核医学第1章核医学物理基础

合集下载

核医学考试大纲--基础知识

 核医学考试大纲--基础知识

071 核医学考试大纲基础知识单 元细 目要 点要求 (1)核医学定义 (2)核医学内容 熟练掌握 1.核医学的概述(3)核医学发展简史了解 (1)定义 (2)原理 熟练掌握(3)优缺点 (4)基本方法 2.放射性核素示踪技术(5)主要类型及应用掌握 (1)原理 了解 (2)种类 3.放射自显影(3)应用熟悉 (1)基本概念 (2)基本方法 熟悉 4.放射性核素示踪动力学分析与功能测定(3)临床应用 掌握 (1)显像原理(2)脏器或组织摄取显像剂的机制 熟练掌握 (3)显像条件及其选择 掌握 (4)显像类型(5)图像分析方法及要点 (6)图像质量的评价熟练掌握 一、核医学总论 5.放射性核素显像技术(7)核医学影像及其他影像的比较掌握 (1)组成和表示方法 1.原子核(2)核素及其分类 熟悉 (1)α衰变 (2)β衰变 (3)电子俘获 2.核的衰变及其方式(4)γ衰变熟悉 (1)放射性活度 熟练掌握 (2)衰变常数 掌握 (3)指数规律 (4)半衰期 熟练掌握 3.放射性核素的衰变(5)递次衰变熟悉 (1)带电粒子与物质的相互作用 4.射线与物质的相互作用(2)光子与物质的相互作用 熟悉 (1)照射量与照射量率 掌握 (2)吸收剂量 二、核物理基础 5.电离辐射量及其单位(3)剂量当量熟悉 三、核医学仪器 1.核医学射线测量仪器(1)基本构成和工作原理熟练掌握(2)固体闪烁探测器 掌握 (3)其他射线探测器 (4)脉冲幅度分析器 熟悉 (5)工作条件的选择 了解 (6)体内测量仪器 (7)体外测量仪器 熟悉 (8)辐射防护仪器 了解 (9)质量控制掌握 (1)基本结构和工作原理 熟练掌握 (2)准直器掌握 (3)位置和能量电路 了解 (4)图像重建2.γ照相机和单光子发射计算机断层(SPECT)(5)γ照相机和SPECT 的性能指标与质量控制掌握 3.正电子发射计算机断层仪(PET) 符合探测原理熟练掌握 (1)放射性衰变的统计分布和放射性计数的统计误差熟练掌握 (2)存在本底时误差的计算和应用 4.放射性计数的统计规律(3)减少统计涨落影响的方法熟悉 (1)硬件 1.核医学计算机的组成(2)软件 熟悉 (1)模拟数字转换2.图像的数字化和计算机显示 (2)图像的存储、传输、显示 熟悉 (1)图像采集方式 熟练掌握 四、电子计算机在核医学中应用3.图像的采集和处理(2)常用图像处理 熟悉 (1)作用机制熟悉 1.放射性药物的作用机制与药物设计 (2)Hansch 构效关系学说 了解 (1)QA、QC、GMP 与GRP (2)质量检测的内容 (3)放射性核纯度的测定 熟悉 2.质量控制与质量保证(4)放射化学纯度的测定掌握(1)正确使用总原则 (2)小儿应用原则 (3)育龄妇女应用原则(4)放射性药物与普通药物的相互作用 3.正确使用、不良反应及其防治(5)不良反应及其防治掌握(1)Tc 的主要化学性质 了解 (2)99mTc 的标记 熟悉 (3)99m Tc 发生器 掌握五、核化学与放射性药物4.99mTc 化学与99mTc 的放射性药物(4)临床核医学常用的99mTc 的放射性药物 熟练掌握(1)123I、131I、67Ga、111In、与201Tl 的来源(2)放射性碘标记(3)放射性铟标记熟悉5.放射性碘、镓、 铟、铊的放射性药物(4)临床核医学常用的放射性碘、镓、 铟、铊的放射性药物掌握 (1)核素的选择6.放射性治疗药物 (2)临床核医学常用的放射性治疗药物 熟练掌握 (1)受体显像剂 了解 (2)代谢显像剂 熟悉(3)乏氧显像剂(4)肿瘤导向诊断与导向治疗的放射性药物(5)基因显像与基因治疗的放射性药物 7.放射性药物新进展(6)反义显像和反义治疗的放射性药物了解 (1)放射生物效应及基本概念 熟悉 (2)放射防护的目的和基本原则 (3)工作人员的剂量限值 (4)内、外照射防护原则 熟练掌握 1.放射生物效应与防护原则(5)不同射线的防护原则了解 (1)实验室的三区布局 了解 (2)放射源的运输、保管 (3)放射性废物的处置 (4)放射性事故的应急处理 掌握 2.核医学实验室(5)工作场所的防护监测了解 (1)工作人员健康管理 了解 (2)个人防护及防护用品 3.工作人员的防护(3)个人剂量监测熟悉 (1)申请核医学检查与治疗的原则 熟练掌握 (2)申请医师的职责 熟悉 4.工作人员的职责(3)核医学医师的职责熟练掌握 (1)核医学诊断中患者的防护原则 熟练掌握 (2)核医学诊断中特殊人群的防护原则 了解 5.患者的防护(3)核医学治疗中患者的防护原则掌握 (1)放射性药品管理办法熟练掌握 (2)放射性同位素与射线装置放射防护条例六、放射卫生防护6.放射卫生防护法规(3)临床核医学放射卫生防护标准了解(4)临床核医学中患者的放射卫生防护标准熟悉 (1)方法 1.决策矩阵 (2)指标 掌握 2.Bayes 理论 Bayes 理论 熟悉 七、医学诊断方法的效能评价3.界值特性曲线(ROC 分析)界值特性曲线 熟悉医学伦理学单元 细目要点要求1.医患关系2.医疗行为中的伦理道德医学伦理道德 3.医学伦理道德的评价和监督了解。

1.核物理基础

1.核物理基础

衰变规律
放射性核素衰变:放射性核素因核内成分或能级 改变而自发的转变为另一种核素,同时释放出核 射线。 (一) α衰变:放射性核素从原子核自发的释放 出α粒子的衰变,大多发生在Z大于82的放射性 核素, α粒子本质是He的原子核,由两个质子与 两个中子组成。 (二) β衰变:原子核自发的放射出电子或俘获 一个轨道电子而发生的转变。
N0 /16
N0 /32
N0 /64
N0 /2n
经过n个半衰期后, 经过n个半衰期后,未发生衰变的放 射性原子核数目是原有的
1/2n
二、半衰期:反映核素衰变速率的指标。 物理半衰期 生物半衰期 有效半衰期 1、半衰期:放射性核素由于自身的自然衰变,活度减 少到原来一半需要的时间。 2、生物半衰期:生物体内的放射性核素因从体内代谢 排出而衰减到原来一半的量所需时间。 3、有效半衰期:存在于生物体内的放射性核素由于生 物代谢和放射性衰变的共同作用,使放射性活度减为 原来一半所需时间。
核外电子不是静止分布的,是不停地绕核运动。 由于各电子的能量不同,且是跳跃不连续的,所 以他们在各自不同的轨道和层次上运动,距核越 远位能越高。 电子在轨道上运行时,若不辐射也不吸收能量称 为定态(stationary state)。 能量最低的定态为基态(ground State)。 能量较高的定态为激发态(excited state)。 当电子由一种定态跃迁到另一种定态时,如由低 到高,吸收能量,而由高到低时则释放能量。
现代原子结构
原子核 中子
+ ++
质子 电子 (电子云)
原子核中核子的能量称为原子核的能级,能级是 分立的。在外界干扰下,可发生核能级的跃迁。
一般情况,原子核都处于最低能量状态,即基态。 在一定的条件下,如放射性核素衰变或某一核素受到 高能粒子的轰击,原子核能级可暂时到达较高能量状 态,此过程成为激发,此时的状态称为激发态。原子 核处于激发态的时间很短(10-12s),它通过释放射线, 产生核衰变使自己迅速回复到基态,就有了核辐射现 象。 另外,原子核还可处于所谓的亚稳态,它较基态的 能量高出许多,但其回复基态的时间可较长,从10-12s 到数月数年。

