是点O2的横坐标的两倍;③∠ADB=60°;④△BCD的外接圆的圆心是线段O1O2的中点.以上结论正确的是 ①③ .(写出所有正确结论的序号)考点:圆的综合题.分析:①连接AO1,AO2,BO1,BO2根据菱形的判定定理即可得出结论;②根据垂径定理即可得出结论;③连接O1O2,AB,BD,根据三角形中位线定理即可得出结论;④先判断出△BCD是等边三角形,再根据等边三角形外心的性质即可得出结论.解答:解:①如图1所示,连接AO1,AO2,B O1,BO2,∵圆⊙O1与⊙O2是等圆,∴AO1=AO2=BO1=BO2,∴四边形AO1BO2为菱形,故此小题正确;②∵AD是⊙O2的弦,∴O2在线段AD的垂直平分线上,∴点D的横坐标不是点O2的横坐标的两倍,故此小题错误;③连接O1O2,AB,BD,∵y轴是⊙O2的切线,∴O1O2⊥y轴,∵AD∥1O2.∵四边形AO1BO2为菱形,∴AB⊥O1O2,O1E=O2E,∴∠BAD=90°,∴BD过点O2,∴O2E是△ABD的中位线,∴AD=O1O2=BD,∴∠ADB=60°;④∵由③知,2AD=BD,∴CD=BD=BC,∴△BCD的外心是各边线段垂直平分线的交点,∵O1O2的中点是△BCD中位线的中点,∴△BCD的外接圆的圆心不是线段O1O2的中点,故此小题错误.故答案为:①③.点评:本题考查的是圆的综合题,涉及到切线的性质、菱形的判定定理及直角三角形的性质,难度适中.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)2.(4分)(2014•南平)如图,几何体的主视图是( ) A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有4个正方形,第二层从左起第二个有一个正方形.故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.19.(14分)(2014•南平)(1)计算:﹣(π﹣3)0+()﹣1+|﹣1|.(2)化简:(﹣)•.考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用立方根定义计算,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=2﹣1+2+﹣1=2+;(2)原式=•=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2014•南平)解不等式组:.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再根据不等式的解集找出不等式组的解集即可.解答:解:由①得:x<2,由②得:2﹣(x+1)≥0,2﹣x﹣1≥0,1﹣x≥0,x≤1,即不等式组的解集为x≤1.点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能根据找不等式组解集的规律找出不等式组的解集.21.(8分)(2014•南平)如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.考点:相似三角形的判定与性质.专题:证明题.分析:利用两个角对应相等的两个三角形相似,证得△ABD∽△ACB,进一步得出,整理得出答案即可.解答:证明:∵∠ABD=∠C,∠A是公共角,∴△ABD∽△ACB,∴,∴AB2=AD•AC.点评:此题考查相似三角形的判定与性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.④平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.⑤相似三角形的对应边成比例,对应角相等.22.(10分)(2014•南平)在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)随机抽查了 50 名学生;(2)补全图中的条形图;(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用一般的人数除以它所占的百分比即可得抽查的学生总数;(2)用抽查的学生总数减去不喜欢、一般、很喜欢的学生人数,得到较喜欢的人数,再补全图中的条形图即可;(3)用全校的学生数乘以学生喜欢(含“较喜欢”和“很喜欢”)足球运动所占的百分比即可.解答:解:(1)10÷20%=50(名),故答案为:50;(2)50﹣5﹣10﹣15=20(名),补全统计图如下:(3)500×(1﹣10%﹣20%)=350(名).答:全校约有350名学生喜欢足球运动.点评:本题主要考查了条形统计图,用样本估计总体及扇形统计图,解题的关键是把条形统计图和扇形统计图中的数据正确的结合起来求解.23.(10分)(2014•南平)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线.(2)若∠A=34°,AC=6,求⊙O的周长.(结果精确到0.01)考点:切线的判定;解直角三角形.分析:(1)连接OC,根据等腰三角形的性质求出OC⊥AB,根据切线的判定得出即可;(2)解直角三角形求出OC,即可求出答案.解答:(1)证明:连接OC,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线.(2)解:∵由(1)得OC⊥AB,∴∠ACO=90°,∴OC=AC▪tan34°=6×tan34°≈4.047,∴⊙O的周长=2π▪OC=2×3.142×4.047≈25.43.点评:本题考查了等腰三角形的性质,切线的判定,解直角三角形的性质,主要考查学生的计算和推理能力,题目比较好,难度适中.24.(10分)(2014•南平)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.考点:反比例函数与一次函数的交点问题.