A CLASS OF NONLINEAR PREDICTOR FUNCTIONS FOR THE SPEECH SIGNAL

合集下载

人工智能导论考核试卷

人工智能导论考核试卷
2.监督学习:基于标记数据学习;无监督学习:从无标记数据中发现模式;强化学习:通过奖励与惩罚学习策略。案例:监督学习用于邮件分类,无监督学习用于客户细分,强化学习用于游戏AI。
3. CNN通过卷积和池化操作提取图像特征,降低参数数量,提高模型泛化能力,从而提高图像识别准确性。
4.伦理问题:隐私保护、算法偏见、责任归属。解决策略:制定伦理准则、透明度提升、多样化团队、责任追溯机制。
1.人工智能包括以下哪些技术领域?()
A.机器学习
B.语音识别
C.量子计算
D.数据挖掘
E.虚拟现实
2.以下哪些属于监督学习算法?()
A.支持向量机
B.决策树
C. K-均值聚类
D.线性回归
E.随机森林
3.深度学习中的卷积神经网络(CNN)主要用于哪些任务?()
A.图像分类
B.语音识别
C.自然语言处理
D.视频分析
人工智能导论考核试卷
考生姓名:__________答题日期:__________得分:__________判卷人:__________
一、单项选择题(本题共20小题,每小题1分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.以下哪个不是人工智能的研究领域?()
A.机器学习
B.深度学习
D.随机森林
E.支持向量回归
9.以下哪些是推荐系统中的冷启动问题?()
A.用户冷启动
B.项目冷启动
C.模型冷启动
D.数据冷启动
E.系统冷启动
10.以下哪些是迁移学习的主要挑战?()
A.数据分布差异
B.标签空间不匹配
C.模型泛化能力不足
D.源域数据不足
E.目标域数据过拟合

非线性方程和非线性方程组的迭代解法

非线性方程和非线性方程组的迭代解法
则称序列(X。)至少P阶收敛.当p=l,0<C<1时,称序列(x“)至少线性收
敛:p=2,c>0称序列至少平方收敛;若k≥k.,时,有Xk=x4成立,或
lim堕:。二型 =0
“‘||X“一X+旷 则称事列(X)为超p阶收敛
定义4[13假定迭代序列(x。}收敛于x+,量
!抽婪∑梨,当xt≠x·对k≥k。 。
(1)公式的建立
设x+是方程f(x)=o的解,f(x)在x+的某邻域A={xj x—x4≤6}存在
二阶导数,且VX∈A,f’(X)≠0,设x。∈△为f的近似值,将f(x)在X。处 展为一次Taylor多项式f(X)=f(xk)+f 7(x。)(x—x。),记p(X)=f(x.)十 f’(X:)(X—X.),显然P(X)≈f(x).令P(x)=O,解得
应用这个方法求解了非线性偏微分方程u.+“萎生等}<如V>。Q,s(u)=。,其中
Q“u)2与竿导,万—iiF数值计算中得到的非线性方程组,并通过迭代公
式(4-3)与Newton法的数值实验结果的比较,晚明了在相同精度要求卜I求解这 个问题时,f=}}式f 4—3)优于\entOtl法的几个方面.
第一章解非线性方程的常用迭代格式
在第三章写出了这几个迭代公式的相应算法设计,并将这些格式的数值实验 结果与Newton法、 弦截法、Muller法的数值实验结果进行了比较,说明了这 几个迭代格式的有效性.
在第四章中将预测式迭代法推广到了求解非线性方程组,分析了它的收敛 性、收敛阶,给出了其算法设计并进行了数值实验证明了方法的有效性.特别地,
兰州大学 硕士学位论文 非线性方程和非线性方程组的迭代解法及 姓名:尚秀丽 申请学位级别:硕士 专业:计算数学 指导教师:周宇斌
20041101

dtnl练习题(打印版)

dtnl练习题(打印版)

dtnl练习题(打印版)# DTNL 练习题(打印版)## 一、选择题1. 下列哪个选项不是深度学习(Deep Learning, DL)的典型应用?- A. 图像识别- B. 自然语言处理- C. 线性回归- D. 神经网络2. 在深度学习中,以下哪个术语与反向传播算法(Backpropagation)无关?- A. 梯度下降- B. 损失函数- C. 卷积神经网络- D. 特征提取## 二、填空题1. 深度学习模型中的激活函数通常用于引入________,以帮助模型学习复杂的数据模式。

2. 卷积神经网络(CNN)中的卷积层主要用于提取图像的________特征。

3. 在训练深度学习模型时,________是用于评估模型在训练集上的性能的指标。

## 三、简答题1. 简要描述什么是深度学习,并说明它与传统机器学习方法的主要区别。

2. 解释什么是过拟合(Overfitting),并给出避免过拟合的几种策略。

## 四、计算题给定一个简单的神经网络,包含一个输入层,两个隐藏层和一个输出层。

假设输入层有4个神经元,第一个隐藏层有8个神经元,第二个隐藏层有6个神经元,输出层有3个神经元。

如果输入层的激活值为[0.2, 0.5, 0.8, 1.0],第一个隐藏层的权重矩阵为:\[W_1 =\begin{bmatrix}0.1 & 0.2 & 0.3 & 0.4 \\0.5 & 0.6 & 0.7 & 0.8 \\0.9 & 1.0 & 1.1 & 1.2 \\\end{bmatrix}\]第一个隐藏层的偏置向量为 \( b_1 = [0.1, 0.2, 0.3, 0.4] \),激活函数为 ReLU。