核医学PPT课件-核医学绪论及物理基础

核医学PPT课件-核医学绪论及物理基础
*
高度选择性
放射免疫靶向治疗 受体介导的靶向治疗 放射性核素基因治疗 高度适形性 放射性核素粒子植入治疗等
放射免疫分析 免疫放射分析 受体分析
*
通过放射性核素示踪技术,可以在生理状态下,从分子水平动态地研究机体各种物质的代谢变化,细致地揭示体内及细胞内代谢的内幕,这是其他技术难以实现的。 放射性核素显像反映了脏器和组织的生理和病理生理变化,属于功能影像;其中受体显像、放射免疫显像等技术也属于分子功能影像。
History look back
*
临床核医学之父
1926年美国Boston内科医师Blumgart首先应用放射性氡研究循环时间,第一次应用了示踪技术。 将氡从一侧手臂静脉注射后,在暗室中通过云母窗观察其在另一手臂出现的时间,以了解动-静脉血管床之间的循环时间。 后来他又进行了多领域的生理、病理和药理学研究。被誉为“临床核医学之父”。
*
影像学可被广义的分为解剖影像及分子影像。 CT和 超声属于解剖影像。 而PET及某些形式的MRI被认为是分子影像。
*
分子影像学
定义:运用影像学手段显示组织水平、细胞和亚细胞水平的特定分子,反映活体状态下分子水平变化,对其生物学行为在影像方面进行定性和定量研究的科学。 是连接分子生物学等学科和临床医学的桥梁。
*
反应堆 裂变产物、分离纯化 133Xe、131I等 (生产丰中子放射性核素,多伴有β衰变,不利于制备诊断用放射性核素)
*
加速器 15O、18F等 (生产短寿命的乏中子放射性核素)
*
发生器(“母牛”) “从长半衰期核素的衰变产物中得到短半衰期核素的装置” 99mMo-99mTc(钼-锝) 113Sn-113In(锡-铟)
*
核医学发展史

核医学课件:第一章 核物理

核医学课件:第一章  核物理

稳定性核素
稳定性核素 中子与质子比例适当
放射性核素 自发地发出某种射线而转 变为另一种核素
核衰变
放射性核素自发地释放出一种或一 种以上的射线并转变成另外一种核 素的过程。其类型与方式取决于原 子核内的固有特征,与外界无关
α衰变
核子总数过多 (原子序数>82)
位移规律 AZX
A-4Z-2Y+42He+Q
A = Ao e –λt 当:t=0时
A = Ao e –0.693 预先算出:t/T1/2 查表得到e –λt 值*Ao
贝可与居里的关系 比放射性活度 比放射性浓度
射线与物质的相互作用
带电粒子与物质的相互作用
1. 电离 2. 激发 3. 轫致辐射 4. 散射 5. 湮没辐射 6. 吸收作用
光子与物质的相互作用
1. 光电效应 2. 康普顿-吴有训效应 3. 电子对生成
表示某种放射性核素的一个核在 单位时间内自发衰变的比率,反映 核衰变的速度,与半衰期成反比
T=0.693/λ
放射性活度
放射性活度(A):一定量的放射性核 素在单位时间内发生的核衰变次数,反 映核衰变率
A=dN/dt 单位:贝可 (Bq) 居里(Ci) 比放射性活度(简称比活度):单位质量 (容积)放射性制剂中的放射性活度 单位: Bq/mg Bq/mL
22688Ra
22286Rn
eV (能量单位) α射线特点:
KeV MeV
β- 衰 变
富中子核素,中子数过多, 转换为质子
位移规律: AZX 3215P
β射线特点:
AZ+1Y+ β-+Q+υ 3216S
β+ 衰 变
贫中子核素内质子转换为中子

核医学-第一篇 基础篇 第一章 核医学物理基础

核医学-第一篇 基础篇 第一章 核医学物理基础
(三)电子对生成
康普顿效应示意图
本章小结
1. 放射性核素是核医学的基本工具。 2. 核素、同位素、同质异能素等描述放射性核素的不同种类。 3. 核衰变、半衰期等描述放射性核素的物理变化方式、规律和生成核射线的种类。 4. 放射性活度是放射性核素放射性强度的度量单位。 5. 电离和激发、光电效应等射线与物质的相互作用方式是核射线探测、核医学显
两种同位素的比较
核医学(第9版)
三、稳定核素和放射性核素
1. 稳定核素:原子核稳定,不产生射线。 2. 放射性核素:原子核不稳定,自发产生射线。
第二节
核衰变
核医学(第9版)
一、核衰变方式
(一)α衰变
1.
α衰变反应式:
A Z
X→A-4 Z-2
Y + 42
He + Q
ቤተ መጻሕፍቲ ባይዱ
2. α射线,即α粒子流(氦原子核)
核医学(第9版)
一、核衰变方式
(四)γ衰变
1.
γ衰变反应式:
Am Z
X→AZ
Y + γ
2. γ射线,即γ光子流
3. γ射线特点:
(1)不带电荷。 (2)运动速度快。 (3)穿透能力强。 (4)电离能力很小。
γ衰变及内转换模式图
核医学(第9版)
二、核衰变规律
(一)衰变常数
1. 衰变常数:单位时间内发生衰变的原子核数目占总数的比率,
核医学(第9版)
二、核衰变规律
(三)放射性活度
1. 定义:放射性核素在单位时间内的衰变数,表示放射性核素的放射性强度。
2. 单位:
(1)贝克(Bq):1秒钟内发生一次核衰变 (2)居里(Ci):每秒3.7×1010次核衰变,1Ci=3.7×1010Bq