分析:(1)把点A、B的坐标代入反比例函数解析式,求得m、a的值;然后把点A、B的坐标分别代入一次函数解析式来求k、b的值;(2)利用一次函数图象上点的坐标特征求得点C的坐标;然后由S△ACD=S梯形AEOC﹣S△COD﹣S△DEA进行解答.解答:解:(1)∵点A(4,1)在反比例函数上,∴∴k=4×1=4,∴.把B(a,2)代入,得2=,∴a=2,∴B(2,2).∵把A(4,1),B(2,2)代入y=kx+b∴解得,∴一次函数的解析式为;(2)∵点C在直线AB上,∴当x=0时,y=3,∴C(0,3)过A作AE⊥x轴于E.∴S△ACD=S梯形AEOC﹣S△COD﹣S△DEA==5.点评:本题考查了反比例函数与一次函数的交点问题.解题时,注意“数形结合”数学思想的应用.25.(12分)(2014•南平)如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据待定系数法即可求得;(2)把C(m,m﹣1)代入求得点C的坐标,从而求得AH=4,CH=2,BH=1,AB=5,然后根据,∠AHC=∠BHC=90°得出△AHC∽△CHB,根据相似三角形的对应角相等求得∠ACH=∠CBH,因为∠CBH+∠BCH=90°所以∠ACH+∠BCH=90°从而求得∠ACB=90°,先根据有两组对边平行的四边形是平行四边形求得四边形DECF是平行四边形,进而求得□DECF是矩形;(3)根据矩形的对角线相等,求得EF=CD,因为当CD⊥AB时,CD的值最小,此时CD 的值为2,所以EF的最小值是2;解答:(1)∵抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m﹣1)代入得∴,解得:m=3或m=﹣2,∵C(m,m﹣1)位于第一象限,∴,∴m>1,∴m=﹣2舍去,∴m=3,∴点C坐标为(3,2),由A(﹣1,0)、B(3,0)、C(3,2)得AH=4,CH=2,BH=1,AB=5过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,∵,∠AHC=∠BHC=90°∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴□DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;点评:本题考查了待定系数法求解析式,抛物线上点的坐标的求法,三角形相似的判定和性质,矩形的判定和性质等,本题是二次函数的综合性题,其难点是三角形相似的判定:两组对应边对应成比例且夹角相等的两个三角形相似;26.(14分)(2014•南平)在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为 60 °.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为 45 °.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为 36 °.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.考点:四边形综合题.分析:(1)①由△ABC与△APE均为正三角形得出相等的角与边,即可得出△ABP≌△ACE.②由△ABP≌△ACE,得出∠ACE=∠B=60°,即可得出∠ECM的度数.(2)①作EN⊥BN,交BM于点N,由△ABP≌△ACE,利用角及边的关系,得出CN=EN,即可得出∠ECM的度数.②作EN⊥BN,交BM于点N,由△ABP≌△ACE,得出角及边的关系,得出CN=EN,即可得出∠ECM的度数.(3)过E作EK∥CD,交BM于点K,由正多边形的性质可得出△ABP≌△PKE,利用角及边的关系,得出CK=KE,即△EKC是等腰三角形,根据多边形的内角即可求出∠ECM的度数.解答:解:(1)①证明:如图1,∵△ABC与△APE均为正三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴∠BAC﹣∠PAC=∠PAE﹣∠PAC即∠BAP=∠CAE,在△ABP和△ACE中,,∴△ABP≌△ACE (SAS).②∵△ABP≌△ACE,∴∠ACE=∠B=60°,∵∠ACB=60°,∠ECM=180°﹣60°﹣60°=60°.故答案为:60.(2)①如图2,作EN⊥BN,交BM于点N∵四边形ABCD和APEF均为正方形,∴AP=PE,∠B=∠ENP=90°,∴∠BAP+∠APB=∠EPM+∠APB=90°,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠ECM=∠CEN=45°②如图3,作EN∥CD交BM于点N,∵五边形ABCDF和APEGH均为正五边方形,∴AP=PE,∠B=∠BCD,∵EN∥CD,∴∠PNE=∠BCD,∴∠B=∠PNE∵∠BAP+∠APB=∠EPM+∠APB=180°﹣∠B,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠NCE=∠NEC,∵∠CNE=∠BCD=108°,∴∠ECM=∠CEN=(180°﹣∠CNE)=×(180°﹣108°)=36°.故答案为:45,36.(3)如图4中,过E作EK∥CD,交BM于点K,∵n边形ABC…和n边形APE…为正n边形,∴AB=BC AP=PE∠ABC=∠BCD=∠APE=∵∠APK=∠ABC+∠BAP,∠APK=∠APE+∠EPK∴∠BAP=∠KPE∵EK∥CD,∴∠BCD=∠PKE∴∠ABP=∠PKE,在△ABP和△PKE中,,∴△ABP≌△PKE(AAS)∴BP=EK,AB=PK,∴BC=PK,∴BC﹣PC=PK﹣PC,∴BP=CK,∴CK=KE,∴∠KCE=∠KEC,∵∠CKE=∠BCD=∴∠ECK=.点评:本题主要考查了四边形综合题,涉及三角形全等的判定及性质,正多边形的内角及等腰三角形的性质,解题的关键是正确作出辅助线,运用三角形全等求出对应边相等.。

