核医学的核物理基础

合集下载

核物理学重点知识总结(期末复习必备)

核物理学重点知识总结(期末复习必备)

核物理学重点知识总结(期末复习必备)
核物理学重点知识总结(期末复必备)
1. 核物理基础知识
- 核物理的定义:研究原子核内部结构、核反应以及与核有关
的现象和性质的学科。

- 原子核的组成:由质子和中子组成,质子带正电,中子无电荷。

- 质子数(原子序数):表示原子核中质子的数量,决定了元
素的化学性质。

- 质子数与中子数的关系:同位素是指质子数相同、中子数不
同的原子核。

2. 核反应与放射性
- 核反应定义:原子核发生的转变,包括衰变和核碰撞产生新核。

- 放射性定义:原子核不稳定,通过放射射线(α、β、γ射线)变为稳定核的过程。

- 放射性衰变:α衰变、β衰变和γ衰变。

3. 核能与核能应用
- 核能的释放:核反应过程中,原子核质量的变化引发能量的
释放。

- 核能的应用:核电站、核武器、核医学、核技术等领域。

- 核电站工作原理:核反应堆中的核裂变产生的能量转换为热能,再通过蒸汽发电机转换为电能。

4. 核裂变与核聚变
- 核裂变:重核(如铀)被中子轰击后裂变成两个或更多轻核
的过程,释放大量能量。

- 核聚变:两个轻核融合成一个较重的核的过程,释放更大的
能量。

- 核裂变与核聚变的区别:核裂变需要中子的引发,核聚变则
需要高温和高密度条件。

5. 核辐射与辐射防护
- 核辐射:核反应释放的射线,包括α射线、β射线、γ射线等。

- 辐射防护:采取合理的防护措施,减少人体暴露在核辐射下
的危害。

以上是对核物理学的一些重点知识进行的总结。

在期末复习中,希望这些内容能对你有所帮助!。

核医学考试大纲--基础知识

 核医学考试大纲--基础知识

071 核医学考试大纲基础知识单 元细 目要 点要求 (1)核医学定义 (2)核医学内容 熟练掌握 1.核医学的概述(3)核医学发展简史了解 (1)定义 (2)原理 熟练掌握(3)优缺点 (4)基本方法 2.放射性核素示踪技术(5)主要类型及应用掌握 (1)原理 了解 (2)种类 3.放射自显影(3)应用熟悉 (1)基本概念 (2)基本方法 熟悉 4.放射性核素示踪动力学分析与功能测定(3)临床应用 掌握 (1)显像原理(2)脏器或组织摄取显像剂的机制 熟练掌握 (3)显像条件及其选择 掌握 (4)显像类型(5)图像分析方法及要点 (6)图像质量的评价熟练掌握 一、核医学总论 5.放射性核素显像技术(7)核医学影像及其他影像的比较掌握 (1)组成和表示方法 1.原子核(2)核素及其分类 熟悉 (1)α衰变 (2)β衰变 (3)电子俘获 2.核的衰变及其方式(4)γ衰变熟悉 (1)放射性活度 熟练掌握 (2)衰变常数 掌握 (3)指数规律 (4)半衰期 熟练掌握 3.放射性核素的衰变(5)递次衰变熟悉 (1)带电粒子与物质的相互作用 4.射线与物质的相互作用(2)光子与物质的相互作用 熟悉 (1)照射量与照射量率 掌握 (2)吸收剂量 二、核物理基础 5.电离辐射量及其单位(3)剂量当量熟悉 三、核医学仪器 1.核医学射线测量仪器(1)基本构成和工作原理熟练掌握(2)固体闪烁探测器 掌握 (3)其他射线探测器 (4)脉冲幅度分析器 熟悉 (5)工作条件的选择 了解 (6)体内测量仪器 (7)体外测量仪器 熟悉 (8)辐射防护仪器 了解 (9)质量控制掌握 (1)基本结构和工作原理 熟练掌握 (2)准直器掌握 (3)位置和能量电路 了解 (4)图像重建2.γ照相机和单光子发射计算机断层(SPECT)(5)γ照相机和SPECT 的性能指标与质量控制掌握 3.正电子发射计算机断层仪(PET) 符合探测原理熟练掌握 (1)放射性衰变的统计分布和放射性计数的统计误差熟练掌握 (2)存在本底时误差的计算和应用 4.放射性计数的统计规律(3)减少统计涨落影响的方法熟悉 (1)硬件 1.核医学计算机的组成(2)软件 熟悉 (1)模拟数字转换2.图像的数字化和计算机显示 (2)图像的存储、传输、显示 熟悉 (1)图像采集方式 熟练掌握 四、电子计算机在核医学中应用3.图像的采集和处理(2)常用图像处理 熟悉 (1)作用机制熟悉 1.放射性药物的作用机制与药物设计 (2)Hansch 构效关系学说 了解 (1)QA、QC、GMP 与GRP (2)质量检测的内容 (3)放射性核纯度的测定 熟悉 2.质量控制与质量保证(4)放射化学纯度的测定掌握(1)正确使用总原则 (2)小儿应用原则 (3)育龄妇女应用原则(4)放射性药物与普通药物的相互作用 3.正确使用、不良反应及其防治(5)不良反应及其防治掌握(1)Tc 的主要化学性质 了解 (2)99mTc 的标记 熟悉 (3)99m Tc 发生器 掌握五、核化学与放射性药物4.99mTc 化学与99mTc 的放射性药物(4)临床核医学常用的99mTc 的放射性药物 熟练掌握(1)123I、131I、67Ga、111In、与201Tl 的来源(2)放射性碘标记(3)放射性铟标记熟悉5.放射性碘、镓、 铟、铊的放射性药物(4)临床核医学常用的放射性碘、镓、 铟、铊的放射性药物掌握 (1)核素的选择6.放射性治疗药物 (2)临床核医学常用的放射性治疗药物 熟练掌握 (1)受体显像剂 了解 (2)代谢显像剂 熟悉(3)乏氧显像剂(4)肿瘤导向诊断与导向治疗的放射性药物(5)基因显像与基因治疗的放射性药物 7.放射性药物新进展(6)反义显像和反义治疗的放射性药物了解 (1)放射生物效应及基本概念 熟悉 (2)放射防护的目的和基本原则 (3)工作人员的剂量限值 (4)内、外照射防护原则 熟练掌握 1.放射生物效应与防护原则(5)不同射线的防护原则了解 (1)实验室的三区布局 了解 (2)放射源的运输、保管 (3)放射性废物的处置 (4)放射性事故的应急处理 掌握 2.核医学实验室(5)工作场所的防护监测了解 (1)工作人员健康管理 了解 (2)个人防护及防护用品 3.工作人员的防护(3)个人剂量监测熟悉 (1)申请核医学检查与治疗的原则 熟练掌握 (2)申请医师的职责 熟悉 4.工作人员的职责(3)核医学医师的职责熟练掌握 (1)核医学诊断中患者的防护原则 熟练掌握 (2)核医学诊断中特殊人群的防护原则 了解 5.患者的防护(3)核医学治疗中患者的防护原则掌握 (1)放射性药品管理办法熟练掌握 (2)放射性同位素与射线装置放射防护条例六、放射卫生防护6.放射卫生防护法规(3)临床核医学放射卫生防护标准了解(4)临床核医学中患者的放射卫生防护标准熟悉 (1)方法 1.决策矩阵 (2)指标 掌握 2.Bayes 理论 Bayes 理论 熟悉 七、医学诊断方法的效能评价3.界值特性曲线(ROC 分析)界值特性曲线 熟悉医学伦理学单元 细目要点要求1.医患关系2.医疗行为中的伦理道德医学伦理道德 3.医学伦理道德的评价和监督了解。