请计算第一个隐藏层的输出激活值。

## 五、编程题编写一个简单的 Python 函数,该函数接受一个列表作为输入,返回列表中所有元素的和。

```pythondef sum_elements(input_list):# 你的代码pass```## 六、案例分析题考虑一个实际问题,例如图像识别、语音识别或自然语言处理等,描述如何使用深度学习技术来解决这个问题,并简要说明所选择的模型架构和训练过程。

上下文无关文法 例题

上下文无关文法 例题

上下文无关文法例题摘要:1.什么是上下文无关文法2.上下文无关文法的特点3.例题解析4.上下文无关文法在自然语言处理中的应用正文:一、什么是上下文无关文法上下文无关文法(Context-Free Grammar,简称CFG)是形式语言理论中的一种文法,用来描述由终结符(terminal)和非终结符(non-terminal)组成的字符串。

这种文法能够生成任意长度的字符串,且生成的字符串与上下文无关,即与输入的语境无关。

二、上下文无关文法的特点1.层次性:上下文无关文法具有层次结构,由根节点到叶子节点,代表了字符串生成的顺序。

2.无歧义性:上下文无关文法中的每个产生式规则都有唯一的一个解,不会产生歧义。

3.递归性:在生成字符串的过程中,有些非终结符可以递归地生成其他字符串,这种性质被称为递归性。

三、例题解析假设有一个上下文无关文法如下:```S → ABA → aA | εB → bB | ε```其中,S 是根节点,A 和B 是两个非终结符,a 和b 是终结符,ε表示空字符串。

根据这个文法,可以生成如下字符串:- S → AB → aB → ab- S → AB → A → aA → aa- S → AB → B → bB → bb- S → AB → B → ε → b可以看到,这个文法可以生成四种不同的字符串。

四、上下文无关文法在自然语言处理中的应用上下文无关文法在自然语言处理中有广泛的应用,例如:1.词性标注:通过训练上下文无关文法,可以为自然语言中的每个词分配一个词性标签。

2.句法分析:利用上下文无关文法可以对自然语言句子进行句法分析,得到句子的结构树。

3.机器翻译:在机器翻译任务中,可以利用上下文无关文法生成目标语言的句子。

2023国开电大春季学期人工智能导论终结性考核

2023国开电大春季学期人工智能导论终结性考核

2023春季学期《人工智能导论》在线终结性考核1.字典中的元素使用()括号扩起来。

多选题(3 分) 3分A.方括号B.花括号2.以下关于异常处理的描述,错误的选项是()单选题(3 分) 3分B.ZeroDivisionError是一个变量未命名错误3.关于Python语言的特点,以下选项描述正确的是()单选题(3 分) 3分B.Python语言是解释型语言4.下面代码的输出结果是:>>> TempStr = "Pi=3.141593">> eval(TempStr[3:-1])单选题(3 分) 3分A.3.141595.下列哪一个不是字典具有的最显著的特征()。

单选题(3 分) 0分D.字典中的每一个元素都是可变的6.Python可以将一条长语句分成多行显示的续行符号是()单选题(3 分) 0分A.\7.while 1 < 3:print('1 is smaller than 3')以上代码会()。

单选题(3 分) 3分C.死循环8.以下选项中不可用作Python标识符的是()单选题(3 分) 0分A.3.149.元组中的元素使用()括号扩起来。

多选题(3 分) 0分A.方括号C.圆括号10.以下程序的输出结果是:def fun1():print("in fun1()")fun2()fun1()def fun2():rint("in fun2()")fun1()fun2()单选题(3 分) 0分D.出错11.Python的第三方库一般不是哪一种文件格式()。

单选题(3 分) 3分D.pip12.file = open(' Users/yourname/Desktop/file','w') file.write('hello world!')这句代码的作用是()。

《机器学习基石》课程笔记12 -- Nonlinear Transformation

《机器学习基石》课程笔记12 -- Nonlinear Transformation

林轩田《机器学习基石》课程笔记12­­NonlinearTransformation上一节课,我们介绍了分类问题的三种线性模型,可以用来解决binary classification和multiclass classification问题。

本节课主要介绍非线性的模型来解决分类问题。

一、Quadratic Hypothesis之前介绍的线性模型,在2D平面上是一条直线,在3D空间中是一个平面。

数学上,我们用线性得分函数s来表示:。

其中,x为特征值向量,w为权重,s是线性的。

线性模型的优点就是,它的VC Dimension比较小,保证了。

但是缺点也很明显,对某些非线性问题,可能会造成很大,虽然,但是也造成很大,分类效果不佳。

为了解决线性模型的缺点,我们可以使用非线性模型来进行分类。

例如数据集D不是线性可分的,而是圆形可分的,圆形内部是正类,外面是负类。

假设它的hypotheses可以写成:基于这种非线性思想,我们之前讨论的PLA、Regression问题都可以有非线性的形式进行求解。

下面介绍如何设计这些非线性模型的演算法。

还是上面介绍的平面圆形分类例子,它的h(x)的权重w0=0.6,w1=­1,w2=­1,但是h(x)的特征不是线性模型的,而是。

我们令,,,那么,h(x)变成:这种的转换可以看成是x空间的点映射到z空间中去,而在z域中,可以用一条直线进行分类,也就是从x空间的圆形可分映射到z空间的线性可分。

z域中的直线对应于x域中的圆形。

因此,我们把这个过程称之为特征转换(Feature Transform)。

通过这种特征转换,可以将非线性模型转换为另一个域中的线性模型。

已知x域中圆形可分在z域中是线性可分的,那么反过来,如果在z域中线性可分,是否在x域中一定是圆形可分的呢?答案是否定的。

由于权重向量w取值不同,x域中的hypothesis可能是圆形、椭圆、双曲线等等多种情况。

人工智能导论王万良思考题答案

人工智能导论王万良思考题答案

人工智能导论王万良思考题答案1、下面哪个选项不属于按照形态分类的机器人?() [单选题] *A.仿人智能机器人B.拟物智能机器人C.对话机器人(正确答案)D.仿生机器人2、下面哪项不属于机器人常用的感觉传感器?() [单选题] *A.按钮(正确答案)B.视觉C.听觉D.触觉3、下面哪个选项不属于按照使用途径分类的机器人?() [单选题] *A.工业生产型机器人B.特殊灾害型机器人C.医疗机器人D.行走机器人(正确答案)4、下面哪个选项不属于按照智能程度分类的机器人?() [单选题] *A.初级智能机器人B.家庭智能陪护机器人C.高级智能机器D.农业机器人(正确答案)5、机器人一般按哪两种方式工作?() *A.将程序事先写好在存储器中(正确答案)B.示教-再现方式(正确答案)C.手动控制D.自我学习6、下面哪些选项属于机器人常用的传感器? *A.碰撞传感器(正确答案)B.激光雷达传感器(正确答案)C.视觉传感器(正确答案)D.超声传感器(正确答案)7、麦克风传感器可用于检测语音? [判断题] *对(正确答案)错8、热释电传感器可用于检测温度? [判断题] *对错(正确答案)9、碰撞传感器用于检测障碍物时使用? [判断题] *对(正确答案)错10、激光雷达传感器可用于获取障碍物的精确位置? [判断题] *对(正确答案)错11、自然语言理解,又称(),是人工智能的一个重要分支,属于计算机科学的一部分 [单选题] *A.人机对话(正确答案)B.人机交互C.语言合成D.语言生成12、下面哪个选项不属于自然语言理解的常用任务?() [单选题] *A.中文文本分词B.文本表示C.命名实体识别D.文本情感识别(正确答案)13、自然语言处理领域具有两个鲜明特征:一是(),二是真实可用性 [单选题] *A.小规模性B.大规模性(正确答案)C.乱序性D.有序性14、要想提取出“有用”的信息,仅提取关键词、统计词频等是远远不够的,必须对用户数据(尤其是发言、评论等)进行()。

predictmodel的例子

predictmodel的例子

predictmodel的例子预测模型是机器学习中常用的一种方法,用于根据已有的数据来预测未知的结果。

预测模型可以应用于各种领域,如金融、医疗、市场营销等。

下面将以一个简单的预测模型为例,介绍预测模型的基本原理和使用方法。

一、预测模型的基本原理预测模型的基本原理是通过对已有的数据进行分析和建模,然后利用模型对未知的数据进行预测。

预测模型可以分为监督学习和无监督学习两种类型。

监督学习是指通过已有的带有标签的数据来训练模型,然后利用模型对未知数据进行预测;无监督学习则是指利用未标记的数据进行训练,通过发现数据的内在规律来进行预测。

二、预测模型的示例以一个简单的线性回归模型为例,假设我们有一组数据,包含了房屋的面积和价格。

我们希望通过这组数据来建立一个模型,可以根据房屋的面积来预测价格。

1. 数据收集和准备我们需要收集一组房屋的面积和价格数据。

这些数据可以通过房地产网站、房产中介或者相关机构获取。

收集到的数据需要进行清洗和预处理,包括去除异常值、处理缺失值等。

2. 数据探索和特征选择在建立模型之前,我们需要对数据进行探索和分析,了解数据的分布、相关性等。

同时,我们还需要选择合适的特征,即房屋的面积作为预测模型的输入特征,价格作为输出特征。

3. 模型训练和评估在完成数据准备和特征选择之后,我们可以利用已有的数据来训练模型。

对于线性回归模型来说,我们可以通过最小二乘法来估计模型的参数。

训练完成后,我们需要对模型进行评估,可以使用均方误差等指标来评判模型的性能。

4. 模型应用和预测当模型训练和评估完成后,我们可以将其应用于未知的数据,根据输入的房屋面积来预测价格。

预测结果可以帮助我们做出决策,如购买房屋时的价格参考。

三、预测模型的应用预测模型在实际应用中有着广泛的应用,下面列举几个常见的应用场景。

1. 股票价格预测通过历史的股票价格数据,建立预测模型来预测未来的股票价格走势,帮助投资者做出投资决策。

2. 疾病预测通过分析病人的病例和生理指标,建立预测模型来预测疾病的发展趋势,帮助医生提前采取干预措施。

一个上下文无关文法生成句子abbaa的推导树

一个上下文无关文法生成句子abbaa的推导树

一个上下文无关文法生成句子abbaa的推导树以《一个上下文无关文法生成句子abbaa的推导树》为标题,本文将详细阐述上下文无关文法生成句子abbaa的推导树,解释如何用此推导树生成该句子。

首先,我们需要对上下文无关文法进行一个简要的介绍。

上下文无关文法(Context-free Grammar)是由于Noam Chomsky发展的一种文法,用于描述一组字符串之间的关系,其中这些字符串由一组非终结符(即变量)和一组终结符(即终结字符)组成,每个变量都由一组终结字符和/其他变量组成,通过一组产生规则表示。

接下来,我们来看一下具体的推导树,生成上述句子abbaa。

该推导树是以一个根符号S为起始符号,它可以通过如下产生规则产生句子abbaa:S→AbAaA→bAA→a从开始符号S开始,该符号可以通过替换成AbAa来左移,然后A可以被bA或a替换,此时右边变为bAa,若A以a替换,则此时可以完成推导,得到abbaa;否则,A可以继续替换成bA,然后A 又可以替换成a,最终可以得到abbaa。

在这个推导的过程中,我们使用了无关文法的三个基本性质:规则可以以左移的方式应用,终结字符可以正确对应,而无需考虑文本中的上下文。

最后,我们可以用它来生成更复杂的句子。

例如,我们可以提出一个新的产生规则,如:S→AbBbAa,然后用相同的推导方法来生成更复杂的句子,如abbbbaaa。

因此,我们可以看出,上下文无关文法推导树可以用来生成复杂的句子,而且可以很好地重新组合出不同句子。

总之,本文通过详细阐述上下文无关文法生成句子abbaa的推导树,说明如何用上下文无关文法生成该句子。

上下文无关文法具有非常重要的作用,不仅能够构建形式语言,还可以用来解析复杂句子,分析句子之间的关系,为计算机语言编程提供重要支持。

广义线性模型

广义线性模型

9
SAS9.0 GENMOD过程中所整合的响应变量分布类型
DIST= BINOMIAL | BIN | B GAMMA | GAM | G IGAUSSIAN | IG Distribution binomial gamma Default Link Function logit inverse ( power(-1) )
7
何为“广义线性模型”?(续)
一个广义线性模型包括以下三个组成部分:
(1)线性成分(linear component ) :
i 0 1x1i 2 x2i m xmi
(2)随机成分(random component ):
i Yi i
(3)连接函数 ( link function):
2010-4-15
山东大学公共卫生学院:刘静
18
Log-likelihood functions
2010-4-15
山东大学公共卫生学院:刘静
19
三、广义线性模型的假设检验
广义线性模型的检验一般用似然比检验、Wald检 验和记分检验。模型的比较用似然比检验。
(1)似然比检验:似然比检验是通过比较两个相嵌套模型 (如模型P嵌套于模型K内)的对数似然函数来进行的, 其统计量G为: 模型P的对数似然函数
Binomial Survival Counts
Model
Linear regression
Logistic regression Cox model Poisson regression
Uses

Control of confounding Model building, risk prediction
2 ˆ yi i 1 ˆ ˆ n p i 1 V n

零样本分类器 自然语言推理

零样本分类器 自然语言推理

零样本分类器是一种机器学习技术,用于在训练数据中没有特定
类别的样本时,仍然能够训练分类器并进行分类。

自然语言推理(NLI)是自然语言处理(NLP)的一个子任务,旨在确定给定的两个句子之间的逻辑关系,例如前提、假设、反义等。

将零样本分类器应用于自然语言推理的任务中,可以通过无监督
学习的方法,从大量的未标记数据中提取有用的信息,以识别和分类不同的逻辑关系。

这可以帮助解决NLI任务中类别不平衡的问题,并提高分类器的泛化能力。

在实现零样本分类器时,可以使用迁移学习和自编码器等技术。

迁移学习可以将在一个任务上学到的知识应用于另一个任务上,从而避免了从头开始训练的需要。

自编码器是一种无监督的神经网络模型,可以通过学习输入数据的编码表示来重建输出数据。

通过结合迁移学习和自编码器,可以构建一个零样本分类器,用
于自然语言推理任务。

该分类器可以首先使用自编码器从未标记数据中学习输入和输出数据的表示,然后使用迁移学习将学到的表示应用于NLI任务上。

最后,可以使用分类器对输入的句子对进行分类,并输出它们之间的逻辑关系。

需要注意的是,零样本分类器在自然语言推理任务中的应用仍然
是一个研究领域,需要更多的研究和实验来验证其有效性和可行性。

人工智能导论试卷

人工智能导论试卷
6.强化学习是一种无监督学习的方法。()
7.在卷积神经网络中,池化层的目的是减少参数数量和计算量。()
8.人工智能的发展完全依赖于硬件性能的提升。()
9.在自然语言处理中,词袋模型考虑了词语的顺序关系。()
10.人工智能在医疗诊断中的应用已经达到或超过了专业医生的水平。()
(以下为答题纸)
第四部分主观题(本题共2小题,每题10分,共20分)
人工智能导论试卷
考生姓名:__________答题日期:__________得分:__________判卷人:__________
第一部分单选题(本题共15小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.以下哪项不是人工智能的研究领域?()
A.机器学习
B.量子计算
A.状态
B.动作
C.奖励
D.损失函数
9.在人工智能中,下列哪个领域涉及让机器理解人类语言?()
A.机器视觉
B.自然语言处理
C.语音识别
D.机器人学
10.以下哪个算法通常用于降维?()
A.主成分分析
B.支持向量机
C. K均值聚类
D.决策树
11.在机器学习中,下列哪个方法用于处理缺失值?()
A.均值填充
C.自然语言处理
D.计算机视觉
2.人工智能的英文缩写是?()
A. AI
B. BI
C. CI
D. DI
3.以下哪个算法不属于监督学习?()
A.支持向量机
B.决策树
C. K近邻算法
D.随机森林
4.下列哪个不是深度学习的常见网络结构?()
A.卷积神经网络
B.循环神经网络
C.自编码网络

专八英语阅读

专八英语阅读

英语专业八级考试TEM-8阅读理解练习册(1)(英语专业2012级)UNIT 1Text AEvery minute of every day, what ecologist生态学家James Carlton calls a global ―conveyor belt‖, redistributes ocean organisms生物.It’s planetwide biological disruption生物的破坏that scientists have barely begun to understand.Dr. Carlton —an oceanographer at Williams College in Williamstown,Mass.—explains that, at any given moment, ―There are several thousand marine species traveling… in the ballast water of ships.