2018年中考数学专题大讲堂第七讲几何变换之翻折探究(Word含答案)-文档资料

2018年中考数学专题大讲堂第七讲几何变换之翻折探究(Word含答案)-文档资料

几何变换之翻折探究思考与解决几何图形的问题,主要是借助基本图形的性质(定义,定理等)和图形之间的关系.许多基本图形的性质都源于这个图形本身的“变换特征”,而最为重要和最为常用的图形关系“全等三角形”很多的情况也是同样具有“变换”形式的联系.本来两个三角形全等是指它们的形状和大小都一样,和相互间的位置没有直接关系,但是,在同一个问题中涉及到的两个全等三角形,绝大多数都有一定的位置关系,或成轴对称关系,或成平移关系,或成旋转的关系(包括中心对称).这样,在解决具体的几何图形问题时,图形本身所显示或暗示的“变换特征”,对我们识别出、构造出基本图形和图形关系(如全等三角形),有着极为重要的启发和引导的作用.图形的翻折问题本质上是轴对称问题,满足轴对称的性质,即:1. 折叠图形关于折痕对称2. 对应边、角相等3. 对应点的连线被折痕垂直平分我们解决翻折问题一般也是从以上性质出发解决的. 先讲翻折题的三种常见方法【题目】(16 年秋锡山区期中)如图,在平面直角坐标系中,矩形 ABCO 的边 OA 在 x 轴上,边 OC 在 y 轴上,点 B 的坐标为(1,3),将矩形沿对角线 AC 翻折,点 B 落在点 D 的位置,且 AD 交 y 轴于点 E ,那么点 D 的坐标为 .法一:求.定.点.关.于.定.直.线.的.对.称.点.(万能方法)如答图 1,连 BD ,交 AC 于 G ,则△ABC ∽△AGB ∽△BFD ,∴BD =2BG =AB · 1 ·2=3× 1 ×2= 6 ,DF =BD · 1 =110 × 6 =3,BF =3DF =9,10 10 10 1010 5 5 ∴D (-4,12)5 5 法二:由.直.角.翻.折.主.动.寻.求.K .型.相.似.(特殊技巧) 如答图 1,由∠ADC =90°⟹△ADN ∽△DCF ,相似比为 3:1,设 ON =CF =x ,则 DN =3x ,DF =3-3x ,由AN=3DF 得x+1=3(3-3x),解得x=4,∴D(-4,12)5 5 5法三:由.翻.折.主.动.寻.求.等.腰.三.角.形.(特殊技巧)如答图 2,延长 CD 交 x 轴于 H ,可得 CH =AH ,设 DH =y ,则 AH =y ,在 Rt △ADH 中用勾股定理可得 y =4 易得 DM =12,∴D (-4,12)5 5 5法四:由.翻.折.主.动.寻.求.等.腰.三.角.形.(特殊技巧)如答图 2,设 CE =AE =a ,则 OE =3-a ,在 Rt △AOE 中用勾股定理可得 a =5,3 由比例关系可得 OM =4,∴D (-4,12)5 5 5 【例题剖析】题型一:利用对应边相等,对应角相等例 1-1、(2019 年无锡)10.如图,Rt △ABC 中,∠ACB =90º,AC =3,BC =4,将边 AC 沿 CE 翻折,使点 A 落在 AB 上的点 D 处;再将边 BC 沿 CF 翻折,使点 B 落在 CD 的延长线上的点 B′处,两条折痕与斜边 AB 分别交于点 E 、F ,则线段 B′F 的长为( ) A 3 4 2 3. B . C . 5 3 D . 2【解答】选 B〖点评〗本题的关键点在于发现并证明∠B′FB 是直角,由翻折可知∠A =∠ADC =∠B′DF ,∠A +∠B =90°又∠B =∠B′========‹∠B′FB 是直角⟹△B ′DF 是“345”的三角形又由翻折可知 B ′C =BC =4,CD =AC =3,例1-2、(18 年4 月锡山区二模)17.如图,在△ABC 中,∠ACB=90°,点D,E 分别在AC,BC 上,且∠CDE=∠B,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处.若AC=8,AB=10,则CD 的长为.【解答】CD=258答图1 答图2 母子三角形〖点评〗本题的关键点在于发现并证明F 是AB 的中点,如答图,由翻折⟹CF⊥DE===== ‹∠1=∠B 直角三角形斜边上的中线定理的逆命题∠1=∠2====‹∠2=∠B⟹CF=BF======================‹F 是AB 中点本题也可以根据90 度翻折构造K 型相似来解决,如答图 2〖针对练习〗1、(18 年4 月宜兴一模)16.如图,在矩形ABCD 中,AB=4,BC=6,E 是BC 的中点,连结AE,将△ABE 沿AE 折叠,点B 落在点F 处,连结CF,则sin∠EFC=.【解答】45例2-1、(18 年4 月宜兴一模)10.一张矩形纸片ABCD,其中AD=8 cm,AB=6 cm,先沿对角线BD 对折,点C 落在点C′的位置,BC′交AD 于点G(图1);再折叠一次,使点D 与点A 重合,得折痕EN,EN 交AD 于点M(图2),则EM 的长为()A.2 B.32 C. 2 D.76【解答】选D〖点评〗本题的关键点在于发现并利用△DEN 是等腰三角形,由翻折⟹∠CDB=∠EDB,作高EHEN 是折痕⟹EN∥CD⟹∠END=∠BDC⟹∠END=∠EDN⟹EN=ED===‹△DEN 是“556”的三角形例 2-2、(12 年南长区一模)已知正方形 ABCD 的边长为 6cm ,点 E 是射线 BC 上的一个动点,连接 AE 交射线 DC 于点 F ,将△ABE 沿直线 AE 翻折,点 B 落在点 B′处. (1) 当BE =1 时,CF = cm ;CE (2) 当BE=2 时,求 sin ∠DAB′的值; CE (3) 略【解答】当 E 点在 BC 边上时,sin ∠DAB′= 5,当 E 点在 BC 的延长线上时,sin ∠DAB′ 13 =3, 5 〖点评〗本题三种方法都可以,方法一:如答图 1,构造等腰三角形 AGF ,再由勾股定理得到方程 x 2+62=(9-x )2 解得 x =5,所以 sin ∠DAB′= 52 13方法二:如答图 2,△ABE ∽△AHB ∽△B′GB ,三边之比都为 2:3: 13,∴BH = 3 BE = 3 ×4= 12 ⟹BB′=2BH = 24 ⟹BG = 2 BB′=48 ⟹AG =30 ⟹sin ∠13 13 13 DAB′= 5 13 13 13 13 13方法三:如答图 3,构造相似三角形△AB′F ∽△B′EG ,且相似比为 3:2,可得方程组3x +2y =6 ,解得 x =10 13,所以 sin ∠DAB′= 53x 2+ 3y 2=36 y =24 13 13另一种情况类似,参考答图 4答图 1 答图 2 答图 3答图4例2-3、(17 年滨湖二模)18.如图,在Rt△ABC 中,∠C=90°,AC=3 cm,BC=4 cm,点E 从C 点出发向终点B 运动,速度为1 cm/秒,运动时间为t 秒,作EF∥AB,点P 是点C 关于EF 的对称点,连结AP,当△AFP 恰好是直角三角形时,t 的值为.【解答】t=25或78 8答图1 答图2〖点评〗本题的关键点在于CP 与折痕EF 垂直,也即与AB 垂直,在∠APE=90°时,可得等腰三角形ABE。