核医学复习重点总结

核医学复习重点总结

第一章总论核医学定义:是一门研究核素和核射线在医学中的应用及其理论的学科。

主要任务是用核技术进行诊断、治疗和疾病研究。

核医学三要素:研究对象放射性药物核医学设备一、核物理基础(一)基本概念:元素---凡质子数相同的一类原子称为一种元素核素---质子数、中子数、质量数及核能态均相同的原子称为一种核素。

放射性核素----能自发地发生核内结构或能级变化,同时从核内放出某种射线而转变为另一种核素,这种核素称为放射性核素。

(具有放射性和放出射线)稳定性核素----能够稳定地存在,不会自发地发生核内结构或能级的变化。

不具有放射性的核素称为稳定性核素。

(无放射性)同位素----具有相同的原子序数(质子数相同),但质量数(中子数)不同的核素互为同位素。

同质异能素----- 核内质子数、中子数相同,但处在不同核能态的一类核素互为同质异能素。

(质量数相同,能量不同,如99mTc和99Tc)(二)核衰变类型四种类型五种形式α衰变释放出α粒子的衰变过程,并伴有能量释放。

β衰变放射出β粒子或俘获轨道电子的衰变。

β衰变后,原子序数可增加或减少1,质量数不变。

•β-衰变•β+衰变•电子俘获(EC)γ衰变核素由激发态或高能态向基态或低能态跃迁时,放射出γ射线的衰变过程γ衰变后子核的质量数和原子序数均不变,只是核素的能态发生改变。

放射性核素的原子核不稳定,随时间发生衰变,衰变是按指数规律发生的。

随时间延长,放射性核素的原子核数呈指数规律递减。

N=N0e-λtN0:t=0时原子核数N:t时间后原子核数e:自然对数的底(e≈2.718)λ:衰变常数(λ=0.693/T1/2)物理半衰期(T1/2)生物半衰期(Tb)有效半衰期(Te)1/Te=1/T1/2+1/ Tb放射性活度描述放射性核素衰变强度的物理量。

用单位时间内核衰变数表示,国际制单位:贝可(Becquerel,Bq)定义为每秒1次衰变(s-1),旧制单位:居里(Ci)、毫居里(mCi)、微居里(μCi)换算关系:1Ci=3.7×1010Bq比活度单位质量物质内所含的放射性活度。

核医学PPT课件 核医学绪论及物理基础

核医学PPT课件 核医学绪论及物理基础
40
Becquerel
History look back
1896年法国物理学家 Becquerel发现了铀的放射 性,第一次认识到放射现象。 他在研究铀盐时,发现铀能 使附近黑纸包裹的感光胶片 感光,由此断定铀能不断地 发射某种看不见的,穿透力 强的射线。
1903年与Curie夫人共获 Nobel物理学奖。
radiopharmaceutical β粒子或α粒子 抑制或破坏病变组织
8
核素治疗
131I 甲亢、甲癌转移灶
核素标记单克隆抗体 131I-抗AFP抗体
90Y-抗CD20抗体(Zevalin)
89锶治疗骨转移Ca
原发性肝癌 淋巴瘤
9
高度选择性
放射免疫靶向治疗 受体介导的靶向治疗 放射性核素基因治疗
42

History look back
临床核医学之父
1926年美国Boston内科医师Blumgart首先应用 放射性氡研究循环时间,第一次应用了示踪技 术。
将氡从一侧手臂静脉注射后,在暗室中通过云 母窗观察其在另一手臂出现的时间,以了解动 -静脉血管床之间的循环时间。
后来他又进行了多领域的生理、病理和药理学 研究。被誉为“临床核医学之父”。
41
Marie S.Curie
History look back
1898年在巴黎的波兰化学家 Curie (1867-1934)与他的 丈夫 Pierre共同发现了镭 (即88号元素),他们从30 吨沥青铀矿中提取了2mg镭。 此后,又发现了Pu和Th天然 放射性元素。
1903年Curie与 Bequerel共 获Nobel物理学奖,1911年 又获得Nobel化学奖。
Nuclear Medicine