‖ These creatures move from coastal waters where they fit into the local web of life to places where some of them could tear that web apart. This is the larger dimension of the infamous无耻的,邪恶的invasion of fish-destroying, pipe-clogging zebra mussels有斑马纹的贻贝.Such voracious贪婪的invaders at least make their presence known. What concerns Carlton and his fellow marine ecologists is the lack of knowledge about the hundreds of alien invaders that quietly enter coastal waters around the world every day. Many of them probably just die out. Some benignly亲切地,仁慈地—or even beneficially — join the local scene. But some will make trouble.In one sense, this is an old story. Organisms have ridden ships for centuries. They have clung to hulls and come along with cargo. What’s new is the scale and speed of the migrations made possible by the massive volume of ship-ballast water压载水— taken in to provide ship stability—continuously moving around the world…Ships load up with ballast water and its inhabitants in coastal waters of one port and dump the ballast in another port that may be thousands of kilometers away. A single load can run to hundreds of gallons. Some larger ships take on as much as 40 million gallons. The creatures that come along tend to be in their larva free-floating stage. When discharged排出in alien waters they can mature into crabs, jellyfish水母, slugs鼻涕虫,蛞蝓, and many other forms.Since the problem involves coastal species, simply banning ballast dumps in coastal waters would, in theory, solve it. Coastal organisms in ballast water that is flushed into midocean would not survive. Such a ban has worked for North American Inland Waterway. But it would be hard to enforce it worldwide. Heating ballast water or straining it should also halt the species spread. But before any such worldwide regulations were imposed, scientists would need a clearer view of what is going on.The continuous shuffling洗牌of marine organisms has changed the biology of the sea on a global scale. It can have devastating effects as in the case of the American comb jellyfish that recently invaded the Black Sea. It has destroyed that sea’s anchovy鳀鱼fishery by eating anchovy eggs. It may soon spread to western and northern European waters.The maritime nations that created the biological ―conveyor belt‖ should support a coordinated international effort to find out what is going on and what should be done about it. (456 words)1.According to Dr. Carlton, ocean organism‟s are_______.A.being moved to new environmentsB.destroying the planetC.succumbing to the zebra musselD.developing alien characteristics2.Oceanographers海洋学家are concerned because_________.A.their knowledge of this phenomenon is limitedB.they believe the oceans are dyingC.they fear an invasion from outer-spaceD.they have identified thousands of alien webs3.According to marine ecologists, transplanted marinespecies____________.A.may upset the ecosystems of coastal watersB.are all compatible with one anotherC.can only survive in their home watersD.sometimes disrupt shipping lanes4.The identified cause of the problem is_______.A.the rapidity with which larvae matureB. a common practice of the shipping industryC. a centuries old speciesD.the world wide movement of ocean currents5.The article suggests that a solution to the problem__________.A.is unlikely to be identifiedB.must precede further researchC.is hypothetically假设地,假想地easyD.will limit global shippingText BNew …Endangered‟ List Targets Many US RiversIt is hard to think of a major natural resource or pollution issue in North America today that does not affect rivers.Farm chemical runoff残渣, industrial waste, urban storm sewers, sewage treatment, mining, logging, grazing放牧,military bases, residential and business development, hydropower水力发电,loss of wetlands. The list goes on.Legislation like the Clean Water Act and Wild and Scenic Rivers Act have provided some protection, but threats continue.The Environmental Protection Agency (EPA) reported yesterday that an assessment of 642,000 miles of rivers and streams showed 34 percent in less than good condition. In a major study of the Clean Water Act, the Natural Resources Defense Council last fall reported that poison runoff impairs损害more than 125,000 miles of rivers.More recently, the NRDC and Izaak Walton League warned that pollution and loss of wetlands—made worse by last year’s flooding—is degrading恶化the Mississippi River ecosystem.On Tuesday, the conservation group保护组织American Rivers issued its annual list of 10 ―endangered‖ and 20 ―threatened‖ rivers in 32 states, the District of Colombia, and Canada.At the top of the list is the Clarks Fork of the Yellowstone River, whereCanadian mining firms plan to build a 74-acre英亩reservoir水库,蓄水池as part of a gold mine less than three miles from Yellowstone National Park. The reservoir would hold the runoff from the sulfuric acid 硫酸used to extract gold from crushed rock.―In the event this tailings pond failed, the impact to th e greater Yellowstone ecosystem would be cataclysmic大变动的,灾难性的and the damage irreversible不可逆转的.‖ Sen. Max Baucus of Montana, chairman of the Environment and Public Works Committee, wrote to Noranda Minerals Inc., an owner of the ― New World Mine‖.Last fall, an EPA official expressed concern about the mine and its potential impact, especially the plastic-lined storage reservoir. ― I am unaware of any studies evaluating how a tailings pond尾矿池,残渣池could be maintained to ensure its structural integrity forev er,‖ said Stephen Hoffman, chief of the EPA’s Mining Waste Section. ―It is my opinion that underwater disposal of tailings at New World may present a potentially significant threat to human health and the environment.‖The results of an environmental-impact statement, now being drafted by the Forest Service and Montana Department of State Lands, could determine the mine’s future…In its recent proposal to reauthorize the Clean Water Act, the Clinton administration noted ―dramatically improved water quality since 1972,‖ when the act was passed. But it also reported that 30 percent of riverscontinue to be degraded, mainly by silt泥沙and nutrients from farm and urban runoff, combined sewer overflows, and municipal sewage城市污水. Bottom sediments沉积物are contaminated污染in more than 1,000 waterways, the administration reported in releasing its proposal in January. Between 60 and 80 percent of riparian corridors (riverbank lands) have been degraded.As with endangered species and their habitats in forests and deserts, the complexity of ecosystems is seen in rivers and the effects of development----beyond the obvious threats of industrial pollution, municipal waste, and in-stream diversions改道to slake消除the thirst of new communities in dry regions like the Southwes t…While there are many political hurdles障碍ahead, reauthorization of the Clean Water Act this year holds promise for US rivers. Rep. Norm Mineta of California, who chairs the House Committee overseeing the bill, calls it ―probably the most important env ironmental legislation this Congress will enact.‖ (553 words)6.According to the passage, the Clean Water Act______.A.has been ineffectiveB.will definitely be renewedC.has never been evaluatedD.was enacted some 30 years ago7.“Endangered” rivers are _________.A.catalogued annuallyB.less polluted than ―threatened rivers‖C.caused by floodingD.adjacent to large cities8.The “cataclysmic” event referred to in paragraph eight would be__________.A. fortuitous偶然的,意外的B. adventitious外加的,偶然的C. catastrophicD. precarious不稳定的,危险的9. The owners of the New World Mine appear to be______.A. ecologically aware of the impact of miningB. determined to construct a safe tailings pondC. indifferent to the concerns voiced by the EPAD. willing to relocate operations10. The passage conveys the impression that_______.A. Canadians are disinterested in natural resourcesB. private and public environmental groups aboundC. river banks are erodingD. the majority of US rivers are in poor conditionText CA classic series of experiments to determine the effects ofoverpopulation on communities of rats was reported in February of 1962 in an article in Scientific American. The experiments were conducted by a psychologist, John B. Calhoun and his associates. In each of these experiments, an equal number of male and female adult rats were placed in an enclosure and given an adequate supply of food, water, and other necessities. The rat populations were allowed to increase. Calhoun knew from experience approximately how many rats could live in the enclosures without experiencing stress due to overcrowding. He allowed the population to increase to approximately twice this number. Then he stabilized the population by removing offspring that were not dependent on their mothers. He and his associates then carefully observed and recorded behavior in these overpopulated communities. At the end of their experiments, Calhoun and his associates were able to conclude that overcrowding causes a breakdown in the normal social relationships among rats, a kind of social disease. The rats in the experiments did not follow the same patterns of behavior as rats would in a community without overcrowding.The females in the rat population were the most seriously affected by the high population density: They showed deviant异常的maternal behavior; they did not behave as mother rats normally do. In fact, many of the pups幼兽,幼崽, as rat babies are called, died as a result of poor maternal care. For example, mothers sometimes abandoned their pups,and, without their mothers' care, the pups died. Under normal conditions, a mother rat would not leave her pups alone to die. However, the experiments verified that in overpopulated communities, mother rats do not behave normally. Their behavior may be considered pathologically 病理上,病理学地diseased.The dominant males in the rat population were the least affected by overpopulation. Each of these strong males claimed an area of the enclosure as his own. Therefore, these individuals did not experience the overcrowding in the same way as the other rats did. The fact that the dominant males had adequate space in which to live may explain why they were not as seriously affected by overpopulation as the other rats. However, dominant males did behave pathologically at times. Their antisocial behavior consisted of attacks on weaker male,female, and immature rats. This deviant behavior