2018届中考总复习解题技巧:换元法填空通关50题(PDF版含答案)

2018届中考总复习解题技巧:换元法填空通关50题(PDF版含答案)

43. 用换元法解方程
二次方程的一般形式是

t
时,如果设 .
t
,则原方程可化为关于
的一元
44. 计 算 是
t .
͵͵ǡ
t
͵͵
t
͵͵ǡ
t
͵͵
的 结 果
45. 设函数
t 的图象与函数
t
的图象的交点坐标为
,则
的值为

46. 方程



t
͵
的实根是

47. 已知
t ͵,则关于
h



h








ǡ
tt
tt

得出答案后,爱动脑筋的张红想:如果把 “ ” 换成字母 t
͵

的值?如能求出,其正确答案是
͵且
),能否求出 .

27. 已知

h

t ͵,则

的值为

28. 用换元法解方程


h t ͵ 时,可设
t
,从而原方程可化为

第 4页(共 12 页)
的方程


t

的解是
t

第 7页(共 12
48. 用换元法解分式方程 方程的一般形式是


t
时,如果设
tห้องสมุดไป่ตู้
,那么原方程可化为关于
的一元二次
49. 已知实数
,㈮ 满足
㈮ t ,则代数式

的最小值等于

50. 若
h

2018年中考数学试题分项版解析汇编第01期专题4.4圆含解析

2018年中考数学试题分项版解析汇编第01期专题4.4圆含解析

专题4.4 圆一、单选题1.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A. 35°B. 45°C. 55°D. 65°【来源】江苏省盐城市2018年中考数学试题【答案】C点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.2.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A. 3B.C.D.【来源】广东省深圳市2018年中考数学试题【答案】D【解析】【分析】设光盘圆心为O,连接OC,OA,OB,由AC、AB都与圆O相切,利用切线长定理得到AO平分∠BAC,且OC垂直于AC,OB垂直于AB,可得出∠CAO=∠BAO=60°,得到∠AOB=30°,利用30°所对的直角边等于斜边的一半求出OA的长,再利用勾股定理求出OB的长,即可确定出光盘的直径.【详解】如图,设光盘圆心为O,连接OC,OA,OB,∵AC、AB都与圆O相切,∴AO平分∠BAC,OC⊥AC,OB⊥AB,∴∠CAO=∠BAO=60°,∴∠AOB=30°,在Rt△AOB中,AB=3cm,∠AOB=30°,∴OA=6cm,根据勾股定理得:OB=3,则光盘的直径为6,故选D.【点睛】本题考查了切线的性质,切线长定理,含30°角的直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.3.如图,在中,,的半径为3,则图中阴影部分的面积是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】C【解析】分析:根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.详解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选C.点睛:本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.4.在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B. C. 34 D. 10【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.详解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN-MP=EF-MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选D.点睛:本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN的最小值是解题的关键.5.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B. C. D.【来源】山东省滨州市2018年中考数学试题【答案】C点睛:此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.6.如图,过点,,,点是轴下方上的一点,连接,,则的度数是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】B【解析】【分析】连接CD,根据圆周角定理可知∠OBD=∠OCD,根据锐角三角形函数即可求出∠OCD 的度数.【解答】连接CD,∵∠OBD与∠OCD是同弧所对的圆周角,∴∠OBD=∠OCD.∵∴故选B.【点评】考查圆周角定理,解直角三角形,熟练掌握在同圆或等圆中,同弧所对的圆周角相等是解题的关键.7.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【来源】2018年浙江省舟山市中考数学试题【答案】D【解析】【分析】在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.【解答】用反证法证明时,假设结论“点在圆外”不成立,那么点应该在圆内或者圆上.故选D.【点评】考查反证法以及点和圆的位置关系,解题的关键是掌握点和圆的位置关系.8.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】A【解析】分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.详解:连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2).故选A.点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键.9.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【来源】山东省泰安市2018年中考数学试题【答案】C点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.10.