核物理基础知识

核物理基础知识

核基础知识:一、电磁辐射(Electromagnetic Radiation)电磁辐射:带净电荷的粒子被加速时,所发出的辐射称为电磁辐射(又称为电磁波)。

电磁辐射:能量以电磁波形式从辐射源发射到空间的现象。

电磁频谱中射频部分是指:频率约由3千赫(KHZ)至300吉赫(GHZ)的辐射。

包括形形色色的电磁辐射,从极低频的电磁辐射至极高频的电磁辐射。

两者之间还有无线电波、微波、红外线、可见光和紫外光等。

电磁辐射有近区场和远区场之分,它是按一个波长的距离来划分的。

近区场的电磁场强度远大于远区场,因此是监测和防护的重点。

电磁污染:分为天然电磁辐射和人为电磁辐射两种。

大自然引起的如雷、电一类的电磁辐射属于天然电磁辐射类,而人为电磁辐射污染则主要包括脉冲放电、工频交变磁场、微波、射频电磁辐射等。

电磁辐射危害人体的机理,电磁辐射危害人体的机理主要是热效应、非热效应和累积效应等。

1、热效应:人体70%以上是水,水分子受到电磁波辐射后相互摩擦,引起机体升温,从而影响到体内器官的正常工作。

2、非热效应:人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦受到外界电磁场的干扰,处于平衡状态的微弱电磁场即将遭到破坏,人体也会遭受损伤。

3、累积效应:热效应和非热效应作用于人体后,对人体的伤害尚未来得及自我修复之前,再次受到电磁波辐射的话,其伤害程度就会发生累积,久之会成为永久性病态,危及生命。

电磁辐射作用:(1)医学应用:微波理疗活血,治疗肿瘤等(2)传递信息:通信、广播、电视等(3)目标探测:雷达、导航、遥感等(4)感应加热:电磁炉、高频淬火、高频熔炼、高频焊接、高频切割等(5)介质加热:微波炉、微波干燥机、塑料热合机等(6)军事应用:电子战、电磁武器等《电磁辐射防护规定》具体标准如下:职业照射:在每天8小时工作期间内,任意连续6分钟按全身平均的比吸收率(SAR)小于0.1W/kg。

公众照射:在一天24小时内,任意连续6分钟按全身平均的比吸收率(SAR)应小于0.02W/kg。

1.核物理基础

1.核物理基础
16
《医学影像实用技术教程》
• 1951年,美国加州大学的卡森(Cassen)研制出第一台扫 描机,通过逐点打印获得器官的放射性分布图像,促进了 显像的发展。 • 1957年,安格(Hal O. Anger)研制出第一台γ照相机,称 安格照相机,使得核医学的显像由单纯的静态步入动态阶 段,并于60年代初应用于临床。 • 1959年,他又研制了双探头的扫描机进行断层扫描,并首 先提出了发射式断层的技术,从而为日后发射式计算机断 层扫描机—ECT的研制奠定了基础。 • 1972年,库赫博士应用三维显示法和18F-脱氧葡萄糖 (18F-FDG)测定了脑局部葡萄糖的利用率,打开了18FFDG检查的大门。他的发明成为了正电子发射计算机断层 显像(PET)和单光子发射计算机断层显像(SPECT)的 基础,人们称库赫博士为“发射断层之父”。 China Medical University Computer Center 2007.8
(内转换电子)
同质异能跃迁
(激发态→基态)


γ衰变: 有些放射性核素的原子核在发生β- 、β+ 、α、β 或EC等衰变过程中,所产生的子核处于不稳定状 态(激发态)立即向基态或低能态跃迁,多余的 能量以γ光子射出,核内的成分不变,子核的Z、 A不变,只是核素的能态发生变化。 伴随γ光子释出的核能级跃迁称为γ衰变,也是γ跃 迁或γ辐射。核医学诊断利用γ相机或SPECT机进 行脏器或病变的核素显像,检测γ射线 在脏器中 放射性分布情况。

3、电子俘获(EC):放射性核素的原子核从核 外的轨道俘获一个轨道电子,使核内的一个质子 转化为中子,同时放射出中微子的过程。故子核Z -1,A不变,这种衰变只放出一个中微子,故能 量是单色的,K层电子被俘获称为K电子俘获。

核医学考试重点

核医学考试重点

核医学考试重点第⼀章核物理基础知识元素:凡就是质⼦数相同,核外电⼦数相同,化学性质相同得同⼀类原⼦称为⼀组元素、同位素(isotope):凡就是质⼦数相同,中⼦数不同得元素互为同位素如: 1H、2H、3H。

同质异能素:凡就是原⼦核中质⼦数与中⼦数相同,⽽处于不同能量状态得元素叫同质异能素、核素:原⼦核得质⼦数、中⼦数、能量状态均相同原⼦属于同⼀种核素。

例如:1H、2H、3H、12C、14C 198Au、99mTc、99Tc1.稳定性核素 (stable nuclide)稳定性核素就是指:原⼦核不会⾃发地发⽣核变化得核素,它们得质⼦与中⼦处于平衡状态,⽬前稳定性核素仅有274种,2.放射性核素(radioactivenuclide)放射性核素就是⼀类不稳定得核素,原⼦核能⾃发地不受外界影响(如温度、压⼒、电磁场),也不受元素所处状态得影响,只与时间有关。