第九版核医学配套课件 1 核医学物理基础

第九版核医学配套课件 1 核医学物理基础
(一)电离与激发
1. 电离 带电粒子(α、β粒子等)与物质的核外电子发生静电作用,使电子脱离轨道束缚形成自由 电子;失去电子的原子成为离子。 2. 电离密度 带电粒子在单位路程上产生的电子-离子对的数目,表明带电粒子的电离能力。 3. 激发 核外电子获得的能量不足,只能由能量较低的轨道跃迁到能量较高的轨道。
1.
β+衰变反应式:
A Z
X→AZ-1Y + β+ + Q
2. β+粒子,即正电子
3. 湮灭辐射:
β+粒子射程仅1~2mm,其在较短的时间内 与邻近的自由电子碰撞,转变成两个能量同 为511keV、方向相反的γ光子。
正电子湮灭辐射
一、核衰变方式
(四)γ衰变
1.
γ衰变反应式:
Am Z
X→AZ
Y + γ
两种同位素的比 较
三、稳定核素和放射性核素
1. 稳定核素:原子核稳定,不产生射线。 2. 放射性核素:原子核不稳定,自发产生射线。
第二节
核衰变
一、核衰变方式
(一)α衰变
1.
α衰变反应式:
A Z
X→A-4 Z-2
Y + 42
He + Q
2. α射线,即α粒子流(氦原子核)
3. α射线特点:
(1)质量大。 (2)射程很短。 (3)穿透能力很弱。 (4)电离能力很强。
γ光子
光电效应示意图
二、光子与物质的相互作用
(二)康普顿效应
能量较高的γ光子与原子的核外电子碰撞,将一部分能 量传递给电子,使之脱离原子轨道束缚成为高速运行 的电子,而γ光子本身能量降低,运行方向发生改变; 释放出的电子称作康普顿电子。