showed that even though the dominant males had enough living space, they too were affected by the general overcrowding in the enclosure.Non-dominant males in the experimental rat communities also exhibited deviant social behavior. Some withdrew completely; they moved very little and ate and drank at times when the other rats were sleeping in order to avoid contact with them. Other non-dominant males were hyperactive; they were much more active than is normal, chasing other rats and fighting each other. This segment of the rat population, likeall the other parts, was affected by the overpopulation.The behavior of the non-dominant males and of the other components of the rat population has parallels in human behavior. People in densely populated areas exhibit deviant behavior similar to that of the rats in Calhoun's experiments. In large urban areas such as New York City, London, Mexican City, and Cairo, there are abandoned children. There are cruel, powerful individuals, both men and women. There are also people who withdraw and people who become hyperactive. The quantity of other forms of social pathology such as murder, rape, and robbery also frequently occur in densely populated human communities. Is the principal cause of these disorders overpopulation? Calhoun’s experiments suggest that it might be. In any case, social scientists and city planners have been influenced by the results of this series of experiments.11. Paragraph l is organized according to__________.A. reasonsB. descriptionC. examplesD. definition12.Calhoun stabilized the rat population_________.A. when it was double the number that could live in the enclosure without stressB. by removing young ratsC. at a constant number of adult rats in the enclosureD. all of the above are correct13.W hich of the following inferences CANNOT be made from theinformation inPara. 1?A. Calhoun's experiment is still considered important today.B. Overpopulation causes pathological behavior in rat populations.C. Stress does not occur in rat communities unless there is overcrowding.D. Calhoun had experimented with rats before.14. Which of the following behavior didn‟t happen in this experiment?A. All the male rats exhibited pathological behavior.B. Mother rats abandoned their pups.C. Female rats showed deviant maternal behavior.D. Mother rats left their rat babies alone.15. The main idea of the paragraph three is that __________.A. dominant males had adequate living spaceB. dominant males were not as seriously affected by overcrowding as the otherratsC. dominant males attacked weaker ratsD. the strongest males are always able to adapt to bad conditionsText DThe first mention of slavery in the statutes法令,法规of the English colonies of North America does not occur until after 1660—some forty years after the importation of the first Black people. Lest we think that existed in fact before it did in law, Oscar and Mary Handlin assure us, that the status of B lack people down to the 1660’s was that of servants. A critique批判of the Handlins’ interpretation of why legal slavery did not appear until the 1660’s suggests that assumptions about the relation between slavery and racial prejudice should be reexamined, and that explanation for the different treatment of Black slaves in North and South America should be expanded.The Handlins explain the appearance of legal slavery by arguing that, during the 1660’s, the position of white servants was improving relative to that of black servants. Thus, the Handlins contend, Black and White servants, heretofore treated alike, each attained a different status. There are, however, important objections to this argument. First, the Handlins cannot adequately demonstrate that t he White servant’s position was improving, during and after the 1660’s; several acts of the Maryland and Virginia legislatures indicate otherwise. Another flaw in the Handlins’ interpretation is their assumption that prior to the establishment of legal slavery there was no discrimination against Black people. It is true that before the 1660’s Black people were rarely called slaves. But this shouldnot overshadow evidence from the 1630’s on that points to racial discrimination without using the term slavery. Such discrimination sometimes stopped short of lifetime servitude or inherited status—the two attributes of true slavery—yet in other cases it included both. The Handlins’ argument excludes the real possibility that Black people in the English colonies were never treated as the equals of White people.The possibility has important ramifications后果,影响.If from the outset Black people were discriminated against, then legal slavery should be viewed as a reflection and an extension of racial prejudice rather than, as many historians including the Handlins have argued, the cause of prejudice. In addition, the existence of discrimination before the advent of legal slavery offers a further explanation for the harsher treatment of Black slaves in North than in South America. Freyre and Tannenbaum have rightly argued that the lack of certain traditions in North America—such as a Roman conception of slavery and a Roman Catholic emphasis on equality— explains why the treatment of Black slaves was more severe there than in the Spanish and Portuguese colonies of South America. But this cannot be the whole explanation since it is merely negative, based only on a lack of something. A more compelling令人信服的explanation is that the early and sometimes extreme racial discrimination in the English colonies helped determine the particular nature of the slavery that followed. (462 words)16. Which of the following is the most logical inference to be drawn from the passage about the effects of “several acts of the Maryland and Virginia legislatures” (Para.2) passed during and after the 1660‟s?A. The acts negatively affected the pre-1660’s position of Black as wellas of White servants.B. The acts had the effect of impairing rather than improving theposition of White servants relative to what it had been before the 1660’s.C. The acts had a different effect on the position of white servants thandid many of the acts passed during this time by the legislatures of other colonies.D. The acts, at the very least, caused the position of White servants toremain no better than it had been before the 1660’s.17. With which of the following statements regarding the status ofBlack people in the English colonies of North America before the 1660‟s would the author be LEAST likely to agree?A. Although black people were not legally considered to be slaves,they were often called slaves.B. Although subject to some discrimination, black people had a higherlegal status than they did after the 1660’s.C. Although sometimes subject to lifetime servitude, black peoplewere not legally considered to be slaves.D. Although often not treated the same as White people, black people,like many white people, possessed the legal status of servants.18. According to the passage, the Handlins have argued which of thefollowing about the relationship between racial prejudice and the institution of legal slavery in the English colonies of North America?A. Racial prejudice and the institution of slavery arose simultaneously.B. Racial prejudice most often the form of the imposition of inheritedstatus, one of the attributes of slavery.C. The source of racial prejudice was the institution of slavery.D. Because of the influence of the Roman Catholic Church, racialprejudice sometimes did not result in slavery.19. The passage suggests that the existence of a Roman conception ofslavery in Spanish and Portuguese colonies had the effect of _________.A. extending rather than causing racial prejudice in these coloniesB. hastening the legalization of slavery in these colonies.C. mitigating some of the conditions of slavery for black people in these coloniesD. delaying the introduction of slavery into the English colonies20. The author considers the explanation put forward by Freyre andTannenbaum for the treatment accorded B lack slaves in the English colonies of North America to be _____________.A. ambitious but misguidedB. valid有根据的but limitedC. popular but suspectD. anachronistic过时的,时代错误的and controversialUNIT 2Text AThe sea lay like an unbroken mirror all around the pine-girt, lonely shores of Orr’s Island. Tall, kingly spruce s wore their regal王室的crowns of cones high in air, sparkling with diamonds of clear exuded gum流出的树胶; vast old hemlocks铁杉of primeval原始的growth stood darkling in their forest shadows, their branches hung with long hoary moss久远的青苔;while feathery larches羽毛般的落叶松,turned to brilliant gold by autumn frosts, lighted up the darker shadows of the evergreens. It was one of those hazy朦胧的, calm, dissolving days of Indian summer, when everything is so quiet that the fainest kiss of the wave on the beach can be heard, and white clouds seem to faint into the blue of the sky, and soft swathing一长条bands of violet vapor make all earth look dreamy, and give to the sharp, clear-cut outlines of the northern landscape all those mysteries of light and shade