⽽转变为其它原⼦核得核素。

核衰变得类型1.α衰变(αdecay):2。

β—衰变(β-decay):3.β+衰变:4、γ衰变:核衰变规律1.物理半衰期(physical half life,T1/2):放射性核素衰变速率常以物理半衰期T1/2表⽰,指放射性核素数从No衰变到No得⼀半所需得时间、物理半衰期就是每⼀种放射性核素所特有得。

数学公式T1/2=0。

693/λ2、⽣物半衰期(Tb):由于⽣物代谢从体内排出原来⼀半所需得时间,称为之、3.有效半衰期(Te):由于物理衰变与⽣物得代谢共同作⽤⽽使体内放射性核素减少⼀半所需要得时间,称之。

Te、Tb、T1/2三者得关系为:Te= T1/2·Tb / (T1/2+ Tb)。

4.放射性活度(radioactivity, A) :就是表⽰单位时间内发⽣衰变得原⼦核数。

放射性活度得单位就是每秒衰变次数。

其国际制单位得专⽤名称为贝可勒尔(Becquerel),简称贝可,符号为Bq。

数⼗年来,活度沿⽤单位为居⾥(Ci) 1Ci=3.7×1010/每秒。

第一章-核物理基础

第一章-核物理基础
四、放射性比活度及单位
单位质量(摩尔、容积)物质所含放射性的多少, 后 者常称为放射性浓度。
§4 核射线与物质的相互作用
一、带电粒子与物质的相互作用 (一)电离与激发(ionization and excitation)
电离:指带电粒子与物质相互作用,使物质中的中性原子变 成离子对的过程。 激发:如果核外电子所获动能不足以使之成为自由电子, 只是从内层跃迁到外层,从低能级跃迁到高能级,这一过程 称之激发。 电离密度:单位路径上形成的离子对的数目。它表示的是 射线电离作用强弱的量。与带电粒子所带电荷数、行进速 率及被作用物质的密度有关,α>β>γ。
(二)核反应:快中子与物质的原子核作用放出带电粒子而形
成新核的过程称为核反应。形成的新核如果是放射性核素则继续 衰变放射出β、γ射线,使物质原子产生电离或激发,称为感生放 射性。中子与物质相互作用产生核反应是中子反应堆工作的基础 ,也是中子弹的杀伤因素。
比如: 23Na+10n→24Na+γ可写成23Na(n、γ)24Na。
§1 核射线及其与物质的相互作用
一.基本概念
1.定态:电子在轨道上运行既不吸收也不放出 能量的状态。
2.基态:能量最低的定态。 3.激发态:能量较高的定态。 4. 元素:凡核内质子数相同的一类原子,称之
为元素。 5.核素(nuclide) :凡原子核内质子数、中子数
和核能态均相同的一类原子,称为一种核素。
衰变公式:N=Noe-λt
N = N0e-t
二、半衰期
1、物理半衰期(T1/2):放射性核素由于衰变,其原子 核数目或活度减少到原来一半所需的时间,用T1/2 表示
2、生物半衰期(Tb): 3、有效半衰期(Te): 引入半衰期概念以后,核衰变的公式可改写成:

核物理基础知识教案

核物理基础知识教案

教案授课内容:核物理基础知识授课对象:医学检验专业,本科学生使用教材:《检验核医学》第2版孟庆勇黄定德主编授课时间:2学时主讲教师:管超楠一、教学背景核物理基础知识是学习检验核医学专业的物理基础,本专业涉及到的核物理基础仅仅局限于对原子结构,质子、中子和电子层面的理解,不涉及更深层次理论物理。

二、教学目标与要求✧知识目标掌握:核素和同位素概念;α衰变,β衰变,γ衰变三种衰变类型;带电粒子与物质的相互作用;γ射线对物质的作用熟悉:α射线,β射线,γ射线的特点;轫致辐射的概念;光电效应意义;康普顿效应特点✧能力目标掌握核物理基础知识,在接下来的学习中应用理解。

✧情感目标在学习基础知识的过程中,培养学生对核物理的兴趣,建立学生对学习本门课程的信心。

三、重点与难点✧重点放射性衰变三种类型各自的特点意义;带电粒子与物质相互作用的主要效应机制;γ射线与物质相互作用的机制;✧难点轫致辐射的理解,辐射防护的意义四、教学方法和手段✧教学方法启发式教学、象形式教学、对比教学等✧教学手段课堂讲授、多媒体教学五、教学内容(一)课程导入:通过从核能的开发利用和战争的威慑带入学生的兴趣进入到核物理基础中。

通过介绍两位物理人物的背景提高学生学习信心。

(二)课程纲要:1.核素的分类2.放射性核素的三种衰变类型3.三种放射性衰变射线的特点4.不同放射性核素衰变射线对物质的作用效应(三)课程内容1,安东尼·亨利·贝克勒尔(Antoine Henri Becquerel)生平简史。

1896年3月,贝克勒尔发现,与双氧铀硫酸钾盐放在一起但包在黑纸中的感光底板被感光了。

他推测这可能是因为铀盐发出了某种未知的辐射。

同年5月,他又发现纯铀金属板也能产生这种辐射,从而确认了天然放射性的发现。

2,通过安东尼·亨利·贝克勒尔的生平介绍,导出放射性活度单位贝克勒尔的概念名称:贝克[勒耳]符号:Bq量的名称:放射性活度单位SI表示:1 Bq = 每秒1次放射性衰变3,玛丽亚·斯克沃多夫斯卡·居里(Marie Skłodowska Curie)生平简史。

核医学知识点汇总

核医学知识点汇总

核医学知识点总结绪论+第一章核物理知识1、湮灭辐射:18F、11C、13N、15O等正电子核素在衰变过程中发射(产生)正电子,正电子与原子核周围的轨道电子(负电子)发生结合,同时释放两个能量相等方向相反的γ光子(511kev),这种现象就叫正电子湮灭辐射现象。