核医学考试重点

核医学考试重点

第一章核物理基础知识元素:凡是质子数相同,核外电子数相同,化学性质相同的同一类原子称为一组元素;同位素isotope:凡是质子数相同,中子数不同的元素互为同位素如: 1H、2H、3H;同质异能素:凡是原子核中质子数和中子数相同,而处于不同能量状态的元素叫同质异能素;核素:原子核的质子数、中子数、能量状态均相同原子属于同一种核素;例如:1H、2H、3H、12C、14C 198Au 、99m Tc、99Tc1.稳定性核素 stable nuclide稳定性核素是指:原子核不会自发地发生核变化的核素,它们的质子和中子处于平衡状态,目前稳定性核素仅有274种,2.放射性核素 radioactive nuclide放射性核素是一类不稳定的核素,原子核能自发地不受外界影响如温度、压力、电磁场,也不受元素所处状态的影响,只和时间有关;而转变为其它原子核的核素;核衰变的类型1.α衰变α decay:2.-衰变- decay:3.+衰变:4.γ衰变:核衰变规律1.物理半衰期physical half life,T1/2:放射性核素衰变速率常以物理半衰期T1/2表示,指放射性核素数从No衰变到No的一半所需的时间;物理半衰期是每一种放射性核素所特有的;数学公式T1/2=λ2.生物半衰期Tb:由于生物代谢从体内排出原来一半所需的时间,称为之;3.有效半衰期Te:由于物理衰变与生物的代谢共同作用而使体内放射性核素减少一半所需要的时间,称之;Te、Tb、T1/2三者的关系为:Te= T1/2·Tb / T1/2+ Tb;4.放射性活度radioactivity, A :是表示单位时间内发生衰变的原子核数;放射性活度的单位是每秒衰变次数;其国际制单位的专用名称为贝可勒尔Becquerel,简称贝可,符号为Bq;数十年来,活度沿用单位为居里Ci 1Ci=×1010/每秒;带电粒子与物质的相互作用1.电离charged particles:带电粒子通过物质时和物质原子的核外电子发生静电作用,使电子脱离原子轴道而形成自由电子的过程称电离;2.激发:如果原子的电子所获得能量还不足以使其脱离原子,而只能从内内层轴道跳到外层轴道;这时,原子从稳定状态变成激发状态,这种作用称为激发;2.散射:射线由于质量小,进行途中易受介质原子核电场力的作用而改变原来的运动方向,这种现象称为散射;3.韧致辐射:快速电子通过物质时,在原子核电场作用下,急剧减低速度,电子的一部分或全部动能转化为连续能量的X射线发射出来,这种现象称为韧质辐射;4.湮没辐射:正电子衰变产生的正电子,在介质中运行一定距离,当能量耗尽时可与物质中的自由电子结合,而转化成两个方向相反,能量各自为的γ光子而自身消失,称湮没辐射;5.吸收absorption:射线在电离和激发的过程中,射线的能量全部耗尽,射线不再存在, 称作吸收;吸收前所经的路程称为射程;吸收的最终结果是使物质的温度升高;6.光电效应:γ光子和原子中内层K、L层电子相互作用,将全部能量交给电子,使之脱离原子成为自由的光子的过程称为光电效应;7.康普顿效应:能量较高的γ光子与原子中的核外电子作用时,只将部分能量传递给核外电子,使之脱离原子核束缚称为高速运行的电子,而γ光子本身能量降低,运行方向发生改变,称康普顿效应;常用的辐射剂量及其单位1、照射量①照射量exposure是直接度量χ或γ射线对空气电离能力的量,可间接反映χ, γ辐射场的强弱,是用来度量辐射场的一种物理量;②照射量的国际制单位是库仑/千克C/kg, 旧有专用单位为伦琴R;③1伦琴=×10-4C/Kg,1R=1000mR,1mR=1000μR2、吸收剂量①吸收剂量absorbed dose:为单位质量被照射物质吸收任何电离辐射的平均能量;是反映被照射物质吸收电离辐射能量大小的物理量;②定义吸收剂量国际单位制单位为戈瑞Gray,以Gy表示;1Gy=1J/kg;③旧有专用单位为拉德,以rad表示,1Gy=100rad思考题:1.名词解释:放射性核素、放射性活度、元素、核素、同位素、同质异能素、电离、激发、湮灭辐射、光电效应、康普顿效应、有效半衰期;2.放射性核素的特点是什么3.核衰变的方式4.射线和物质的相互作用有几种;第二章辐射生物学效应的分类一按照射方式分1.外照射2.内照射3.局部照射4.全身照射二按照射剂量率分1.急性效应acute radiation effect 大剂量率照射,短时间内达到较大剂量,表现迅速的效应2.慢性效应chronic radiation effect 低剂量率长期照射,随着照射剂量增加,效应逐渐积累,经历较长时间才表现出来;三按效应出现时间分1.早期效应early effect 照射后立即或数小时后出现的效应;2.远期效应late effect 亦称远后效应;照射后经历一段间隔时间一般6个月以上表现出的效应;四按效应表现的个体分1.躯体效应somatic effect 受照射个体本身所发生的各种效应;2.遗传效应genetic effect 受照射个体生殖细胞突变,而在子代表现出的效应;五按效应的发生关系分1.确定性效应determinate effect:指效应的严重程度不是发生率与照射剂量的大小呈正相关, 最大容许剂量50 mSv/年2.随机性效应stochastic effect:指效应的发生率不是严重程度与照射剂量的大小有关,这种效应在个别细胞损伤主要是突变时即可出现;不存在阈剂量;131I治疗甲亢发生甲减的概率3%/年二、影响辐射生物学效应的因素一与辐射有关的因素1.辐射类型电离密度大,射程小,内照射时生物学效应相对较强; 如>>γ电离密度小,射程大,外照射时生物学效应强; 如γ>>2.剂量和剂量率3.照射方式全身照射比局部照射效应强;同等剂量照射,一次照射比分次照射效应强;二与机体有关的因素1.种系差异2.性别3.年龄4.生理状态5.健康状况三介质因素放射防护措施基本措施:时间保护、距离保护、屏蔽保护、合理使用放射源、选择毒性小的核素;目前科研和医疗等仪器中使用的辐射源有:封闭源和开放源两类;1.封闭源有各种射线装置、X线机、治疗用加速器;主要危害是外照射2.开放源主要是基础和核医学中常用的各种放射性核素;主要危害是内照射、体表污染、外照射外照射防护的基本原则:①时间防护,②距离防护,③屏蔽保护;本章思考题:加粗为重点1.电离辐射生物学效应的影响因素有哪些2.放射防护的目的是什么3.放射防护的基本原则的含义是什么4.核医学内、外照射防护的原则是什么第三章核医学总论临床核医学:是放射性核素在医学上应用的一门学科;包括:放射性核素显像,放射性核素功能测定,体外免疫检测,放射性核素治疗,疾病的病因研究,治疗药物的研究;核仪器:在诊疗及科研工作中,凡能用来探测和记录射线种类、活度、能量的装置统称为核仪器;放射性药物:凡是符合医用要求的放射性核素或标记化合物,并且能引入体内进行诊断、治疗的制剂称为放射性药物;临床核医学的诊疗原理放射性核素显像原理1.细胞选择性摄取原理2.化学吸附原理3.细胞摄取及分泌原理4.暂时性血管栓塞原理5.特异性结合原理6.体液分布原理7.亲和性原理8.代谢显像原理9.空间分布显像原理思考题:1.临床核医学的定义是什么2.何谓核医学仪器4.临床核医学有哪些诊疗原理第四章体外分析技术放射免疫分析RIA原理① Ag +Ab←─→Ag-Ab + Ag+Ag↑↓Ag-Ab + Ag②一定量的Ag和 Ab④Ag和Ag的总量大于Ab上的有效结合位点时⑤Ag-Ab的形成量随着Ag量的增加而减少,呈反比关系;临床应用内分泌代谢系统疾病检测项目1. TT4 甲亢甲减2. TT3 甲亢甲减3. FT4 甲亢;甲减结果不受TBG甲亢;甲减;结果不受TBG原发性甲减;继发性甲减甲亢;甲减;低T3综合征<30% 慢性淋巴细胞性甲状腺炎<15% 慢性淋巴细胞性甲状腺炎<13 U/L Graves病思考题的原理是什么2.甲亢的临床应用第五章内分泌系统一甲状腺显像原理:①甲状腺是唯一摄取碘的器官,131I能释放γ射线,利用显像仪可在体外得到甲状腺影像;②99m TcO4与I同属一族均能被碘泵泵入甲状腺,99m TcO4仅在甲状腺短暂停留,但已足够行体外甲状腺显像;二种显像剂的优缺点:①131I特异性高,可行异位甲状腺,甲癌转移灶的诊断;但有射线孕妇,哺乳妇,<12岁的儿童均不能做;并有食物,药物等影响吸收的因素;无禁忌症,不受食物,药物影响;但唾液腺,胃粘膜,口腔,食道,膀胱都会显像故特异性②99m TcO4不强;临床应用:1、异位甲状腺的诊断——胸骨后,舌骨下,卵巢;234、寻找甲癌转移灶5、术后残留甲状腺组织的观察6、进一步检查:a.热结节;b.冷,凉结节的鉴别诊断二甲状腺摄131I试验原理:甲状腺是唯一能摄碘的器官,131I能发出γ射线在体外能测到131I在甲状腺的聚排情况,就能了解甲状腺的摄取,合成,分泌功能;临床应用1.计算甲亢治疗剂量2.甲状腺功能亢进症:大多数甲亢患者的甲状腺摄131I率增高,而且摄131I率高峰前移;虽本法对甲亢的诊断率可达90%左右,但本法属体内法,检查前需禁碘,检查时间较长,一般不作为首选方法;且摄131I率的高低与病情严重程度不一定平行,也不宜用做监测甲亢用药剂量和疗效的评价;3.亚急性甲状腺炎:由于甲状腺滤泡受到破坏,甲状腺摄131I率明显降低,因储存于甲状腺滤泡中的甲状腺激素释放入血,引起周围血中甲状腺激素水平增高,出现摄131I率与甲状腺激素的分离现象;但在其恢复期摄131I率可正常或增高;4.单纯性甲状腺肿:散发性甲状腺肿,如青春期、妊娠期或哺乳期的甲状腺肿多属机体碘需求量增加,造成碘相对不足;地方性甲状腺肿患者由于机体处于碘饥饿状态,两者都表现为甲状腺摄131I率增高,但无高峰前移,可与甲亢鉴别;结节性甲状腺肿可呈正常或增高;三甲状腺激素抑制试验原理:正常状态下,甲状腺分泌的甲状腺激素与垂体前叶分泌的TSH存在着反馈调节作用: TT3、TT4↑,TSH↓,对甲状腺刺激作用↓,甲状腺摄取碘及甲状腺激素的合成和释放↓;甲亢时,丘脑—垂体—甲状腺轴的调节关系遭到破坏,甲状腺功能处于自主状态,甲状腺摄碘、合成、分泌甲状腺激素均不受抑制;诊断标准:•抑制率>50% =正常•抑制率25—50% =可疑•抑制率<25% =甲亢临床应用1.排除甲亢抑制率正常时,提示垂体—甲状腺轴存在着正常调节关系,可以排除甲亢的存在;2.诊断甲亢不抑制时,表明垂体—甲状腺轴正常的调节关节遭到破坏,可诊断为甲亢;部分抑制时,为可疑甲亢,需结合其它有关资料进行分析而确定;3. 鉴别突眼的性质如有些甲亢突眼患者,临床症状不典型,血清甲状腺激素水平正常,而垂体—甲状腺轴调节关系被破坏为其重要特征,即抑制率<25%;另可用于功能自主性甲状腺结节的诊断,当甲状腺扫描提示为“热结节”时,以上述方法服甲状腺片1周后再行甲扫,如果周围正常甲状腺组织受抑制,而“热结节”不受抑制,则可确诊为功能自主性结节;四甲状旁腺显像原理:只进入甲状腺而不进入甲状旁腺,99M TC-MIBI和201TI可进入甲状腺和甲状旁腺,用减影方法即可获得甲状旁腺的影象;2.用99M TC-MIBI双时相法也可; 99M TC-MIBI在甲状腺的时间比甲状旁腺的时间短;思考题:1.