which impart such tenderness to Italian scenery.The funeral was over,--- the tread鞋底的花纹/ 踏of many feet, bearing the heavy burden of two broken lives, had been to the lonely graveyard, and had come back again,--- each footstep lighter and more unconstrained不受拘束的as each one went his way from the great old tragedy of Death to the common cheerful of Life.The solemn black clock stood swaying with its eternal ―tick-tock, tick-tock,‖ in the kitchen of the brown house on Orr’s Island. There was there that sense of a stillness that can be felt,---such as settles down on a dwelling住处when any of its inmates have passed through its doors for the last time, to go whence they shall not return. The best room was shut up and darkened, with only so much light as could fall through a little heart-shaped hole in the window-shutter,---for except on solemn visits, or prayer-meetings or weddings, or funerals, that room formed no part of the daily family scenery.The kitchen was clean and ample, hearth灶台, and oven on one side, and rows of old-fashioned splint-bottomed chairs against the wall. A table scoured to snowy whiteness, and a little work-stand whereon lay the Bible, the Missionary Herald, and the Weekly Christian Mirror, before named, formed the principal furniture. One feature, however, must not be forgotten, ---a great sea-chest水手用的储物箱,which had been the companion of Zephaniah through all the countries of the earth. Old, and battered破旧的,磨损的, and unsightly难看的it looked, yet report said that there was good store within which men for the most part respect more than anything else; and, indeed it proved often when a deed of grace was to be done--- when a woman was suddenly made a widow in a coast gale大风,狂风, or a fishing-smack小渔船was run down in the fogs off the banks, leaving in some neighboring cottage a family of orphans,---in all such cases, the opening of this sea-chest was an event of good omen 预兆to the bereaved丧亲者;for Zephaniah had a large heart and a large hand, and was apt有…的倾向to take it out full of silver dollars when once it went in. So the ark of the covenant约柜could not have been looked on with more reverence崇敬than the neighbours usually showed to Captain Pennel’s sea-chest.1. The author describes Orr‟s Island in a(n)______way.A.emotionally appealing, imaginativeB.rational, logically preciseC.factually detailed, objectiveD.vague, uncertain2.According to the passage, the “best room”_____.A.has its many windows boarded upB.has had the furniture removedC.is used only on formal and ceremonious occasionsD.is the busiest room in the house3.From the description of the kitchen we can infer that thehouse belongs to people who_____.A.never have guestsB.like modern appliancesC.are probably religiousD.dislike housework4.The passage implies that_______.A.few people attended the funeralB.fishing is a secure vocationC.the island is densely populatedD.the house belonged to the deceased5.From the description of Zephaniah we can see thathe_________.A.was physically a very big manB.preferred the lonely life of a sailorC.always stayed at homeD.was frugal and saved a lotText BBasic to any understanding of Canada in the 20 years after the Second World War is the country' s impressive population growth. For every three Canadians in 1945, there were over five in 1966. In September 1966 Canada's population passed the 20 million mark. Most of this surging growth came from natural increase. The depression of the 1930s and the war had held back marriages, and the catching-up process began after 1945. The baby boom continued through the decade of the 1950s, producing a population increase of nearly fifteen percent in the five years from 1951 to 1956. This rate of increase had been exceeded only once before in Canada's history, in the decade before 1911 when the prairies were being settled. Undoubtedly, the good economic conditions of the 1950s supported a growth in the population, but the expansion also derived from a trend toward earlier marriages and an increase in the average size of families; In 1957 the Canadian birth rate stood at 28 per thousand, one of the highest in the world. After the peak year of 1957, thebirth rate in Canada began to decline. It continued falling until in 1966 it stood at the lowest level in 25 years. Partly this decline reflected the low level of births during the depression and the war, but it was also caused by changes in Canadian society. Young people were staying at school longer, more women were working; young married couples were buying automobiles or houses before starting families; rising living standards were cutting down the size of families. It appeared that Canada was once more falling in step with the trend toward smaller families that had occurred all through theWestern world since the time of the Industrial Revolution. Although the growth in Canada’s population had slowed down by 1966 (the cent), another increase in the first half of the 1960s was only nine percent), another large population wave was coming over the horizon. It would be composed of the children of the children who were born during the period of the high birth rate prior to 1957.6. What does the passage mainly discuss?A. Educational changes in Canadian society.B. Canada during the Second World War.C. Population trends in postwar Canada.D. Standards of living in Canada.7. According to the passage, when did Canada's baby boom begin?A. In the decade after 1911.B. After 1945.C. During the depression of the 1930s.D. In 1966.8. The author suggests that in Canada during the 1950s____________.A. the urban population decreased rapidlyB. fewer people marriedC. economic conditions were poorD. the birth rate was very high9. When was the birth rate in Canada at its lowest postwar level?A. 1966.B. 1957.C. 1956.D. 1951.10. The author mentions all of the following as causes of declines inpopulation growth after 1957 EXCEPT_________________.A. people being better educatedB. people getting married earlierC. better standards of livingD. couples buying houses11.I t can be inferred from the passage that before the IndustrialRevolution_______________.A. families were largerB. population statistics were unreliableC. the population grew steadilyD. economic conditions were badText CI was just a boy when my father brought me to Harlem for the first time, almost 50 years ago. We stayed at the hotel Theresa, a grand brick structure at 125th Street and Seventh avenue. Once, in the hotel restaurant, my father pointed out Joe Louis. He even got Mr. Brown, the hotel manager, to introduce me to him, a bit punchy强力的but still champ焦急as fast as I was concerned.Much has changed since then. Business and real estate are booming. Some say a new renaissance is under way. Others decry责难what they see as outside forces running roughshod肆意践踏over the old Harlem. New York meant Harlem to me, and as a young man I visited it whenever I could. But many of my old haunts are gone. The Theresa shut down in 1966. National chains that once ignored Harlem now anticipate yuppie money and want pieces of this prime Manhattan real estate. So here I am on a hot August afternoon, sitting in a Starbucks that two years ago opened a block away from the Theresa, snatching抓取,攫取at memories between sips of high-priced coffee. I am about to open up a piece of the old Harlem---the New York Amsterdam News---when a tourist。

nonlocal注意力机制代码

nonlocal注意力机制代码

nonlocal注意力机制代码非局部注意力机制(nonlocal attention mechanism)是一种用于计算机视觉任务的注意力机制,其目的是在一个图像或视频中建立全局的关联。

注意力机制旨在模拟人类视觉系统的特征提取过程。

在图像识别任务中,对于感兴趣的目标,并不是所有的细节都是重要的。

通过引入注意力机制,模型可以学习到对于不同部分的关注程度,从而引导模型更好地进行特征提取和分类。

传统的注意力机制主要关注局部区域,比如卷积神经网络(CNN)中的空间注意力机制(Spatial Attention)。

非局部注意力机制引入了全局性的信息交互,使得模型能够更好地捕捉到整体上的关联。

非局部注意力机制最早由王晓剑等人提出,并应用于视频分类任务。

以下是该方法的伪代码表示:```def NonLocalAttention(input, theta_weight, phi_weight, g_weight, output_weight):# 输入参数:# input: 输入特征图,shape为[N, C, H, W]# theta_weight, phi_weight, g_weight: 权重矩阵,shape为[N,C/2, C/2]# output_weight: 输出特征图的权重矩阵,shape为[N, C, H, W]# 1. 分离输入特征图为三个矩阵theta = Conv2d(input, theta_weight) # 使用卷积操作为其添加权重 theta_weight,得到 [N, C/2, H, W]phi = Conv2d(input, phi_weight) # 使用卷积操作为其添加权重 phi_weight,得到 [N, C/2, H, W]g = Conv2d(input, g_weight) # 使用卷积操作为其添加权重g_weight,得到 [N, C/2, H, W]# 2. 将 theta 和 phi 进行展开,并对应位置相乘,计算得到注意力图theta = Reshape(theta, [N, C/2, H*W]) # 将 theta 从 [N, C/2, H, W] 变形为 [N, C/2, H*W]theta = Transpose(theta, [0, 2, 1]) # 将维度 1 和 2 进行交换,得到 [N, H*W, C/2]phi = Reshape(phi, [N, C/2, H*W]) # 类似地,将 phi 变形为[N, C/2, H*W]f = Matmul(theta, phi) # 点乘操作,得到注意力图 [N, H*W,H*W]attention_map = Softmax(f, axis=2) # 对 f 进行 softmax 操作,以得到归一化的注意力图# 3. 用注意力图与 g 矩阵相乘,得到加权的输出特征图g = Reshape(g, [N, C/2, H*W]) # 将 g 变形为 [N, C/2, H*W]g = Transpose(g, [0, 2, 1]) # 将维度 1 和 2 进行交换,得到[N, H*W, C/2]y = Matmul(attention_map, g) # 将注意力图与 g 进行矩阵乘法操作,得到 [N, H*W, C/2]y = Reshape(y, [N, H, W, C/2]) # 将 y 变形为 [N, H, W, C/2] y = Transpose(y, [0, 3, 1, 2]) # 将维度 1 和 4 进行交换,得到[N, C/2, H, W]# 4. 将窗口大小为 1 的卷积应用于 y,得到最终的输出特征图output = Conv2d(y, output_weight) # 使用卷积操作为 y 添加权重 output_weight,得到 [N, C, H, W]return output```非局部注意力机制在视觉任务中取得了显著的性能提升。

考虑局部均值和类全局信息的快速近邻原型选择算法