2、物理半衰期(T1/2):指放射性核素数目因衰变减少到原来的一半所需的时间,如131碘的半衰期是8.04天。

3、临床核医学:是将核技术应用于临床领域的学科,是用利用放射性核素诊断、治疗疾病和进行医学研究的学科。

4、核素:指具有特定的质子数、中子数及特定能态的一类原子。

5、放射性衰变的定义:放射性核素的原子由于核内结构或能级调整,自发的释放出一种或一种以上的射线并转化为另一种原子的过程。

6、放射性活度:表示单位时间内原子核的衰变数量:单位为Ci(居里),1Ci=3.7x1010Bq7、放射性核素发射器:从长半衰期的母体分离短半衰期的子体的装置,又称为“母牛”。

8、个人剂量监测仪:是从事放射性工作人员用来测量个人接受外照射剂量的仪器,射线探测器部分体积较小,可佩戴在身体的适当部位。

9、放射性核素示踪原理:是以放射性核素或其标记化合物作为示踪剂,应用射线探测仪器来检测其行踪,借此研究示踪剂在生物体内的分布代谢及其变化规律的技术。

10、阳性显像(positive imaging)是以病灶对显像剂摄取增高为异常的显像方法。

由于病灶放射性高于正常脏器、组织,故又称“热区”显像(hot spot imaging)如放射免疫显像、急性心肌梗死灶显像、肝血管瘤血池显像等。

11阴性显像(negative imaging)是以病灶对显像剂摄取减低为异常的显像方法。

正常的脏器、组织因摄取显像剂而显影,其中的病变组织因失去正常功能不能摄取显像剂或摄取减少而呈现放射性缺损或减低,故又称“冷区”显像(cold spot imaging)12放射性药物:含有放射性核素,用于临床诊断或治疗的药物。

核医学名解填空和大题

核医学名解填空和大题

一、名词解释第一章核物理基本知识1、同质异能素:具有相同的质子数和中子数,处于不同核能态的核素互称为同质异能素。

2、放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋向于稳定的核素称为放射性核素3、α衰变:放射性核素原子核释放出射线后变成另一个原子核的过程。

4、β+衰变:释放出β+粒子的衰变方式5、β-衰变:释放出β-射线的衰变方式6、电子俘获:原子核从核外俘获一个轨道电子的过程。

7、γ衰变:原子核由激发态向基态或由高能态向低能态跃迁时,放出γ射线的衰变过程。

8、放射性活度:放射性核素单位时间内原子核的衰变数量定义为放射性活度9、俄歇电子:发生电子俘获后,原子的内层轨道缺少了电子,外层轨道电子填充到内层轨道上,外层电子比内层电子的能量大,多余的能量传递给更外层的轨道电子,使之脱离轨道而释出,此电子称为俄歇电子。

第三章放射性药物1、放射性药物:放射性药物是指由放射性核素本身(如99mTc、131I等)及其标记化合物(如99mTc-ECD、131I-MIBG)组成,用于临床诊断和治疗的一类特殊药物。

放射性核素诊断(显像)和治疗时利用核射线可被探测及其辐射作用,同时利用被标记化合物的生物学性能决定其在体内分布而起到靶向作用,能选择性积聚在病变组织中。

第五章示踪技术与放射性核素显像1、放射性核素示踪技术: 是以放射性核素或其标记的化学分子作为示踪剂,应用射线检测仪器通过检测放射性核素在发生核衰变过程中发射出来的射线,来显示被标记的化学分子的踪迹,达到示踪目的,用于研究被标记的化学分子在生物体系中的客观存在及其变化规律的一类核医学技术。

2、放射性核素显像技术:是根据放射性核素示踪原理,利用放射性核素或其标记化合物在体内代谢分布的特殊规律,在体外获得脏器和组织功能结构影像的一种核技术。

不仅可以显示出脏器和组织的形态、位置、大小和结构变化,而且可以进行动态显像和定量分析。

除对脏器或组织的形态进行鉴别外,还可根据图像上的放射性分布特点反映脏器的功能,这是核医学显像与其它显像方法的最主要区别之一。

第一篇核医学核物理基础

第一篇核医学核物理基础

康普顿效应
定义:光子与原子的核外电子碰撞,将一部分能量传递给电 子,使之脱离原子轨道成为自由电子,光子本身能量降低, 运行方向发生改变,称为康普顿效应(Compton effect)。
电子对生成
定义:当光子能量>1022keV时(1022keV相当于两个电子的 静质量),其中1022keV的能量在物质原子核电场作用下转 化为一个正电子和一个负电子,称为电子对生成(electron pair production)。余下的能量变成电子对的动能。
用Teff 表示。 单位:h, min, s。
Teff = T1/2 ∙Tb/( T1/2+ Tb)
放射性活度
定义:一定量的放射性核素在一个很短的时间间隔内发生 的核衰变数除以该时间间隔。简称活度(radioactivity)。 即单位时间内原子核的衰变数量。
A=dN/dt
国际制单位:Bq(贝克),KBq(103 Bq),MBq (106Bq),GBq(109 Bq)
散射
定义:带电粒子与物质的原子核碰撞而改变运动方向和/ 或能量的过程称为散射(scattering)。
仅运动方向改变而能量不变者称为弹性散射。运动方向 和能量都发生变化者称为非弹性散射。
散射作用强弱与带电粒子的质量有关,带电粒子的质量 越大,散射作用越弱,所以粒子散射一般不明显,-粒 子散射较为明显。
旧的专用单位:Ci(居里),mCi(10-3 Ci), Ci(10-6Ci)
1Bq=1s-1
1Ci=3.7×1010Bq
第三节 射线与物质的相互作用
一、带电粒子与物质的相互作用
电离作用
定义:凡原子或原子团由于失去电子或得到电子而变成离 子的过程称为电离(ionization)。