甲状腺功能测定的原理是什么2.甲状腺功能测定的临床应用;3.甲状腺激素抑制试验的临床应用;与131I 作为甲状腺显像剂有何不同2. 如何应用核医学检查方法鉴别甲状腺结节的良、恶性3. 99m Tc-MIBI双时相法进行甲状旁腺显像的原理是什么第六章神经系统显像第一节脑血流灌注显像原理:1.静脉注射能通过正常的血脑屏障进入脑细胞的显像剂,该细胞内的显像剂经水解酶或脱脂酶作用由脂溶性变为水溶性停留在细胞内;在体外用断层仪器,可以获得大小脑各个部位显像剂的分布影像;2.进入脑细胞的显像剂与局部脑血流量rCBF成正比,大脑的代谢和功能活动又与血流量相平行;3.故本显像不仅能反映脑的局部血流量,还能反映脑的代谢和功能状态;临床应用:1.脑梗塞的诊断:一旦脑梗塞发生,由于血管闭塞,病变区血供减少或停止,在rCBF影像上即可显示病变部位放射性明显减少,阳性率近100%;发病2-3天内,病变区尚未形成明显的结构变化, XCT和MRI常不能显示异常;形成明显结构改变后,几种方法的阳性率近似,但往往rCBF影像所示病变范围较XCT和MRI者大,这是由于结构异常的四周还存在缺血的区域;★过度灌注luxury perfusion:发病几天后,若侧支循环丰富,在rCBF影像上可见到病变四周出现放射性异常增高,称之;2. 短暂性脑缺血发作--TIA当局部的血流低于症状发生阈23 ml/100g/min,开始发病,但持续时间很短,很快恢复到23ml以上,并超过此阀值时,病人症状可以逐渐消失,但仍低于正常值50m ml/100g/min,处于所谓的慢性低灌注状态; rCBF显像可以发现这种状态,而XCT等形态学检查方法则较难于发现;这种状态的持续存在可导致不可逆性改变,将最终发展成为脑梗塞;因此及时发现这种慢性低灌注状态,予以积极治疗,是防止脑梗塞发生的重要环节之一;本法不仅可以早期发现这种状态,并对估计缺血程度、随访和观察疗效具有其他方法难以比拟的优点3.癫痫病灶的诊断和定位发作时可见到病灶血流量有明显增加;发作间期血流量减低;本法对癫痫灶的诊断和定位有重要价值,是对难治性癫痫进行手术治疗的必要依据;4.痴呆的诊断和鉴别诊断痴呆病人的脑功能低下,常表现为大脑皮质萎缩,全脑血流量减少;尤以额叶和颞叶更明显,表现为脑沟变宽、变浅,脑回变窄,侧脑室和第三脑室扩大;不同类型痴呆的rCBF影像各有特点:早老性痴呆Alzheimer病:双侧顶叶和颞叶常有明显的血流减低区;多发性梗塞性痴呆:整个大脑可见多个血流减低区,呈弥漫性分布;Steel-Richardson综合征:多显示额叶灌注缺损;5.脑瘤的诊断:①判断恶性程度:②手术和放疗的预后判断6.脑死亡brain death: rCBF显像诊断的依据是:脑内无血流灌注影像,提示脑组织已经死亡;7.研究脑生理功能8.情绪障碍损伤部位的定位及辅助诊断第三节脑脊液显像原理:将某些放射性药物经腰穿引入脊髓蛛网膜下腔,它将沿着脑脊液循环的径路运行,依次进入各脑池,最后到达大脑凸面时被蛛网膜颗粒吸收而进入血循环中;三叉影:为正常脑池显像;基底为基底池和四叠体池的重叠影像,中央为胼胝体池,两则为外侧裂池,其间空白区为侧脑室所在地;正常情况下,由于脑室具有泵功能,脑室内脉络丛产生的脑脊液只能按一定路径流出脑室,蛛网膜下腔的脑脊液则不能逆流入脑室,因此,侧脑室无放射性聚集;临床应用1.交通性脑积水的诊断2.脑脊液漏的诊断和定位3.梗阻性脑积水的诊断4.脑脊液分流术后评价附加内容:18F-FDG脑显像原理:葡萄糖是脑组织实现功能的唯一能量来源,18F-脱氧葡萄糖18F-FDG与普通的葡萄糖一样,能够顺利通过血脑屏障进入脑细胞内,进入脑细胞的18F-FDG在己糖激酶作用下变成6-磷酸-18F-FDG;由于分子构形的改变,6-磷酸-18F-FDG不能象6一磷酸葡萄糖一样进一步代谢成二氧化碳和水,而滞留于脑细胞内,不能很快逸出细胞外;所以在细胞内的6-磷酸-18F-FDG的量在一定时间内相对恒定,可以满足显像的要求;通过带符合线路的SPECT/CT或PET/CT显像,可反映大脑生理和病理情况下葡萄糖代谢情况,应用动态采集,还可获得糖代谢的各种速率常数、脑组织葡萄糖代谢率等定量参数;方法:μmol/100g/min;放射性浓集程度可用标准化摄取比值表示standardized uptake value SUV;思考题1.什么叫过度灌注、慢性低灌注状态、三叉影、标准化摄取比值SUV⒉脑血流灌注显像的原理是什么⒊脑血流灌注显像的临床应用⒋脑血流灌注显像诊断脑肿瘤的2个特点是什么⒌脑脊液显像的原理和临床应用-FDG脑显像原理是什么第七章呼吸系统显像肺显像第一节肺灌注显像原理:肺泡毛细血管的直径为7~9μm1μm=百万分之一米、10-6米,当静脉注射直径为10~60μm的放射性颗粒后,颗粒随血流进入肺血管,最后将暂时栓塞在毛细血管床内,局部栓塞的颗粒数与该处的血流灌注量成正比;因此,用γ照相机或扫描机可以获得肺毛细血管床影像,影像的放射性分布反映各部位血流灌注情况,故这种显像称为肺灌注显像,可用于诊断与肺血流灌注有关的各种疾病;第二节肺通气显像1、放射性气体通气显像原理及方法:①反复吸入密闭系统中的133Xe氙或81m Kr氪等放射性气体,待其充盈气道和肺泡并达平衡浓度后,约2-3分钟,可用Y照相机多体位显示全肺各个部位的放射性气体充盈情况,是为平衡影像,了解肺的容积;②接着停止吸人放射性气体,原有充盈在肺泡和气道中的放射性气体自然呼出,用照Υ相机以每5秒1帧的速度连续采集2分钟,可获得动态显示放射性清除的系列影像,称为动态清除影像,了解肺的排泄功能;正常人90秒内清除完;③5~10分钟后再进行静态显像,显示滞留在肺内的放射性气体,为滞留影像;2、放射性气溶胶通气显像原理及方法:①受检者吸入99mTc-DTPA气溶胶雾粒,雾粒由气道进入肺泡、然后又逐渐清除,叫气溶胶通气显像;②一般在吸入一定量的放射性雾粒后显像一次,以观察气道通畅和肺泡充盈情况,为平衡期显像;③4小时后再显像一次观察有无局部放射性滞留;此法较上述气体通气显像简便实用;第三节肺灌注显像和肺通气显像的临床应用一肺动脉血栓栓塞症的诊断和疗效观察诊断要点:多体位肺灌注影像正常,可排除肺栓塞;典型多肺段性放射性缺损,可诊断为肺栓塞;肺灌注影像出现多个典型肺段性放射性缺损区,肺栓塞的可能性近乎100%;肺灌注显像和通气显像联合发病最初几天内同时进行肺灌注显像和通气显像,二者结果不吻合称“不匹配”;mismatch,即灌注影像呈现放射性缺损区,而相应部位的通气影像基本正常,则肺栓塞的可能性很大;肺实质病变的两种显像结果常常是大致吻合的称“匹配”;match;因此用这种联合显像可以明显提高诊断肺栓塞的灵敏度和特异性肺灌注显像和X胸片联合:在发病最初几天内同时进行肺灌注显像和胸部X线摄片,若灌注影像出现放射性缺损区,而X线胸片相应部位正常或出现阴影但其范围较小者,肺栓塞的可能性也很高;如两种影像显示的病变在范围上基本一致,或X线胸片显示的病变范围较放射性减低缺损区大,则肺栓塞的可能性极小,并常可根据X线胸片影像的特点对病变作出诊断;二肺癌手术选择和术前估计术后残留肺功能手术选择L值越小说明肿块浸润范围和肺血管受累程度越大;L值大于40%,可望通过肺叶切除术而将肿瘤切除;L值为30%~40%,需进行患侧全肺切除;L值小于30%,则手术切除的成功率很小;三肺癌患者疗效观察四慢性阻塞性肺部疾病的表现附加内容: 18F-FDG肺肿瘤显像第十四章P19918F-FDG18F-flurodeoxyglucose,去氧葡萄糖的化学性质与葡萄糖完全一样,其体内行为与葡萄糖一致,因而其PET显像反映的是肿块利用葡萄糖的水平,被称为葡萄糖代谢显像;恶性肿瘤细胞生长活跃,摄取18F-FDG的量明显高于正常组织和良性肿瘤组织而被清楚显示;18F-FDG PET显像已被广泛用于包括肺癌在内的各种肿瘤的诊断;18F-FDG PET对于孤立性肺结节的良恶性鉴别更具优越性,灵敏度可达95%,特异性80%;对于肺部的分期以及转移灶的探测,18F-FDG PET比CT更灵敏、更特异、更准确,有转移而不肿大的淋巴结也能被发现,而CT是不可能分辨的;如所用的设备是PET/CT或SPECT/CT,则可同机得到CT以及融合图像,可精确定位思考题1.肺灌注显像的原理2.肺通气显像的原理3.典型肺栓塞的特点4.简述肺通气/灌注显像的临床应用;第八章心血管显像和心室功能测定-、心肌显像1、心肌灌注显像:正常的心肌显影,病损区表现为“冷区”故又称“冷区”显像;①201TI-心肌灌注显像;②99mTc-MIBI心肌灌注显像;原理:99mTc-MIBI在心肌各部分聚集量的多少与该部位冠状动脉灌注的血流量呈正相关;而且在注射后几小时的显像仍能代表注入显像剂时的心肌血流分布状况,没有“再分布”现象;故需要注射两次药物才能完成运动和静息显像;2小时后开始显像,2~3天后追加注射一次99mTc-MIBI,然后再次显像,比较两次所得图像可以反映出当时受损的区域和抢救恢复了的区域;负荷试验:在冠状动脉狭窄时,静息状态下,狭窄区的心肌仍能维持其血供,但在负荷状态下,正常的心肌供血增加,显影剂摄取增多,而狭窄区却不能增加血流灌注,使狭窄区与正常心肌显像剂分布差异增大,有利于显示缺血病灶及鉴别缺血病变的可逆性与否;2、心肌梗塞灶显像:由于放射性示踪剂99mTc-pyp亚锡焦磷酸能聚集于新鲜坏死的心肌病灶区,在心肌显像图上呈现放射性浓聚区,而正常心肌不显影,故这种显像又称“热区”显像; 原理:急性心肌梗塞发生后钙离子就迅速进入病灶,形成羟基磷灰石结晶;骨骼显像剂99mTc-PYP 亚锡焦磷酸静脉注射后,能被吸附在羟基磷灰石结晶上,从而使急性心肌梗塞病灶与骨骼同时显影;正常心肌不显影;一心肌缺血的诊断1、心肌灌注断层显像的评价2、心肌显像的诊断要点:心肌灌注影像出现可逆性缺损型,为典型的心肌缺血;心肌灌注影像出现不可逆缺损型,为心梗或严重心肌缺血心肌灌注显像出现混合型异常,为心梗伴缺血;二急性心肌梗塞的诊断1、帮助诊断和排除心肌梗塞2、显示病变的部位、大小和范围,估计预后三心肌病的诊断:1、扩张性心肌病DCM的诊断:诊断要点:左心室明显扩大,心肌变薄;左室心肌影像放射性分布呈弥漫性不均或“补钉”样改变2、肥厚性心肌病的诊断二、核素显像对心肌活力的估价心肌细胞的损害有三种类型:a.不可逆性心肌损害:即使冠状动脉血流得到恢复,心脏功能也不会改善;b.冬眠心肌:指静息时由于冠状动脉血流减少,引起心肌功能降低,但又不足以引起心肌细胞的坏死,如果冠状动脉血流供应改善,左心功能可全部或部分恢复正常;c.顿抑心肌:指心肌短时间缺血,虽未致心肌细胞坏死,但已经引起心肌细胞结构、代谢及功能的改变,处于“晕厥”状态,即使有效的心肌血流再灌注后,心功能的恢复也需要较长的时间;反向分布:是指心肌运动负荷显像为正常分布,而静息显像显示出新的放射性缺损,或者负荷心肌显像出现放射性分布缺损,静息或再分布显像时其缺损更严重;三、平衡门法核素心室造影高峰充盈率PFR:是心室充盈期的最大容量变化速率,被广泛用作左室舒张功能的参数;分析早期快速充盈相,作为早期左室充盈即舒张后期前的指数,其单位是舒张末期容积EDV/S,它是一个瞬间的动态功能指标;。