考虑局部均值和类全局信息的快速近邻原型选择算法

第40卷第6期自动化学报Vol.40,No.6 2014年6月ACTA AUTOMATICA SINICA June,2014考虑局部均值和类全局信息的快速近邻原型选择算法李娟1,2王宇平1摘要压缩近邻法是一种简单的非参数原型选择算法,其原型选取易受样本读取序列、异常样本等干扰.为克服上述问题,提出了一个基于局部均值与类全局信息的近邻原型选择方法.该方法既在原型选取过程中,充分利用了待学习样本在原型集中k个同异类近邻局部均值和类全局信息的知识,又设定原型集更新策略实现对原型集的动态更新.该方法不仅能较好克服读取序列、异常样本对原型选取的影响,降低了原型集规模,而且在保持高分类精度的同时,实现了对数据集的高压缩效应.图像识别及UCI(University of California Irvine)基准数据集实验结果表明,所提出算法集具有较比较算法更有效的分类性能.关键词数据分类,原型选择,局部均值,类全局信息,自适应学习引用格式李娟,王宇平.考虑局部均值和类全局信息的快速近邻原型选择算法.自动化学报,2014,40(6):1116−1125DOI10.3724/SP.J.1004.2014.01116A Fast Neighbor Prototype Selection Algorithm Based on Local Mean andClass Global InformationLI Juan1,2WANG Yu-Ping1Abstract The condensed nearest neighbor(CNN)algorithm is a simple non-parametric prototype selection method, but its prototype selection process is susceptible to pattern read sequence,abnormal patterns and so on.To deal with the above problems,a new prototype selection method based on local mean and class global information is proposed. Firstly,the proposed method makes full use of those local means of the k heterogeneous and homogeneous nearest neighbors to each be-learning pattern and the class global information.Secondly,an updating process is introduced to the proposed stly,updating strategies are adopted in order to realize dynamic update of the prototype set. The proposed method can not only better lessen the influence of the pattern selected sequence and abnormal patterns on prototype selection,but also reduce the scale of the prototype set.The proposed method can achieve a higher compression efficiency that can guarantee the higher classification accuracy synchronously for original data set.Two image recognition data sets and University of California Irvine(UCI)benchmark data sets are selected as experimental data sets.The experiments show that the proposed method based on the classification performance is more effective than the compared algorithms.Key words Data classification,prototype selection,local mean,global class information,adaptive learningCitation Li Juan,Wang Yu-Ping.A fast neighbor prototype selection algorithm based on local mean and class global information.Acta Automatica Sinica,2014,40(6):1116−1125在机器学习和数据挖掘任务中,作为一种简单成熟的分类算法KNN(k-nearest neighbors algorithm)[1]获得广泛的应用.作为数据挖掘领域的十大经典算法之一,KNN算法具有理论简单、易收稿日期2013-06-19录用日期2013-11-11Manuscript received June19,2013;accepted November11, 2013国家自然科学基金(61272119)资助Supported by National Natural Science Foundation of China (61272119)本文责任编委章毓晋Recommended by Associate Editor ZHANG Yu-Jin1.西安电子科技大学计算机学院西安7100712.陕西师范大学远程教育学院西安7100621.School of Computer Science and Technology,Xidian Univer-sity,Xi an7100712.School of Distance Education,Shaanxi Normal University,Xi an710062于实现、无需预先训练分类器、可适用各种数据分布环境等优势,然而尤其处理大规模数据集时,由于其简单的处理策略而导致产生难以接受的时间和空间消耗.故在分类算法中,如何对大规模数据集去除冗余节点,保留高效分类贡献的代表点,进而降低数据规模、提高分类速度,成为了研究热点.为此,一种有效的处理策略即原型选择就是对原始数据集进行必要缩减,即在保证不降低甚至提高分类精度等性能的基础上,对原始训练集处理从中获取能够反映原始数据集分布及分类特性的代表样本集即原型集,进而降低数据规模和噪音的敏感度,提高分类算法执行效率.6期李娟等:考虑局部均值和类全局信息的快速近邻原型选择算法11171相关技术1.1原型选择算法原型选择算法的重要应用之一是作为某个分类算法的预处理步骤,可与各种分类算法相结合,降低分类算法的数据规模.本文选定原型选择算法与近邻算法相结合,通过分类精度比较所提出算法的执行效率.原型选择算法目标为在不降低分类性能的基础上,去除噪音等异常节点,降低训练集规模,进而提高算法执行效率.其常见模型[2]为:设T R(Training set)为训练集(包含一些无用信息,如噪音、冗余信息等),寻求选择子集T P(Training prototype set),T P⊂T R使得T P不包含多余原型,且Acc(T P)∼=Acc(T R)(Acc(X)表示X作为训练集所获得的分类精度).而在分类过程中,使用T P代替T R作为分类判断基准数据,从而降低了运算的数据规模.原型选择算法一经提出,就获得了长足的发展,产生了诸多的研究成果.其中剪辑近邻法(Edited nearest neighbor,ENN)[3]与压缩近邻法(Con-densed nearest neighbour,CNN)[4]是较早提出的样本选择算法.CNN算法的缺点是对原样本集样本的排列顺序敏感,而且压缩集中含有较多的冗余样本.围绕着CNN算法,产生了一系列改进算法:如FCNN(Fast condensed nearest neighbor)[5]侧重降低样本读取序列敏感性和尽可能获取类决策边界原型;GCNN(Generalized condensed nearest neighbor)[6]引入了同异类近邻,克服了CNN仅使用同类近邻的不足;MNV(Mutual neighborhood value)[7]使用互近邻值降低算法样本读取序列敏感性;RNN(Reduced nearest neighbor rule)[7]侧重于改进CNN算法原型集不能删除的缺陷等;基于聚类策略的类边界样本选择算法,如IKNN(Im-proved k-nearest neighbor classification)[8]和PSC (Prototype selection by clustering)[9]等.上述算法仍然具备算法对噪音的敏感性.通常压缩近邻法即剪辑法,通过去除噪声点和清理不同类别重叠区的样本点来达到代表点选择的目的.编辑法主要采取剔除原始样本集中的噪音等策略,是一种非增量算法,不适用于大规模数据集处理.为此,如何降低传统增量原型选择算法对样本读取序列、异常点敏感,成为增量原型选择算法的研究热点,同时也是本文研究的主要问题.1.2局部均值或类均值分类算法针对KNN算法的噪音敏感性及传统只关注近邻样本忽略其样本分布等弊端,很多研究者考虑了近邻局部均值或类均值信息与样本分布的关系,将近邻局部信息和类统计或均值信息纳入到近邻分类算法中.其中Mitani等[10]提出了一种基于局部均值的非参数分类方法,克服离群点对分类性能的影响,尤其在小样本情形下分类性能较好.Brown 等[11]使用了各自类近邻类样本距离加权信息进行分类,区别于文献[10]中样本集距离加权信息;Han 等[12]引入了类中心思想,充分利用训练样本的整体信息分类;在此基础上,Zeng等[13]提出了基于局部均值和类均值的分类算法,既利用未分类样本在每类里的近邻局部均值信息,又利用类均值的整体知识进行分类;而Brighton等[14]则定义了待学习样本的Reachable和Coverage概念,在此基础上同ENN算法相结合,提出了迭代样本过滤算法(The iterative casefiltering,ICF),Wang等[15]对其进行改进,提出了ISSARC(An iterative algorithm for sample selection based on the reachable and coverage)算法.设置不同的参数,基于均值的分类方法可退化传统最近邻方法.当选择待分类样本在每类训练样本集里的近邻数为1时,则该局部均值方法等价于最近邻分类;当选取近邻数等于对应类的训练样本数时,则等价于欧几里得距离分类[7].综上,在传统原型选择算法中,借鉴样本局部近邻均值和全局均值等信息,可进一步贴合原型集分布状态,降低了异常原型的干扰.本文在传统CNN 算法基础上,利用近邻局部均值和类全局信息,同时借鉴RNN样本删除思想,提出一种新的原型选择算法(An improved nearest neighbor prototype selection algorithm based on local-mean and class global information,LCNN),可在保障不降低甚至提高分类效率基础上,较好克服CNN及其改进算法对样本读取序列的依赖性,提升原型集的动态更新能力、降低算法的噪音敏感性.2考虑局部均值和类全局信息的近邻原型选择算法为便于描述,本文使用以下符号:记任意数据集D={x i=(x i1,x i2,···,x id)|i=1,2,···},类标记集C={c1,c2,···,c m},d为样本维度,m为类别数.记T R={(x i,y i)|x i∈D,y i∈C,i= 1,2,···,n}为训练集;T P⊂T R为训练所得原型集;T S(Testing set)与T R同构,为若干样本的测试集.1118自动化学报40卷设T P =∅,记任一待扫描学习样本x ∈T R ,任一原型p ∈T P ;s kx =S k (x )⊂T P 为x 同类别的k 个近邻原型;h kx =H k (x )⊂T P 为x 异类别的k 个近邻原型;d (x,y )为x 与y 间欧氏距离;label (x )表示样本x 的类别;D (x )= ki =1w i d (x,x i )(其中w i 为x 的第i 近邻原型的距离加权系数,x i 表示x 的第i 近邻原型)为x 的k 近邻加权距离和,即本文所定义的局部均值信息;Ind (p )表示原型p 在T P 中对应索引;P S 为四元组结构,用以表示p 及其同异类最近邻原型关系,其中P S (1)、P S (2)、P S (3)分别表示T P 中p 索引、p 同类最近邻索引和p 异类最近邻索引,P S (4)表示p 是否被删除的标识.2.1LCNN 算法策略在CNN 算法基础上产生了诸多的改进算法.但这些算法仅利用所筛选的k 近邻样本类别信息,未考虑到样本分布等数据集的局部或全局信息,易受近邻样本偏好影响;同时仍保留着CNN 算法的样本读取序列及噪音的敏感性;且较少涉足对原型集样本的动态增删操作,使噪音和孤立点等样本得以延续保存.为此,本文对CNN 算法进行必要改进,其处理策略如下:1)去除CNN 算法无指导的新类别原型获取策略,新增初始化操作,主要完成类全局信息的获取和所有类别初始原型的获取,以类全局信息调控噪音和孤立点能否成为原型;2)针对CNN 算法中仅使用最近邻样本而导致易受样本读取序列和噪音干扰的情况,扩充最近邻样本为k 同类近邻样本和k 异类近邻样本,使用同类近邻均值和异类近邻均值信息作为原型初步判断条件,可有效降低CNN 算法噪音敏感度;3)在预设的更新周期内,使用局部均值及类全局信息完成对孤立点原型、类中心区域原型等删除操作,进而对原型集信息进行针对性更新.图1显示了LCNN 算法运行框图,其中虚线框部分为本文研究的主要内容,即实现原型集选择功能;而分类算法构造分类器部分,本文选择了最近邻分类用以检验LCNN 所产生原型集的性能.令N 1,N 2,···,N m 表示T P 中对应于类别c 1,c 2,···,c m 的原型个数.设x 有k 个有效可取的同异类原型,s kx 为测试样本x 获取T P 中k 个近邻同类原型,那么x 同类局部均值为:D s =k i =1w i d (x,s i kx )(1)同理,h kx 为测试样本x 获取T P 中k 个近邻异类原型,x 的异类原型局部均值为:D h =k i =1w i d (x,h i kx )(2)对于T P 中属于类别c j (j =1,2,···,m )的原型表示为T P j ={p i j |i =1,2,···,N j },那么c j 类的全局均值原型为:G j =1N j N ji =1pij(3)对于类别c j 原型与类均值原型的平均距离为:D j =1N j N ji =1d (p i j ,G j )(4)综上,以类别为整体的均值原型及平均距离都属于c j 的全局信息,故定义了GD =<GD 1,GD 2,···,GD m >为T P 各类的全局信息结构,其中GD j (1)表示类均值原型向量,用来存储T P 各类别的动态中心,即存储G j ;GD j (2)表示类原型间平均距离,用来存储T P 各类别原型间的动态平均距离,即存储D j .本文中GD 被称为T P 类全局信息.图1LCNN 算法运行框图Fig.1Running diagram of LCNN algorithm2.2算法主要处理过程原型集初始化过程、原型学习过程和原型更新过程是LCNN 算法的核心内容.其中,初始化过程采取随机比例的样本读取获取类全局信息,根据类全局信息有指导性选取原型集初始化,降低CNN 算法原型无指导选取的随机性影响;学习过程在一定学习策略下,实现对原型集有效增添;更新过程,设置了不同的更新阀值,通过周期性删除T P 中不符合条件的原型,完成T P 集的动态更新,进而去除类中心原型、孤立点及噪音,较好克服传统CNN 算法只增加、不删除原型的弊端.6期李娟等:考虑局部均值和类全局信息的快速近邻原型选择算法11192.2.1原型集初始化过程原型集初始化过程包含两个功能:1)通过随机提取各类训练样本,获取类样本的平均距离、类均值中心节点的全局信息,作为原型集初始原型选择依据;2)在类全局信息指导下,为每类样本随机选取f (本文一般设置f=2,当不平衡数据集时,f=1)个初始原型加入T P,降低了CNN算法新类别原型选取的随机性;同时获取并填充T P中各原型的同异类近邻节点,更新类均值中心节点.LCNN的原型集初始化过程描述如下:输入.训练样本集T R.输出.GD、P S.步骤1.初始化GD=∅,P S=∅.步骤2.随机从T R中读取一定比例的训练样本,完成GD信息的填充.步骤3.i=1.步骤4.j=1.步骤5.从第i类样本中读取任一样本x,若其满足GD(i,2)<d(x,GD(i,1))<3×GD(i,2),加入到原型集,j=j+1.步骤6.若j<f,转到步骤5.步骤7.i=i+1,若i<m,转到步骤4.步骤8.逐类别逐原型完成对GD和P S的数据填充.步骤9.输出GD、P S.2.2.2原型学习过程LCNN算法是个增量学习算法,整个算法单遍扫描训练样本集,从读取第一个未被扫描样本开始,直至所有待学习样本学习完毕,获取最终原型集.当一个样本的同类近邻局部均值大于样本的异类近邻局部均值时,该样本被选作原型加入到原型集;同时,判断样本与其类中心点距离是否大于最近邻与类中心点距离,如大于则将其选作原型加入到原型集.LCNN的原型学习过程描述如下:输入.GD、P S、λ及T R.输出.T P.步骤1.如T R不存在未被扫描样本,则输出T P,结束算法.步骤2.任取一未被扫描样本x.步骤3.根据x的类别信息c,获取x的s kx、h kx、GD(c,:).步骤4.若d(x,GD(c,1))<GD(c,2),转到步骤8.步骤5.使用式(1)和式(2)分别计算x的同异类近邻局部均值D s和D h.步骤6.若D s>D h,x被选作原型加入T P,同步设置P S(x,:)数据,转到步骤8.步骤7.若d(x,GD(c,1))>d(s1kx,GD(c,1)), x被选作原型加入T P,同步设置P S(x,:)数据.步骤8.若已学习样本数是λ的整数倍,则调用更新过程.步骤9.否则,转到步骤1.LCNN算法突破了CNN算法仅使用最近邻判别原型的简单方式,考虑到原型样本分布等因素,引入训练样本x的同异类局部均值,通过局部均值信息、类均值中心间关系作为判断原型的依据,即克服最近邻原型判别准则的偏好,在一定程度上实现了类边界原型的选取.同时减少了与类中心距离过近原型的添加,稀疏化类中心区域原型个数.2.2.3原型集更新过程更新过程引入了原型删减思想,每λ个样本学习后,调用原型集更新过程,定期删除不符合规则的原型,减少原型数目.本文依托类全局信息和原型的最近同异类近邻设定不同的更新阀值,用以处理不同情况的原型删除操作.对于任一p i∈T P,c j、c s 分别为p i与最近邻异类原型类别,执行两步骤更新操作;待T P原型扫描完毕,执行局部均值及类全局信息更新操作.LCNN的原型集更新过程描述如下:步骤1(孤立原型更新).当d(p i,GD(c j,1))≥3×GD(c j,2)且d(p i,T P(P S(Ind(p i),2)))> d(p i,T P(P S(Ind(p i),3)))表明该类原型为孤立点,删除此类原型,可降低孤立原型影响,则设置P S(Ind(p i),4)=1.步骤2(噪音等异常原型更新).当GD(c s,2)≤d(T P(P S(Ind(p i)),3)),GD(c s,1))且3×GD(c s, 2)>d(T P(P S(Ind(p i)),3)),GD(c s,1))时,利用p i相关局部均值和类全局信息进行判断.若p i的同类局部均值小于它的异类局部均值(D s<D h),同时p i异类原型处于非类边缘区域(即d(T P(P S(Ind(p i),3)),GD(c j,1))> d(T P(P S(Ind(p i),3)),GD(c s,1))或d(T P(P S (Ind(p i),3)),GD(c j,1))>d(T P(P S(Ind(p i),1)), GD(c s,1)),则表示p i为噪音,则设置P S(Ind(p i), 4)=1.步骤3(局部均值及类全局信息更新).原型扫描完毕,对所有更新标识的原型进行删除;更新原型集T P的P S结构信息;最后分类别计算类均值中心 Gj和类原型标准差距离 D j,更新GD(c j,1)= G j1120自动化学报40卷和GD (cj ,2)= D j .2.3关键概念及参数界定1)孤立原型界定:本文采用文献[16]的定义,把孤立原型定义为与类原型均值的距离超过3倍标准差距离的原型.2)近邻权重选取:本文选取了最简单的倒数距离加权参数,即w i =1/i ,w i 随着i 的增加而减小,对应的原型对新原型选取的影响越小.