核医学知识点笔记复习整理

核医学知识点笔记复习整理

核医学知识点笔记复习整理随着现代医学技术的进步和发展,核医学应用越来越广泛。

核医学是一门较为特殊的医学领域,它不同于其他医学科目,使用的主要是放射性核素技术和核物理技术。

本文将对核医学知识点进行笔记复习整理,让读者更直观地掌握核医学知识。

1. 核医学基本知识核医学是通过用放射性核素进行诊断和治疗的一种医疗方式。

核医学核素在体内的分布和代谢过程可以用各种成像技术进行定量和定位,从而达到诊断和治疗的目的。

核医学具有较高的生物学等效性。

放射性核素可以被身体吸收,利用放射性相互作用,植入到体内的精确位置,起到精确的定位和治疗作用。

目前临床上常用的核素有28种,其中放射性浓缩剂、伽马光谱仪、计算机处理和图像分析成为核医学影像学的主要发展方向。

2. 核医学影像学技术核医学影像学技术主要分为伽马相机等诊断影像学和内照射等治疗影像学两部分。

伽马相机是核医学最为基础的诊断影像学设备。

通过伽马相机和放射性核素手段,可以对身体内部的病变进行诊断。

一条伽马相机会对应一个放射性核素,因此不同的伽马相机能看到不同的肿瘤和内部病理变化。

内照射治疗是核医学影像学技术中常用的治疗方法。

内照射是通过放射性核素找到肿瘤细胞区域,从而达到杀灭肿瘤细胞的目的。

内照射可通过植入核素、口服核素和静脉注射模式进行,植入核素最常被使用,且效果较佳。

3. 核医学应用范围核医学应用范围非常广泛,常见的应用包括:1) 乳腺癌检测:常用探针是标记放射性核素的集合体,它们被注射到体内,然后通过伽马相机扫描整个身体,以发现分布在放射性核素内的信号。

2) 神经系统疾病:可使用单光子断层扫描(SPECT)进行检查,可检查痴呆,脑缺血,脑炎等疾病。

3) 心力衰竭:除了使用SPECT检查器检测血流量以外,还可以使用PET检查器检测心肌代谢及运动的情况。

PET检查器获得的影像图像更为清晰,对心血管疾病患者分子水平的代表性评价更好。

4)癌症治疗:经经典的使用方法是放射性核素植入探针或植入细胞进行乳腺癌等癌症治疗。

核物理核能利用知识点总结

核物理核能利用知识点总结

核物理核能利用知识点总结核物理是关于原子核的研究领域,它在当代科学中扮演着重要的角色。

核能利用则是指人类如何利用核能源来满足能源需求、推动科技进步以及探索未来的绿色能源方向。

本文将对核物理和核能利用的知识点进行总结。

一、核物理基础知识核物理的核心是研究原子核的结构和性质,其中一些基础知识包括:1. 原子核的组成:原子核由质子和中子组成,质子带正电荷,中子不带电荷。

2. 原子核的尺寸:原子核尺寸非常微小,通常约为10的负15次方米。

3. 能级结构:原子核中的质子和中子分布在不同的能级上,能级和核壳层结构对核反应有重要影响。

二、核能的释放和利用核能的释放可以通过核反应来实现,核裂变和核聚变是两种核反应形式。

1. 核裂变:核裂变是指重核(如铀)被撞击或捕获中子后,裂变成两个或多个轻核的过程。

裂变释放出巨大的能量,这种能量可以用于核电站发电和核武器等。

2. 核聚变:核聚变是指将两个轻核(如氢同位素氘和氚)聚合成一个重核的过程。

核聚变是太阳和恒星内部能量的来源,也是实现未来清洁能源的潜在技术。

三、核能利用的应用核能利用在许多领域有着广泛的应用,以下是几个重要领域的举例:1. 核电站:核电是一种可靠的、高效的电力发源方式,通过核裂变反应释放的热能产生蒸汽并驱动涡轮机发电。