《核医学》教学课件:核物理基础

《核医学》教学课件:核物理基础

五、内转换
内转换电子过程
(1)处于激发态的原子核 把能量转给一个核外内层 电子, (2)这个电子被逐出原子 成为内转换电子, (3)外层电子填补空穴, 原子核回复到基态, (4)能量由特征X射线 (5)或俄歇电子携走
放射性核衰变规律
放射性核素的衰变是一种自发的过程,不同放射性核 素每个原子核在单位时间内发生衰变的几率不同,即 有不同的衰变常数,以λ表示。 对整个放射源,λ表示发生衰变的原子核数占当时总 核数的百分数。 对单个原子核,λ表示原子核发生衰变的几率,即可 能性。
质量数较小的核素,Z/N=1 时原子核是稳定的。 当质子数较多时(一般为Z>20),质子数多了,斥力增大, 必须有更多的中子使核力增强,才足以克服斥力,保持核稳 定。 原子核中质子数过多或过少,或者中子数过少或过多,原子 核便不稳定。
放射性核衰变
放射性核素:原子核不稳定,能自发地放出
各种射线变成另一种原子核的核素。
由于核内中子缺乏致使放射出正电子的衰变,称为 正电子衰变,也叫β+衰变。 衰变时发射一个正电子和一个中微子(),原子核 中一个质子转变为中子。 β+衰变时母核和子核的质量数无变化,但子核的核 电荷数减少一个单位,β+衰变可用下式表示:
A Z
X
ZA 1 Y
Q
三、正电子衰变
正电子衰变核素,都是人工放射性核素。 正电子射程仅1~2mm,在失去动能的同时与其邻近 的电子(β-)碰撞而发生湮灭辐射,在二者湮灭 的同时,失去电子质量,转变成两个方向相反、能 量皆为511 keV的γ光子。 正电子发射断层仪(PET)能探测方向相反的511 keV光子,进行机体内的定量、定性和代谢显像。
同质异能素
核内中能素。