在未考虑全局信息情况,若近邻数为1,即对待学习样本只选取一个同类近邻和一个异类近邻,则局部均值学习退化为传统CNN 学习.LCNN 运行必须两个参数支撑:一是原型近邻数k ;二是更新周期λ.两种参数选取有预设、交叉验证和动态调整三种方式.其中预设和动态调整方式简单便捷,交叉验证方式需要多次验证运行才能获取较好的参数配置.因此,结合原型集增量生成方式,选择了动态调整设置方式,即伴随着原型集的动态变化,动态调整k 和λ.为简化问题,本文在一个更新周期λ内,将不同类别样本x 在T P 中各同异类近邻数设置为相同,且k ≤min(N 1,N 2,···,N m ).本文分别选取k = m min j =1N j ,λ= m j =1N j (N j 表示更新周期开始时T P 中类别c j (j =1,2,···,m )原型数, · 表示向上取整).3算法评估为了更好评估LCNN 算法的性能指标,本文选择了KNN 、CNN 、GCNN 、PSC 、ISSARC 以及ILVQ (Incremental learning vector quantiza-tion)[17]作为比较算法.其中LCNN 与GCNN 处理策略相似,均采取了同异类近邻思想,本文中GCNN 选取了ρ=0,0.1,0.25,0.5,0.75,0.99下的平均运行效率;PSC 主要思想是以空间划分策略尽可能获取类边界原型,本文选取文献[9]中获取最佳运行效率的r =6m 和r =8m;ISSARC 算法是在ICF 算法基础上进行改进的非增量原型选择算法,主要思想是考虑同异类近邻距离的限定,同时通过去除噪音的非增量ENN 算法的预先处理,降低了算法噪音敏感度,其ENN 算法运行采取了文献[15]中的参数设置;而LCNN 也以获取类边界原型为处理目标;ILVQ 是目前高压缩性的快速的增量原型生成算法之一(为简化ILVQ 运行,本文对λ和Ageold采取简单预设λ=Ageold = √n );LCNN 单遍扫描训练集,也体现了快速增量原型选择思想;而选择KNN 和CNN 则作为比较算法分类性能的参照,其中KNN 算法预设5个常见的k 值,分别为3、5、7、9、11.为了验证LCNN 算法的有效性,选择了两个图像识别数据集以及其他12个UCI 数据集(见表1)和3个大规模数据集[18],采用5次5折交叉验证获得对比算法的平均分类效率及分类速度.本文在奔腾IV Intel (R)Core (TM)2Du CPU E 83002.83GHz 1G 的PC 硬件支撑,Windows XP 32位及Matlab 7运行环境下获取实验数据.本文中采用分类精度=|T S correct||T S |×100%、压缩比率=|T P ||T R |×100%、运行时间(单位:秒)作为比较算法的评价指标.其中|T S correct |表示T S 在T R 或T P 作为训练集下被正确分类的样本数,|T R |、|T P |、|T S |分别表示T R 、T P 、T S 所包含的样本或原型数.表1UCI 基准数据集信息Table 1The information of UCI benchmark data sets数据集特征数类别数样本数Iris 43150Wine 133178Glass 96214Ionosphere 342351Cancer 92699Zoo 167101Heart 132270TAE 53151Liver disorders62345Spectf 442267Ecoli 78336Ctg20321263.1理论分析分析比较算法,其中KNN 算法的时间复杂度为O(dn 2n i ),CNN 算法时间复杂度为O(nN 2d +n 1N 2d ),GCNN 算法时间复杂度为O(n 2Nd +n 1N 2d ),PSC 算法时间复杂度为O(τrnd +n 1N 2d ),ISSARC 算法时间复杂度为O(n 3d +d t i =1M 2i +n 1N 2d ),ILVQ 算法时间复杂度为O(dnN +n 1N 2d ).LCNN 算法是增量学习算法,主要分为两部分:增量原型生成时间O(dnN )和原型分类时间O(n 1N 2d ),其整体时间复杂度为O(dnN +n 1N 2d ).上述公式中,n 为训练样本数,d 为样本维度,N 为最终原型数,r 为聚类数,τ为聚6期李娟等:考虑局部均值和类全局信息的快速近邻原型选择算法1121类迭代次数,n 1为测试样本数,t 为ISSARC 算法迭代周期, ti =1M i 为ENN 算法运行所得原型集规模.LCNN 算法对于所有的训练样本而言是近线性的,但后续原型分类所需时间复杂度为传统的近邻分类算法时间复杂度.LCNN 算法是一种增量算法,仅在原型生成过程中执行单遍样本扫描,并不需对训练集进行存储,因此,LCNN 具有处理大规模数据集的能力.3.2人工数据实验为验证LCNN 算法在大规模数据集的处理性能,本文选择文献[17]实验所使用的人工数据集进行增量的原型分类比较.图2和图3均为2维人工数据集:图2中包含5类数据,类别1和类别2满足2维高斯分布,类别3和类别4数据分布为2个同心圆,类别5满足正弦分布;图3在图2有效数据分布的基础上,加入了20%的均匀分布噪音将其随机分布到5个类别中.图2无噪音人工数据集Fig.2No noise artificial dataset图3含噪音的人工数据集Fig.3Noise artificial data set区别于文献[17]实验中多种样本读取序列和不同迭代次数,本文采取单遍随机样本读取序列的简单方式.除选择三种增量算法外,由于ISSARC 算法通过ENN 算法对噪音等异常数据进行了预先处理,提高了算法的抗噪能力,故而选择其作为对照算法.图4、图6、图8、图10为四种算法在图2数据集上原型生成情况,可以看出,LCNN 算法在保持原始样本集分布的情况,对其进行必要缩减,其结果同ISSARC 和ILVQ 算法结果具有可相较性.图5、图7、图9、图11为4种算法在图3数据集上原型生成情况,LCNN 算法除原型个数明显少于ILVQ 算法结果外,相对于ISSARC 算法而言,在一定程度上降低了噪音的敏感性,其噪音数据数量明显少于比较算法.其中,ISSARC 算法属于非增量算法,在人工数据实验中的运行时间消耗达10小时以上.3.3图像识别对比1)医学图像诊断识别为验证LCNN 的实用性能,本文选取了569幅乳腺癌症图像数据进行实验,该数据将每幅乳腺癌症图像提取30个维度详细描述,其中212个异常图像,357个正常图像.通过5次5折交叉验证得到比较算法的平均运行数据.表2数据表明LCNN 在癌症图像识别中有着明显的压缩、分类精度及运行时间优势,是一种可行性的原型选择算法.图4CNN 在无噪音数据集的原型集Fig.4The prototype set obtained by CNN on no noisedataset图5CNN 在噪音数据集的原型集Fig.5The prototype set obtained by CNN on noisedata set1122自动化学报40卷图6ISSARC 在无噪音数据集的原型集Fig.6The prototype set obtained by ISSARC on no noise dataset图7ISSARC 在噪音数据集的原型集Fig.7The prototype set obtained by ISSARC on noisedataset图8ILVQ 在无噪音数据集的原型集Fig.8The prototype set obtained by ILVQ on no noisedataset图9ILVQ 在噪音数据集的原型集Fig.9The prototype set obtained by ILVQ on noisedataset图10LCNN 在无噪音数据集的原型集Fig.10The prototype set obtained by LCNN on nonoise dataset图11LCNN 在噪音数据集的原型集Fig.11The prototype set obtained by LCNN on noisedata set2)数字手写体识别为进一步验证LCNN 实际问题解决能力,特选择了研究文献中常用的手写体数字光学数据集进行算法的比较.该数据集含0到9阿拉伯手写体数字的3823个训练图像信息和1797个测试图像信息.表3数据获取环境同表2.表3数据显示LCNN 较其他比较算法有着一致好的运行效率.其中CNN 算法因运算简单且无需进行原型集的删除等操作,所以运行时间较少;PSC 需要较大的运行开销来完成初始的聚类操作;GCNN 因需要动态计算δ而增加一定运行时间消耗;ILVQ 算法增加了原型周期动态更新操作,运行消耗较大.ISSARC 算法虽然保持最好的压缩比率,然而由于其自身调用ENN 算法的预先处理策略,增加了ISSARC 算法的运行时间消耗.综上,采取LCNN 算法解决实际问题,可有效降低数据规模,可配合其他高效分类算法更好地发挥其优势.3.4UCI 基准数据集实验除上述图像识别数据集外,为更全面验证算法有效性,本文选择的12个中小规模和3个大规模UCI 基准数据集,较全面涵盖了数据集的维度规模和样本规模多样化分布,实验环境同上.6期李娟等:考虑局部均值和类全局信息的快速近邻原型选择算法1123表2比较算法在乳腺癌数据集上的运行效率Table2Operational efficiency results obtained by compared algorithms on breast cancer data set算法KNN CNN GCNN PSC ISSARC ILVQ LCNN 分类精度93.6781.5578.2789.2773.8190.6192.14压缩比率10060.1621.2446.2711.3535.5215.98运行时间 2.409 6.202 3.5193 3.872 4.7269.641 2.752表3比较算法在数字手写体集上的运行效率Table3Operational efficiency results obtained by compared algorithms on handwritten digits dataset算法KNN CNN GCNN PSC ISSARC ILVQ LCNN 分类精度97.9992.0794.5793.2592.4895.5997.08压缩比率10041.3425.7233.9419.9631.5822.57运行时间756.39214.34595.28456.92612.58372.35247.47表4比较算法分类精度与压缩比的实验数据Table4Operational efficiency results obtained by compared algorithms on breast cancer data set 算法KNN CNN GCNN PSC ISSARC ILVQ LCNN 分类精度压缩比率分类精度压缩比率分类精度压缩比率分类精度压缩比率分类精度压缩比率分类精度压缩比率分类精度压缩比率Iris96.6710095.5059.7195.7812.3292.8964.8394.5423.6793.0745.0493.3328.63 Wine70.8010071.2367.9467.3223.5462.2173.7465.5718.5467.6441.1269.6515.82 Glass65.0810062.6466.5968.2749.2660.6972.7862.1222.4064.6928.7465.4326.43 Ionosphere88.6810085.8948.3384.3222.1786.1845.1987.458.7689.2919.9186.1618.79 Cancer96.5010088.127.15394.6116.9278.0510.5584.5514.5678.0510.5595.1425.35 Zoo83.2210088.1457.6788.7331.5278.2657.1976.4323.5187.1035.1992.6234.36 Heart76.2110067.2743.4075.4946.2479.5431.2368.3110.6080.3437.3876.5737.01 TAE77.7210056.3436.7564.4844.6172.2537.1857.5736.9270.2223.3376.6921.69 Liver disorders67.6110055.8016.6765.2642.3161.8867.2155.3620.8760.8715.8967.5114.06 Spectf71.9510063.0520.3673.3552.0779.4124.5672.3316.4877.9335.7480.1435.09 Ecoli86.4510077.4453.7176.7933.8574.9342.8978.6915.7082.2242.9680.1729.73 Ctg82.0910062.6842.9164.4918.7374.8641.6665.0510.0969.1812.2376.7612.48 Average82.8710072.8443.4379.2132.8075.1147.4272.3318.5176.7229.0180.0124.95基于表4数据,可以得到如下结论:对比CNN 和GCNN,LCNN在保持明显的数据优势情况下,有着较高比例数据集的分类精度优势;对比ILVQ 算法,除Ionosphere外,LCNN分类效率优势明显,同时保证了11个数据集上的高压缩比;对比PSC快速原型算法,LCNN在保持11个数据集的高分类效率之外,仍保持9个数据集的高压缩比率,体现了较好的分类效率和较高的压缩比率.相对于其他对比算法而言,ISSARC算法保持着明显的平均压缩优势;而LCNN算法仅有2个数据集的压缩率高于ISSARC算法.通过表5运行时间数据,可得出在小规模数据集下,对于KNN和CNN 而言,LCNN时间优势不足,而在较大规模数据集Ctg下,LCNN时间优势明显;此外,LCNN相对于GCNN、ISSARC、ILVQ算法而言,有着显著的运行时间优势;而相对于目前快速原型PSC算法, LCNN也有着明显的12取7和平均的两项时间优势.。

flexible regression知识点 -回复

flexible regression知识点 -回复

flexible regression知识点-回复Flexible regression is a statistical technique that allows for highly adaptable modeling of relationships between variables. Unlike traditional regression models, which assume a linear relationship between the independent and dependent variables, flexible regression models can capture complex nonlinear relationships. In this article, I will discuss the key concepts and applications of flexible regression.1. Introduction to flexible regression:Flexible regression models are a class of regression models that can accommodate nonlinear relationships, interactions, and varying degrees of complexity. These models are particularly useful when the relationship between the independent and dependent variables is not expected to be purely linear. By modeling nonlinearities, flexible regression enables us to better understand the data and make more accurate predictions.2. Types of flexible regression models:There are various types of flexible regression models, each with its own strengths and characteristics:a) Polynomial regression: This approach allows for the inclusion of higher-order polynomial terms to capture nonlinear relationships. By adding squared, cubic, or higher-order terms of the independent variables, polynomial regression curves can bend and flex to fit more complex patterns.b) Splines: Splines are piecewise-defined polynomial functions that divide the predictor space into segments or knots. The segments are connected smoothly, and the splines can be customized to fit the data more effectively than a single global polynomial equation.c) Generalized Additive Models (GAM): GAM extends the concept of linear regression by allowing for the inclusion of smooth functions of the predictors. These smooth functions are represented by splines or other nonparametric functions and can capture complex nonlinear relationships.d) Nonparametric regression: This type of flexible regression does not make any assumptions about the functional form of the relationship between the variables. Nonparametric regression estimates the relationship from the data directly, withoutspecifying a mathematical equation.3. Advantages of flexible regression models:Flexible regression models offer several advantages over traditional linear regression models:a) Improved model fit: By accommodating nonlinear relationships, flexible regression models can provide a better fit to the data, resulting in more accurate predictions and estimates.b) Better interpretation: The ability to capture nonlinear relationships allows for a more nuanced understanding of the data. These models can reveal complex patterns and interactions between variables that may not be evident in linear regression.c) Flexibility in modeling: Flexible regression models can handle a wide range of data types and can adapt to different functional forms. This flexibility allows researchers to explore various hypotheses and choose the