2. 医学影像:核医学利用放射性同位素发出的射线来进行诊断和治疗,包括正电子发射断层扫描(PET)和放射性治疗等。

3. 核兵器技术:核能的应用也包括军事领域,核武器的制造和应用一直备受关注,核不扩散和裁军成为国际政治的重要议题。

四、核能利用的挑战与前景核能的利用虽有众多优势,但也面临着许多挑战,如核废料处理和储存、核事故风险以及核扩散等。

然而,随着科技的不断进步,核能的前景依然广阔:1. 国际合作:国际社会应加强合作,共同应对核能利用的挑战,促进核能发展的安全与可持续。

2. 新技术研发:投资研发新的核能技术,如第四代反应堆、聚变技术等,以提高核能的安全性和有效性。

核物理的知识点总结

核物理的知识点总结

核物理的知识点总结一、基本概念1.1 原子核的组成原子核是由质子和中子组成的,质子带正电荷,中子不带电荷。

质子和中子统称为核子。

在原子核中,核子之间通过强相互作用相互结合,形成一个稳定的结构。

1.2 原子核的大小原子核的大小一般用费米(1fm=10^-15m)作为长度单位来度量。

在原子核内部,核子之间的距离约为1-3fm。

原子核的大小和质量与其所含的质子数和中子数有关,通常原子核的大小与其质量成正相关。

1.3 原子核的稳定性原子核的稳定性受到核子的数量与质量比例的影响。

一个稳定的原子核应该具备适当的质子数和中子数,质子数和中子数的比例也会影响原子核的稳定性。

在一定范围内,原子核的稳定性随着质子数和中子数的增加而增加,但是当质子数或中子数过大时,原子核就会变得不稳定。

1.4 放射性放射性是原子核放射出α、β、γ射线的现象。

放射性同位素是指放射性核素,它们的原子核不稳定,会通过放射性衰变来释放能量并转变成稳定的核素。

放射性衰变是原子核的一种自发性变化过程,包括α衰变、β衰变、γ衰变等。

1.5 强相互作用原子核中的核子之间存在着一种非常强大的相互作用力,称为强相互作用。

强相互作用是导致核子结合成原子核的主要力量,它的作用范围非常短,仅限于原子核内部,但是它的力量非常大,可以克服核子之间的静电斥力,使得核子结合成原子核。

1.6 核力和库伦力原子核中的核子之间存在两种相互作用力,一种是核力,一种是库伦力。

核力是介于核子之间的吸引力,是强相互作用的结果,核力的作用范围仅限于原子核的范围内。

库伦力是由于质子之间的静电斥力而产生的排斥力,它的作用范围是无穷远,是保持原子核稳定的力量之一。

二、核反应2.1 核反应的基本概念核反应是指原子核之间的相互作用过程,可以通过核反应来实现原子核的变化。

核反应可以是通过核裂变或核聚变来实现的。

核裂变是指重核裂变成轻核的过程,同时释放出大量能量。

核聚变是指轻核聚变成重核的过程,也会释放出大量能量,是太阳等恒星能量的来源之一。

核医学技术在医学中的应用

核医学技术在医学中的应用

核医学技术在医学中的应用核医学技术是现代医学领域里的一种先进技术,它通过利用放射性同位素以及射线的物理效应,来诊断、治疗以及研究与医学相关的各种疾病。

这些技术在医学领域里广泛应用,已成为现代医学治疗疾病的重要手段。

一、核医学技术的基本原理核医学技术是以核物理学为基础的现代医学技术,其基本原理是利用放射性同位素来诊断或治疗人体疾病,或者利用核反应的原理制造放射性药物来进行医学治疗。

核医学的诊断技术主要有三种方式:放射性同位素扫描、单光子发射计算机体层摄影(SPECT)和正电子发射计算机体层摄影(PET)。

放射性同位素扫描技术是通过体内注入一种带有放射性标记的物质,随后通过探测器来测量运动中的同位素,通过计算机进行图像重构,族群更为精准的做出临床诊断。

SPECT是指单光子发射计算机体层摄影,其原理是将同步光子通过减缓装置减速至光电子,之后利用光电效应来探测这些光电子,最后创建三维图像。

PET是指正电子发射计算机体层摄影,其原理则是将正电子注入人体,光电效应来记录这些正电子的运动轨迹,最终创建三维图像。

二、核医学技术的应用范围核医学技术在医学领域里有着非常广泛的应用,这些应用覆盖了各个领域。

以下是核医学技术常见的几个应用领域:1、心血管疾病诊断。

核医学技术可以用来检测血管阻塞,诊断心血管疾病,如冠心病、心肌梗死和心肌缺血等。

其中,放射性同位素扫描技术通过诱发心肌细胞代谢变化,定量心肌血流量,来诊断心肌性质的缺乏和心肌梗塞。

2、神经系统疾病诊断。

核医学技术可以用来研究各种神经系统疾病,如帕金森病、阿尔茨海默病、癫痫等。

SPECT可以识别脑血管疾病、脑部炎症以及肿瘤等脑组织的损伤状况。

3、骨关节疾病诊断。

核医学技术可以用于检测骨骼疾病,如代谢性骨病和肿瘤患者的骨转移。

其中,骨扫描和静脉注射放射性物质后的全身扫描能够非常清晰地显示出患者的骨骼状况。

4、癌症治疗。

核医学技术可以在放射线治疗、放射性同位素治疗和更为广泛的辅助化学治疗中应用。

核医学完整版-复习考试必备,全面有重点资料

核医学完整版-复习考试必备,全面有重点资料

第一章核物理1、核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。

2、元素(element)——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I;3、核素(nuclide)——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。

同一元素可有多种核素,如131I、127I、3H、99mTc、99Tc分别为3种元素的5种核素;4、同质异能素(isomer)——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc 。

5、同位素(isotope)——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。

6、稳定核素(stable nuclide)——原子核稳定,不会自发衰变的核素;7、放射性核素(radionuclide)原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素8、放射性衰变(radiation decay)——放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程9、放射性衰变方式:1)α衰变;2)β- 衰变:实质:高速运动的电子流;3)正电子衰变(β+衰变);4)电子俘获;5)γ衰变。

10、半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间11、放射性活度(activity, A)单位时间内发生衰变的原子核数12、韧致辐射(bremsstrahlung)湮灭辐射(annihilation radiation) 康普顿效应(compton effect)光电效应(photoelectric effect)γ光子与介质原子碰撞,把能量全部交给轨道电子,使之脱离原子而发射出来,而整个光子被吸收消失。