如图,与相切于点,若,则的度数为()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.点睛:本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.11.如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD的延长线于点C,若的半径为4,,则PA的长为()A. 4B.C. 3D. 2.5【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】A【解析】【分析】连接OD,由已知易得△POD∽△PBC,根据相似三角形对应边成比例可求得PO的长,由PA=PO-AO即可得.【详解】连接OD,∵PD与⊙O相切于点D,∴OD⊥PD,∴∠PDO=90°,∵∠BCP=90°,∴∠PDO=∠PCB,∵∠P=∠P,∴△POD∽△PBC,∴PO:PB=OD:BC,即PO:(PO+4)=4:6,∴PO=8,∴PA=PO-OA=8-4=4,故选A.【点睛】本题考查了切线的性质、相似三角形的判定与性质,连接OD构造相似三角形是解题的关键.12.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A. 75°B. 70°C. 65°D. 35°【来源】浙江省衢州市2018年中考数学试卷【答案】B【解析】分析:直接根据圆周角定理求解.详解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选B.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A. 3cmB. cmC. 2.5cmD. cm【来源】浙江省衢州市2018年中考数学试卷【答案】D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.详解:连接OB,点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.二、填空题14.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.【来源】江苏省连云港市2018年中考数学试题【答案】44°【解析】分析:首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.详解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为:44°点睛:此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.15.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.【来源】江苏省宿迁市2018年中考数学试卷【答案】+π【解析】【分析】在Rt△AOB中,由A点坐标得OA=1,根据锐角三角形函数可得AB=2,OB=,在旋转过程中,三角板的角度和边的长度不变,所以点B运动的路径与坐标轴围成的图形面积:S=,计算即可得出答案.【详解】在Rt△AOB中,∵A(1,0),∴OA=1,又∵∠OAB=60°,∴co s60°=,∴AB=2,OB=,∵在旋转过程中,三角板的角度和边的长度不变,∴点B运动的路径与坐标轴围成的图形面积:S==π,故答案为:π.【点睛】本题考查了扇形面积的计算,锐角三角函数的定义,旋转的性质等,根据题意正确画出图形是解题的关键.16.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为__________cm.【来源】江苏省连云港市2018年中考数学试题【答案】2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.17.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.【来源】江苏省宿迁市2018年中考数学试卷【答案】15π【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.18.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径 OA=2cm,∠AOB=120°.则右图的周长为________cm(结果保留π).【来源】江苏省盐城市2018年中考数学试题【答案】【解析】分析:先根据图1确定:图2的周长=2个的长,根据弧长公式可得结论.详解:由图1得:的长+的长=的长,∵半径OA=2cm,∠AOB=120°则图2的周长为:.故答案为:.点睛:本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.19.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.【来源】浙江省温州市2018年中考数学试卷【答案】8.【解析】分析: 设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM的长,,而且面积等于小正六边形的面积的,故三角形PMN的面积很容易被求出,根据正六边形的性质及等腰三角形的三线和一可以得出PG的长,进而得出OG的长,,在Rt△OPG中,根据勾股定理得 OP的长,设OB为x,,根据正六边形的性质及等腰三角形的三线和一可以得出BH,OH的长,进而得出PH的长,在Rt△PHO中,根据勾股定理得关于x的方程,求解得出x的值,从而得出答案.详解: 设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM=,而且面积等于小正六边形的面积的,故三角形PMN的面积为cm2,∵OG⊥PM,且O是正六边形的中心,∴PG=PM=∴OG=,在Rt△OPG中,根据勾股定理得:OP2=OG2+PG2,即=OP2,∴OP=7cm,设OB为x,∵OH⊥AB,且O是正六边形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根据勾股定理得OP2=PH2+OH2,即;解得:x1=8,x2=-3(舍)故该圆的半径为8cm.故答案为:8.点睛: 本题以相机快门为背景,从中抽象出数学模型,综合考查了多边形、圆、三角形及解三角形等相关知识,突出考查数学的应用意识和解决问题的能力。