核医学 最终版

核医学 最终版

by 海底珊 And 猫小黑 axs
2 / 24
核医学整理
二、放射性药物的主要特点: 1)具有放射性:放射性药物主要利用其放射性核素放出的粒子或射线达到诊断与治疗的目的。 2)不稳定性:放射性药物中的放射性核素是不稳定的,会自发衰变为另一种核素或核能态,不仅放射量随 时间增加而不断减少,其内在质量也可能改变。 3)辐射自分解:放射性核素衰变发出的粒子或射线的物理效应、化学效应、生物效应,直接作用放射性药 物本身,引起化合物结构的改变或生物活性的丧失,可导致放射性药物在体内生物学行为改变。 4)引入量很少,计量单位多为放射性活度。 3、医用放射性核素的主要来源有三个方面:核反应堆、加速器和放射性核素发生器。 四、反应堆生产医用放射性核素的优缺点: 1)优点:能同时辐照多种样品,生产量大,辐照时间短,操作简单等。 2)缺点:多为丰中子核素,常伴有β 衰变,不利于制备诊断用放射性药物;核反应产物与靶核多属于同一 元素,化学性质相同,获得高比活度的产品较困难。 五、加速器生产的医用放射性核素的特点: + 1)发射β 或γ射线 2)半衰期短 3)比活度高 4)用途广 6、放射性核素发生器(radionuclide generator) :是一种定期从较长半衰期的放射性母体核素中分离出衰变 产生的较短半衰期的子体放射性核素的装置,是医用放射性核素的主要来源之一。因这一现象如同母牛挤奶, 故又称“母牛” 。 99 99m 7、应用最普遍的发生器: Mo- Tc 发生器 8、放射性核纯度(radionuclide purity) :也称放射性纯度,是指所指定的放射性核素的放射性活度占药物 中总放射性活度的百分比。 9、放射化学纯度(radiochemical purity)简称放化纯度,是指特定化学结构的放射性药物的放射性占总放 射性的百分比。 第四章 辐射生物效应与辐射防护 1、电离辐射生物效应(ionizing radiation biological effect)无论外部射线,还是来自体内的放射性物 质的照射,将辐射能量传递给生物机体说引起的任何改变,统称为电离辐射生物效应。有害效应的长期累积将 使生物体表现出相应的症状,这些临床症状出现的时间、表现的性质和严重程度取决于生物体的吸收剂量和受 照射的剂量率。一定限度的低剂量辐射还能对机体诱导适应性反应和增强机体免疫功能。 2、常用辐射量有:放射性活度(毫居里) 、照射量(X,C/kg) 、吸收剂量(D,Gy) 、剂量当量(H,Sv) 3、辐射防护的基本原则: 1)实践正当化:实践所致的电离辐射危害同社会和个人从中获得的利益相比是可以接受的才认为可行。 2)辐射防护最优化:以选择使受照射剂量、受照射人数及受照射的可能性均保持在可合理达到的尽量低的 水平 3)个人剂量限制:遵循个性化原则,保证个人的剂量当量不超过规定限值。 4、 (简答+填空)外照射防护措施有:时间防护、距离防护、屏蔽防护 5、 (填空)ICRP6 60 号报告推荐并经我国政府确定的职业性人员照射的剂量限值为:连续五年内有效剂量不 超过 100mSV,年平均剂量约为 20mSV,并且在任何一年内有效剂量不可超过 50mSv。 第五章 放射性核素示踪技术和显像技术 一、显像剂定位机制 答:1、合成代谢:脏器和组织的正常代谢或合成功能需要某种元素或一定的化合物,若将该元素的放射性同 131 位素或放射性核素标记的特定化合物引入体内,可被特定的脏器和组织选择性摄取。如: I 的甲状腺显像。 2、细胞吞噬:单核-巨噬细胞具有吞噬异物的功能,将放射性胶体颗粒经静脉注射入体内,将作为机体的 异物被单核-吞噬细胞系统的巨噬细胞所吞噬,常用于含单核—巨噬细胞丰富的组织如肝、脾和骨髓的显像。 99m 如: Tc-硫胶体的骨髓显像 99m 白细胞亦具有吞噬胶体颗粒的功能,在体外进行放射性标记后注入血液,被标记的白细胞 (如 Tc-HMPAO-WBC)

核医学总论

核医学总论

• 体外放射分析技术的普及
目前所使用的核医学仪器
PET/CT SPECT/CT PET/ MRI ….. ?
核医学常用影像设备:
1、γ照相机
2、ECT(发射型计算机断层摄影仪)
SPECT(单光子发射型计算机断层摄影仪) PET(正电子发射型计算机断层摄影仪) PET/CT PET/MRI …………
正电子发射型断层摄影仪
Positron
PET
Emission Tomography
1、PET显像的基本原理 正电子是一种放射性核素发射出来的带正电荷的电子 ( β+ ),他在介质中运行极短的距离,即与邻近的普通电 子结合而消失,其质量转化为一对能量相等、方向相反的光 子,这一过程称为湮灭辐射。 将发射正电子的核素引入人体内,所发射的正电子形成 的成对光子射至体外,由正电子探测器采集,经计算机重建 而成图像,显示正电子核素在体内的分布情况,称为正电子 显像。 2、PET显像的特点 (1)采用电子准直 (2)活体生化显像 (3)定量 (4)高灵敏度和高空间分辨率 (5)全身三位显像
第二章 核医学仪器及设备
第一节 核医学发展简史
• 1895年 Wilhelm Roentgen发现X-ray。
1901年获若贝尔物理学奖
• 1896年 Henri Becquerel发现了
由铀发出的奇异射线,第一次认
识了放射现象。 • 1897年 Becquerel和Curi夫妇共 同提出了 “放射性”的概念。
4、 γ衰变—是核素由激发态或高能态向基态或低能态转变, 多余的能量以γ光子的形式射出。 特点:γ光子(穿透力强,电离弱,用于显像)
5、内转换:核素由激发态或高能态向基态或低能态跃迁时, 多余的能量传给核外轨道电子,使其获得足够能量后脱离轨 道称为自由电子,这一过程,称为内转换。