most appropriate model for their data.4. Applications of flexible regression models:Flexible regression models find applications in various fields, suchas:a) Economics: In economics, flexible regression models are used to analyze complex relationships between variables, such as estimating the demand for a product or determining the impact of policy changes on economic outcomes.b) Epidemiology: In epidemiology, flexible regression models are used to study the relationship between risk factors and disease outcomes. These models can capture nonlinear effects of risk factors on disease occurrence and identify high-risk groups.c) Finance: Flexible regression models are widely used in finance to model stock returns, predict asset prices, and analyze the relationship between economic variables and financial markets.d) Environmental science: Flexible regression models are used in environmental science to study the impact of environmental factors on ecological systems. These models can capture nonlinear responses and interactions between environmental variables.5. Challenges and considerations:While flexible regression models offer many advantages, there are some challenges and considerations to keep in mind:a) Overfitting: Flexible regression models have a higher risk of overfitting the data, especially when the number of predictors is large compared to the sample size. Overfitting occurs when the model captures the noise or random variation in the data, leading to poor generalization to new data.b) Interpreting complex models: As flexibility increases, the complexity of the model also increases. Interpreting the results of complex models can be challenging and requires expertise in statistical analysis.c) Computational requirements: Some flexible regression models, especially those based on nonparametric approaches, can be computationally intensive and may require substantial computational resources and time.In conclusion, flexible regression models are a powerful tool for modeling nonlinear relationships between variables. By capturingcomplex patterns, interactions, and nonlinearities, these models improve model fit and facilitate better understanding of the data. Despite some challenges, the benefits of flexible regression models make them a valuable tool in a variety of fields.。

python nonlocal 定义

python nonlocal 定义

Python中的nonlocal关键字用于声明一个变量是非局部的,在函数或其他作用域中引用外围(非全局)作用域中的变量。

在Python 3.0版本之后引入了nonlocal关键字。

1. 为什么需要nonlocal在Python的嵌套函数中,内部函数可以访问外部函数的变量,但是默认情况下,如果想在内部函数中修改外部函数的变量,Python会将其认定为一个新的局部变量。

这在一定程度上限制了嵌套函数的灵活性和可维护性。

为了解决这一问题,Python引入了nonlocal关键字,使得内部函数可以修改外部函数的变量值。

2. nonlocal的语法nonlocal关键字用于在内部函数中声明一个变量是非局部的,可以用于访问外部函数的变量,并且可以修改外部函数的变量值。

nonlocal var1, var2, ...3. nonlocal的使用示例下面是一个简单的示例,说明了nonlocal的使用方法:```pythondef outer():x = 10def inner():nonlocal xx = 20print("内部函数中的x:", x)inner()print("外部函数中的x:", x)outer()```在这个示例中,我们定义了一个外部函数outer(),在这个函数内部声明了一个变量x,并定义了内部函数inner()。

在inner()函数中,我们使用nonlocal关键字声明x是非局部的,在修改了x的值之后,打印了x的新值。

在外部函数中也打印了x的值,可以看到内部函数成功修改了外部函数的变量值。

4. nonlocal的注意事项在使用nonlocal关键字时,需要注意以下几点:- 只能在函数内部使用nonlocal关键字,用于声明变量是非局部的。

- nonlocal声明的变量必须在外部函数的作用域中已经存在,否则会报错。

- 一个变量一旦被声明为nonlocal,它在函数内部的所有作用域都将被认定为非局部变量。

bertclassifier的原理

bertclassifier的原理

bertclassifier的原理BERT(Bidirectional Encoder Representations from Transformers)是由Google提出的一种预训练语言模型,它基于Transformer模型结构,在NLP领域取得了很大的成功。

BERT模型在各种NLP任务上都取得了优秀的效果,其中包括文本分类任务。

BERT模型在文本分类任务中的应用通常被称为BERT Classifier。

BERT Classifier的原理可以简单概括为以下几点:1. 预训练阶段:BERT模型在大规模的文本语料库上进行无监督的预训练,学习到了丰富的语言表示。

在预训练过程中,BERT模型使用了双向的Transformer 结构,能够更好地捕捉文本中的上下文信息。

2. 微调阶段:在具体的文本分类任务中,可以将预训练好的BERT模型进行微调,以适应特定的任务。

在BERT Classifier中,通常会在BERT模型的基础上添加一个分类器(比如全连接层)来进行文本分类。

3. 输入表示:在BERT模型中,输入文本会被转换为词向量表示,然后经过一系列的Transformer编码层进行特征提取。

BERT模型的输入表示采用了Token Embeddings、Segment Embeddings和Position Embeddings的结合,能够更好地处理文本的语义信息。

4. Fine-tuning:在微调阶段,BERT模型的参数会根据具体的分类任务进行调整。

通常会使用带有标签的数据对BERT模型进行监督学习,通过损失函数的反向传播来调整模型参数,使得模型在具体的分类任务上表现更好。

5. 预测输出:经过微调后的BERT模型可以用来进行文本分类预测。

对于每个文本样本,BERT模型会输出一个向量,然后通过Softmax函数将向量映射到对应的类别概率上,从而得到最终的分类结果。

总的来说,BERT Classifier的原理是基于BERT模型的预训练能力和微调能力,通过将BERT模型与分类器结合,实现在文本分类任务上的优秀表现。

catboostclassifier predict -回复

catboostclassifier predict -回复

catboostclassifier predict -回复CatBoostClassifier是一个强大的机器学习算法模型,它在分类问题中表现出色。

本文将通过一步一步回答问题的方式,深入探讨CatBoostClassifier predict方法的原理和应用。

首先,我们来了解一下CatBoostClassifier是什么。

CatBoostClassifier 是Yandex(俄罗斯最大的搜索引擎)开发的一种梯度提升决策树算法模型。

它是基于Boosting算法的一种实现,能够处理各种类型的数据,包括类别型和数值型。

接下来,我们来解释一下CatBoostClassifier predict方法的作用。

在机器学习中,我们通常将数据集划分为训练集和测试集。

通过训练模型,我们可以建立模型之间特定的关系和规律,然后利用测试集来评估模型的性能。

而predict方法就是通过该模型对测试集中的样本进行分类预测,即预测样本属于哪个类别。

那么,CatBoostClassifier的predict方法是如何工作的呢?首先,它会利用训练阶段学到的决策树模型,对测试集中的每个样本进行特征提取。

特征提取是将原始数据映射到新的特征空间的过程,以便更好地表示样本的特征。

接下来,CatBoostClassifier会将测试样本输入到决策树模型中,根据决策树的节点和分支规则,将样本分配到某个叶子节点。

最后,CatBoostClassifier根据叶子节点的条件概率分布,确定测试样本属于哪个类别。

那么,我们该如何使用CatBoostClassifier的predict方法呢?首先,我们需要将训练好的模型加载到内存中。

可以通过以下代码实现:pythonfrom catboost import CatBoostClassifier# 加载模型model = CatBoostClassifier()model.load_model('model.cbm') #将模型文件加载到内存中接下来,我们需要将测试集中的样本传递给模型的predict方法,进行分类预测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

yn
= H2 (y )
n
=
XX
P P i
hi;j yn
=1
j
=i
?y ?
i n
j
(1)
This requires a P -sample memory and N = =1 i lter coe cients. The lter coe cients h are represented as
t P i i;j
ABSTRACT
2.1. H2 Filter A Volterra H2 prediction lter with sample memory may
be written as 1] ^
P
1. INTRODUCTION
A primary objective in low bitrate speech coding is to reduce the representation of the time-varying signal to some parametric form which may be e ciently quantized to utilize the available bandwidth. Due to the `quasi-stationary' nature of speech, the channel parameters to be transmitted are normally updated at frequent intervals, typically 50 times per second. Nearly all low-rate coders employ a twostage prediction process: the long-term or pitch prediction, and the short-term or spectral prediction. These models are usually of order one for the pitch predictor, and order 8 to 10 for the spectral (or formant) predictor. If the prediction process is prefect, the residual after the prediction lter will approximate white Gaussian noise. Until recently, the formant predictor section of the coder was invariably a linear predictor, on the assumption of stationarity of the input. Recently, some non-linear approaches have been investigated 1]. A particular problem with nonlinear prediction is the selection of the type and order of nonlinearity to be used. Unlike linear prediction, there is no convenient, mathematically tractable solution to the problems of nonlinearity type, order and parameter estimation. We have previously investigated a neural network approach based on a `soft' nonlinear function. It was found that the gain resulting from nonlinear prediction was somewhat signal-dependent, required excessive training times for the network, and was quite sensitive to the training parameters.
A CLASS OF NONLINEAR PREDICTOR FUNCTIONS FOR THE SPEECH SIGNAL
John Leis
Faculty of Engineering University of Southern Queensland Toowoomba, AUSTRALIA email: leis@.au
The method of linear prediction has found considerable application in coding speech e ciently. The objective of the linear predictor is to remove all \predictable" redundancy from the source, and thus the residual may be e ciently coded. In the spectral domain, the linear prediction may be thought of as a whitening lter, with the residual having a noiselike characteristic. In practice, this all-pole model is not a perfect representation. As the linear all-pole model is only an approximation over a short interval to the true speech signal, it is reasonable to ask whether there are any nonlinear components which may be predicted and hence removed in the coding stage { this would lead to a smaller average prediction residual. In this paper, we report some results using the Volterra series both as a direct-form preditor and as a predictor for the linear prediction (LP) residual.
h = ?2m + 2Mh hopt = M?1 m
0 B B B B B B B B B B B B B B B B B B B B B B B B B @
yn yn
yn
?
. . .
?1 ?2
P
::::::::: yn
n
yn
?1 y ?1 ?1 y ?2
yn
yn
yn
?1 y ? ?2 y ?2 ?2 y ?3
y
n
=
0 B B B B B B B B B B B B B B B @
yn
yn
?1 y ?1 ?1 y ?2
n
yn
yn
yn
?1 y ? ?2 y ?2 ?2 y ?3
n n
. . .
n
P
yn
?2 y ?
. . .
n
. . .
n
P
1 C C C C C C C C C C C C C C C A
2.2. H12 Filter A Volterra H12 lter with sample memory may be written
h1;P h2;2 h2;3
. . .
. . .
h2;P
. . .
1 C C C C C C C C C C C C C C C C C C C C C C C C C C C A
(8)
hP;P
The optimal solution is found by solving
@e @
Using the identities
as
P yn
(3)
^
= H1 (y ) + H2 (y ) =
X
P i
n
hi yn
=1
? +
i
XX
P P i
n
hi;j yn
=1
j
=i
?y ?
i n
j
(7)
yP yP
The lter coe cients are now represented by the augmented vector
The predicton error is thus
2 1.5 1
x 10
4
Speech Test Signal
Linear Prediction Gain 24
0.5
23
Amplitude 0
22
−0.5
21
−1 −1.5 −2 −2.5 0
en
n
e
=
E
? 2 ? 2h m + h Mh
yn
T T
h =
(4)
with
m = M =
2
E E
(y y )
?y y
n n
n
T n
(5)
0 B B B B B B B B B B B B B B B B B B B B B B B B B B B @
h1 h2
. . .
hP :::: h1;1 h1;2 h1;3
相关文档
最新文档