中考数学十大解题思路之换元法

中考数学十大解题思路之换元法

换元法在因式分解中的应用因式分解是初中代数课中一种重要的恒等变形,它是分式通分、约分、解方程以及三角函数的基础。

学好因式分解,对以后数学的学习有着非常重要的意义。

除教材上介绍的因式分解的方法外,换元法也是一种比较常用的方法。

例1.分解因式:()()442++-+y x y x (济南市 2007)分析:如果将原式变形,就会得到一个二次多项式,不利于因式分解。

换个角度考虑,可以将y x +看成一个整体,则原式就变成这个整体为未知量的二次多项式。

解:设u y x =+ 原式442+-=u u ()22-=u()22-+=y x例2.分解因式:()()()22224432134-+--+--x x x x x x分析:本题如果展开,就会出现四次多项式,不利于因式分解。

因此可以尝试用换元法进行因式分解。

观察原式中各个局部之间的简单运算关系,有:=-+442x x ()()321322-++--x x x x ,将其中两部分设为辅助元,则可以表示出第三部分。

解:设A x x =--132,B x x =-+322,则B A x x +=-+442。

原式()()224B A B A AB --=+-=()()222222323213+--=+-----=x x x x x x使用换元法的关键是选择辅助元。

在选择辅助元时,要反复比较式子中重复出现的整体结构,以便寻找最恰当的辅助元。

第三章换元法在化简二次根式中的应用在化简二次根式的过程中,常常会因为根式下的式子过于复杂而无从下手,这时可以考虑通过换元将复杂的式子简单化,从而有助于二次根式的化简,下面介绍两种应用换元法化简二次根式的方法。

3.1设元代数,化已知为未知例3.若⎥⎦⎤⎢⎣⎡-=20021200221x ,求x x ++12的值 分析:2002是一个较大、带根号的无理数,直接代入较复杂,因此可以尝试用字母换元代入。

解:设2002=y ,则⎪⎪⎭⎫ ⎝⎛-=y y x 121,221411⎪⎪⎭⎫ ⎝⎛+=+y y x ,且01〉+y y 原式⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=y y y y y y y y 12112112114122002==y3.2设元代式,无理变有理例4. 化简aba b b a a +-(陕西省 2008)分析:本题中的式子较复杂,可以利用换元,将无理式转化为有理式,便于计算。