第一篇核医学核物理基础

第一篇核医学核物理基础

康普顿效应
定义:光子与原子的核外电子碰撞,将一部分能量传递给电 子,使之脱离原子轨道成为自由电子,光子本身能量降低, 运行方向发生改变,称为康普顿效应(Compton effect)。
电子对生成
定义:当光子能量>1022keV时(1022keV相当于两个电子的 静质量),其中1022keV的能量在物质原子核电场作用下转 化为一个正电子和一个负电子,称为电子对生成(electron pair production)。余下的能量变成电子对的动能。
用Teff 表示。 单位:h, min, s。
Teff = T1/2 ∙Tb/( T1/2+ Tb)
放射性活度
定义:一定量的放射性核素在一个很短的时间间隔内发生 的核衰变数除以该时间间隔。简称活度(radioactivity)。 即单位时间内原子核的衰变数量。
A=dN/dt
国际制单位:Bq(贝克),KBq(103 Bq),MBq (106Bq),GBq(109 Bq)
散射
定义:带电粒子与物质的原子核碰撞而改变运动方向和/ 或能量的过程称为散射(scattering)。
仅运动方向改变而能量不变者称为弹性散射。运动方向 和能量都发生变化者称为非弹性散射。
散射作用强弱与带电粒子的质量有关,带电粒子的质量 越大,散射作用越弱,所以粒子散射一般不明显,-粒 子散射较为明显。
旧的专用单位:Ci(居里),mCi(10-3 Ci), Ci(10-6Ci)
1Bq=1s-1
1Ci=3.7×1010Bq
第三节 射线与物质的相互作用
一、带电粒子与物质的相互作用
电离作用
定义:凡原子或原子团由于失去电子或得到电子而变成离 子的过程称为电离(ionization)。

核医学完整版-复习考试必备,全面有重点资料

核医学完整版-复习考试必备,全面有重点资料

第一章核物理1、核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。

2、元素(element)——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I;3、核素(nuclide)——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。

同一元素可有多种核素,如131I、127I、3H、99mTc、99Tc分别为3种元素的5种核素;4、同质异能素(isomer)——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc 。

5、同位素(isotope)——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。

6、稳定核素(stable nuclide)——原子核稳定,不会自发衰变的核素;7、放射性核素(radionuclide)原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素8、放射性衰变(radiation decay)——放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程9、放射性衰变方式:1)α衰变;2)β- 衰变:实质:高速运动的电子流;3)正电子衰变(β+衰变);4)电子俘获;5)γ衰变。

10、半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间11、放射性活度(activity, A)单位时间内发生衰变的原子核数12、韧致辐射(bremsstrahlung)湮灭辐射(annihilation radiation) 康普顿效应(compton effect)光电效应(photoelectric effect)γ光子与介质原子碰撞,把能量全部交给轨道电子,使之脱离原子而发射出来,而整个光子被吸收消失。

r射线与物质相互作用产生哪些效应?光电效应康普顿效应电子对生成13、物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。

核医学物理基础

核医学物理基础

β-射线的特点
Β-射线的本质:高速运动的负电子 流 衰变能量主要分配给β-粒子和反中 微子 Β-粒子穿透力弱,不能用于核素显 像 核素治疗常用β-衰变核素

(三)正电子衰变●
核内中子缺乏或质子数相对较多,致使 放射出正电子的衰变,叫β+衰变 衰变时发射一个正电子和一个中微子, 原子核中一个质子转变为中子 正电子衰变的核素都是人工放射性核素

快速电子通过物质时,在原子核电 场作用下,急剧减低速度,电子的 一部分或全部动能转化为连续能量 的X射线发射出来,这种现象称为 韧致辐射。它发生概率与电子能量 和介质原子序数大小成正比。如X 射线球管中的X射线产生过程。
5.吸收作用

射线的能量全部耗尽,传递给通 过的物质,射线不再存在,称作 物质的吸收作用

当射线通过介质时会与物质发生相 互作用, 称射线的物理效应. 是了解辐射生物效应、屏蔽防护与 放射性检测、核素显像和治疗的基 础

一、带电粒子(α,β,电子, 质子)与物质的作用
1.电离作用 2.激发作用 3.散射作用 4.韧致辐射 5.吸收作用

1.电离作用
带电粒子作用于物质,使该物质原 子失去轨道电子而形成自由电子和 正离子 入射粒子的电荷量越大,电离作用 越强
一个质子俘获一个核外轨道电
子转变成一个中子,并放出一 个中微子,核外内层轨道电子 被俘入核内 发生在缺中子的原子核
电子俘获衰变的结果
外层电子向内层补充,两层轨道之 间的能量差转换成特征X射线 或者将能量传递给一个更外层轨道 的电子,使之脱离轨道而释出,成 为自由电子,这种电子称为俄歇电 子
第二节 放射性核衰变●
原子核只有在中子和质子的数目之 间保持一定的比例,才能稳定结合 对于原子量较小的核素,Z/N=1时, 原子核是稳定的 当质子数较多时(>20),核内质 子数过多或过少,或者中子数过少 或过多,原子核便不稳定

核医学第1章 核医学物理基础

核医学第1章 核医学物理基础

核医学第1章:核医学物理基础1.1 核能的基本概念核能是指核物质中原子核所具有的能量。

根据爱因斯坦的质量能等价原理,原子核的质量与能量可以相互转化。

因此,核能也可以理解为原子核质量的变化所产生的能量。

1.2 放射性与放射线放射性是指原子核发生变化而自发地释放出射线(如α、β、γ等)的现象。

放射性物质可以通过衰变到达稳定状态,其半衰期长短不同。

放射线是指放射性核子发生衰变后放出的电磁波和次级粒子。

1.3 α、β、γ射线的特性α射线的质量比较大,能量相对较低,电离能力强,但穿透力较弱,只能被轻质材料遮蔽。

β射线的穿透力较强,电离能力比α弱,可以被金属遮蔽。

γ射线的能量远高于α、β射线,穿透力强,电离能力弱,需要厚密的屏蔽材料。

1.4 核衰变的本质核衰变是指放射性物质中原子核发生自发的转化,通过放出α、β、γ射线等辐射释放能量,从而达到稳定状态的过程。

核衰变与放射性同义,是放射性物质的特征之一。

1.5 核反应的基本概念核反应是指核子相互作用,经过核转化而形成新的原子核的过程。

通常用粒子表示法或核反应方程式来描述核反应。

在核反应中,可能伴随着放出射线或吸收射线,释放出能量。

1.6 核反应堆的基本原理核反应堆是利用核裂变或核聚变反应产生的热能转化成电能的装置。

核反应堆的核心是燃料区,通过控制反应堆中的裂变或聚变过程,可以控制反应堆的输出功率和运行状态。

1.7 核医学应用的主要方法核医学应用是指利用放射性核素的特殊性质,通过各种技术手段进行检测、治疗或研究生命过程的方法。

常用的核医学方法有放射性同位素扫描、放射性同位素治疗、放射性同位素标记技术等。

1.8 核医学的危害与防护核医学应用中,放射性物质有一定的辐射危害,如果安全操作不当可能会对人体造成伤害。

因此,核医学应用过程中需要加强防护措施,包括使用防护材料、佩戴防护设备、掌握操作技能等,以最大程度保障操作人员和患者的安全。

1.9以上为核医学第1章:核医学物理基础的相关内容,通过本章的学习可以初步了解核能、放射性、核衰变、核反应堆、核医学应用等方面的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档