r射线与物质相互作用产生哪些效应?光电效应康普顿效应电子对生成13、物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Am Z
XAZY
99m43Tc9493Tc
二、核衰变规律
核衰变的基本定律
放射性原子数或放射性活度随时间呈指数规律减少。 Nt= N0e-t 或 At= A0e-t
衰变常数
放射性核素在单位时间内衰变的概率。是反映放射性核素 衰变速度的物理量,是放射性核素的一个重要特征参数。 衰变常数越大,放射性核素衰变速度越大。
吸收作用
定义:带电粒子通过物质时,与物质相互作用, 能量不断 损失,当射线能量耗尽后,带电粒子就停留在物质中,射 线则不再存在,称为吸收(absorption)。
二、光子与物质的相互作用
光电效应
定义:光子与物质原子的轨道电子(主要是内层电子)碰 撞,把能量全部交给轨道电子,使之脱离原子,光子消失, 这种作用过程称为光电效应(photoelectric effect) 。
旧的专用单位:Ci(居里),mCi(10-3 Ci), Ci(10-6Ci)
1Bq=1s-1
1Ci=3.7×1010Bq
第三节 射线与物质的相互作用
一、带电粒子与物质的相互作用
电离作用
定义:凡原子或原子团由于失去电子或得到电子而变成离 子的过程称为电离(ionization)。
电离密度(ionization density)
用λ表示。
单位:h-1, min-1, s-1。
99Tcm的衰变曲线
半衰期 物理半衰期
物理半衰期(physical half life)指放射性核素减少一半所需 要的时间。是放射性核素的一个重要特征参数。物理半衰 期越短表明放射性核素衰变越快。
用T1/2表示。 单位:h, min, s。
生物半衰期
第一节 原子的基本结构
原子核
中子
++
+
质子
电子
核素及符号表示
核素 :具有特定质量数、原子序数与核能态,其平均寿命 长得足以被观测的一类原子称为核素。
核素 氦-4 碳-12 碳-13 碳-14
质子数 2 6 6 6
中子数 2 6 7 8
质量数 4 12 13 14
符号 4He 12C 13C 14C
Hale Waihona Puke A ZX01eZA1Y
55 26
Fe
0 1
e
55 25
Mn
γ衰变和内转换
定义:原子核由激发态向基态或由高能态向低能态跃 迁时,放出射线的衰变过程称为衰变 ( decay)。 原子核的激发能也可以直接传递给核外的内层电子, 使之脱离轨道成为自由电子,这一过程称为内转换 (internal conversion)。
散射
定义:带电粒子与物质的原子核碰撞而改变运动方向和/ 或能量的过程称为散射(scattering)。
仅运动方向改变而能量不变者称为弹性散射。运动方向 和能量都发生变化者称为非弹性散射。
散射作用强弱与带电粒子的质量有关,带电粒子的质量 越大,散射作用越弱,所以粒子散射一般不明显,-粒 子散射较为明显。
同质异能素
定义:具有相同质量数和原子序数,处于不同核能态的 一类核素称同质异能素。 基态的原子和激发态的原子互为同质异能素(isomer)。
99m43Tc 9493Tc m
9493Tc
同质异能素
第二节 核衰变
定义:放射性核素由于核内结构或能级调整,自发地释 放出一种或一种以上的射线并转化为另一种核素的过程, 称为核衰变(nuclear decay)。
氚发生β-衰变,衰变为氦
一、核衰变的类型
衰变
定义:衰变时放射出粒子的衰变称衰变( decay) 。 衰变发生于原子序数 > 82的核素。
+ +Q
226 88
Ra
222 86
Rn
4 2
He
4.937
MeV
-衰变
定义:释放出-粒子的衰变称-衰变(- decay) 。 -衰变发生于富中子核素,实质上是原子核的一个 中子转化为质子。
用Teff 表示。 单位:h, min, s。
Teff = T1/2 ∙Tb/( T1/2+ Tb)
放射性活度
定义:一定量的放射性核素在一个很短的时间间隔内发生 的核衰变数除以该时间间隔。简称活度(radioactivity)。 即单位时间内原子核的衰变数量。
A=dN/dt
国际制单位:Bq(贝克),KBq(103 Bq),MBq (106Bq),GBq(109 Bq)
韧致辐射
定义:带电粒子受到物质原子核电场的作用,运动方向和 速度都发生变化,能量减低,多余的能量以X射线的形式 辐射出来,称为韧致辐射(bremsstrahlung) 韧致辐射实际上是一种非弹性散射。
湮灭辐射(annihilation radiation)
定义:+衰变产生的正电子可在介质中运行一定距离,能 量耗尽时和物质中的自由电子结合,两个电子的静止质量 (相当于1022keV的能量)转化为两个方向相反、能量各 为511keV的光子而自身消失,叫做湮灭辐射。
生物半衰期(biological half life)指生物体内的放射 性核素经各种途径从体内排出一半所需要的时间。 用Tb表示。 单位:h, min, s。
有效半衰期
有效半减期(effective half life)指生物体内的放射 性核素由于从体内排出和物理衰变两个因素作用,减少至 原有放射性活度的一半所需的时间。
A Z
XZA1Y
Q
32 15
P3126
S
1.71MeV
+衰变
定义:释放出+粒子的衰变方式称为+衰变(+ decay)。 +衰变发生于贫中子核素,实质上是原子核的一个质子转 化为中子。
A Z
XZA1Y
Q
18 9
F188
O
0.66 MeV
电子俘获
定义:电子俘获(electron capture)是指原子核从 核外俘获一个轨道电子。 电子俘获也发生在贫中子核素,由于核内中子相对 不足而从核外内层的电子轨道上俘获一个电子,使 其一个质子转化为中子。
稳定核素 原子核稳定,不会自发衰变的核素称为稳定核素。 放射性核素
原子核处于不稳定状态,需通过核内结构或能级调 整才能趋于稳定的核素,称为放射性核素 (radionuclide)。
同位素
定义:具有相同原子序数,但质量数不同的核素互为同 位素。即质子数相同而中子数不同的核素。
图2-2 氕、氘、氚互为同位素
单位路径上形成离子对的数目称为电离密度或 比电离。
电离密度与带电粒子的电量、速度以及物质密 度有关。
激发作用
定义:如果核外电子获得的能量不足以使其形成自由电子, 只能由能量较低的轨道跃迁到能量较高的轨道,使整个原 子处于能量较高的激发态,称为激发(excitation)。
激发的原子不稳定,退激后可释放出光子或热量。
相关文档
最新文档