换元法练习题.doc

换元法练习题.doc

二、换元法(课时10)一、知识提要解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化, 这叫换元法.换元的方法有:局部换元、三角换元、均值换元等. 二、例题讲解例1.(1)已知:x xf lg )12(=+,求)(x f . (2)设实数x 、y 满足0122=-+xy x ,则y x +的取值范围是_________. (3)方程2)22(log )12(log 122=+⋅++x x的解集是______________.解:(1))1)(1lg(2lg )(>--=x x x f ;(2)设k y x =+,则1044,01222≥⇒≥-=∆=+-k k kx x 或1-≤k ; (3)令)12(log 2+x=t ,可得原方程的解集为}0{.例2.(1)函数223)1(x x x y +-=的值域是_____________.(2)已知:数列}{n a 的11=a ,前n 项和为n S ,241+=+n n a S .求}{n a 的通项公式.解:(1)令θta n =x ,)2,2(ππθ-∈,则θθθθθθsi n )ta n 1(cos )ta n 1(ta n ta n 23223-=+-=y θθθθθθθθ4sin 412cos cos sin )sin (cos sin cos 22=⋅=-=, ∴]41,41[-∈y . (2)由241+=+n n a S ,知)2(241≥+=-n a S n n ,∴)2)((411≥-=--+n a a S S n n n n ,即)2)((411≥-=-+n a a a n n n∴)2)(2(2211≥-=--+n a a a a n n n n ,令n n n a a b 21-=+,则)2(21≥=-n b b n n∵11=a ,52=a ,∴31=b ,123-⨯=n n b ,即n n n a a 22311+⨯=-+.两边除以12+n 得:432211=-++n n n n a a ,令nn n a c 2=,则有431=-+n n c c , ∴)13(41-=n c n ,代入nn n a c 2=得: 22)13(-⋅-=n n n a .例3.实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求m a x1s +m in1s 的值.(93年全国高中数学联赛题)方法1:设⎪⎩⎪⎨⎧==ααsin cos s y s x 代入①式得: 4S -5S ·sin αcos α=5解得 S =α2sin 5810- ;∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ 1013≤1085-sin α≤103∴m ax1s +m in1s =310+1310=1610=85方法2:由S =x 2+y 2,设x 2=2s +t ,y 2=2s-t ,t ∈[-S 2,S 2],则224t s xy -±=代入①式得:4S ±5224t s -=5, 移项平方整理得 100t 2+39S 2-160S +100=0 . ∴ 39S 2-160S +100≤0 解得:1013≤S ≤103∴m ax1s +m in1s =310+1310=1610=85方法3:(和差换元法)设x =a +b ,y =a -b ,代入①式整理得3a 2+13b 2=5 ,求得a 2∈[0,53],所以S =(a -b)2+(a +b)2=2(a 2+b 2)=1013+2013a 2∈[1013,103],再求m ax1s +m in1s 的值.三、同步练习1.x x x x y cos sin cos sin ++=的最大值是__12+2___.2.已知数列}{n a 中,n n n n a a a a a -=⋅-=++111,1a 1=-1,则数列通项n a =_____n1____. 3.已知x 2+4y 2=4x ,则x +y 的范围是_____]25,25[---______.4.设等差数列}{n a 的公差21=d ,且145100=s ,则99531a a a a ++++ 的值为(C )A. 85B. 72.5C. 60D. 52.5 5.已知0,0≥≥b a ,1=+b a ,则a +12+b +12的范围是__]2,226[+__. 6.函数12++=x x y 的值域是_____),2[+∞-_____.7.已知正四棱锥ABCD S -的侧面与底面所成的角为β,相邻两侧面所成的角为α 求βα2cos cos +的值.解答:08.如图,已知椭圆1925:22=+y x C ,圆∈=+P y x O ,4:22椭圆C 而PA 、PB 是圆O 任意切线,A 、B 为切点. (1)求AB 中点M 的轨迹方程;(2)设AB 所在直线交x 轴于C ,交y 轴与D ,求COD S ∆的最小值.解:(1))(225)169(162222y x y x +=+;(2)1516)(min =∆COD S .情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在x6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


的一元二次方程
方程,使它的根分别是已知方程根的倒数.
h 有两个不等于零的实数根,求一个一元二次
3. 解方程:


h.
4. 解下列方程组. (1) (2)







第 1页(共 34 页)
5. 阅读并探索:在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.例:试 比较 h 则 因为 所以 计算: 解:设 h hh数 hh数 h , hh 与 h h hh数 , hh㤠 h h hh , hh数 的大小. . h hh㤠 h hh数,

第 3页(共 34 页)
11. 解方程:
h.
12. 解方程组:

13. 解方程组:




14. 如图中的 数 个点处各写有一个数字.已知每个点所写的数字等于和这个点有线段相连的三个点 处的数字的平均数,则代数式
ᯩ 均 ᯩ 均 䃃 䃃
的值是多少?
15. 已知 ,ᯩ, 分别是 Rt



t⸷

24. 先化简,再求值:

,其中


25. 解方程:


h.
第 7页(共 34 页)
26. 已知抛物线
(1)抛物线的解析式;
(2)抛物线的顶点坐标及抛物线与




,t ⸷ 两点,求: 轴的交点坐标.
27. 先阅读下面的解题过程,再回答问题: 解方程: 解:设 原方程可化为 解得 当 当 问题: (1)由原方程到方程①,利用 (2)用换元法解方程:
换元法解答通关 50 题(含答案)
1. 用换元法解方程组:



㤠⸷


2. 请阅读下列材料: 问题:已知方程 解:设所求方程的根为 ,则 把 代入已知方程,得 h, h,求一个一元二次方程,使它的根分别是已知方程根的 ,所以 . h. h, 倍.
化简,得
故所求方程为
这种利用方程根的代换求新方程的方法,我们称之为“换根法”. 请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式): (1)已知方程 所求方程为 (2)已知关于 ; h ,求一个一元二次方程,使它的根分别为已知方程根的相反数,则 ᯩ

, (填“ ”或“ ”). h h 数 h 数 h .
填完后,你学会了这种方法吗?不妨尝试一下.
6. 某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去 年有小幅度的减产,而枇杷有所增产. (1)该地某果农今年收获樱桃和枇杷共 hh 千克,其中枇杷的产量不超过樱桃产量的 数 倍,求 该果农今年收获樱桃至少多少千克? (2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场 销售量为 hh 千克,销售均价为 h 元/千克,今年樱桃的市场销售量比去年减少了 克,但销售均价比去年减少了 克,销
年枇杷的市场销售量比去年增加了 的值.
售均价与去年相同;该果农去年枇杷的市场销售量为 hh 千克,销售均价为 h 元/千克,今 克.该果农今年运往市
场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求
7. 解下列分式方程: (1)



(2) (3) (4)


t
t

tt
t
t
第 6页(共 34 页)
问题:计算: t
h h
t


t
h
h

t

h

h

22. 求 令
参照以上推理,计算
h 数






h 数

t
t .
h 㤠
的值,
h 㤠
,则
h 㤠
t
的值.

t
h 㤠

h 数Βιβλιοθήκη ,因此23. 解方程组:请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”); (2)若不彻底,请直接写出因式分解的最后结果; (3)请你模仿以上方法尝试对多项式 进行因式分解.
18. 先让我们一起来学习方程 解:令 解得 , h, , . ,则 ,

,方程两边平方可得,

的解法:
点评:类似的方程可以用“整体换元”的思想解决. 不妨一试: 如图 1,在平面直角坐标系 R 中,抛物线 为抛物线上的一个动点, 是过点 h⸷ 接 R. 且垂直于 轴的直线,过 经过点 作 㤵 ⸷ ,顶点为点 t ,点 ,垂足为点 㤵,连
9. 解方程组: (1) 㤠 (2)


㤠⸷ 香

10. 小明用下面的方法求出方程 方程 h 令 h h
并把你的解答过程填写在下面的表格中.
h 的解,请你仿照他的方法求出下面另外两个方程的解, 解新方程 h t t 检验 h 求原方程的解 ⸷所以
换元法得新方程 t⸷则 t


th 的三条边,且


h,求斜边 .
第 4页(共 34 页)
16. 已知实数 ,ᯩ 满足


数,求
ᯩ 的值.
17. 下面是某同学对多项式 解:设 原式
数 㤠 (第二步) (第三步)
㤠 (第一步 ) (第四步)

㤠 进行因式分解的过程.
(4)如图 2,设点 h ⸷ 似?若存在,求出
,问是否存在点 ,使得以 ,R,㤵 为顶点的三角形与
19. 若


,t

,试比较
与 t 的大小.
20. 分解因式:
21. 阅读下列材料,并用相关的思想方法解决问题. 计算: 令 则 原式 t




㤠.
t, t t




第 5页(共 34 页)
(1)求抛物线的解析式; (2)①当 ②当 (3)当 点运动到 点在抛物线上运动时,猜想 R 与 㤵 有何数量关系,并证明你的猜想; 㤵R 为等边三角形时,求点 坐标; 点的坐标;若不存在,请说明理由. 点处时,通过计算发现: R 㤵(填“ ”、“ ”或“ ”); th 相






第 2页(共 34 页)
8. 下面是某同学对多项式 解:设 原式 ,

㤠 进行因式分解的过程.

数 㤠 第二步 第三步
㤠 第一步 第四步 (填“彻底”或“不彻底”).若不彻底,请直接写 进行因式分解.
请问:
(1)该同学因式分解的结果是否彻底? 出因式分解的最后结果. (2)请你模仿以上方法尝试对多项式
相关文档
最新文档